
Stochastic Bandits with ReLU Neural Networks

Kan Xu 1 Hamsa Bastani 2 Surbhi Goel 2 Osbert Bastani 2

Abstract
We study the stochastic bandit problem with
ReLU neural network structure. We show that
a Õ(
√
T) regret guarantee is achievable by con-

sidering bandits with one-layer ReLU neural net-
works; to the best of our knowledge, our work is
the first to achieve such a guarantee. In this spe-
cific setting, we propose an OFU-ReLU algorithm
that can achieve this upper bound. The algorithm
first explores randomly until it reaches a linear
regime, and then implements a UCB-type linear
bandit algorithm to balance exploration and ex-
ploitation. Our key insight is that we can exploit
the piecewise linear structure of ReLU activations
and convert the problem into a linear bandit in
a transformed feature space, once we learn the
parameters of ReLU relatively accurately during
the exploration stage. To remove dependence on
model parameters, we design an OFU-ReLU+ al-
gorithm based on a batching strategy, which can
provide the same theoretical guarantee.1

1. Introduction
The stochastic contextual bandit problem has been widely
studied in the literature (Bubeck et al., 2012; Lattimore &
Szepesvári, 2020), with broad applications in healthcare
(Bastani & Bayati, 2020), personalized recommendation (Li
et al., 2010), etc. The problem is important since real-world
decision-makers oftentimes adaptively gather information
about their environment to learn. Formally, the bandit algo-
rithm actively selects a sequence of actions {xt}t∈[T] with
xt ∈ X over some horizon T ∈ N, and observes stochastic
rewards yt = fΘ∗(xt) + ξt, where fΘ∗ is the true reward
function (represented by a model with parameters Θ∗), and
ξt is random noise. Thus, to achieve good performance or

1Arizona State University, Arizona, USA 2University of
Pennsylvania, Pennsylvania, USA. Correspondence to: Kan Xu
<kanxu1@asu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1Source code is available at https://github.com/
kanxu526/ReLUBandit.

low regret, the decision-maker must maintain small decision
error uniformly across all actions xt over time to ensure that
it generalizes to new, actively selected actions.

With the success of bandits in practice, there has been a
great deal of recent interest in understanding the theoreti-
cal properties of bandit algorithms. For linear models, i.e.,
the expected reward fΘ∗ is linear in xt, bandit algorithms
have adapted techniques from statistics to address this chal-
lenge (Dani et al., 2008; Rusmevichientong & Tsitsiklis,
2010; Abbasi-Yadkori et al., 2011). Particularly, linear ban-
dit algorithms build on linear regression, which provides
parameter estimation bounds of the form ∥θ̂ − θ∗∥2 ≤ ϵ;
then, we obtain uniform generalization bounds of the form
|fθ̂(x) − fθ∗(x)| ≤ Lϵ,∀x ∈ X , where L is a Lipschitz
constant for fθ. By adapting these techniques, linear ban-
dit algorithms can achieve minimax rates of Õ(

√
T) (Dani

et al., 2008; Abbasi-Yadkori et al., 2011) in terms of regret.
However, the linear assumption oftentimes do not hold for
complicated tasks (Valko et al., 2013), and has recently mo-
tivated the study of nonlinear contextual bandits, especially
building upon neural networks with ReLU activations (see,
e.g., Zhou et al., 2020; Zhang et al., 2020; Xu et al., 2020;
Kassraie & Krause, 2022).

One of the key questions is what kinds of guarantees can
be provided in such settings when the underlying true re-
ward model has ReLU structures. The current existing lit-
erature of bandits based on ReLU neural networks mainly
base their analyses on the theory of neural tangent kernel
(NTK) (Jacot et al., 2018). Zhou et al. (2020); Gu et al.
(2024) leverage NTK and upper confidence bound (UCB)
techniques to achieve a Õ(γT

√
T) regret bound, where γT

is the effective dimension or maximum information gain
and is assumed to be T -independent in these literature.
This assumption is strong because it intuitively assumes
the function is linear on a low-dimensional subspace (more
precisely, it says that the eigenvalues of the empirical co-
variance matrix in the kernel space vanish quickly, so the
covariates “approximately” lie in a low-dimensional sub-
space); thus, it effectively converts the problem to linear
bandit problem in a high-dimensional subspace. Indeed,
for ReLU neural networks on a d-dimensional domain (i.e.,
x ∈ Rd), (Kassraie & Krause, 2022) shows a best upper
bound for the information gain known as γT = Õ(T

d−1
d),

even for a one-layer neural network. Consequently, the re-

1

https://github.com/kanxu526/ReLUBandit
https://github.com/kanxu526/ReLUBandit

Stochastic Bandits with ReLU Neural Networks

gret bound provided above becomes superlinear even for
d > 1 without further restrictive assumptions. (Kassraie &
Krause, 2022) improve upon this regret bound based on a
variant of (Zhou et al., 2020) and obtain a sublinear bound of
Õ((γTT)

1/2) = Õ(T
2d−1
2d), but is still far from the typical

Õ(
√
T) guarantee.

Contribution. In contrast, we want to shed light on the
achievable regret guarantee for a nonlinear bandit prob-
lem with ReLU neural network structure by estimating the
model fΘ∗ directly (without making an effective dimension
assumption using NTK techniques). Due to the complexity
of the problem, we consider the setting of one-layer ReLU
neural network as the true reward function. We design two
bandit algorithms that exploit the piecewise linear structure
of ReLU activations; to the best of our knowledge, we pro-
vide the first Õ(

√
T) regret bound for bandit learning with

ReLU neural networks.

Our first bandit algorithm OFU-ReLU is designed based on
the following insight. Let our true reward function have the
following ReLU structure with k neurons (see, e.g., Du &
Lee, 2018; Zhang et al., 2019)

fΘ∗(x) =
∑
i∈[k]

θ∗⊤i x · 1(θ∗⊤i x ≥ 0),

where Θ∗ = [θ∗1 , · · · , θ∗k]⊤. Intuitively, once we learn a suf-
ficiently good estimate θ̃i that is close to its corresponding
true neuron parameter θ∗i , we can “freeze” the contribution
of the indicator function by 1(θ̃⊤i x ≥ 0). The problem
then becomes linear, and we can use a UCB-type linear
bandit algorithm to achieve good performance. This insight
motivates our two-phase bandit algorithm, where we first
randomly explore to estimate the parameters, and then run
linear bandits once we reach the linear regime to obtain at a
minimax optimal rate.

We want to note that even though this strategy may seem
straightforward, such a two-stage design with a phase tran-
sition from exploration to bandit learning has been shown
inevitable for specific nonlinear bandit problems (Rajara-
man et al., 2023), and might be a more general phenomenon.
In addition, applying UCB-type algorithm (i.e., Eluder UCB
(Russo & Van Roy, 2013)) directly on the reward has been
demonstrated suboptimal for certain family of nonlinear
bandit problem, posing an interesting theoretical challenge
(Rajaraman et al., 2023). In contrast, we show that instead
of applying UCB to the ReLU structure directly, we will be
able to reduce it to a linear bandit problem and this will
make UCB optimal again.

Our second bandit algorithm OFU-ReLU+ is designed to
eliminate the assumed knowledge in OFU-ReLU of the min-
imum gap ν∗ between the optimal action x∗ and any neuron
θ∗i (we prove such a gap always exists for our ReLU struc-
ture). As long as the estimate θ̃i is within ν∗/2 of the true

neuron θ∗i , the indicator estimate is guaranteed to be con-
sistent with the true indicator value at the optimal action
x = x∗, i.e., 1(θ̃⊤i x

∗ ≥ 0) = 1(θ∗⊤i x∗ ≥ 0). In other
words, unless our estimate θ̃ has less than a ν∗-dependent er-
ror, the optimal action x∗ would lie near a nonlinear regime
of a neuron, which might fail the following linear bandit
learning. Yet, in practice we do not know ν∗; thus, we de-
sign a batching strategy that first makes a guess on ν∗ and
keep cutting this guess every batch so that our estimate θ̃i
will be accurate enough after a constant number of batches.
Different from the previous batching strategies (see, e.g.,
Golrezaei et al., 2019; Luo et al., 2022), our exploration
and OFUL phase both use samples from all previous batches
without discarding data from previous batches.

Finally, we provide a parameter estimation error bound for
one-layer ReLU neural networks that can ensure theoretical
guarantee for each neuron independently through a novel
proof strategy, which might be of separate interest.

1.1. Other Related Work

Early work on stochastic bandits focus on linear re-
wards (Dani et al., 2008; Chu et al., 2011; Abbasi-Yadkori
et al., 2011) and typically use an UCB algorithm. Later,
it has been extended to kernel based models, where the
reward functions belong to the reproducing kernel Hilbert
space (RKHS) (Valko et al., 2013). Along this line, the
recent ReLU bandit literature are build upon the kernelized
algorithm using NTK and achieve an effective-dimension-
dependent bound (Zhou et al., 2020; Xu et al., 2020; Kass-
raie & Krause, 2022; Gu et al., 2024); (Salgia, 2023) general-
ize to smooth activations and provide a bound Õ(T

2d+2s−3
2d+4s−4)

depending on smoothness s. Dong et al. (2021) study the
optimization scheme of nonlinear bandit, and provide a
Õ(T 3/4) and Õ(T 7/8) local and global regret for two-layer
neural network bandit. (Rajaraman et al., 2023) focus specif-
ically on the ridge function family (which does not include
ReLU but only ReLU with single neuron), and design an
explore-then-commit strategy. Finally, there are also many
other works that study neural network bandits with other
activations, such as quadratic activations (Xu et al., 2021a),
polynomial functional form (Huang et al., 2021), etc.

2. Problem Formulation
Notation. Let [n] = {1, · · · , n}. We let Sd−1(r) ⊆ Rd

denote the (d−1)-sphere in d dimensions with radius r, and
let Sd−1 = Sd−1(1). Define Ad−1(r) to be the area of the
(d − 1)-sphere with radius r (i.e., Ad−1(r) = |Sd−1(r)|).
We use ∨ to represent the maximum value. Define p to be
the distribution of the covariates, i.e., x ∼ p.

ReLU Neural Network. Consider a function family fΘ :
X → Y (where X = Sd−1 ⊆ Rd, Y = R, and Θ ∈ Θ for

2

Stochastic Bandits with ReLU Neural Networks

a given domain Θ ⊂ Rk×d) consisting of neural networks
with ReLU activations (see, e.g., Du & Lee, 2018; Zhang
et al., 2019)

fΘ(x) =
∑
i∈[k]

g(θ⊤i x), (1)

where θi is the ith component of the parameter Θ =
[θ1, θ2, · · · , θk]⊤ (which we call a neuron) and g(z) =
z · 1(z ≥ 0). Let Θ∗ be the ground-truth parameters.

