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Abstract

We address the learning problem in the context of infinite-horizon average-reward
POMDPs. Traditionally, this problem has been approached using Spectral Decom-
position (SD) methods applied to samples collected under non-adaptive policies,
such as uniform or round-robin policies. Recently, SD techniques have been ex-
tended to accommodate a restricted class of adaptive policies such as memoryless
policies. However, the use of adaptive policies has introduced challenges related to
data inefficiency, as SD methods typically require all samples to be drawn from
a single policy. In this work, we propose Mixed Spectral Estimation, which
generalizes spectral estimation techniques to support a broader class of belief-based
policies. We solve the open question of whether spectral methods can be applied to
samples collected from multiple policies, and we provide finite-sample guarantees
for our approach under standard observability and ergodicity assumptions. Building
on this data-efficient estimation method, we introduce the Mixed Spectral UCRL
algorithm. Through a refined theoretical analysis, we demonstrate that it achieves
a regret bound of rOp

?
T q when compared to the optimal policy, without requiring

full knowledge of either the transition or the observation model. Finally, we present
numerical simulations that validate the theoretical analysis of both the proposed
estimation procedure and the Mixed Spectral UCRL algorithm.

1 Introduction

In Reinforcement Learning (RL) [31], an agent interacts with an unknown or partially known
environment to maximize the long-term sum of rewards. This approach has been successfully used in
a variety of problems [23, 28, 8] under the assumption of fully observing the state of the environment.
However, less attention has been paid to the more realistic scenario where the agent only receives
partial and noisy observations from the environment, a problem which can be modeled through the
Partially Observable Markov Decision Process (POMDP) [35] formalism. This setting can be used to
represent various real-world applications such as autonomous driving [18], resource allocation [7],
or financial settings [6]. Dealing with POMDPs is notably a challenging task both (i) statistically
since it requires estimating the latent model parameters, and (ii) computationally since computing
the optimal policy for a POMDP is intractable even when the model parameters are known [24].

In this work, we tackle the infinite-horizon average-reward POMDP formulation. In the past works, the
learning problem in this setting has been addressed using Spectral Decomposition (SD) methods [2, 1].
In particular, the standard approach consists of deploying fully explorative policies (e.g., round-
robin or uniform) for data collection and then leveraging SD techniques for subsequent model
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estimation [11, 32]. A different approach is proposed in [3] where spectral strategies are extended to
samples collected from adaptive memoryless policies.1 However, the model estimation they propose
requires all samples to be drawn from a unique policy, which introduces data inefficiency issues
since samples collected with older policies cannot be reused for model estimation. In addition, their
approach is limited to stochastic policies under which each action can be chosen with a minimum
positive probability ι ą 0. By inspecting the limitations of current works, an important question
arises: Can we apply spectral techniques on samples collected from multiple adaptive policies to
improve the sample-efficiency of online learning algorithms for POMDPs?

Contributions. In this paper, we address this question and we provide the following contributions:

• We extend the spectral estimation procedure to the larger class of stationary belief-based policies.

• We answer the previous question affirmatively and propose a procedure, Mixed Spectral
Estimation, with finite-sample guarantees for estimating the POMDP parameters (Section 5).

• We plug this novel estimation approach into a regret minimization algorithm, Mixed Spectral
UCRL, and we show that we can indeed avoid using stochastic policies required in previous works.
By focusing on instances satisfying the common one-step reachability assumption (Assump-
tion 6.1), our algorithm is the first to achieve a regret of order rOp

?
T q2 competing against the

optimal belief-based policy, hence improving over the state-of-the-art regret of order rOpT 2{3q

(Section 6).

• We provide numerical simulations showing both the effectiveness of the estimation procedure and
the performance of our Mixed Spectral UCRL algorithm (Section 7).

2 Preliminaries

In this section, we provide the necessary background for the subsequent discussion. In the following,
we will use ∆pX q to denote the simplex over a finite set X , σSpXq to denote the S-th singular value
of matrix X, and X: to denote its Moore-Penrose pseudo-inverse.

Partially Observable MDP. A Partially Observable Markov Decision Process (POMDP) [35] is
defined by a tuple Q – pS,A,O,T,O,ν, rq with S being a finite state space (S – |S|), A a finite
action space (A – |A|) and O a finite observation space pO – |O|q. T “ tTauaPA denotes a
collection of transition matrices Ta P RSˆS for every a P A. Each transition matrix Tap¨|sq P ∆pSq

defines the distribution of the next state when the agent takes action a in state s P S. O P ROˆS

denotes the observation matrix Op¨|sq P ∆pOq that represents the distribution over observations when
the agent is in state s. ν P ∆pSq denotes the distribution over the initial state, while r : O Ñ r0, 1s is
the known reward function, mapping each observation to a finite reward such that rpoq is the reward
received when the agents observe o P O. In a POMDP, states are hidden and the agent can only
see its own actions and the observations. At each step t P N, the agent is in an unknown state st, it
receives an observation ot determined by Op¨|stq and a reward rpotq, then chooses an action at and
the environment transitions into a new state st`1 according to Tat

p¨|stq. Then, the process repeats.

Policies in POMDPs. A policy π :“ pπtq
8
t“0 is a sequence of decision rules prescribing the action

to play. We use Ht – pO ˆ Aqt´1 ˆ O to denote the space of histories up to time t. A deterministic
policy πt : Ht Ñ A is such that πtphq P A is the action chosen when history h P Ht is observed.

From POMDP to Belief MDP. When the observation and the transition models are known, it
is possible to build a belief vector bt P B (with B – ∆pSq) from the observed history ht :“
poj , ajq

t´1
j“0 ‘ ot, where ‘ denotes the sequence concatenation operator, as btpsq :“ Prpst “ s|htq,

representing the probability that the true state is s having observed history ht. The update rule of the
belief bt is determined using Bayes’ theorem as:

btpsq “

ř

s1PS Opot|sqTat´1ps|s1qbt´1ps1q
ř

s1,s2PS Opot|s1qTat´1
ps1|s2qbt´1ps2q

. (1)

By using this notion of belief, we can transform the POMDP into a belief MDP [17] (which is a
continuous-state MDP even if the original POMDP is tabular), which is used to address the POMDP

1Under a memoryless policy, the choice over the next action at is conditioned on the last observation ot only.
2The notation rOp¨q disregards logarithmic terms.
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learning problem. For an initial belief b P B, the average reward of the infinite-horizon belief
MDP is defined as: ρπb :“ lim supTÑ`8p1{T qEr

řT´1
t“0 rpotq|b0 “ bqs. When the underlying

MDP is weakly-communicating, it has been shown [5] that the optimal average reward ρ˚ :“
supπ:BÑ∆pAq ρ

π
b is independent of the initial belief b and the following Bellman equation admits a

unique solution:

ρ˚ ` vpbq “ gpbq ` max
aPA

ż

B
P pdb1|b, aqvpdb1q, (2)

where gpbq –
ř

sPS
ř

oPO bpsqOpo|sqrpoq denotes the expected reward under belief b, while
P p¨|b, aq is a probability measure over the next belief.3 Finally, v : B Ñ R represents the bias
function and quantifies the cumulative deviation of rewards w.r.t. ρ˚ when starting from b [21].

3 Related Works

POMDP Learning. Learning in POMDPs is known to be challenging both from a statistical and
a computational perspective. When the observation model does not provide enough information
to identify the latent states, we refer to the POMDP as hard. These intractable instances can be
ruled out by introducing a full-rank assumption on the observation model. A quantitative version
of this assumption was first introduced in [16] and is formalized as a lower bound α ą 0 to the
minimum singular value of the observation model, namely σSpOq ě α. The instances satisfying this
assumption can be efficiently learned and define the class of α-weakly revealing instances.

Weakly-Revealing POMDPs. The weakly-revealing assumption has been used both in the
episodic [16, 19] and the infinite-horizon average-reward setting. By focusing on the latter, some
works employed the simplifying assumption of having partial knowledge of the environment, in
particular of the observation model. Among them, [13] provide a Bayesian regret of order OpT 2{3q

when compared against the optimal policy, while a recent work from [26] proposes the Action-wise
OAS-UCRL algorithm, which employs an estimation procedure with finite-sample guarantees that
leverages the knowledge of the observation model to learn the transition model. They reach a rOp

?
T q

regret guarantee when compared against the optimal policy. Several works have instead addressed
the problem of fully learning the model parameters [11, 3, 34]. The standard approach relies on SD
methods [1] for learning the latent variable model. In particular, [3] are the first to adapt SD methods
to samples collected under the adaptive class of memoryless policies. They consider stochastic
policies where each action is chosen with a positive probability ι ą 0 at each step and propose the
SM-UCRL algorithm, which achieves a rOp

?
T {ι2q regret guarantee when compared against this (less

powerful) policy class. A different approach is taken in [32] where the regret is computed against
the stronger class of deterministic (ι “ 0) belief-based policies. They present the SEEU algorithm,
which alternates between purely exploratory and purely exploitative phases. During exploration,
samples are collected using a round-robin policy over the available actions, after which SD is applied
to recover model parameters. Their algorithm achieves rOpT 2{3q regret when compared against the
optimal class of belief-based policies.

The introduction of our estimation strategy addresses two limitations of the aforementioned works.
First, unlike the SEEU algorithm [32], we do not need to separate exploration and exploitation phases,
as we can leverage samples collected during the exploitation phase to refine model estimates. Second,
unlike the SM-UCRL [3], we are able to reuse samples from different policies, hence eliminating the
need for stochastic policies (ι ą 0) that foster continuous coverage of the action space. We refer to
Table 1 for a comparison of our work with those mentioned above and to Appendix H for a more
extensive discussion on the matter.

4 Problem Formulation

We consider the infinite-horizon average-reward POMDP setting described in Section 2. Specifically,
we consider the undercomplete setting [16], where the number of states is less than or equal to the
number of observations (S ď O). Our focus is on learning the POMDP parameters represented
by the observation model O and the transition model T “ tTauaPA. We consider the class of

3We provide a precise definition of this quantity in the Notation section of Appendix C.
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Table 1: Table comparing the SM-UCRL, SEEU and the Mixed Spectral UCRL algorithm.
Property SM-UCRL SEEU Mixed Spectral UCRL

No assumption on minimum entry of obs. model ✓ ✗ ✓
No assumption on minimum entry of trans. model ✓ ✗ ✗
No assumption on minimum action probability ✗ ✗ ✓
Works with memoryless policies ✓ ✗ ✓
Works with belief-based policies ✗ ✗ ✓
Sample reuse with different policies ✗ ✗ ✓
Compares against the optimal belief-based policy ✗ ✓ ✓

Regret w.r.t. optimal belief-based policy OpT q ÕpT 2{3
q Õp

?
T q

belief-based policies π : B Ñ A, and we use P to denote such a set of policies. Before stating the
main assumptions, we introduce some relevant quantities.

Let dπ,b0t ps, aq – Prpst “ s, at “ a|π, b0q be the t-step state-action distribution induced by policy
π P P , with b0 P B being the initial belief. Under mild regularity conditions (e.g., when the underlying
MDP is weakly-communicating), a unique limiting distribution dπ8ps, aq – limtÑ8 dπ,b0t ps, aq P

∆pS ˆ Aq exists (see Proposition 5.1 in [25]) and it is independent of the initial belief b0. From the
quantity just defined, we derive the stationary action distribution dπ8 P ∆pAq defined as dπ8paq –
ř

sPS dπ8ps, aq. Let us now introduce the conditional state distribution ωpa,πq P ∆pSq defined as
ω

pa,πq
s – dπ8ps|aq “ dπ8ps, aq{dπ8paq, which is well-defined when dπ8paq ą 0.

The following assumptions represent the natural extension to the POMDP setting of the assumptions
commonly employed for learning in (uncontrolled) settings (i.e., Hidden Markov Models [1]).
Assumption 4.1 (α-weakly Revealing Condition). There exists α ą 0 such that σSpOq ě α.

This assumption quantifies the extent to which the received observations help in identifying the
underlying hidden states. It is equivalent to the more common full-rank assumption largely adopted
in problems involving the learning of Latent Variable Models [3, 12, 34]. It was first introduced in
this form in [16] and then extensively employed in successive related works [19, 20, 26]. It has been
shown that, without this assumption, learning becomes intractable [9].
Assumption 4.2 (Invertibility). For every action a P A, the transition matrix Ta is invertible.

This second assumption implies that for any state-action pair ps, aq P S ˆ A, its next-state distribution
Tap¨|sq cannot be recovered as a linear combination of the next-state distribution of the other state-
action pairs. This condition is crucial for achieving identifiability and is widely used in the SD and
POMDP literature [1, 3, 32, 34, 11].
Assumption 4.3 (Per-Action Ergodicity). For any policy π P P , a unique limiting state-action
distribution dπ8ps, aq exists. Moreover, for every action a, if dπ8paq ą 0, then ω

pa,πq
s ą 0 @s P S.

Assumption 4.3 extends the standard non-degeneracy assumption [1] employed under SD techniques.
The motivation behind this assumption lies in the fact that SD approaches are applied for each action
a separately. Hence, in order to fully recover the transition model Ta, all states should be visited with
positive probability when taking action a (i.e., ωpa,πq

s ą 0). In Appendix H, we show how related
works [3, 32] tackling the POMDP setting rely on assumptions that subsume Assumption 4.3. A
simple example when this assumption holds is when the transition matrices tTauaPA have all positive
entries, as we shall see in Section 6 (Assumption 6.1).

A discussion on the reasons why some of these assumptions are instead not required in the episodic
setting is provided in Appendix H.2.

Learning Objective. Our goal is to find the policy attaining Equation (2) in the policy class P . Our
learning objective is to minimize the cumulative regret after T P N time steps, defined as:

RT :“ Tρ˚ ´

T´1
ÿ

t“0

rpotq, (3)

where ρ˚ represents the average reward obtained by the policy satisfying Equation (2), while rpotq is
the reward obtained from the observation received by playing policy πt played at time t.
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We remark that solving Equation (2) and computing such an optimal policy is known to be com-
putationally intractable. Various methods have been devised to provide an approximately optimal
policy. Most of them focus on devising clever discretizations of the belief space and then solve the
discretized instance [33, 27, 29]. In this work, however, we do not focus on this planning problem,
but following a common approach in the POMDP literature [32, 3, 34, 13], we assume access to an
optimization oracle capable of providing the optimal policy for a given POMDP model.

5 The POMDP Estimation Procedure

In this section, we present an adaptation of the common multi-view model employed for latent
parameter estimation when using SD techniques [1, 3, 32].

5.1 The Multi-View Model

We now introduce a model-based strategy to estimate the parameters of the unknown POMDP which
adapts the approach of [3]. For each step t P r1, T ´ 2s4 in which at “ a P A, we construct three
views containing the observations in three consecutive steps centered in t, i.e., ot´1, ot, ot`1 P O.
Let us use (bold) ot P t0, 1uO to denote the one-hot encoded vector corresponding to observation ot

and similarly for the two remaining views ot´1 and ot`1. We further use vectors vpaq

ν,t P RO with
ν P t1, 2, 3u to refer to the three different view vectors when conditioned on at “ a, and such that
v

paq

1,t “ ot´1, vpaq

2,t “ ot and v
paq

3,t “ ot`1 respectively. Given a policy π P P , we define three view

matrices V pa,πq
ν P ROˆS with ν P t1, 2, 3u associated with action a P A, as follows:

V pa,πq
ν po, sq “ lim

tÑ8
Pr

`

v
pa,πq

ν,t “ o|at “ a, st “ s
˘

“: Pr
`

vpa,πq
ν “ o|a2 “ a, s2 “ s

˘

.

It can be observed that the three views are independent when conditioning on both st and at. We also
denote with µ

pa,πq
ν,s “ V

pa,πq
ν p¨, sq the s-th column of matrix V

pa,πq
ν .

Remark 5.1. By inspecting the three different view matrices separately, we can observe that for the
second view matrix it holds that V pa,πq

2 “ O, hence it does not depend on either action a or policy π.
Differently, for the third view matrix, it can be shown that V pa,πq

3 “ OTJ
a , hence it is independent of

policy π. Finally, the first view matrix V
pa,πq

1 depends on both the action and employed policy.5

Given this multi-view model, the following result from [1] applies:

Proposition 5.2. (Adapted from [3]) Let ν, ν1 P t1, 2, 3u, π P P be a policy, and K
pa,πq

ν,ν1 “

E
”

v
pa,πq
ν b v

pa,πq

ν1

ı

be the covariance matrix between views vpa,πq
ν and v

pa,πq

ν1 , where b denotes the
tensor product, and denote with the superscript : the Moore-Penrose pseudo-inverse. We define a
modified version of the first and second views as:

rv
pa,πq

1 :“ K
pa,πq

3,2

´

K
pa,πq

1,2

¯:

v
pa,πq

1 , rv
pa,πq

2 :“ K
pa,πq

3,1

´

K
pa,πq

2,1

¯:

v
pa,πq

2 . (4)

Then, the second and third moments of the modified views have a spectral decomposition as:

M
pa,πq

2 “ E
”

rv
pa,πq

1 b rv
pa,πq

2

ı

“
ÿ

sPS
ωpa,πq
s µ

pa,πq

3,s b µ
pa,πq

3,s ,

M
pa,πq

3 “ E
”

rv
pa,πq

1 b rv
pa,πq

2 b v
pa,πq

3

ı

“
ÿ

sPS
ωpa,πq
s µ

pa,πq

3,s b µ
pa,πq

3,s b µ
pa,πq

3,s .

where the expectations are w.r.t. the conditional state distribution ω
pa,πq
s defined in Section 4.

When Assumptions 4.1, 4.2 and 4.3 hold, the three view matrices V pa,πq
ν P ROˆS with ν P t1, 2, 3u

associated with each action a P A and policy π P P are full-column rank and a unique spectral
decomposition exists [1]. As a consequence, the original model parameters can be recovered. In
particular, this can be performed by exploiting the following known relations between the columns of

4We exclude the first (t “ 0) and the last (t “ T ´ 1) steps.
5For the detailed expression of V pa,πq

1 , we refer to Appendix A.
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the different view matrices:
µ

pa,πq

3,s “ Errv
pa,πq

1 |s2 “ s, a2 “ as “ K
pa,πq

3,2 pK
pa,πq

1,2 q:µ
pa,πq

1,s , (5)

µ
pa,πq

3,s “ Errv
pa,πq

2 |s2 “ s, a2 “ as “ K
pa,πq

3,1 pK
pa,πq

2,1 q:µ
pa,πq

2,s . (6)
By applying SD techniques for each action a separately, we obtain estimates of the third view matrix
V

pa,πq

3 , hence of its columns µpa,πq

3,s . Finally, when such estimates are available, the columns µpa,πq

1,s

and µ
pa,πq

2,s of the remaining view matrices can be estimated by inverting Equations (5) and (6).