We are provided with n data points Z = {(xi, yi)}i∈[n]

such that yi = fΘ∗(xi)+ξi, where ξi is i.i.d. σ-subgaussian
random noise with mean 0. Assume the covariates follow
certain distribution x ∼ p. Then, the population mean
squared loss is defined as

LS,p(Θ) = Ep

[
(fΘ(x)− fΘ∗(x))2

]
.

We slightly abuse our notation and use p to denote the joint
distribution of each training example (xi, yi); the corre-
sponding empirical mean squared loss is

L̂S(Θ;Z) =
1

n

∑
i∈[n]

(fΘ(xi)− yi)
2. (2)

For some neural network fΘ∗ , we obtain an estimate Θ̂ for
the parameter Θ∗ by taking the minimizer of L̂S(Θ;Z), i.e.,
Θ̂ = argminΘ∈Θ L̂S(Θ;Z).

Assumptions. We provide a statistical guarantee for param-
eter estimation of ReLU neural network under the following
assumptions.

Assumption 2.1. ∥θ∗i ∥2 = 1 holds for all neurons i ∈ [k].

Note that under the above assumption, the domain of Θ,
i.e., Θ, is included in {Θ ∈ Rk×d | ∥Θ∥2,1 = k}, where
∥Θ∥2,1 :=

∑
i∈[k] ∥θi∥2 is the ℓ2,1-norm.

Assumption 2.2. There exists a constant α0 > 0 such that

min
j,j′∈[k],j ̸=j′

∥θ∗j ± θ∗j′∥2 ≥ α0.

Collectively, our assumptions limit the structure of the neu-
ral network. As evidenced by lower bounds in (Dong et al.,
2021), some restrictions on the structure are necessary to
obtain regret Õ(Tα) for α < 1.

Assumption 2.1 is critical for our analysis, since neurons
become hard to estimate when they are small. Similarly,
Assumption 2.2 is necessary since two neurons that are close
together are hard to distinguish. The assumption that the
second layer consists of weights ones is not critical—most
of our proofs can be extended to the case where the second
layer has values in {±1}.

ReLU Bandit. We consider the following bandit problem.
At each step t, we choose an action xt ∈ X , and observe
reward

yt = fΘ∗(xt) + ξt, (3)

where ξt is i.i.d. σ-subgaussian random noise with mean
0. Here, the true parameters Θ∗ are unknown and will be
learned in an online manner. Our goal is to minimize the
cumulative regret RT over a time horizon T :

RT =

T∑
t=1

rt, rt = fΘ∗(x∗)− fΘ∗(xt)

where x∗ = argmaxx∈X fΘ∗(x) is the optimal action and
rt is the per period regret.

3. Parameter Estimation for ReLU Neural
Networks

We provide an estimation error bound on the parameters
of ReLU neural networks, which is important for the con-
vergence of our bandit algorithm. Since the population
loss function is symmetric regarding the neurons, meaning
that any column-permutation of Θ∗ achieves zero loss, our
bound shows the existence of some mapping σ : [k]→ [k]
from the ground truth neurons θ∗i to the estimated neurons
θ̂σ(i) such that θ̂σ(i) ≈ θ∗i .

First, we show the following proposition, which states that
a small generalization error on a special subset of the unit
sphere Xi(ϵ) ⊂ X = Sd−1 for ϵ ∈ R>0, i.e.,

Xi(ϵ) = {x ∈ X | |θ∗⊤i x| ≤ ϵ},

implies a small parameter estimation error of the correspond-
ing neuron θ∗i up to a sign flip.

Proposition 3.1. Suppose

LXi(ϵ)(Θ) :=

∫
Xi(ϵ)

|fΘ(x)− fΘ∗(x)|dx ≤ η

for some η ∈ R>0. Then, there exists a bijection σ : [k]→
[k] such that

min{∥θσ(i) − θ∗i ∥2, ∥θσ(i) + θ∗i ∥2} ≤ h(η, ϵ),

where h(η, ϵ) := kϵ3|Sd−3|/2
ϵ2(1−dϵ2/2)|Sd−2|/8−η−6kdϵ3|Sd−2| .

We provide a detailed proof with illustrations in Appendix A.
Intuitively, Xi contains those x ∈ X close to the boundary
where the neuron θ∗i of fΘ∗ is nonlinear (i.e., θ∗⊤i x = 0).
Then, this proposition claims that if the loss on certain Xi

is small, then the corresponding neuron θ∗i in the ground-
truth neural network fΘ∗ can be identified up to a sign flip

3

Stochastic Bandits with ReLU Neural Networks

by a corresponding neuron θσ(i) in the approximate neural
network fΘ, i.e., θσ(i) ≈ θ∗i or θσ(i) ≈ −θ∗i . Moreover, if
the loss on all Xi’s with i ∈ [k] are small, then Θ is close
to Θ∗ via the mapping σ up to sign flips.

Our main result combines Proposition 3.1 with a standard
generalization error bound for ReLU neural networks to
obtain the following parameter estimation error bounds.
Theorem 3.2. Suppose the distribution p satisfies

1

|Sd−1|

∫
X
|fΘ(x)− fΘ∗(x)|dx ≤ Ep [|fΘ(x)− fΘ∗(x)|] .

Then, there exists a bijection σ : [k]→ [k] such that

min{∥θ̂σ(i) − θ∗i ∥2, ∥θ̂σ(i) + θ∗i ∥2} ≤ 727π− 1
4 kd

1
4 (2ζ)

1
4

holds for all i ∈ [k] with at least a probability 1− δ, where
ζ = Θ̃(

√
k5d/n).

We give a proof and the expression of ζ in Appendix B.

One potential limit of our proof strategy is that we may not
correctly identify the sign of the ground truth neurons—i.e.,
our guarantee has the form θ̂σ(i) ≈ ±θ∗i . However, we
show in the next section that this caveat does not affect our
bandit algorithm and analysis. Particularly, we show the
difference between the estimated neural network fΘ̂ and the
true model fΘ∗ can be captured by a linear structure under
sign misspecification. Thus, we can still run linear bandit
algorithm to learn fθ∗ in an online manner.

4. Algorithms for ReLU Bandits
Now, we describe our bandit algorithm and provide cor-
responding regret analysis. We begin with a simple case
where we know the gap between the optimal action x∗ and
the nearest neuron, and then provide a solution when this
knowledge of gap is not assumed.

4.1. Algorithm Design

We first provide intuition for our design choices. The chal-
lenge of running a ReLU bandit algorithm is the nonlinearity
of the ReLU neural network, which is due to the indicator
function in the ReLU activations—i.e., in

θ⊤i x · 1(θ⊤i x ≥ 0),

the first occurrence of θi is the linear contribution and the
second occurrence is the contribution via the indicator func-
tion. The key of our design to tackle the nonlinearity is to
first learn the indicator contribution, and then use a typical
linear bandit algorithm to keep updating the model given
the indicator function fixed. Particularly, once we have a
sufficiently good estimate θ̃i ≈ θ∗i , then our estimate of the
indicator is exact:

1(θ̃⊤i x
∗ ≥ 0) = 1(θ∗⊤i x∗ ≥ 0), ∀i ∈ [k]. (4)

Next, we can fix the value of the indicator function using θ̃i
and focus on learning the linear part. That is, we run a linear
bandit algorithm with the value of θi = θ̃i in the indicator
functions, but keep learning the value of θi in the linear part.
In more detail, if (4) holds, then we have

E[y] = fΘ∗(x) =
∑
i∈[k]

(1(θ̃⊤i x ≥ 0)x)⊤θ∗i

=

1(θ̃⊤1 x ≥ 0)x

1(θ̃⊤2 x ≥ 0)x
...

1(θ̃⊤k x ≥ 0)x

⊤

︸ ︷︷ ︸
x†

θ∗1
θ∗2
...
θ∗k

︸ ︷︷ ︸

θ†

. (5)

Equivalently, we can run a linear bandit to learn fΘ∗(x),
however, with action being the term x† ∈ Rdk in (5), and
parameter being the term θ† ∈ Rdk. The action x† is a
function of the original action x and the estimated parameter
Θ̃, and the parameter to update θ† is a vectorization of the
parameter Θ of interest.

Challenges. Though the above two-stage design looks intu-
itive, there are still two challenges associated with (4) and
(5). On one hand, even if we have a relatively accurate
estimate θ̃i of θ∗i , (4) might not hold for some action x close
to both of the estimate θ̃i and the neuron θ∗i . On the other
hand, our theoretical result in §3 only provides a guarantee
on θ̃i up to a sign flip, and hence still (4) might not hold;
thus, we also need to design our algorithm capturing this
bias.

As suggested above, note that for any x such that θ∗⊤i x ≈ 0,
even if θ̃i ≈ θ∗i , it may still be the case that (4) fails to
hold. As a consequence, (5) does not hold, and fΘ∗(x) is
not linear in x† for x close to any of θ∗i ’s. In other words,
the linear bandit is misspecified in some action region, so
the algorithm may not converge if the optimal action lies in
such regions. Thus, our regret bounds depend on the gap
between the optimal action x∗ = argmaxx∈X fΘ∗(x) and
the nearest hyperplane that is perpendicular to one of the
neurons in the ground-truth neural network.

Definition 4.1. A ReLU neural network with parameters Θ∗

has a ν∗-gap for ν∗ ∈ R≥0 if |θ∗⊤i x∗| ≥ ν∗ for all i ∈ [k].

The following result ensures that a nontrivial gap ν∗ > 0
always exists for our ReLU structure.

Proposition 4.2. mini∈[k] |θ∗⊤i x∗| > 0 holds for the opti-
mal action x∗.

We give a proof in Appendix C. Note that our proof strat-
egy relies on the ReLU structure where the weights of the
second layer equal 1. In other words, any ReLU neural
network structure as in (3) that satisfies our assumptions has
a positive gap ν∗ = mini∈[k] |θ∗⊤i x∗| > 0.

4

Stochastic Bandits with ReLU Neural Networks

Given this gap ν∗, as long as our estimate θ̃i has an estima-
tion error of θ∗i smaller than ν∗/2, i.e., ∥θ̃i − θ∗i ∥ ≤ ν∗/2,
our bandit algorithm will be able to find the optimal action
x∗ in the action space X (Θ̃, ν∗/2), where

X (Θ, ν) := {x ∈ X | |θ⊤i x| ≥ ν, ∀i ∈ [k]}. (6)

Intuitively, the above claim holds for two reasons: (i) x∗ ∈
X (Θ̃, ν∗/2), and (ii) the bandit model fΘ∗(x) is linear in
x† for any x ∈ X (Θ̃, ν∗/2) (recall x† is a function of x).
For (i), it suffices to show that X (Θ∗, ν∗) ⊆ X (Θ̃, ν∗/2),
as our ReLU neural network in (1) has a positive ν∗-gap and
hence x∗ ∈ X (Θ∗, ν∗). To this end, for any x ∈ X (Θ∗, ν∗),
if θ∗⊤i x > 0, we have

θ̃⊤i x ≥ θ∗⊤i x− |θ̃⊤i x− θ∗⊤i x|
≥ θ∗⊤i x− ∥θ̃i − θ∗i ∥2
≥ ν∗ − ν∗/2 = ν∗/2 > 0. (7)

Similarly, if θ∗⊤i x < 0, we have θ̃⊤i x ≤ ν∗/2. Next, to
show (ii), it suffices to show that for any x ∈ X (Θ̃, ν∗/2),
we have 1(θ∗⊤i x ≥ 0) = 1(θ̃⊤i x ≥ 0). Following a similar
argument as (7), we can show that θ∗⊤i x∗ ≥ 0 if θ̃⊤i x ≥ 0
(and similarly for ≤). Thus, our plug-in indicator function
is consistent with the true indicator function.