5.2 The Mixed Spectral Estimation Procedure

We now show how we combine samples coming from multiple policies, thus overcoming the
limitations of existing approaches and leading to our novel Mixed Spectral Estimation. We
define a set of L different trajectories of samples Γ – tτlu

L´1
l“0 such that the l-th trajectory is generated

from policy πl P P and is defined as τl “ tpolj , a
l
jqu

Nl´1
j“0 . Additionally, we introduce the related

set T paq

l “ tt P r1, Nl ´ 2s s.t. alt “ au which contains the time steps when action a is selected
in the l-th trajectory. Let npaq

l “ |T paq

l | denote its cardinality. For each t P T paq

l , we construct the
three corresponding views pv

pa,lq
1,t ,v

pa,lq
2,t ,v

pa,lq
3,t q “ pot´1,ot,ot`1q, where the superscript l refers to

the trajectory collected using πl. Our approach uses views from all the L trajectories to define new
covariance matrices Kpa,Lq

ν,ν1 with ν, ν1 P t1, 2, 3u and ν ‰ ν1. These are weighted versions of the
original covariance matrices and are defined as follows:

K
pa,Lq

ν,ν1 “
1

N
paq

L

L´1
ÿ

l“0

n
paq

l E
”

vpa,lq
ν b v

pa,lq
ν1

ı

“
1

N
paq

L

L´1
ÿ

l“0

n
paq

l

ÿ

sPS
ωpa,lq
s µpa,lq

ν,s b µ
pa,lq
ν1,s , (7)

where N
paq

L –
řL´1

l“0 n
paq

l , while ωpa,lq :“ ωpa,πlq P ∆pSq denotes the conditional state distribution
determined by policy πl and action a. We show that the following result holds when combining
multiple policies. Its proof is deferred to Appendix A.

Theorem 5.3. Let Γ – tτlu
L´1
l“0 be a set of trajectories collected using the set of policies tπlu

L´1
l“0 .

We define a modified version of the first and second views as:

rv
pa,lq
1 :“ K

pa,Lq

3,2

´

K
pa,Lq

1,2

¯:

v
pa,lq
1 , rv

pa,lq
2 :“ K

pa,Lq

3,1

´

K
pa,Lq

2,1

¯:

v
pa,lq
2 , (8)

where the covariance matrices are defined in Equation (7). Let ωpa,Lq – p1{N
paq

L q
řL´1

l“0 n
paq

l ωpa,lq,
then, the second and third moments of the modified views have a spectral decomposition as:

M
pa,Lq

2 “
1

N
paq

L

L´1
ÿ

l“0

n
paq

l E
”

rv
pa,lq
1 b rv

pa,lq
2

ı

“
ÿ

sPS
ωpa,Lq

s µ
paq

3,s b µ
paq

3,s ,

M
pa,Lq

3 “
1

N
paq

L

L´1
ÿ

l“0

n
paq

l E
”

rv
pa,lq
1 b rv

pa,lq
2 b v

pa,lq
3

ı

“
ÿ

sPS
ωpa,Lq

s µ
paq

3,s b µ
paq

3,s b µ
paq

3,s ,

where the expectations are w.r.t. the conditional state distributions ωpa,lq
s .

This theorem shows that when the views vpa,lq
1 and v

pa,lq
2 are modified using the weighted covariance

matrices Kpa,Lq

ν,ν1 defined in Equation (7) instead of the covariance matrices Kpa,lq
ν,ν1 associated with

policy πl, the new second and third order moments have a spectral decomposition whose conditional
state distribution ωpa,Lq is an average of the original conditional state distributions, each one weighted
proportionally by the cardinality n

paq

l . Importantly, as discussed in Remark 5.1, the columns µpaq

3,s
of the third view matrix do not depend on the employed policies but only on action a, hence in
Theorem 5.3, we do not report the dependence on the mixture of the L policies. The independence of
the third view matrix from the employed policies plays a crucial role in proving Theorem 5.3.

Algorithm Pseudocode. The estimation procedure of the quantities described above, and of the esti-
mated POMDP parameters, is described in the Mixed Spectral Estimation approach presented
in Algorithm 1. For each action a, the view vectors are computed for all the L policies, and they are
used to compute the mixture covariance matrices (Line 8). Given the new covariance matrices, the
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Algorithm 1 Mixed Spectral Estimation.

1: Input: Trajectory set Γ – tτlu
L´1
l“0 where for each l we have τl “ tpolj , a

l
jqu

Nl´1
j“0

2: Output: Estimated Observation model pO and Transition model tpTauaPA
3: for a P A do
4: for l P r0, L ´ 1s do
5: Construct views vpa,lq

1,t “ ot´1, vpa,lq
2,t “ ot, v

pa,lq
3,t “ ot`1 for any t P T paq

l
6: end for
7: Compute N

paq

L “
řL´1

l“0 n
paq

l
8: Compute covariance matrices for ν, ν1

P t1, 2, 3u:

xK
pa,Lq

ν,ν1 “ 1

N
paq

L

řL´1
l“0

ř

tPT paq

l

v
pa,lq
ν,t b v

pa,lq

ν1,t .

9: Compute modified views:

rv
pa,lq
1,t “ xK

pa,Lq

3,2

´

xK
pa,Lq

1,2

¯:

v
pa,lq
1,t , rv

pa,lq
2,t “ xK

pa,Lq

3,1

´

xK
pa,Lq

2,1

¯:

v
pa,lq
2,t .

10: Compute second and third moments:

xM
pa,Lq

2 “
1

N
paq

L

L´1
ÿ

l“0

ÿ

tPT paq

l

rv
pa,lq
1,t b rv

pa,lq
1,t

xM
pa,Lq

3 “
1

N
paq

L

L´1
ÿ

l“0

ÿ

tPT paq

l

rv
pa,lq
1,t b rv

pa,lq
2,t b v

pa,lq
3,t

11: pV
paq

3 “ TENSORDECOMPOSITIONp xM
pa,Lq

2 , xM
pa,Lq

3 q

12: Compute pV
paq

2 inverting Eq. (6)
13: end for
14: Define a˚

P argmaxaPA N
paq

L
15: for a P A do
16: Match the columns of each pV

paq

2 with pV
pa˚q

2

17: Permute the columns of pV paq

3 using the same permutation adopted for pV paq

2

18: end for
19: Compute pO according to Eq. (9)
20: for a P A do
21: Compute pTa according to Eq. (10)
22: end for

modified views are computed for each t P T paq

l with l P r0, L ´ 1s (Line 9). The modified views
are then used to compute second and third-order moments (Line 10), and a tensor decomposition
routine6 (line 11) is run for each action separately, thus obtaining the estimated view matrix pV

paq

3 . By
inverting Equation (6), we are able to derive an estimate of the second view matrix pV

paq

2 . As noted
in Remark 5.1, the second view matrices are identical across all actions, thus satisfying V

paq

2 “ O
for any action a. Since spectral methods recover the columns of the original view matrices up to
a permutation of the hidden states s [1], this equivalence allows us to align the columns of the
different pV paq

2 by appropriately permuting them, thus ensuring that the represented states are ordered

consistently, as also done in [3]. To do that, we define a˚ P argmaxaPA N
paq

L and choose pV
pa˚

q

2 as
the reference view that the other views should match.7 It is possible to show that when the estimation
of each view is sufficiently accurate, the correct permutation can be found for each pV

paq

2 . When the
permutation step is completed, the observation and transition model are computed as:

pO “
1

NL

ÿ

aPA
N

paq

L
pV

paq

2 , (9)

6We adopt the Robust Tensor Power (RTP) method from [1] as tensor decomposition strategy.
7This way, for each action a, the columns of pV paq

2 are permuted to minimize the 1-norm error w.r.t. pV pa˚q

2 .
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pTa “

´

pO:
pV

paq

3

¯J

, (10)

where NL –
ř

aPA N
paq

L . Thus, the estimated observation matrix is obtained as a weighted combi-
nation of the second view matrices pV

paq

2 , while each transition matrix is recovered by inverting the
relation presented in Remark 5.1 and using the observation matrix computed as in Equation (9). The
computational complexity of the presented approach is discussed in Appendix I. Algorithm 1 enjoys
the following guarantees, which are proved in Appendix B.

Theorem 5.4. Let pO and tpTauaPA be the observation and transition model estimated using Algo-
rithm 1, respectively. Let Assumptions 4.1 and 4.2 hold and let Assumption 4.3 be true for any πl with
l P r0, L ´ 1s. Let δ P p0, 1{p3SAqq, then for a sufficiently large number of samples N paq

L holding
for every action a P A, with probability at least 1 ´ 3SAδ, it holds that:

›

›

›
O ´ pO

›

›

›

F
ď

CO
ζpLq

d

SAL logpLO{δq

NL
,

›

›

›
Ta ´ pTa

›

›

›

F
ď

CT S

σSpOqζpLq

d

AL logpLO{δq

N
paq

L

,

where ζpLq – rσ
pLq

3,1

„

b

rω
pLq

min minνPt1,2,3u,aPA σSpV
pa,Lq
ν q

ȷ3

, rωpLq

min – min
aPA

ω
pa,Lq

min , and rσ
pLq

3,1 –

min
aPA

σSpK
pa,Lq

3,1 q, while CO and CT are suitable constants.