The other challenge is the sign misidentification from our
Theorem 3.2. Specifically, Θ̃ is close to the true parameters
Θ∗ only up to signs. In the worst case, the values of the cor-
responding indicators 1(θ̃⊤i x ≥ 0) may differ from the true
values 1(θ∗⊤i x ≥ 0) when θ̃i is close to −θ∗i instead of θ∗i .
In other words, the function fΘ∗(x) will still be nonlinear of
x† and (5) may no longer hold, leading to misspecification,
when ∥θ̃i + θ∗i ∥2 ≤ ν∗/2 instead of ∥θ̃i − θ∗i ∥2 ≤ ν∗/2,
even if we reduce our search region to X (Θ̃, ν∗/2)

In order to correct this misspecification bias, we propose to
add additional k delicately designed linear components to
(5). We show that the misspecification when ∥θ̃i + θ∗i ∥2 ≤
ν∗/2 can be captured by a linear structure of k additional
transformed features of x, enabling the linear bandit algo-
rithm to function again. In more detail, we can write

fΘ∗(x) =
∑
i∈[k]

(1(θ̃⊤i x ≥ 0)x)⊤θ∗i

+
∑
i∈[k]

((
1

2
− 1(θ̃⊤i x ≥ 0)x)⊤

·

(
1(θ∗⊤i x ≥ 0)− 1(θ̃⊤i x ≥ 0)

1
2 − 1(θ̃

⊤
i x ≥ 0)

θ∗i

)
.

Note that compared to (5), we have an additional second
term that captures the misspecification; this term equals 0
for any x ∈ X (Θ̃, ν∗/2) when ∥θ̃i − θ∗i ∥ ≤ ν∗/2, as we

have shown in (7). Similarly, when ∥θ̃i + θ∗i ∥ ≤ ν∗/2, we
can show that 1(θ̃⊤i x ≥ 0) = 1 − 1(θ∗⊤i x ≥ 0)—i.e., if
θ∗⊤i x ⋛ 0, we have θ̃⊤i x ≶ 0 for any x ∈ X (Θ̃, ν∗/2). In
other words, we have

1(θ∗⊤i x ≥ 0)− 1(θ̃⊤i x ≥ 0)
1
2 − 1(θ̃

⊤
i x ≥ 0)

=

{
0, if ∥θ̃i − θ∗i ∥2 ≤ ν∗

2

2, if ∥θ̃i + θ∗i ∥2 ≤ ν∗
2

.

Therefore, the true reward function fΘ∗(x) in (3) is equiva-
lent to

fθ‡(x‡) := x‡(x, Θ̃)⊤θ‡(Θ∗, Θ̃), (8)

where x‡ : X × Rk×d → R2kd and θ‡ : Rk×d × Rk×d →
R2kd are two mappings with

x‡(x, Θ̃) =

1(θ̃⊤1 x ≥ 0)x

1(θ̃⊤2 x ≥ 0)x
...

1(θ̃⊤k x ≥ 0)x

(12 − 1(θ̃
⊤
1 x ≥ 0))x

(12 − 1(θ̃
⊤
2 x ≥ 0))x
...

(12 − 1(θ̃
⊤
k x ≥ 0))x

, (9)

and

θ‡(Θ∗, Θ̃) =

θ∗1
θ∗2
...
θ∗k

2θ∗11(∥θ̃1 + θ∗1∥2 ≤ ν∗
2)

2θ∗21(∥θ̃2 + θ∗2∥2 ≤ ν∗
2)

...
2θ∗k1(∥θ̃k + θ∗k∥2 ≤

ν∗
2)

. (10)

In the following, we will use x‡ and θ‡ to denote the two
vectors in (9) and (10) for simplicity whenever no ambiguity
is raised. The reward function in (8) has additional k linear
components compared to (5); x‡ builds upon x† and con-
tains additional k features that captures the misspecification
due to sign flip. Now, we will be able to run a linear bandit
algorithm with 2kd features to learn θ‡ in an online manner.

4.2. OFU-ReLU Algorithm

For now, we assume ν∗ is known throughout our design; we
describe how to remove this assumption in §4.3.

Our algorithm, which we name OFU-ReLU2, has two
phases:

2“OFU” standards for optimism in the face of uncertainty
(Abbasi-Yadkori et al., 2011)

5

Stochastic Bandits with ReLU Neural Networks

Algorithm 1 OFU-ReLU
Input: exploration length t0, regularization parameter λ
Initialize Z0 ← ∅
for t ∈ [t0] do

Sample action xt ∼i.i.d. p
Take action xt and obtain reward yt
Zt ← Zt−1 ∪ {(xt, yt)}

end for
Compute Θ̃t0 ← argminΘ L̂S(Θ;Zt0)
for t ∈ (t0 + 1, T] do

Compute confidence ellipsoid Ct(λ, Zt) for θ‡

x‡
t ← argmax(x,θ)∈X ‡(Θ̃t0

,ν∗/2)×Ct(λ,Zt)
x⊤θ

Play xt with x‡(xt, Θ̃t0) = x‡
t and obtain reward yt

Zt ← Zt−1 ∪ {(xt, yt)}
end for

• Exploration. Randomly sample exploratory actions
xt ∼ p for t0 time steps until our estimate Θ̃t0 (i.e., Θ̃
estimated using the first t0 samples) satisfies

min{∥θ̃t0,i − θ∗i ∥2, ∥θ̃t0,i + θ∗i ∥2} ≤ ν∗/2

with high probability.

• OFUL. Run the OFUL algorithm (Abbasi-Yadkori
et al., 2011) to learn the true reward function fθ‡(x‡)
in (8), which is linear in the parameter θ‡ and fea-
tures x‡(x, Θ̃t0), over the region x‡ ∈ X ‡(Θ̃t0 , ν

∗/2),
where

X ‡(Θ, ν) := {x‡(x,Θ) | x ∈ X (Θ, ν)}. (11)

At each time period t > t0, we follow OFUL, choosing
arm x‡

t = argmax(x,θ)∈X ‡(Θ̃t0
,ν∗/2)×Ct(λ,Zt)

x⊤θ

and observing reward yt; the confidence ellipsoid
Ct(λ, Zt) for the true parameter θ‡ depends on a regu-
larization hyperparameter λ from OFUL, and can be
computed using Theorem 2 in (Abbasi-Yadkori et al.,
2011) with S =

√
5k (note that ∥θ‡∥ ≤

√
5k) and all

the data previously observed Zt = {(xτ , yτ)}τ∈[t−1].

We detail our algorithm in Algorithm 1. Given our design,
we can obtain a regret bound scaling as Õ(kd

√
T); partic-

ularly, we control the parameter estimation error of Θ̃t0

using Theorem 3.2 in §3, and analyze the regret of OFUL
stage using Theorem 3 in (Abbasi-Yadkori et al., 2011). We
provide a proof sketch below.
Theorem 4.3. The cumulative regret of Algorithm 1 satisfies

RT = Õ
(
k14d3(1/ν8∗ ∨ d4) + kd

√
T
)
.

Proof Sketch. Suppose the exploration stage ends at time
t0. We have

min
{
∥θ̃i − θ∗i ∥2, ∥θ̃i + θ∗i ∥2

}
≤ ν∗/2, ∀i ∈ [k]

with probability at least 1−δ/2 by choosing t0 large enough
according to Theorem 3.2. In particular, it suffices to take
δ = 1/

√
T and

t0 = Ω̃(k13d3(1/ν8∗ ∨ d4)). (12)

Now we analyze the regret of our OFU-ReLU algorithm in
three cases. First, at each time t, the per-period regret can
be bounded trivially by

rt ≤ (
∑
i∈[k]

∥θ∗i ∥2)(∥x∗∥2 + ∥xt∥2) ≤ 2k.

Therefore, the regret during the exploration phase is upper
bounded by Õ(k14d3(1/ν8∗ ∨ d4)).

In the second stage, we run OFUL to find the optimal pol-
icy for the linear function fθ‡(x‡) given our forced-sample
estimate Θ̃t0 . Applying the regret bound in Theorem 3 of
(Abbasi-Yadkori et al., 2011) gives the regret bound in our
second stage to be Õ(kd

√
T) with at least a probability of

1− δ/2.

Finally, with a small probability δ = 1/
√
T , we would have

linear regret scaling as 2kT ; thus, the expected regret in
this case is bounded by 2kTδ = O(k

√
T). Our claim then

follows.

We provide a detailed proof in Appendix D. Theorem 4.3
shows that our algorithm obtains a Õ(kd

√
T) regret guar-

antee as long as the time horizon T is large enough.

4.3. OFU-ReLU+ Algorithm

Algorithm 1 requires the knowledge of the gap ν∗, which is
typically unknown. We can remove this assumption based
on a batching strategy; we provide a schematic representa-
tion of our algorithm in Figure 1. Algorithm 2 summarizes
our algorithm OFU-ReLU+ based on this insight.

At a high level, we split the entire time horizon T into M
increasing batches with a grid 0 = T0 ≤ T1 ≤ · · · ≤ TM =
T . Each batch i ∈ [M − 1], i.e., t ∈ (Ti−1, Ti], satisfies
a(Ti−Ti−1) = Ti+1−Ti—i.e., Ti = (ai− 1)T1 for some
constant a > 1 and T1 > 1. Note that

M =

⌈
log(T/T1 + 1)

log(a)

⌉
. (13)

For each batch, we take a fixed guess of ν∗; we reduce this
guess geometrically from one batch to the next. Specifically,
let ν0 be our initial guess of ν∗ at t = 0; then, the guess
νi for batch i is νi = ν0/b

i for some constant b > 1. Our
νi will become sufficiently small that νi ≤ ν∗ for batch
i > log(ν0/ν∗)/ log(b). Our regret analysis in §4.2 can
then be applied from that batch onwards.

6

Stochastic Bandits with ReLU Neural Networks

Figure 1: Schematic representation of OFU-ReLU+.