We highlight that Theorem 5.4 requires a minimum number of samples N
paq

L for each action a
(this number should satisfy Equation (38) reported in Appendix B), which depends on the set of
L trajectories. Nevertheless, it places no restrictions on the length of the individual trajectories τl,
allowing for certain trajectories not to contain a specific action a. This aspect will be significant for
proving the regret guarantees of our Mixed Spectral UCRL approach.

6 Mixed Spectral UCRL Algorithm 2 Mixed Spectral UCRL.
1: Input: Confidence level δ, length of initial episode

T0, total horizon T
2: Initialize: t Ð 0, l Ð 0, belief b0 uniform over

states, Trajectory set Γ “ tu

3: Build trajectory τ0 from uniform policy π0 for T0

steps
4: Γ Ð Γ Y tτ0u

5: t Ð T0, l Ð 1, Set N paq

1 Ð n
paq

0 @a P A
6: while t ă T do
7: Run Algorithm 1 using trajectory set Γ and ob-

tain estimates pO and pT “ tpTauaPA
8: Build a confidence set Clpδlq of admissible

POMDPs
9: Compute policy πl and optimistic Ql (Eq. 11)

10: τl Ð pq, npaq

l Ð 0 for all a P A
11: Observe ot, get reward rt Ð rpotq
12: Update belief bt using Equation (1)
13: Set at Ð πlpbtq

14: while t ă T or npatq

l ă N
patq

l do
15: Execute at, Set npatq

l Ð n
patq

l ` 1
16: Observe ot`1, get reward rpot`1q

17: Update belief to bt`1 using Equation (1) and
estimated pO and pTat

18: Set at`1 Ð πlpbt`1q

19: τl Ð τl ‘ pot, atq

20: Set t Ð t ` 1
21: end while
22: Γ Ð Γ Y tτlu

23: Set N paq

l`1 Ð N
paq

l ` n
paq

l @a P A
24: Set l Ð l ` 1
25: end while

The Mixed Spectral Estimation proce-
dure can be easily combined with an optimistic
strategy resembling the UCRL approach for
MDPs [14]. We call this new algorithm Mixed
Spectral UCRL, and we describe its workflow
in Algorithm 2. During the first episode, we use
a uniform policy π0 (Line 3) to collect a suffi-
cient amount of samples for each action a P A in
order to provide a first estimate of the POMDP
parameters. The whole interaction horizon is
divided into episodes of different lengths. At
the beginning of each new episode l, all sam-
ples collected up to that moment are used to
estimate the new POMDP parameters according
to Algorithm 1 (Line 7). Based on the estimated
POMDP pQl, we build a high-probability confi-
dence set Clpδlq of admissible POMDPs accord-
ing to the bounds defined in Theorem 5.4, us-
ing a varying confidence level δl – δ{p3SAl3q

(Line 8). The optimistic policy and the associ-
ated POMDP are then computed at the begin-
ning of episode l according to the program:

pπl,Qlq P argmax
πPP, rQPClpδlq

ρpπ, rQq, (11)

where ρpπ, rQq is the average reward of policy
π in the POMDP instance rQ. As specified in
Section 4, we assume access to an oracle to solve
Equation (11). Then, each episode terminates

8



when there exists an action a P A such that the number of times npaq

l it has been chosen during the
l-th episode exceeds the total number of times N paq

l it has been chosen since the beginning (Line
14).

6.1 Regret Analysis

Before proceeding with the analysis of the regret of the Mixed Spectral UCRL algorithm, we
remark that when the estimates of the POMDP parameters are accurate enough, the belief vector pbt
computed at each step t using the estimated parameters is close to the real belief bt. To the best of
our knowledge, the results in the literature [32, 34, 26, 10, 15] that relate the belief error }pbt ´ bt}1
with the estimation error of the model parameters all hold under the following one-step reachability
assumption.
Assumption 6.1. (Minimum Value Transition Model) The smallest value in the transition matrices
satisfies ϵ :“ min

s,s1PS aPA
Taps1|sq ą 0.

Note that Assumption 6.1 implies the Per-Action Ergodicity (Assumption 4.3). The regret for Mixed
Spectral UCRL can be expressed as follows. Its proof is deferred to Appendix C.
Theorem 6.2. Under Assumptions 4.1, 4.2 and 6.1, let δ P p0, 1{2q. If the Mixed Spectral UCRL
algorithm is run for a sufficiently large number of steps T , with probability at least 1 ´ 2δ, it suffers
regret bounded as:

RT ď O

˜

DpSAq3{2

σSpOqrζpLq

d

TO log2
ˆ

SAOT

δ

˙

¸

.

where rζpLq – min
lPr0,L´1s

ζplq and ζplq is defined as in Theorem 5.4. D bounds the span8 of the bias

function appearing in Equation (2) and is defined in Proposition G.1.

This algorithm overcomes the limitations of SM-UCRL since it does not require a constantly exploring
policy, and removes the need for a phased algorithm as done for SEEU. By efficiently reusing samples
from different policies, we enhance the online learning of POMDPs by improving the current regret
guarantee of rOpT 2{3q established by the SEEU algorithm.

7 Numerical Simulations

In this section, we analyze the estimation error of the Mixed Spectral Estimation approach
under different belief policies and we show the performance in terms of regret of the Mixed
Spectral UCRL algorithm when compared against state-of-the-art approaches. Further experiments
and simulation details are provided in Appendix J.9

Mixed Spectral Estimation Algorithm. This first set of experiments studies the estimation error
achieved by the Mixed Spectral Estimation algorithm. In particular, we evaluate our method
on a POMDP instance with sizes described in Figure 1. The estimation error is measured using
the Frobenius norm of the observation matrix and the transition matrices (one per action). Figure 1
reports the average results over 10 runs. The simulation splits the interaction horizon into 10 episodes
of equal length, and for each episode, we use a different belief-based policy for data collection.
As observed in the figure, the total error decreases as the number of collected samples increases,
demonstrating that our approach is able to efficiently combine data from different policies.

Regret Comparison with state-of-the-art Algorithms. In this second set of experiments, we
compare our Mixed Spectral UCRL algorithm with SEEU [32] and SM-UCRL [3]. The regret is
measured w.r.t. the oracle whose policy satisfies Equation (2) and has full knowledge of the model
parameters. As observed in Figure 2, the SM-UCRL algorithm experiences the highest regret since
(i) it does not reuse samples across episodes, (ii) it relies on the weaker class of stochastic (ι ą 0)
memoryless policies. This forced exploration leads to constantly selecting suboptimal actions, hence

8The span of the bias function is defined as: spanpvq :“ maxbPB vpbq ´ minbPB vpbq.
9The codebase can be found at https://github.com/alesnow97/Spectral_Learning_POMDP.git.
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resulting in higher regret. We also observe that the Mixed Spectral UCRL algorithm outperforms
the SEEU algorithm. This result is in line with the theoretical guarantees, as the regret of SEEU scales
with rOpT 2{3q. Besides the alternating exploration-exploitation phases, the inferior performance of
SEEU can also be attributed to its reduced sample efficiency since its estimates only rely on data
collected during the exploration phase, hence discarding those collected during the exploitation phase.
Finally, in Appendix J, we present a regret experiment where Assumption 6.1 is violated in order to
show the robustness of our approach with respect to the failure of this assumption.

8 Conclusions and Future Directions

In this work, we tackled the problem of learning using spectral methods in the infinite-horizon
average-reward POMDP setting. We showed that spectral techniques can be extended to belief-based
policies and, through our Mixed Spectral Estimation approach, we answered positively to the
open question of whether it is possible to combine samples coming from different adaptive policies.
We provided finite-sample guarantees for the devised estimation algorithm, and we showed that the
error of the different parameters conveniently scales with respect to the number of employed samples.
We combined the new estimation algorithm with an optimistic approach, Mixed Spectral UCRL,
and provided the first algorithm achieving a rOp

?
T q regret order when compared against the optimal

belief-based policy, by leveraging the new sample reuse strategy, and a suitable episode stopping
condition. Finally, we validated both our approaches through numerical simulations, and we showed
that our approach has improved performance over state-of-the-art algorithms. As a future step, we
will study whether it is possible to relax some of the assumptions employed in this work, such as the
one-step reachability (i.e., Assumption 6.1).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The abstract and the introduction reflect the original contribution of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: The presented Mixed Spectral UCRL approach holds under the one-step
reachability condition (Assumption 6.1 in Section 6) which holds true under quite stochastic
environments. This limitation is also highlighted in Table 1. Another limitation is the
assumption of using an oracle for the computation of the optimal policy (Section 4), which is
a common assumption in this field of research. Various approximation methods are available
for computing this policy.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: All the theoretical claims reported in this work are supported by complete
proofs. The proofs of Theorems 5.3, 5.4 and 6.2 are reported in Appendix A, B and C
respectively. The auxiliary claims used in the proofs are also reported in the Appendix,
together with their associated proofs or references. The employed assumptions are clearly
stated and justified.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The paper provides the description and pseudocode of both the Mixed
Spectral Estimation and Mixed Spectral UCRL algorithms, together with the hy-
perparameters used for the experiments which are clearly reported in Appendix J. The
description of the POMDP instances and the way they are generated are fully described in
Section 7 and Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: The released code provides scripts for running both the experiments on the
estimation error of the POMDP parameters and also the experiments on the regret, which
compare against the different baselines.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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Appendix Organization

We provide here an outline of the Appendix.