In detail, within each batch i, we have an exploration phase
and a following OFUL phase as in §4.2. We initialize the
batch with the exploration period as t ∈ (Ti−1, Ti−1 + t0,i].
Different from the conventional batching strategies (see, e.g.,
Golrezaei et al., 2019; Luo et al., 2022), we estimate Θ̃ and
run OFUL using samples from all previous batches without
discarding data from previous batches. Particularly, we
estimate Θ̃ based on the accumulative samples from all the
previous exploration phases t ∈ ∪j∈[i](Tj−1, Tj−1 + t0,j]
so that the estimation error satisfies

min{∥θ̃i − θ∗i ∥2, ∥θ̃i + θ∗i ∥2} ≤ νi/2, ∀i ∈ [k]. (14)

Define a function t0
3 of an arbitrary ν as

t0(ν) = Θ̃
(
k13d3(1/ν8 ∨ d4)

)
(15)

according to (12) (detailed expression in Appendix D). Then,
it suffices to have t0,i = t0(νi)−t0(νi−1) according to (12).
Let our estimate be Θ̃t0(νi) (i.e., Θ̃ estimated using all t0(νi)
random samples from previous batches).

In the rest of the batch i, we run OFUL; at each
time step t ∈ (Ti−1 + t0,i, Ti], we choose arm x‡

t =
argmax(x,θ)∈X ‡(Θ̃t0(νi)

,νi/2)×Ct(λ,Zt)
x⊤θ and observing

reward yt. Again, we compute the Ct(λ, Zt) based on
(Abbasi-Yadkori et al., 2011) with S =

√
5k and all

the data observed Zt = {(xτ , yτ)}τ∈[t−1]. The fea-
tures are x‡(xτ , Θ̃t0(νi)) and the parameter to estimate is
θ‡(Θ∗, Θ̃t0(νi)). Note that the features and the parameter
are invariant of Θ̃t0(νi) once νi ≤ ν∗; thus, our estimate
becomes consistent and OFUL is valid from then on.

To bound the regret, we decompose the whole time horizon
into three parts and analyze them respectively:

(i). All batch i satisfying νi > ν∗,

(ii). t ∈ (Ti−1, Ti−1 + t0,i] for all batch i with νi ≤ ν∗,

(iii). t ∈ (Ti−1 + t0,i, Ti] for all batch i with νi ≤ ν∗.

The regret in (i) is independent of T and is based on our
choices of a, b, T1 and ν0. Our analysis in §4.2 can be
applied similarly to analyze the exploration regret in (ii)
and the regret (iii) from OFUL. However, for (ii), since νi
decreases over time, the regret per batch grows over time.

3Note that t0 in §4.2 is a function of ν∗. Here we abuse the
notation t0 slightly.

Algorithm 2 OFU-ReLU+
Input: regularization parameter λ, parameters ν0, T1, a, b
Initialize Z0 ← ∅, E0 ← ∅
for i ∈ [M] do

νi ← νi−1/b, t0,i ← t0(νi)− t0(νi−1)
for t ∈ (Ti−1, Ti−1 + t0,i] do

Sample action xt ∼i.i.d. p
Take action xt and obtain reward yt
Et ← Et−1 ∪ {(xt, yt)}, Zt ← Zt−1 ∪ {(xt, yt)}

end for
Compute Θ̃t0(νi) ← argminΘ L̂S(Θ;ETi+t0,i)
for t ∈ (Ti−1 + t0,i, Ti] do

Compute confidence ellipsoid Ct(λ, Zt) for θ‡

x‡
t ← argmax(x,θ)∈X ‡(Θ̃t0(νi)

,νi/2)×Ct(λ,Zt)
x⊤θ

Play xt with x‡(xt, Θ̃t0(νi)) = x‡
t and obtain yt

Zt ← Zt−1 ∪ {(xt, yt)}
end for
Ti+1 ← (ai+1 − 1)T1

end for

We show in the following theorem that this regret scales
as a polynomial term of T of which the order depends on
the relative size between a and b, and can be chosen to be
asymptotically less than O(

√
T).

Theorem 4.4. The cumulative regret of Algorithm 2 has

RT = Õ
(
k14d7 + k14d3T 8

log(b)
log(a) + kd

√
T
)
.

Proof Sketch. We bound the regret for the three cases
above respectively. First, in case (i), we have i ≤
log(ν0/ν∗)/ log(b). Recall that the per-period regret can
be trivially bounded by 2k. Thus, the regret in this case is
upper bounded by

2k(alog(ν0/ν∗)/ log(b) − 1)T1 ≤ 2k(ν0/ν∗)
log(a)
log(b) T1.

Similarly, regret in case (ii) can also be bounded by

2k

M−1∑
i=⌈ log(ν0/ν∗)

log(b)
⌉

t0,i =Õ
(
k14d7 + k14d3T 8

log(b)
log(a)

)
,

where we use the definition of t0,i, that of t0(ν) in (15), and
the value of M in (13).

Next, we calculate the regret of running OFUL in case (iii),
which is upper bounded again by Õ(kd

√
T) following the

proof strategy of Theorem 3 in (Abbasi-Yadkori et al., 2011),
similar to our proof for OFU-ReLU.

Finally, with a union bound, there’s a small probability
M/
√
T that we will have a linear regret since the above

analysis holds only with high probability. We can show the

7

Stochastic Bandits with ReLU Neural Networks

regret of this part scales as Õ(k
√
T). Combining all the

above gives our final result.

We provide a detailed proof in Appendix E. Compared with

Theorem 4.3, here we gain an additional T 8
log(b)
log(a) depen-

dence due to the increasing difficulty of learning the un-
known gap ν∗. Theorem 4.4 implies that, as long as our
choices of the multipliers a and b satisfy 8 log(b)/ log(a) ≤
1/2, we recover a Õ(

√
T) regret dependence—i.e., when

the length of exploration period grows slower than the batch
time horizon. for instance, taking a = 2 and b = 21/32, we
obtain

RT = Õ
(
k14d7 + k14d3T 1/4 + kd

√
T
)
.

Finally, if the time horizon T is at least a polynomial term
of k and d, then as before, we recover an Õ(kd

√
T) regret

guarantee.

5. Experiments
We compare our algorithm OFU-ReLU with several bench-
marks, including OFUL (Abbasi-Yadkori et al., 2011),
which assumes the true model is linear and introduces mis-
specification errors, and three different versions of Neu-
ralUCB (Zhou et al., 2020), i.e., NeuralUCB-F, NeuralUCB-
T and NeuralUCB-TW. Particularly, NeuralUCB-F follows
the setup in §7.1 of (Zhou et al., 2020) with m = 20 neurons
and two layers; NeuralUCB-T assumes the knowledge of
the neural network structure of the true reward, i.e., m = k
neurons and one layer; and NeuralUCB-TW inherits the
structure from NeuralUCB-T but expands the layer size into
m = 2k.

We consider the true model of a ReLU structure as in (3),
with multiple settings presented in Figure 2. The parameter
Θ∗ is randomly sampled from the sphere ∥θi∥ = 1 for
i ∈ [k]. The noise follows a normal distribution N(0, 0.01).
We randomly draw 1, 000 arms from the unit sphere in each
round t and choose an optimal arm from this arm set. Note
that with a discretized arm set, our claim of a nontrivial gap
ν∗ always holds. For OFUL and OFU-ReLU, we use the
theoretically suggested confidence ellipsoid for UCB. Since
we do not know the gap ν∗, we set the length of exploration
phase for OFU-ReLU to be 20 for our method. We tune the
hyperparameters λ for all the methods.

Figure 2 shows the performance of our bandit algorithm
versus the other benchmarks with a 95% confidence interval.
We find our algorithm significantly outperforms all the other
benchmarks. OFUL assumes a linear reward model struc-
ture and thus incurs large regret due to the misspecification
error. All NeuralUCB benchmarks use gradient descent to
learn the model structure over time and thus take long time
to converge in general. Note that even as a fair compari-
son with NeuralUCB-T, where the true network structure

0 200 400 600 800 1000
Time

0

100

200

300

400

Re
gr

et

OFUL
NeuralUCB-F
NeuralUCB-T
NeuralUCB-TW
OFU-ReLU

(a) d = 2, k = 3

0 200 400 600 800 1000
Time

0

200

400

600

800

Re
gr

et

OFUL
NeuralUCB-F
NeuralUCB-T
NeuralUCB-TW
OFU-ReLU

(b) d = 2, k = 10

Figure 2: Cumulative regret of a time horizon T = 1, 000
over 50 trials with 95% confidence interval.

is given, our method is still significantly better in terms of
regret. It is worth noting that our method takes only 20
time steps to converges in a time horizon of T = 1, 000,
while NeuralUCB algorithms generally take a long time to
converge (e.g., (Zhou et al., 2020) consider a longer hori-
zon T ≈ 10, 000 in all their experiments). Our empirical
results complement our theoretical analysis and suggest the
efficiency of our algorithm in practice, especially in a short
time horizon, despite a theoretically long exploration phase
due to our parameter estimation error bound.

6. Conclusion
We analyze a bandit problem with the reward given by one-
layer ReLU neural network structure, and propose algo-
rithms that can provide a regret bound of Õ(

√
T). To the

best of our knowledge, our work is the first to obtain such
regret guarantee for bandit learning with neural networks
(without an effective dimension assumption). Furthermore,
we demonstrate the efficiency of our algorithm in a synthetic
experiment, which suggests its practical potentials. We be-
lieve both our theoretical and empirical results provide the
first insight into an efficient design of bandit algorithms
based on ReLU neural network structures.

8

Stochastic Bandits with ReLU Neural Networks

We conclude by providing directions for future research.
Due to the complexity of the problem, we tailor our focus
to the one-layer ReLU activations. A natural extension
is to generalize our result to piecewise linear activation
functions. It is more challenging to explore whether our
insight can be generalized to bandit problems with more
complex activation functions or multiple-layer architectures.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In NIPS, vol-
ume 11, pp. 2312–2320, 2011.

Bastani, H. and Bayati, M. Online decision making with
high-dimensional covariates. Operations Research, 68
(1):276–294, 2020.

Bubeck, S., Cesa-Bianchi, N., et al. Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems. Foundations and Trends® in Machine Learning, 5
(1):1–122, 2012.

Chu, W., Li, L., Reyzin, L., and Schapire, R. Contextual
bandits with linear payoff functions. In Proceedings
of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 208–214. JMLR Workshop
and Conference Proceedings, 2011.

Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic linear
optimization under bandit feedback. 2008.

Dong, K., Yang, J., and Ma, T. Provable model-based
nonlinear bandit and reinforcement learning: Shelve op-
timism, embrace virtual curvature. Advances in Neural
Information Processing Systems, 34:26168–26182, 2021.

Du, S. and Lee, J. On the power of over-parametrization
in neural networks with quadratic activation. In Interna-
tional conference on machine learning, pp. 1329–1338.
PMLR, 2018.