• Section A, B and C present the proofs of the three theorems reported in the main paper.

• Section D provides some auxiliary results employed for the proof of Theorem 5.4. They are
mostly related to the guarantees derived from the application of Tensor Decomposition methods.

• Section E gives an overview of the Symmetrization and Whitening steps, which are implemented
on the third-order tensor before applying Tensor Decomposition techniques. It also introduces
useful quantities that are used throughout the appendix.

• Section F provides a new bound relating the sum of successive belief errors with the error in the
estimated model parameters.

• Section G presents a miscellanea of useful results.

• Section H compares our work from a theoretical perspective with the related works of [3] and [32],
and compares spectral approaches with Maximum-likelihood estimation techniques.

• Section I discusses the computational complexity of the Mixed Spectral Estimation method.

• Finally, Section J provides experimental performances of POMDP instances of different charac-
teristics, together with details about the numerical simulations presented in the main paper.

A Proof of Theorem 5.3

In this section, we provide the proof of Theorem 5.3. For clarity, we report its statement here.

Theorem 5.3. Let Γ – tτlu
L´1
l“0 be a set of trajectories collected using the set of policies tπlu

L´1
l“0 .

We define a modified version of the first and second views as:

rv
pa,lq
1 :“ K

pa,Lq

3,2

´

K
pa,Lq

1,2

¯:

v
pa,lq
1 , rv

pa,lq
2 :“ K

pa,Lq

3,1

´

K
pa,Lq

2,1

¯:

v
pa,lq
2 , (8)

where the covariance matrices are defined in Equation (7). Let ωpa,Lq – p1{N
paq

L q
řL´1

l“0 n
paq

l ωpa,lq,
then, the second and third moments of the modified views have a spectral decomposition as:

M
pa,Lq

2 “
1

N
paq

L

L´1
ÿ

l“0

n
paq

l E
”

rv
pa,lq
1 b rv

pa,lq
2

ı

“
ÿ

sPS
ωpa,Lq

s µ
paq

3,s b µ
paq

3,s ,

M
pa,Lq

3 “
1

N
paq

L

L´1
ÿ

l“0

n
paq

l E
”

rv
pa,lq
1 b rv

pa,lq
2 b v

pa,lq
3

ı

“
ÿ

sPS
ωpa,Lq

s µ
paq

3,s b µ
paq

3,s b µ
paq

3,s ,

where the expectations are w.r.t. the conditional state distributions ωpa,lq
s .

Proof. Before proceeding, it is relevant to highlight the relation between the view matrices. We use
V

pa,lq
1 , V pa,lq

2 and V
pa,lq
3 to define the views associated with policy πl and action a. We further recall

that under the α-weakly revealing assumption ( 4.1) and the invertibility assumption of the transition
matrices ( 4.2), the view matrices are always full-column rank [3].
We define the following quantity:

Ta,πl
–

ÿ

a1PA
pπl

pa1|aqTa1 (12)

with pπl
p¨|aq P ∆pAq being a probability distribution induced by policy πl and conditioned on action

a. As observed in [25], this distribution always exists under the employed assumptions. In particular,
pπl

pa1|aq denotes the probability of having chosen action a1 in a previous time step (say t ´ 1)
conditioned on the fact that action a is taken in the successive time step (say t). Intuitively, Ta,πl

represents the mixture transition matrix defining the state transition from a previous step (t ´ 1) to a
successive one t when action a1 is chosen in t ´ 1 by policy πl and the next action chosen by the
policy in step t is a. Let us also recall that ωpa,lq represents the state distribution induced by policy
πl and conditioned on action a such that ωpa,lq

s is the probability of being in state s when choosing
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action a. Using the definition in (12), we can also define the state distribution at the previous time
step (t ´ 1) as:

ξpa,lq –
`

TJ
a,πl

˘´1
ωpa,lq (13)

with ξpa,lq P ∆pSq and such that ξpa,lq
s represents the probability that state s is visited in the previous

time step (t ´ 1) conditioned on having chosen action a in t.

Having defined the previous state distribution ξpa,lq in Eq. (13) and inspired by the multi-view model
on Markov Chains of [1], we can now express the views using the following relations:

V
pa,lq
1 “ O diag

´

ξpa,lq
¯

Ta,πl
diag

´

ωpa,lq
¯´1

, (14)

V
pa,lq
2 “ O, (15)

V
pa,lq
3 “ OTJ

a . (16)

From the relations stated above, we observe that the second view V
pa,lq
2 corresponds to the observation

model, thus it depends neither on the action nor on the employed policy. Hence, we may refer to it
simply as V2. The third view depends on the action a but not on the employed policy, so we may refer
to it also using V

paq

3 . Finally, the first view depends on both the action a and on quantities related to
the employed policy πl.

Let us now recall the definition of the covariance matrix associated with a single policy πl, as reported
in Proposition 5.2. In particular, we will use the notation K

pa,lq
ν,ν1 to highlight that the covariance

matrix depends on policy πl P P , thus distinguishing it from the mixture covariance (in bold) Kpa,Lq

ν,ν1

resulting from the combination of L different policies.

I) Analysis of Covariance Matrix K
pa,Lq

3,2 . We start by considering the covariance matrix K
pa,lq
3,2 P

ROˆO obtained from a single policy πl:

K
pa,lq
3,2 “ E

s„ωpa,lq

”

v
pa,lq
3 b v
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ı
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V J
2 ,

where ωpa,lq P ∆pSq is the state distribution conditioned on action a and diag
`

ωpa,lq
˘

P RSˆS

represents a diagonal matrix whose diagonal values correspond to wpa,lq. Let us now recall the
definition of the mixed covariance matrix in Equation (7). The following holds:
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3 diag
´

ωpa,Lq
¯

V J
2 , (21)

“ OTJ
a diag

´

ωpa,Lq
¯

OJ, (Follows from lines 15 and 16)

where in line 19 we used V
pa,lq
3 “ V

paq

3 for any l, and V
pa,lq
2 “ V2 for any a and l, hence highlighting

the independence of both view matrices from the used policy πl. In line 21 we introduced the new
state distribution ωpa,Lq P ∆pSq such that ωpa,Lq – p1{N

paq

L q
řL´1

l“0 n
paq

l ωpa,lq.
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II) Analysis of Covariance Matrix K
pa,Lq

3,1 . Let us now consider a similar relation for the covariance

matrix K
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3,1 P ROˆO combining L different policies. We have that:
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III) Analysis of Covariance Matrix K
pa,Lq

2,1 . By applying similar steps to those employed for

covariance matrix K
pa,Lq

3,1 , we are able to show that:

K
pa,Lq

2,1 “ V2 diag
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wpa,Lq
¯ ´

V
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1

¯T

. (27)

We are now ready to provide the proofs for the second and third moments. For simplicity, we will
just provide the proof for the second moment matrix M

pa,Lq

2 since the proof for the third moment
tensor M pa,Lq

3 follows analogous steps.
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Proof for the second Moment matrix M
pa,Lq

2 . The relation for the mixed second moment matrix is
defined as follows.
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where line 29 holds since rv
pa,lq
1 b rv

pa,lq
2 “ rv

pa,lq
1

´

rv
pa,lq
2

¯J

, while line 34 holds for the relations of
covariance matrices found in the above points.
The simplification steps made from line 34 to line 35 are done considering that the multiplication of
a matrix and its pseudoinverse while projecting along the smaller space of size S produces IS , an
identity matrix of rank S. In particular, by applying the definition of the Moore-Penrose inverse of a
matrix, we have that V :

2 “ pV J
2 V2q´1V J

2 . Since the pseudo-inverse of a transpose corresponds to
the transpose of the pseudo-inverse, we get that

`

V J
2
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2 V2q´1. Hence, the expression in
line 34 can be simplified as:
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Similar steps also lead to
´

V
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V
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Finally, the last equivalence in line 36 concludes the proof.

B Proof of Theorem 5.4

Theorem 5.4. Let pO and tpTauaPA be the observation and transition model estimated using Algo-
rithm 1, respectively. Let Assumptions 4.1 and 4.2 hold and let Assumption 4.3 be true for any πl with
l P r0, L ´ 1s. Let δ P p0, 1{p3SAqq, then for a sufficiently large number of samples N paq

L holding
for every action a P A, with probability at least 1 ´ 3SAδ, it holds that:
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where ζpLq – rσ
pLq

3,1

„

b

rω
pLq

min minνPt1,2,3u,aPA σSpV
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ν q

ȷ3

, rωpLq

min – min
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ω
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min , and rσ
pLq

3,1 –
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aPA

σSpK
pa,Lq

3,1 q, while CO and CT are suitable constants.

Proof. We recall that Spectral Decomposition techniques are separately applied for each action a P A
and each of them outputs estimates of the third view V

paq

3 . From the columns µ3,s of the third view,
estimates of the columns µ2,s of the second view matrix can be computed by inverting Equation (6).
We remark that the second view is equal for all actions a and it corresponds to the observation matrix
O. Since we require that the number of samples N paq

L satisfies conditions in Equation (95) and (102),
Lemma D.1 can be used to bound the error of the columns µ2,s of the second view matrix, thus
having:

}µ
pa,Lq

2,s ´ pµ
pa,Lq

2,s }2 ď
16ϵ

pa,Lq

M

σSpK
pa,Lq

3,1 q
, (37)

holding with probability at least 1 ´ 3δ, and with ϵ
pa,Lq

M defined in Lemma D.1.