Golrezaei, N., Javanmard, A., and Mirrokni, V. Dynamic
incentive-aware learning: Robust pricing in contextual
auctions. Advances in Neural Information Processing
Systems, 32, 2019.

Gu, Q., Karbasi, A., Khosravi, K., Mirrokni, V., and Zhou,
D. Batched neural bandits. ACM/JMS Journal of Data
Science, 1(1):1–18, 2024.

Huang, B., Huang, K., Kakade, S., Lee, J. D., Lei, Q., Wang,
R., and Yang, J. Optimal gradient-based algorithms for
non-concave bandit optimization. Advances in Neural
Information Processing Systems, 34:29101–29115, 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31,
2018.

Kassraie, P. and Krause, A. Neural contextual bandits with-
out regret. In International Conference on Artificial Intel-
ligence and Statistics, pp. 240–278. PMLR, 2022.

Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th interna-
tional conference on World wide web, pp. 661–670, 2010.

Luo, Y., Sun, W. W., and Liu, Y. Contextual dynamic
pricing with unknown noise: Explore-then-ucb strategy
and improved regrets. Advances in Neural Information
Processing Systems, 35:37445–37457, 2022.

Rajaraman, N., Han, Y., Jiao, J., and Ramchandran, K.
Beyond ucb: Statistical complexity and optimal algo-
rithms for non-linear ridge bandits. arXiv preprint
arXiv:2302.06025, 2023.

Rigollet, P. and Hütter, J.-C. High dimensional statistics.
Lecture notes for course 18S997, 813(814):46, 2015.

Rusmevichientong, P. and Tsitsiklis, J. N. Linearly parame-
terized bandits. Mathematics of Operations Research, 35
(2):395–411, 2010.

Russo, D. and Van Roy, B. Eluder dimension and the sample
complexity of optimistic exploration. Advances in Neural
Information Processing Systems, 26, 2013.

Salgia, S. Provably and practically efficient neural contex-
tual bandits. In International Conference on Machine
Learning, pp. 29800–29844. PMLR, 2023.

Valko, M., Korda, N., Munos, R., Flaounas, I., and Cris-
tianini, N. Finite-time analysis of kernelised contextual
bandits. In Uncertainty in Artificial Intelligence, 2013.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge university
press, 2019.

9

Stochastic Bandits with ReLU Neural Networks

Xu, K., Bastani, H., and Bastani, O. Robust generalization
of quadratic neural networks via function identification.
arXiv preprint arXiv:2109.10935, 2021a.

Xu, K., Zhao, X., Bastani, H., and Bastani, O. Group-
sparse matrix factorization for transfer learning of word
embeddings. arXiv preprint arXiv:2104.08928, 2021b.

Xu, P., Wen, Z., Zhao, H., and Gu, Q. Neural contextual
bandits with deep representation and shallow exploration.
arXiv preprint arXiv:2012.01780, 2020.

Zhang, W., Zhou, D., Li, L., and Gu, Q. Neural thompson
sampling. arXiv preprint arXiv:2010.00827, 2020.

Zhang, X., Yu, Y., Wang, L., and Gu, Q. Learning one-
hidden-layer relu networks via gradient descent. In The
22nd international conference on artificial intelligence
and statistics, pp. 1524–1534. PMLR, 2019.

Zhou, D., Li, L., and Gu, Q. Neural contextual bandits with
ucb-based exploration. In International Conference on
Machine Learning, pp. 11492–11502. PMLR, 2020.

10

Stochastic Bandits with ReLU Neural Networks

A. Proof of Proposition 3.1
We give the proof of Proposition 3.1, followed by proofs of the lemmas used in this proof.

A.1. Intuition

We illustrate our proof strategy in Figure 3. We first define the following set

J α
i = {l ∈ [k] | ∥θl − θ∗i ∥2 ≤ α, or ∥θl + θ∗i ∥2 ≤ α}

for all i ∈ [k]. It suffices to prove that J α
i is a singleton set for every i ∈ [k] in order to prove Proposition 3.1. Note that

when α ≤ α0/2, J α
i ’s are disjoint (i.e., J α

i ∩ J α
i′ = ∅ for any i, i′ ∈ [k], i ̸= i′); in particular, if i′′ ∈ J α

i , then for any
other i′ ∈ [k], we have

∥θi′′ ± θ∗i′∥2 ≥ ∥θ∗i − θ∗i′∥2 − ∥θi′′ − θ∗i ∥2 ≥ α0 − α ≥ α,

that is, i′′ ̸∈ Jα
i′ , as claimed, where we use Assumption 2.2. As a consequence, it suffices to show that J α

i ̸= ∅ for every
i ∈ [k]. To this end, we prove its contrapositive—i.e., if there exists j ∈ [k] such that J α

j = ∅, then

LXj (Θ) ≥ η =
ϵ2(1− dϵ2/2)|Sd−2|

8
− kϵ3|Sd−3|

2α
− (6k + 3σ)dϵ3|Sd−2|.

Intuitively, if θ∗j does not have a matching neuron θj (up to a sign flip) in J α
j , then we can show that g(θ⊤x) is linear for any

θ ∈ Θ̄∗
¬j := {θi}i∈[k] ∪ {θ∗i }i∈[k],i̸=j

except θ∗j on majority of the strip X ′
j (Figure 3 (b), formally defined in (17)), which is a close approximation of Xj .

Therefore, fΘ(x)− fΘ∗(x) can be additively decomposed into a linear term plus g(θ∗⊤j x). Besides, we prove that any linear
function cannot approximate g(θ∗⊤j x) well on X ′

j (Figure 3 (c)). As a result, given the definition of LXj
(Θ), we can show

that LXj
(Θ) is lower-bounded.

(a) (b) (c)

Figure 3: Illustrations for proof sketch of the estimation error for ReLU Neural Networks. (a) The region X ′ is the cylinder
with caps consisting of the two green circles and radius 2ϵ. (b) Projected version of subfigure (a). (c) The green region is X ′

with a section of length O(ϵ/α) cut out.

A.2. Proof of Proposition 3.1

We list the details of our proof strategy in this section. We introduce additional notation that we will use in the following
proof. With a slight abuse of notation, for any vector x ∈ Rd Let xi denote the ith element of x and xi:j ∈ Rj−i+1 the
subvector of x consisting of the ith to jth elements.

11

Stochastic Bandits with ReLU Neural Networks

Step 1. Note that Xj is a slice of the sphere X = Sd−1. To simplify our following analysis, we approximate Xj using a
cylinder X ′

j ⊆ Rd—i.e., without loss of generality assuming that for one specific j ∈ [k]

θ∗j =
[
1 0 · · · 0

]⊤
, (16)

then

X ′
j = [−ϵ, ϵ]× Z = {x ∈ Rd | |x1| ≤ ϵ, x2:d ∈ Z}, where Z = Sd−2

(√
1− ϵ2

)
,

or equivalently

X ′
j = {ϕ(x) | x ∈ Xj}, where ϕ(x) =

[
x1

√
1−ϵ2

1−x2
1
x2 · · ·

√
1−ϵ2

1−x2
1
xd

]⊤
. (17)

This region is visualized in Figure 3 (a); its projection to two dimensions is shown in Figure 3 (b). We show that the loss
restricted to X ′

j is approximately equal to the loss restricted to Xj :

Lemma A.1. Given X ′
j , it holds that∣∣∣∣∣
∫
Xj

|fΘ(x)− fΘ∗(x)|dx−
∫
X′

j

|fΘ(x)− fΘ∗(x)|dx

∣∣∣∣∣ ≤ 6kdϵ3|Sd−2|.

The proof is provided in Appendix A.3.

Step 2. Next, we decompose X ′
j into strips—i.e.,

X ′
j =

⋃
z∈Z

Xz, where Xz = [−ϵ, ϵ]× {z}.

Note that Xz is a one-dimensional manifold; one such strip is shown as the horizontal green line in Figure 3 (b). Our
strategy is to lower bound the loss restricted to each of these strips, after which we can integrate over them to obtain a lower
bound on the overall loss. With a slight abuse of notation, we further define

fΘ¬j
=

∑
i∈[k],i̸=j

g(θ⊤i x).

Precisely, we provide a lower bound of the loss for those z ∈ Z where fΘ and fΘ∗
¬j

is linear on Xz; in particular, for such z,
we have

Xz ∩ VΘ̄∗
¬j = ∅, where VΘ̄∗

¬j =
⋃

θ∈Θ̄∗
¬j

{x ∈ X ′
j | θ⊤x = 0}.

Note that VΘ̄∗
¬j is the boundary at which one of the ReLUs, i.e., g(θ⊤x) with θ ∈ Θ̄∗

¬j , transitions from inactive to active. If
Xz does not intersect VΘ̄∗

¬j , then θ⊤x ̸= 0 on Xz for all θ ∈ Θ̄∗
¬j and, hence, fΘ − fΘ∗

¬j
must be linear on such Xz . In the

following, we show that such z’s make up a large proportion of Z; equivalently, we show that the following subset is small:

ZΘ̄∗
¬j =

⋃
θ∈Θ̄∗

¬j

Zθ, where Zθ = {z ∈ Z | ∃x1 ∈ [−ϵ, ϵ], θ⊤(x1 ◦ z) = 0}, (18)

where x1 ◦ z :=
[
x1 z1 · · · zd−1

]⊤
.

Lemma A.2. For any θ ∈ Θ̄∗
¬j , we have

|Zθ| ≤ 2ϵ

α
|Sd−3|.

The proof is given in Appendix A.4. This result is illustrated in Figure 3 (b); the set of Xz for which z ∈ ZΘ̄∗
¬j (which has

size O(ϵ/α)) has been removed from X ′
j . Note that as α becomes larger, the size of ZΘ̄∗

¬j becomes smaller.

12

Stochastic Bandits with ReLU Neural Networks

Step 3. Next, for z ∈ Z \ ZΘ̄∗
¬j , we lower bound the loss on Xz . Remember the loss is

|fΘ(x)− fΘ∗(x)| = |(fΘ(x)− fΘ∗
¬j
(x))− g(θ∗⊤j x)|,

where we argue in Step 2 that on such Xz the first term is linear. Therefore, we can lower bound the loss using the following
lemma:

Lemma A.3. For any β0, β1 ∈ R, we have∫ ϵ

−ϵ

|(β0 + β1w)− g(w)|dw ≥ ϵ2

8
.

We provide the proof in Appendix A.5. Since our loss is the mean absolute error, this result follows from a geometric
argument. Intuitively, as illustrated in Figure 3 (c), there is a triangular gap between fΘ − fΘ∗

¬j
(which is linear—i.e.,

fΘ(x)−fΘ∗
¬j
(x) = β⊤x for some β ∈ Rd) and g(θ∗⊤j x) on Xz; this gap equals the loss, and it cannot be reduced regardless

of the value of β.

Step 4. Finally, the proof of Proposition 3.1 consists of integrating the lower bound from Step 3 over z ∈ Z \ ZΘ̄∗
¬j to

obtain a lower bound on LXj
(Θ).

Proof. First, note that∫
X′

j

|fΘ(x)− fΘ∗(x)|dx ≥
∫
Z

∫ ϵ

−ϵ

|fΘ(x1 ◦ z)− fΘ∗(x1 ◦ z)|dx1dz

≥
∫
Z\ZΘ̄∗

¬j

∫ ϵ

−ϵ

|fΘ(x1 ◦ z)− fΘ∗(x1 ◦ z)|dx1dz

=

∫
Z\ZΘ̄∗

¬j

∫ ϵ

−ϵ

|(fΘ(x1 ◦ z)− fΘ∗
¬j
(x1 ◦ z))− g(θ∗⊤j (x1 ◦ z))|dx1dz. (19)

Remember for any given z ∈ Z \ ZΘ̄∗
¬j , the first term fΘ(x1 ◦ z) − fΘ∗

¬j
(x1 ◦ z) is linear in x1 ◦ z, i.e., there exists a

parameter θ̃j such that θ̃⊤j (x1 ◦ z) = fΘ(x1 ◦ z)− fΘ∗
¬j
(x1 ◦ z). Without loss of generality, we can modify the coordinate

system so that

θ̃j =
[
t1 t2 0 · · · 0

]⊤
without affecting θ∗j in (16). Then, we have∫ ϵ

−ϵ

|(fΘ(x1 ◦ z)− fΘ∗
¬j
(x1 ◦ z))− g(θ∗⊤j (x1 ◦ z))|dx1 =

∫ ϵ

−ϵ

|θ̃⊤j (x1 ◦ z)− g(θ∗⊤j (x1 ◦ z))|dx1

=

∫ ϵ

−ϵ

|(t1x1 + t2z1)− g(x1)|dx1

≥ ϵ2

8
,

where the last inequality uses Lemma A.3. Given the above result, we can derive from (19) that∫
X′

j

|fΘ(x)− fΘ∗(x)|dx ≥ |Z \ ZΘ∗
¬j |ϵ

2

8
=

(
(1− ϵ2)

d−2
2 |Sd−2| − 4kϵ|Sd−3|

α

)
ϵ2

8
.

This combined with Lemma A.1 gives that∫
Xj

|fΘ(x)− fΘ∗(x)|dx ≥
(
(1− d

2
ϵ2)|Sd−2| − 4kϵ|Sd−3|

α

)
ϵ2

8
− 6kdϵ3|Sd−2|.

The result then follows.

13

Stochastic Bandits with ReLU Neural Networks

A.3. Proof of Lemma A.1

First, note that ∫
X′

j

|fΘ(x)− fΘ∗(x)|dx =

∫
Xj

|fΘ(ϕ(x))− fΘ∗(ϕ(x))| · | det∇xϕ(x)|dx

=

∫
Xj

|fΘ(ϕ(x))− fΘ∗(ϕ(x))|
(
1− ϵ2

1− x2
1

) d−1
2

dx,

where the second equality follows the fact that∇xϕ(x) is a lower triangular matrix. Then, we have∫
X′

j

|fΘ(x)− fΘ∗(x)|dx−
∫
Xj

|fΘ(x)− fΘ∗(x)|dx

=

∫
Xj

(
1− ϵ2

1− x2
1

) d−1
2

|fΘ(ϕ(x))− fΘ∗(ϕ(x))| − |fΘ(x)− fΘ∗(x)|dx

≤
∫
Xj

|(fΘ(x)− fΘ(ϕ(x)))− (fΘ∗(x)− fΘ∗(ϕ(x)))|dx

≤
∫
Xj

|fΘ(x)− fΘ(ϕ(x))|+ |fΘ∗(x)− fΘ∗(ϕ(x))|dx,

and ∫
Xj

|fΘ(x)− fΘ∗(x)|dx−
∫
X′

j

|fΘ(x)− fΘ∗(x)|dx

=

∫
Xj

|fΘ(x)− fΘ∗(x)| −
(
1− ϵ2

1− x2
1

) d−1
2

|fΘ(ϕ(x))− fΘ∗(ϕ(x))|dx

≤
∫
Xj

|fΘ(x)− fΘ∗(x)| − (1− ϵ2)
d−1
2 |fΘ(ϕ(x))− fΘ∗(ϕ(x))|dx

≤
∫
Xj

|fΘ(x)− fΘ∗(x)| − (1− d

2
ϵ2)|fΘ(ϕ(x))− fΘ∗(ϕ(x))|dx

≤
∫
Xj

|fΘ(x)− fΘ(ϕ(x))|+ |fΘ∗(x)− fΘ∗(ϕ(x))|dx

+
d

2
ϵ2
∫
Xj

|fΘ(ϕ(x))− fΘ∗(ϕ(x))|dx,

where we use |x1| ≤ ϵ and Bernoulli’s inequality. Therefore, we have∣∣∣∣∣
∫
Xj

|fΘ(x)− fΘ∗(x)|dx−
∫
X′

j

|fΘ(x)− fΘ∗(x)|dx

∣∣∣∣∣
≤
∫
Xj

|fΘ(x)− fΘ(ϕ(x))|+ |fΘ∗(x)− fΘ∗(ϕ(x))|dx+
d

2
ϵ2
∫
Xj

|fΘ(ϕ(x))− fΘ∗(ϕ(x))|dx.

Note that both fΘ and fΘ∗ are k-Lipschitz. In particular, for any x, x′ ∈ Rd, we have

|fΘ(x)− fΘ(x
′)| =

∣∣∣∣∣
k∑

i=1

(g(θ⊤i x)− g(θ⊤i x
′))

∣∣∣∣∣ ≤
k∑

i=1

|θ⊤i (x− x′)| ≤ k∥x− x′∥2.

The same result holds for fΘ∗ . As a result, we can derive∫
Xj

|fΘ(x)− fΘ(ϕ(x))|+ |fΘ∗(x)− fΘ∗(ϕ(x))|dx ≤ 2k|Xj |max
x∈Xj

∥x− ϕ(x)∥,

14

Stochastic Bandits with ReLU Neural Networks

and ∫
Xj

|fΘ(ϕ(x))− fΘ∗(ϕ(x))|dx ≤ 2k|Xj |max
x∈Xj

∥ϕ(x)∥.

Note that

max
x∈Xj

∥x− ϕ(x)∥2 = max
x∈Xj

√
1− x2

1 −
√
1− ϵ2 ≤ ϵ2,

and

max
x∈Xj

∥ϕ(x)∥2 ≤ 1.

Besides, we have

|Xj | =
∫ ϵ

−ϵ

Ad−2

(√
1− x2

1

)
dx1 ≤ 2ϵ|Sd−2|,

where An(r) is the area of the n-sphere with radius r. Then, the claim follows.

A.4. Proof of Lemma A.2

Consider the set Zθi for some i ∈ [k] first. Without loss of generality, we can modify the coordinate system so that

θi =
[
t1 t2 0 . . . 0

]⊤
without affecting θ∗j in (16). By assumption, we have ∥θi∥2 =

√
t21 + t22 = 1. In the following, we first consider t1 ≥ 0.

Remember

α2 < ∥θi − θ∗j ∥22 = (1− t1)
2 + t22 = 2(1− t1) = 2

(
1− t1√

t21 + t22

)
= 2

(
1− 1√

1 + t22/t
2
1

)
.

This implies

|t2|
|t1|

>

√(
1

1− α2/2

)2

− 1 ≥

√(
1 +

α2

2

)2

− 1 ≥ α

For any z ∈ Zθi , the condition θ⊤i (x1 ◦ z) = 0 is equivalent to

t1x1 + t2z1 = 0.

As a consequence, we have

|z1| ≤
|t1| · |x1|
|t2|

≤ ϵ

α
.

Therefore, we can obtain that

|Zθj | ≤
∫ ϵ/α

−ϵ/α

Ad−3

(√
1− ϵ2 − z21

)
dz1 ≤

2ϵ

α
|Sd−3|,

where An(r) is the area of the n-sphere with radius r. The claim for θ ∈ {θi}i∈[k] then follows. The case t1 < 0
can be analyzed similarly using α < ∥θi + θ∗j ∥2. In addition, the claim for θ ∈ {θ∗i }i∈[k],i̸=j also holds noticing
2α < α0 < ∥θ∗i ± θ∗j ∥2 for i ̸= j by Assumption 2.2.

15

Stochastic Bandits with ReLU Neural Networks

A.5. Proof of Lemma A.3

We first have ∫ ϵ

−ϵ

|(β0 + β1w)− g(w)|dw =

∫ 0

−ϵ

|β0 + β1w|dw +

∫ ϵ

0

|β0 + (β1 − 1)w|dw

=

∫ ϵ

0

|β0 − β1w|dw +

∫ ϵ

0

|β0 + (β1 − 1)w|dw

= F (β0, β1) + F (β0, 1− β1),

where we define F (a, b) =
∫ ϵ

0
|a− bw|dw. Note that we must have either β1 ≥ 1/2 or 1− β1 ≥ 1/2. Additionally, it holds

that F (−|a|, b) ≥ F (|a|, b) for b > 0. Therefore, it suffices to consider the case a ≥ 0, b > 1/2 to provide a lower bound.
In this case, F (a, b) takes the minimum when a ≤ bϵ. Therefore, we have

F (a, b) =

∫ a/b

0

(a− bw)dw +

∫ ϵ

a/b

(bw − a)dw

=

(
a2

b
− a2

2b

)
+

(
bϵ2

2
− aϵ

)
−
(
a2

2b
− a2

b

)
=

a2

b
+

bϵ2

2
− aϵ.

As a function of a, this expression is minimized when a = bϵ/2. In such case,

F (a, b) ≥ F

(
bϵ

2
, b

)
=

bϵ2

4
≥ ϵ2

8
,

where we use b ≥ 1/2. The result then follows.

B. Proof of Theorem 3.2
We give the proof of Theorem 3.2, followed by proofs of the lemmas used in this proof. First, we have the following
technical lemma:

Lemma B.1. We have (a) the mean squared loss LS,p is 4k-Lipschitz in Θ with respect to ℓ2,1 norm, and (b) when
n ≥ log(2δ), its empirical counterpart L̂S,p is (4k + 6σ)-Lipschitz with at least a probability of 1− δ/2.

We give a proof in Appendix B.1. Next, we have the following useful lemma, which says that the empirical loss converges
to the true loss.

Lemma B.2. Given the same setup as in Lemma B.3, we have

Pp

[
sup
Θ
|(L̂S(Θ;Z)− σ(ξ))− LS,p(Θ)| ≤ ζ

]
≥ 1− δ,

where σ(ξ) := 1
n

∑
i∈[n] ξ

2
i .