Condition for Column Permutation The next step of algorithm 1 consists in permuting the view
matrices pV

pa,Lq

2
10 for each action a in order to minimize the 1-norm error with respect to view matrix

pV
pa˚,Lq

2 where a˚ P argmax
aPA

N
paq

L
11. The permutation found for each estimated matrix pV

pa,Lq

2 is

then applied as well to the associated third view pV
pa,Lq

3 .
Guarantees on the permutation are achieved when each column µ

pa,Lq

2,s is estimated sufficiently well.
Let us denote with dO – min

s,s1PS,s‰s1
}Op¨|sq ´ Op¨|s1q}1 the minimum distance between columns of

O. As observed in [3], when the estimation error is lower than dO{4, the columns can be permuted
without error. Hence, we derive here the minimum sample condition such that the estimation error of
each column (reported in D.1) is bounded by dO{4:

N
paq

L ě

¨

˚

˚

˚

˝

128
?
2 rG{p1 ´ rηq

dO σSpK
pa,Lq

3,1 q

ˆ

b

rω
pa,Lq

min minν σSpV
pa,Lq
ν q

˙3

˛

‹

‹

‹

‚

2

8L log

ˆ

pO2 ` Oq2L

δ

˙

.

By combining the condition above with those required for the bound of Lemma D.1, we obtain:

N
paq

L ě Γpa,Lq 8L rG2

p1 ´ rηq2
log

ˆ

2LpO2 ` Oq

δ

˙

(38)

where

Γpa,Lq – max

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

1

dO σSpK
pa,Lq

3,1 q

ˆ

b

rω
pa,Lq

min minν σSpV
pa,Lq
ν q

˙3

˛

‹

‹

‹

‚

2

,

¨

˚

˝

2
?
Ω

ω
pa,Lq

min

”

minν σSpV
pa,Lq
ν q

ı2

˛

‹

‚

2

,

¨

˚

˝

4
”

σSpK
pa,Lq

3,1 q

ı2

˛

‹

‚

2,

/

.

/

-

.

10Differently from the notation used in the pseudocode of the Algorithm, here we add the superscript L to the
second view, thus specifying that the estimate depends on L policies.

11This choice is motivated by the fact that, without knowledge of the parameters characterizing the different
ϵ

pa,Lq

M , we assume that the view presenting the lowest error is the one associated with the action that has been
chosen the highest number of times.
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Bound on the Observation Model Error After the permutation operation, we can finally combine
the obtained view matrices pV

pa,Lq

2 as shown in Equation (9) to obtain a unique matrix pV
pLq

2 such that:

pO – pV
pLq

2 –
1

NL

ÿ

aPA
N

paq

L
pV

pa,Lq

2 ,

with NL “
ř

aPA N
paq

L . Let us denote with pµ
pLq

2,s the s-th column of view matrix pV
pLq

2 . From the
bound defined in Equation (37) and using a union bound argument, we finally get with probability at
least 1 ´ 3Aδ that:

›

›

›
µ

pLq

2,s ´ pµ
pLq

2,s

›

›

›

2
ď

16
?
Arϵ

pLq

M

rσ
pLq

3,1

, (39)

where:

rϵ
pLq

M ď

2
?
2 rG

1´rη

b

8L logppO2`Oq2L{δq

NL

„

b

rω
pLq

min minν,a σSpV
pa,Lq
ν q

ȷ3 `

¨

˝

4ĂG
1´ rη

b

8L logp4OL{δq

NL
ˆ

b

rω
pLq

min minν,a σSpV
pa,Lq
ν q

˙2

˛

‚

3

b

rω
pLq

min

, (40)

and rω
pLq

min – min
aPA

ω
pa,Lq

min and rσ
pLq

3,1 – min
aPA

σSpK
pa,Lq

3,1 q.

We notice that a further
?
A term appears in (39) as a result of the union bound, and we stress that

the minimization over the singular values is done considering both ν P t1, 2, 3u and a.
Since the result in (39) is independent of the single column s, we can easily extend it to the whole
observation matrix and finally get:

›

›

›
O ´ pO

›

›

›

F
“

d

ÿ

sPS

›

›

›
µ

pLq

2,s ´ pµ
pLq

2,s

›

›

›

2

2
ď

16
?
SA re

pLq

M

rσ
pLq

3,1

, (41)

holding with probability at least 1 ´ 3SAδ. By simplifying the notation and highlighting the most
relevant terms in the bound, we get:

›

›

›
O ´ pO

›

›

›

F
ď

CO
ζpLq

d

SAL logpLO{δq

NL
(42)

with CO being a suitable constant and ζpLq being defined as:

ζpLq – rσ
pLq

3,1

„

b

rω
pLq

min min
ν,a

σSpV pa,Lq
ν q

ȷ3

. (43)

Bound on the Transition Model Error By following Algorithm 1, the s-th row of each estimated
transition matrix pTa is computed as pTaps, ¨q “ pO:

pµ
pa,Lq

3,s . Let us analyze its associated error. We
have:

›

›

›
Taps, ¨q ´ pTaps, ¨q

›

›

›

2
“

›

›

›
O:µ

pa,Lq

3,s ´ pO:
pµ

pa,Lq

3,s

›

›

›

2

ď

›

›

›
O: ´ pO:

›

›

›

2

›

›

›
µ

pa,Lq

3,s

›

›

›

2
loooooooooooomoooooooooooon

(a)

`

›

›

›
µ

pa,Lq

3,s ´ pµ
pa,Lq

3,s

›

›

›

2

›

›

›

pO:
›

›

›

2
loooooooooooooomoooooooooooooon

(b)

.

Let us now analyze the different terms separately. Concerning the term (a), we use i)
›

›

›
µ

pa,Lq

3,s

›

›

›

2
ď 1

and ii) we first apply Proposition D.6 on the spectral norm of the pseudo-inverse of matrix pO and
then we use Proposition D.7 to bound

›

›

›
O: ´ pO:

›

›

›

2
and obtain:

(a) ď
2p1 `

?
5q

2

}O ´ pO}2

σSpOq
ď

4}O ´ pO}2

σSpOq
ď

4}O ´ pO}F

σSpOq
ď

4 ¨ 16
?
SA re

pLq

M

σSpOq rσ
pLq

3,1

.

26



Analogously, for the second term (b), we apply i) Proposition D.6 to bound } pO:}2 and ii) we use
Lemma D.2 to bound the error of the estimated view vector, thus obtaining:

(b) ď
2

σSpOq
¨ 14ϵ

pa,Lq

M ď
28ϵ

pa,Lq

M

σSpOq
.

Since Proposition D.6 holds under the condition }O ´ pO}2 ď p1{2qσSpOq, we require a minimum
number of samples NL based on the bound in 42. It should satisfy:

NL ě

ˆ

2CO
ζpLq σSpOq

˙2

SAL log

ˆ

LO

δ

˙

. (44)

The conditions defined in 38 together with the one just stated above on the total number of samples
NL determine the sufficient conditions for the theorem to hold.

Going back to the bound on the estimated transition matrix, by combining the results reported so far,
we get with probability at least 1 ´ 3SAδ:

›

›

›
Taps, ¨q ´ pTaps, ¨q

›

›

›

2
ď

64
?
SA re

pLq

M

σSpOq rσ
pLq

3,1

`
28ϵ

pa,Lq

M

σSpOq
ď

C 1
T

?
SA re

pa,Lq

M

σSpOqrσ
pLq

3,1

,

where C 1
T is a suitable constant term, while we used here a new quantity rϵ

pa,Lq

M for which it holds
both rϵ

pLq

M ď rϵ
pa,Lq

M and ϵ
pa,Lq

M ď rϵ
pa,Lq

M since it is defined as:

rϵ
pa,Lq

M ď

2
?
2 rG

1´rη

c

8L logppO2`Oq2L{δq

N
paq

L

„

b

rω
pLq

min minν,a1 σSpV
pa1,Lq
ν q

ȷ3 `

¨

˝

4ĂG
1´ rη

c

8L logp4OL{δq

N
paq
L

ˆ

b

rω
pLq

min minν,a1 σSpV
pa1,Lq
ν q

˙2

˛

‚

3

b

rω
pLq

min

, (45)

scaling with rate 1{N
paq

L differently from the rate 1{NL of rϵpLq

M defined in Equation (40). Since this
bound holds for any row of the transition matrix, we can derive the error on the whole transition
matrix as:

›

›

›
Ta ´ pTa

›

›

›

F
“

d

ÿ

sPS

›

›

›
Taps, ¨q ´ pTaps, ¨q

›

›

›

2

2
ď

C 1
TS

?
A re

pa,Lq

M

σSpOqrσ
pLq

3,1

(46)

holding with probability at least 1 ´ 3SAδ and presenting an additional
?
S term. By simplifying

notation and highlighting the most relevant terms in the bound, we get:
›

›

›
Ta ´ pTa

›

›

›

F
ď

CT S

σSpOqζpLq

d

AL logpLO{δq

N
paq

L

where CT is a suitable constant and ζpLq is defined as in Eq. (43).
This last step concludes the proof.

C Proof of Theorem 6.2

This section will present the proof for Theorem 6.2, showing the regret guarantees of the Mixed
Spectral UCRL algorithm. This result makes use of Theorem 5.4 related to the estimation guarantees
of the Mixed Spectral Estimation approach presented in Algorithm 1, and it makes use of the
new bound on the belief error provided in Lemma F.1. Some steps of this analysis are inspired by the
work of [34].