The proof is given in Appendix B.2. This lemma follows from a standard covering number argument. Using this result, we
provide a sample complexity bound for learning the true parameter given the i.i.d. training examples {(xi, yi)}i∈[n] from p.

Now we define the mean absolute loss function and its corresponding empirical version:

LA,p(Θ) = Ep [|fΘ(x)− fΘ∗(x)|] , L̂A(Θ;Z) =
1

n

∑
i∈[n]

|fΘ(xi)− yi|.

Lemma B.3. For any δ ∈ R>0, we have

Pp

[
LA,p(Θ̂) ≤

√
2ζ
]
≥ 1− δ,

16

Stochastic Bandits with ReLU Neural Networks

where ζ is defined as

ζ =

√
4096k2(k ∨ σ)2

n

(
dkmax

{
1, log

(
1 +

√
n

dk

)}
+ log

4

δ

)
.

We give a proof in Appendix B.3.

Lemma B.4. Consider any small η̃ ∈ R>0 satisfying η̃ ≤ min{ 1
11522

√
2πk2d3/2

,
α2

0π
1/2

14542k2d1/2 }. If the generalization error
has LA,p(Θ) ≤ η̃, where p is a distribution on the (d− 1)-sphere such that

1

|Sd−1|

∫
X
|fΘ(x)− fΘ∗(x)|dx ≤ Ep [|fΘ(x)− fΘ∗(x)|] ,

then there exists a bijection σ : [k]→ [k] such that

min{∥θσ(i) − θ∗i ∥2, ∥θσ(i) + θ∗i ∥2} ≤ α̃ := 727π− 1
4 kd

1
4 η̃

1
2 , ∀i ∈ [k].

We give a proof in Appendix B.4. Note that the assumptions on the distribution p can be easily satisfied, e.g., when
p = Uniform(Sd−1) is a uniform distribution on the sphere. The above result says given a small generalization error
for certain parameter estimate Θ, its estimation error of the ground-truth parameter Θ∗ up to a sign flip is also small
correspondingly.

Finally, Theorem 3.2 follows directly from Lemmas B.3 & B.4 by taking η̃ =
√
2ζ.

B.1. Proof of Lemma B.1

The mean squared loss satisfies

|LS,p(Θ)− LS,p(Θ
′)| ≤ Ep[|(fΘ(x)− fΘ∗(x))2 − (fΘ′(x)− fΘ∗(x))2|]
≤ Ep[|(fΘ(x)− fΘ∗(x) + fΘ′(x)− fΘ∗(x))(fΘ(x)− fΘ′(x))|]
≤ 4kEp[|fΘ(x)− fΘ′(x)|]

≤ 4k
∑
i∈[k]

∥θi − θ′i∥2,

where we use ∥x∥2 = 1 and ∥θi∥2 = ∥θ′i∥2 = 1. Similarly, the empirical loss satisfies

|L̂S(Θ;Z)− L̂S(Θ
′;Z)| =

∣∣∣∣∣∣ 1n
∑
i∈[n]

[(fΘ(xi)− yi)
2 − (fΘ′(xi)− yi)

2]

∣∣∣∣∣∣
≤ 1

n

∑
i∈[n]

|(fΘ(xi)− fΘ∗(xi))
2 − (fΘ′(xi)− fΘ∗(xi))

2|+ 2

n

∑
i∈[n]

|ξi(fΘ(xi)− fΘ′(xi))|

≤ (4k +
2

n

∑
i∈[n]

|ξi|)
∑
i∈[k]

∥θi − θ′i∥2.

Since ξi is σ-subgaussian, so is |ξi|. When n ≥ log(2δ), we have

2

n

∑
i∈[n]

|ξi| ≤ 2

E[|ξi|] +

√
2σ2 log(2δ)

n

 ≤ 6σ

with at least a probability of 1− δ/2, where we use Lemma 1.4 from (Rigollet & Hütter, 2015) and Lemma F.2 by taking

t =
√
2σ2 log(2δ)/n. The claim follows.

17

Stochastic Bandits with ReLU Neural Networks

B.2. Proof of Lemma B.2

Then, construct an ζ/(16k + 12σ)-net EΘ with respect to ℓ2,1 norm of Θ̄ = {Θ ∈ Rk×d | ∥Θ∥2,1 = k} (remember Θ̄ is a
superset of Θ’s domain Θ). For any such Θ ∈ Θ̄, there exists Θ′ ∈ EΘ such that

|(L̂S(Θ;Z)− LS,p(Θ))− (L̂S(Θ
′;Z)− LS,p(Θ

′))| ≤ (8k + 6σ)∥Θ−Θ′∥2,1 ≤ ζ/2,

with high probability 1− δ/2. Given the above inequality, we have

Pp

[
sup
Θ∈Θ
|(L̂S(Θ;Z)− σ(ξ))− LS,p(Θ)| ≥ ζ

]
≤ Pp

[
sup
Θ∈Θ̄

|(L̂S(Θ;Z)− σ(ξ))− LS,p(Θ)| ≥ ζ

]

≤ Pp

[
max
Θ∈EΘ

|(L̂S(Θ;Z)− σ(ξ))− LS,p(Θ)| ≥ ζ

2

]
+ δ/2

≤
∑

Θ∈EΘ

Pp

[
|(L̂S(Θ;Z)− σ(ξ))− LS,p(Θ)| ≥ ζ

2

]
+ δ/2. (20)

Note that

(L̂S(Θ;Z)− σ(ξ))− LS,p(Θ) = L1 + 2L2,

where

L1 =
1

n

∑
i∈[n]

(fΘ(xi)− fΘ∗(xi))
2 − Ep

[
(fΘ(x)− fΘ∗(x))2

]
, L2 =

1

n

∑
i∈[n]

(fΘ(xi)− fΘ∗(xi))ξi.

The probability within the sum in (20) is then upper bounded by

Pp

[
|(L̂S(Θ;Z)− σ(ξ))− LS,p(Θ)| ≥ ζ

2

]
≤ Pp

[
|L1| ≥

ζ

4

]
+ Pp

[
|L2| ≥

ζ

8

]
.

In the following, we bound each of the above two terms respectively. For the first term, since |fΘ(xi)− fΘ∗(xi)| ≤ 2k,
(fΘ(xi)− fΘ∗(xi))

2 is 4k2-subgaussian; thus, by Lemma F.2, we have

Pp

[
|L1| ≥

ζ

4

]
≤ 2 exp

(
− nζ2

2048k4

)
. (21)

Next, for the second term, since ξi is σ-subgaussian and (fΘ(xi) − fΘ∗(xi)) and ξi are independent, we can show that
(fΘ(xi)− fΘ∗(xi))ξi is (2kσ)-subgaussian; thus, by Lemma F.2, we have

Pp

[
|L2| ≥

ζ

8

]
≤ 2 exp

(
− nζ2

512k2σ2

)
. (22)

Therefore, we obtain from (20) that

Pp

[
sup
Θ∈Θ
|(L̂S(Θ;Z)− σ(ξ))− LS,p(Θ)| ≥ ζ

]
≤ 4|EΘ| exp

(
− nζ2

2048k2(k2 + σ2)

)
≤ 2

(
1 +

2k(16k + 12σ)

ζ

)dk

exp

(
− nζ2

2048k2(k2 + σ2)

)
≤ 2 exp

(
− nζ2

2048k2(k2 + σ2)
+ dk log

(
1 +

2k(16k + 12σ)

ζ

))
, (23)

where the second inequality follows Lemma F.1 by noticing that ∥Θ∥2,1 = k for Θ ∈ Θ̄. Finally, we choose ζ so that (23) is
smaller than δ/2—in particular, letting

ζ =

√
4096k2(k ∨ σ)2

n

(
dkmax

{
1, log

(
1 +

√
n

dk

)}
+ log

4

δ

)
,

then we have (23) is upper bounded by δ/2, where we use k + σ ≥ 1. The result follows.

18

Stochastic Bandits with ReLU Neural Networks

B.3. Proof of Lemma B.3

Since Θ̂ minimizes L̂S(Θ;Z), we have

0 ≤ LS,p(Θ̂)− LS,p(Θ
∗)

≤ LS,p(Θ̂)− (L̂S(Θ̂;Z)− σ(ξ)) + (L̂S(Θ
∗;Z)− σ(ξ))− LS,p(Θ

∗)

≤ 2 sup
Θ
|(L̂S(Θ;Z)− σ(ξ))− LS,p(Θ)| ≤ 2ζ,

with probability at least 1−δ, where we use Lemma B.2. Thus, by Cauchy-Schwarz inequaltiy and the fact that LS,p(Θ
∗) = 0,

we have

LA,p(Θ̂) ≤
√

LS,p(Θ̂) ≤
√

2ζ,

as claimed.

B.4. Proof of Lemma B.4

Using the condition on p, we have∫
Xi

|fΘ(x)− fΘ∗(x)|dx ≤
∫
X
|fΘ(x)− fΘ∗(x)|dx ≤ |Sd−1|LA,p(Θ) ≤ |Sd−1|η̃.

Then, letting η = |Sd−1|η̃, we have that LXi
(Θ) ≤ η holds for all i ∈ [k]. Thus, by Proposition 3.1 (we will check the

conditions on α later), we have

min{∥θσ(i) − θ∗i ∥2, ∥θσ(i) + θ∗i ∥2} ≤ α

for all i ∈ [k]. Plugging the value of η above into α, it yields that

α =

kϵ3

2
|Sd−3|
|Sd−1|

ϵ2(1−dϵ2/2)
8

|Sd−2|
|Sd−1| − η̃ − 6kdϵ3 |Sd−2|

|Sd−1|

. (24)

Using |Sd−1| = 2πd/2

Γ(d/2) and Lemma 10 from (Xu et al., 2021b), it holds that for any d > 1

|Sd−3|
|Sd−1|

≤ d

2π
,

|Sd−2|
|Sd−1|

≥
√
d

2
√
2π

.

Combining the above, we obtain from (24)

α ≤ 4
√
2kdϵ3

(πd)1/2(1− dϵ2/2− 48kdϵ)ϵ2 − 16
√
2πη̃

.

Take ϵ = (36
√
2π η̃√

d
)1/2. Given our choice of η̃, we can show that dϵ2/2 ≤ 1/4 and 48kdϵ ≤ 1/4. Thus, we have

α ≤ 727π− 1
4 kd

1
4 η̃

1
2 .

Note that such α satisfies α ≤ α0/2 by our condition on η̃. The claim follows.

C. Proof of Proposition 4.2
We give a proof of Proposition 4.2.

19

Stochastic Bandits with ReLU Neural Networks

(a) (b)

Figure 4: Illustrations for proof sketch of the optimal action gap ν∗.

C.1. Intuition

We illustrate our proof strategy in Figure 4. For all the neurons θ∗i ’s, we can decompose them into three subsets — i.e.,
the neurons that are “positively” activated, A = {i ∈ [k] | θ∗⊤i x∗ > 0}, those that are orthogonal to x∗, B = {i ∈ [k] |
θ∗⊤i x∗ = 0}, and those that are inactive, C = {i ∈ [k] | θ∗⊤i x∗ < 0}. Define θ̄∗A =

∑
i∈A θ∗i . We first show that θ̄∗A and x∗

should be in the same direction (Figure 4 (a)). Then, given this fact, we prove by showing that there is no neuron in the set
B; otherwise, we can always find an action x′ to improve the value of fΘ∗(x) (Figure 4 (b)).

To see that, the maximum value of fΘ∗(x) is equal to fΘ∗(x∗) = θ̄∗⊤A x∗. Therefore, if θ̄∗A is not aligned with x∗, we can
always move x∗ a bit closer to θ̄∗A to a position x′ such that θ̄∗⊤A x′ > θ̄∗⊤A x∗ without negatively affecting the other neurons
in B ∪ C. Then, suppose the set B ̸= ∅ and there’s at least one j ∈ B. We can always find an increasing direction ∆ by
moving x∗ a bit closer to θ∗j . Intuitively, ∆ is almost orthogonal to θ̄∗A and in parallel with θ∗j ; thus, the increase by moving
x∗ closer to θ∗j exceeds the the decrease by moving it away from θ̄∗A when ∆ is small enough.

C.2. Proof of Proposition 4.2

First, we show that θ̄∗A and x∗ are in the same direction. We prove by contradiction. Suppose θ̄∗A and x∗ are not aligned. We
will show that we can find an action x′ such that fΘ∗(x′) > fΘ∗(x∗). Take x′ to be ∆ away from x∗, i.e., x′ = x∗ +∆,
such that x′, x∗ and θ̄∗A are in the same hyperplane (see Figure 4 (a)). We first let ∆ be small enough such that the neurons
in A remains strictly activated, i.e., θ∗⊤i x′ > 0 for i ∈ A (it suffices to take ∥∆∥2 < mini∈A |θ∗⊤i x∗|). Then, define the
angle between two vectors z and y as ∠(z, y) := arccos(z⊤y

∥z∥2∥y∥2
).

As long as ∆ is such that ∠(x∗, θ̄∗A) > ∠(x′, θ̄∗A), it’s easy to show that θ̄∗⊤A x∗ < θ̄∗⊤A x′ by noting that ∥x∗∥2 = ∥x′∥2 = 1
and ∠(x∗, θ̄∗A),∠(x

′, θ̄∗A) < π/2. Additionally, we also require ∆ to be small enough such that the neurons in C remains
inactive choosing action x′, i.e., θ∗⊤i x′ < 0 for i ∈ C; note that it suffices to take ∥∆∥2 < mini∈C |θ∗⊤i x∗|. Finally, we
have

∑
i∈B g(θ∗⊤i x′) ≥

∑
i∈B g(θ∗⊤i x∗) = 0 since g(z) is non-negative. Therefore, we conclude that

fΘ∗(x′) = θ̄∗⊤A x′ +
∑
i∈B

g(θ∗⊤i x′) > θ̄∗⊤A x∗ +
∑
i∈B

g(θ∗⊤i x∗) = fΘ∗(x∗),

which is a contradiction.

Now, we further show that B = ∅. Similarly, we use a proof by contradiction. Suppose there is at least some j ∈ B. We
take an action x′ = x∗ +∆, such that x′, x∗ and θ∗j are in the same hyperplane (see Figure 4 (b)). Note that both θ̄∗A and x∗

are orthogonal to θ∗j by definition of the set B. Then, it holds that θ̄∗⊤A x′ + θ∗⊤j x′ > θ̄∗⊤A x∗ + θ∗⊤j x∗, as long as ∆ is such
that

θ∗⊤j ∆ > −θ̄∗⊤A ∆. (25)

Since ∥x∗∥ = ∥x′∥ = 1 and x′ = x∗ +∆, we have −2x∗⊤∆ = ∥∆∥2. Besides, let h denote the perpendicular distance

20

Stochastic Bandits with ReLU Neural Networks

from x′ to x∗ and it satisfies √
1− h2 +

√
∥∆∥22 − h2 = 1⇔ h = ∥∆∥2

√
1− ∥∆∥

2
2

4
.

By noting that θ̄∗A/∥θ̄∗A∥2 = x∗, it suffices to have

cos(∠(θ∗j ,∆))∥∆∥2 ≥
1

2
∥θ̄∗A∥∥∆∥22 ⇔

h

∥∆∥2
≥ 1

2
∥θ̄∗A∥∥∆∥2 ⇔ ∥∆∥2 ≤

4

1 + ∥θ̄∗A∥22
(26)

so that (25) holds. In addition, we take ∆ to be small enough such that the neurons in A remains strictly activated and
those in C remain inactive; to that end, it suffices to take ∥∆∥2 < mini∈A∪C |θ∗⊤i x∗|. Thus, we reach a contradiction that
fΘ∗(x′) > fΘ∗(x∗). Our claim follows.

D. Proof of Theorem 4.3
Suppose the exploration stage ends at time t0. By Theorem 3.2, we can ensure

min{∥θ̃i − θ∗i ∥2, ∥θ̃i + θ∗i ∥2} ≤ ν∗/2, ∀i ∈ [k]

with probability at least 1− δ/2 by choosing t0 large enough so that 727π− 1
4 kd

1
4 (2ζ)

1
4 ≤ ν∗/2 (note that ζ depends on the

sample size n = t0). In particular, it suffices to take δ = 1/
√
T and

t0 ≥ t1(ν∗), where t1(ν) :=
C1k

10d2(k ∨ σ)2

ν8
(dk(log(d(k ∨ σ)) ∨ log log T) + log(64T)) (27)

for some constant C1. Recall that Theorem 3.2 requires
√
2ζ ≤ min

{
1

11522
√
2πk2d3/2

,
α2

0π
1/2

14542k2d1/2

}
; thus, we also require

t0 ≥ t2 := C2k
10d6(k ∨ σ)2 (dk(log(d(k ∨ σ)) ∨ log log T) + log(64T)) (28)

for some constant C2. Therefore, we have, with a slight abuse of notation,

t0 = t0(ν∗) = Θ̃(k13d3(1/ν8∗ ∨ d4)), where t0(ν) = max{t1(ν), t2}. (29)

Now we analyze the regret of our algorithm. At each time t, the per-period regret rt can be upper bounded by

rt = fΘ∗(x∗)− fΘ∗(xt) ≤ (
∑
i∈[k]

∥θ∗i ∥2)(∥x∗∥2 + ∥xt∥2) ≤ 2k.

Therefore, the regret during the exploration stage is upper bounded by∑
t∈[t0]

rt ≤ 2kt0 = Õ(k14d3(1/ν8∗ ∨ d4)).

In the second stage, we run OFUL to find the optimal policy for the linear function fθ‡(x‡) given our estimate Θ̃t0 , where
x‡ and θ‡ are defined in (9) and (10) respectively. Following the same proof strategy of Theorem 3 in (Abbasi-Yadkori et al.,
2011), it gives the regret bound in the second stage to be∑

t∈[T]\[t0]

rt ≤ C3

√
kdT log(λ+ T/(2kd))

(
λ1/2
√
k + σ

√
log(4T) + 2kd log(1 + T/(2λkd))

)
with a probability at least 1− δ/2, where the contextual dimension d here is 2kd, and S =

√
5k by noting that ∥θ‡∥ ≤

√
5k.

Finally, the above analysis shows that with a probability at least 1−δ, we both have a small estimation error in the exploration
stage and a guanranteed regret upper bound of OFUL in the second stage. Thus, with a small probability δ = 1/

√
T , we

would have linear regret scaling as 2kT ; thus, the expected regret in this case is bounded by 2kTδ = 2k
√
T . Our claim then

follows.

21

Stochastic Bandits with ReLU Neural Networks

E. Proof of Theorem 4.4
We bound the regret for the three cases respectively: (i) all batch i satisfying νi > ν∗, (ii) t ∈ (Ti−1, Ti−1 + t0,i] for all
batch i with νi ≤ ν∗, and (iii) t ∈ (Ti−1 + t0,i, Ti] for all batch i with νi ≤ ν∗.

First, in case (i), we have i ≤ log(ν0/ν∗)/ log(b). Recall that the per-period regret rt can be trivially bounded by 2k. Thus,
the regret in this case is upper bounded by

2k(alog(ν0/ν∗)/ log(b) − 1)T1 ≤ 2k(ν0/ν∗)
log(a)
log(b) T1.

Once νi ≤ ν∗, the gap νi is sufficiently accurate that the optimal action x∗ becomes feasible in the search region. Then, we
can follow our proof strategy in Appendix D.

Consider case (ii). Due to our exploration strategy, we randomly collect t0,i = t0(νi)− t0(νi−1) samples in each batch i
(t0(ν) defined in (29)); thus, the total number of random samples we collect over time horizon T is upper bounded by

M−1∑
i=⌈ log(ν0/ν∗)

log(b)
⌉

t0,i ≤ t0(νM−1).

Thus, the regret in case (ii) is upper bounded by

2kt0(νM−1) =Õ
(
k14d7 + k14d3T 8

log(b)
log(a)

)
,

where we use the definition of t0 in (28) and the value of M in (13).

Next, we calculate the regret of running OFUL in case (iii). Same as the proof in Appendix D, we have

M−1∑
i=⌈ log(ν0/ν∗)

log(b)
⌉

Ti∑
t=Ti−1+t0,i

rt = Õ(kd
√
T).

Note that the proof strategy in (Abbasi-Yadkori et al., 2011) works as long as the data are fetched sequentially, and the
length of the time periods without model misspecification (i.e., batch i with νi < ν∗) scales as T , which both satisfy in our
algorithm.

Finally, recall that at each batch i, there’s a probability of δi = 1/
√
T that our analysis above will fail. Thus, with a

probability of at most M/
√
T across all M batches, we will have a linear regret. The expected regret for this small-probability

event is upper bounded by

2kT ·M/
√
T = Õ(k

√
T).

Combining all the above gives our final result.

F. Useful Lemmas
Lemma F.1. For a ball in Rd1×d2 with radius r with respect to any norm, there exists an ζ-net E such that

|E| ≤
(
1 +

2r

ζ

)d1d2

.

Proof. This claim follows by a direct application of Proposition 4.2.12 in (Vershynin, 2018).

Lemma F.2. Letting {xi}i∈[n] be a set of independent σ-subgaussian random variables with mean µi, then for all t ≥ 0,
we have

Pr

| 1
n

∑
i∈[n]

(xi − µi)| ≥ t

 ≤ 2 exp

(
− nt2

2σ2

)
.

Proof. See Proposition 2.5 of (Wainwright, 2019).

22