Notation

Before proceeding, we need to define some useful quantities that will be employed throughout the
proof.
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Let us define vector ϕ P RS of expected rewards. Its elements are such that:

ϕpsq “
ÿ

oPO
rpoqOpo|sq “ rJOp¨|sq. (47)

From the quantity defined above, we have that the expected reward given a belief bt at time t is:

gpbtq “
ÿ

sPS
ϕpsqbtpsq “ ϕJ bt “ rJO bt. (48)

The real transition and observation model of the POMDP instance Q are defined respectively as
T “ tTauaPA and O.
We will use instead pTl “ tpTa,luaPA and pOl to denote the transition model and observation models
estimated by the Mixed Spectral Estimation procedure at the beginning of episode l, while we
will use Tl “ tTa,luaPA and Ol to denote the optimistic transition and observation model returned as
output by the oracle and actually used during episode l. In a similar way, we will denote the estimated
and optimistic POMDP instances at episode l with pQl and Ql respectively. We use ρl to denote the
optimal average reward for the optimistic POMDP Ql.

We introduce the deterministic function Hpbt, at, ot`1q which returns the belief at the next step bt`1

given the action at and the next observation ot`1 according to the Bayes’ rule defined in (1). We
define a similar function Hlpbt, at, ot`1q which transforms the belief using the optimistic observation
model Ol and transition model Tat,l used during the l-th episode.
The probability distribution over the next observation ot`1 given belief bt and action at is defined by:

P pot`1|bt, atq “ eJ
o OTJ

at
bt,

where eo is the standard basis vector in t0, 1uO corresponding to observation o P O. The
probabilities here are computed according to the transition model Tat

related to the chosen
action and the observation model O of POMDP Q. With Plpot`1|bt, atq we denote the anal-
ogous probability computed using the observation and transition models of the optimistic POMDP Ql.

The same probability distribution holds over the next belief given the current belief, and it is defined
as:

Upbt`1|bt, atq “ PQpbt`1|bt, atq “

"

P pot`1|bt, atq if bt`1 “ Hpbt, at, oq,

0 otherwise.

We will use Ul to denote a similar measure defined with respect to the observation and transition
models of the optimistic POMDP Ql.

We will use El to characterize the time intervals belonging to the l-th episode, from which we exclude
the first and the last interval (this is done since the first and last samples of an interval are not used
for SD). Hence, we will have that the number of samples from the l-th episode that will be used for
SD is nl “ |El|.

Having defined the employed notation, we report here the statement of the theorem.

Theorem 6.2. Under Assumptions 4.1, 4.2 and 6.1, let δ P p0, 1{2q. If the Mixed Spectral UCRL
algorithm is run for a sufficiently large number of steps T , with probability at least 1 ´ 2δ, it suffers
regret bounded as:

RT ď O

˜

DpSAq3{2

σSpOqrζpLq

d

TO log2
ˆ

SAOT

δ

˙

¸

.

where rζpLq – min
lPr0,L´1s

ζplq and ζplq is defined as in Theorem 5.4. D bounds the span12 of the bias

function appearing in Equation (2) and is defined in Proposition G.1.

Proof. Let us recall here the definition of the regret as reported in (3):

RT :“ Tρ˚ ´

T´1
ÿ

t“0

rpotq “

T´1
ÿ

t“0

pρ˚ ´ Errpotq|Ft´1sq `

T´1
ÿ

t“0

pErrpotq|Ft´1s ´ rpotqq, (49)

12The span of the bias function is defined as: spanpvq :“ maxbPB vpbq ´ minbPB vpbq.
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where we consider an expectation E taken w.r.t. the true transition model T “ tTauaPA and the true
observation model O “ tOauaPA. The quantity Ft´1 denotes the filtration defined with respect to
the events that occurred up to time t ´ 1. The second term in the summation defines a martingale.
Indeed, by denoting the stochastic process as:

X0 “ 0, Xt “

t´1
ÿ

l“0

pErrpolq|Fl´1s ´ rpolqq,

we observe that Xt defines a martingale. By applying now the Azuma-Hoeffding inequality [4], with
probability at least 1 ´ δ{4 we have:

T´1
ÿ

t“0

pErrpotq|Ft´1s ´ rpotqq ď
a

2T logp4{δq. (50)

We can further observe that since the belief bt is conditioned on the filtration Ft´1, we have:

Errpotq|Ft´1s “
ÿ

sPS
btpsqϕpsq “ gpbtq,

where vector ϕ is defined in Equation (47), while function g is defined in Equation (48). We recall
that the belief bt is computed using the true model parameters. Using analogous notation, we will
denote the expected instantaneous reward assuming to have updated the belief using the optimistic
transition model Ta,l and observation model Ol as:

Elrrpotq|Ft´1s “ rJOl b
l
t “ gpbltq.

From the quantities defined above, we can rewrite the first term of Equation (49) as:
T´1
ÿ

t“0

pρ˚ ´ Errpotq|Ft´1sq “

T´1
ÿ

t“0

pρ˚ ´ gpbtqq, (51)

where we recall that the belief is updated using the actions taken by the played policy.
By following the procedure described in the Mixed Spectral UCRL algorithm, at the beginning of
each episode l, an optimistic POMDP Ql is chosen from the set of possible POMDPs determined by
the confidence region Clpδlq. We recall that the optimistic POMDP Ql is defined by the optimistic
transition model Tl “ tTa,luaPA and the optimistic observation model Ol provided by the oracle.
Since the bound for the estimated transition and observation models provided in Theorem 5.4 holds
jointly with probability at least 1´ 3SAδ, we can also observe that P pQ P Clpδlqq ě 1´ 3SAδl. Let
us now consider two possible events: the good event which considers the case where for all episodes
l, the true POMDP is contained in the confidence sets Clpδlq and the failure event which denotes the
complementary event.
By setting the confidence level used for the l-th episode as δl – δ

3SAl3 , the probability of the failure
event can now be bounded as:

P pQ R Clpδlq, for some lq ď

L´1
ÿ

l“1

3SAδl “

L´1
ÿ

l“1

3SA
δ

3SAl3
“

L´1
ÿ

l“1

δ

l3
ď

3

2
δ, (52)

From the result above, we can observe that the good event holds with probability at least 1 ´ 3
2δ.

When this is the case, we have that ρ˚ ď ρl for any l since the optimal average reward is taken from
the optimistic POMDP Ql.

We can now bound the regret under the good event during the different L episodes as:
T´1
ÿ

t“0

pρ˚ ´ gpbtqq ď 2L `

L´1
ÿ

l“0

ÿ

tPEl

pρ˚ ´ gpbtqq

ď 2L ` pT0 ´ 2q `

L´1
ÿ

l“1

ÿ

tPEl

`

ρl ´ gpbtq
˘

“ 2L `
ÿ

aPA
n

paq

0 `

L´1
ÿ

l“1

ÿ

tPEl

”

ρl ´ glpb
l
tq

ı

`

”

glpb
l
tq ´ gpbtq

ı

looooooooooooooooooooooooomooooooooooooooooooooooooon

pΨq

, (53)
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where we have rewritten the summation by highlighting the different L episodes. In particular, for
each episode l we use interval El that excludes the first and the last timestamp of that episode, while
the term 2L appearing in the first inequality is obtained by assuming to pay maximum regret for each
pair of samples not contained in each El.
In the second inequality instead, we explicit the length T0 of the first episode for which we assume
to pay maximum regret: the ´2 term is due to the fact that the first and the last timestamps of the
first episode are already counted in the 2L term. Finally, the last equality expresses the length of
the first episode as the sum of the counts of the chosen actions, and adds and subtracts the quantity
glpb

l
tq – rJOlb

l
t.

For what will follow, we will focus on the term Ψ.

Analysis of (Ψ)

Let us restate the term Ψ defined above.

pΨq –

L´1
ÿ

l“1

ÿ

tPEl

”

ρl ´ glpb
l
tq

ı

`

”

glpb
l
tq ´ gpbtq

ı

“

L´1
ÿ

l“1

ÿ

tPEl

”

ρl ´ glpb
l
tq

ı

loooooooooooomoooooooooooon

First Term

`

L´1
ÿ

l“1

ÿ

tPEl

”

glpb
l
tq ´ gpbtq

ı

loooooooooooooomoooooooooooooon

Second Term
(54)

We will now focus on analyzing the first and the second term separately.

Analysis of the First Term of Ψ (line 54) Let us use the Bellman equation reported in Equation (2)
for the optimistic belief MDP, and the definition of the probability distribution U over the next belief
defined in the Notation section. The following relations hold:

ρl ` vlpb
l
tq “ glpb

l
tq `

ż

bt`1PB
vlpbt`1qUlp dbt`1|blt, atq

“ glpb
l
tq ` xUlp¨|blt, atq, vlp¨qy.

The equation above allows us to write that:
L´1
ÿ

l“1

ÿ

tPEl

pρl ´ glpb
l
tqq “

L´1
ÿ

l“1

ÿ

tPEl

`

´vlpb
l
tq ` xUlp¨|blt, atq, vlp¨qy

˘

“

L´1
ÿ

l“1

ÿ

tPEl

`

´vlpb
l
tq ` xUp¨|blt, atq, vlp¨qy

˘

loooooooooooooooooomoooooooooooooooooon

paq

`
`

xUlp¨|blt, atq ´ Up¨|blt, atq, vlp¨qy
˘

loooooooooooooooooooomoooooooooooooooooooon

pbq

,

(55)

where the first equality is obtained from the Bellman Equation, while the last equality derives from
adding and subtracting the term xUp¨|blt, atq, vlp¨qy for each time step t. We recall that Up¨|blt, atq
defines the probability distribution over the belief at the next step t ` 1 under the true POMDP
instance Q, while Ulp¨|blt, atq represents this probability distribution under the optimistic instance Ql.
For the term paq in 55, we have:

paq “

L´1
ÿ

l“1

ÿ

tPEl

`

´vlpb
l
tq ` xUp¨|blt, atq, vlp¨qy

˘

(56)

“

L´1
ÿ

l“1

ÿ

tPEl

`

´vlpb
l
tq ` vlpb

l
t`1q

˘

`
`

´vlpb
l
t`1q ` xUp¨|blt, atq, vlp¨qy

˘

“

L´1
ÿ

l“1

´

´ vlpb
l
sl

q ` vlpb
l
el`1q

¯

looooooooooooooooomooooooooooooooooon

pa.1q

`

K´1
ÿ

l“1

ÿ

tPEl

Ervlpb
l
t`1q|Fts ´ vlpb

l
t`1q

looooooooooooooooooooomooooooooooooooooooooon

pa.2q

,

where the term pa.1q is obtained by observing that the sum on the first line reduces to a telescopic
summation. For each episode l, the terms appearing in this summation are respectively the difference
between the value of the bias function of the belief in the first timestamp (denoted sl) and the last
plus one (denoted el ` 1) timestamp appearing in El.
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The term pa.2q is instead obtained by observing that:

xUp¨|blt, atq, vlp¨qy “

ż

bt`1PB
vlpdbt`1qUp dbt`1|blt, atq “ Ervlpb

l
t`1|bltqs “ Ervlpb

l
t`1q|Fts.

By using Proposition G.1, we can easily see that the span of the bias function defined as spanpvlq :“
maxbPB vlpbq ´ minbPB vlpbq can be bounded by D{2 with D being a finite quantity. Hence, we can
write that:

pa.1q “

L´1
ÿ

l“1

´vlpb
l
sl

q ` vlpb
l
el`1q ď

L´1
ÿ

l“1

D “ pL ´ 1q D. (57)

For the term pa.2q, we can observe that it defines a martingale. By applying analogous results as
those used for bounding 50, we get with probability at least 1 ´ δ{4 that:

pa.2q “

L´1
ÿ

l“1

ÿ

tPEl

Ervlpb
l
t`1q|Fts ´ vlpb

l
t`1q ď D

d

2T log

ˆ

4

δ

˙

. (58)

By combining the bounds for pa.1q and pa.2q, we obtain with probability at least 1 ´ δ{4:

paq “

L´1
ÿ

l“1

ÿ

tPEl

`

´vlpb
l
tq ` xUp¨|blt, atq, vlp¨qy

˘

ď pL ´ 1qD ` D

d

2T log

ˆ

4

δ

˙

. (59)

We can now proceed in bounding the term pbq appearing in 55. Let us recall the definition of the
function Hpbt, at, ot`1q and P pot`1|bt, atq defined in the Notation section. The following relations
hold:

xUlp¨|blt, atq ´ Up¨|blt, atq, vlp¨qy (60)

ď

∣∣∣∣∣
ż

B
vlpdb

1qUlp db
1|blt, atq ´

ż

B
vlpb

1qUp db1|blt, atq

∣∣∣∣∣
“

∣∣∣∣∣ ÿ

ot`1PO
vl
`

Hlpb
l
t, at, ot`1q

˘

Plpot`1|blt, atq ´
ÿ

ot`1PO
vl
`

Hpblt, at, ot`1q
˘

P pot`1|blt, atq

∣∣∣∣∣
ď

∣∣∣∣∣ ÿ

ot`1PO

“

vl
`

Hlpb
l
t, at, ot`1q

˘

´ vl
`

Hpblt, at, ot`1q
˘‰

P pot`1|blt, atq

∣∣∣∣∣
looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

pb.1q

`

`

∣∣∣∣∣ ÿ

ot`1PO
vl
`

Hlpb
l
t, at, ot`1q

˘ “

Plpot`1|blt, atq ´ P pot`1|blt, atq
‰

∣∣∣∣∣
loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

pb.2q

.

where in the first equality we have decoupled the stochasticity induced by the observation from the
deterministic update of the belief b1 at the next step through the H and Hl functions. Let us now
analyze the different terms separately.
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pb.1q “

∣∣∣∣∣ ÿ

ot`1PO

“

vl
`

Hlpb
l
t, at, ot`1q

˘

´ vl
`

Hpblt, at, ot`1q
˘‰

P pot`1|blt, atq

∣∣∣∣∣
ď

ÿ

ot`1PO

∣∣∣vlpHlpb
l
t, at, ot`1qq ´ vlpHpblt, at, ot`1qq

∣∣∣P pot`1|blt, atq

ď
ÿ

ot`1PO

D

2

ˇ

ˇHlpb
l
t, at, ot`1q ´ Hpblt, at, ot`1q

ˇ

ˇ P pot`1|blt, atq

(Holder’s inequality and Proposition G.1)

ď
ÿ

ot`1PO

D

2

´

C2 }Ol ´ O}F ` C3 }Tat,l ´ Tat
}F

¯

P pot`1|blt, atq (Corollary F.2)

“
D

2

´

C2 }Ol ´ O}F ` C3 }Tat,l ´ Tat}F

¯

, (61)

The last inequality is instead obtained from Corollary F.2 which bounds the one-step error of the
belief vector when updated using the estimated observation and transition matrices. Constants C2

and C3 are instead defined in Lemma F.1.
Concerning the term pb.2q, we have:

pb.2q “

∣∣∣∣∣ ÿ

ot`1PO
vl
`

Hlpb
l
t, at, ot`1q

˘ “

Plpot`1|blt, atq ´ P pot`1|blt, atq
‰

∣∣∣∣∣
ď

ÿ

ot`1PO

∣∣∣∣∣vl `Hlpb
l
t, at, ot`1q

˘ “

Plpot`1|blt, atq ´ P pot`1|blt, atq
‰

∣∣∣∣∣
ď

D

2

ÿ

ot`1PO

∣∣∣∣∣Plpot`1|blt, atq ´ P pot`1|blt, atq

∣∣∣∣∣ (Proposition G.1)

“
D

2
}pOlTJ

at,l ´ OTJ
at

qblt}1

ď
D

2
}OlTJ

at,l ´ OTJ
at

}1}blt}1

ď
D

2

ˆ

}OlpTJ
at,l ´ TJ

at
q}1 ` }pOl ´ OqTJ

at
}1

˙

ď
D

2

ˆ

}Ol}1}TJ
at,l ´ TJ

at
}1 ` }Ol ´ O}1}TJ

at
}1

˙

(Def. of Matrix Norms)

ď
D

2

ˆ

}TJ
at,l ´ TJ

at
}1 ` }Ol ´ O}1

˙

(Since }Ol}1 “ 1 and }TJ
at

}1 “ 1)

“
D

2

ˆ

}Tat,l ´ Tat
}8 ` }Ol ´ O}1

˙

“
D

2

ˆ

?
S}Tat,l ´ Tat}F `

?
O}Ol ´ O}F

˙

.

By combining the results obtained for pb.1q and pb.2q, we are able to bound the term pbq as:

pbq “
D

2

L´1
ÿ

l“1

ÿ

tPEl

´

pC2 `
?
Oq }Ol ´ O}F ` pC3 `

?
Sq}Tat,l ´ Tat

}F

¯

. (62)
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Finally, we can combine the results defined in lines 59 and 62 on paq and pbq to finally bound the first
term of Ψ (line 54) and obtain with probability at least 1 ´ δ{4:
L´1
ÿ

l“1

ÿ

tPEl

pρl ´ glpb
l
tqq ď pL ´ 1qD ` D

d

2T ln

ˆ

4

δ

˙

` (63)

`
D

2

L´1
ÿ

l“1

ÿ

tPEl

´

pC2 `
?
Oq}Ol ´ O}F ` pC3 `

?
Sq}Tat,l ´ Tat

}F

¯

ď pL ´ 1qD ` D

d

2T ln

ˆ

4

δ

˙

`
DpC2 `

?
Oq

2

L´1
ÿ

l“1

nl }Ol ´ O}F `

`
DpC3 `

?
Sq

2

L´1
ÿ

l“1

ÿ

aPA
n

paq

l }Ta,l ´ Ta}F , (64)

where we used that nl “ |El| denotes the cardinality of the interval El, and we also recall that
ř

aPA n
paq

l “ nl.

Analysis of the Second Term of Ψ (line 54)

We can now focus on the second term appearing in the summation of 54. We have that:
L´1
ÿ

l“1

ÿ

tPEl

pglpb
l
tq ´ gpbtqq “

L´1
ÿ

l“1

ÿ

tPEl

rJOlb
l
t ´ rJO bt

ď

L´1
ÿ

l“1

ÿ

tPEl

}rJ}8}Olb
l
t ´ O bt}1 (}rJ}8 ď 1)

ď

L´1
ÿ

l“1

ÿ

tPEl

}Olb
l
t ´ Oblt ` Oblt ´ O bt}1

ď

L´1
ÿ

l“1

ÿ

tPEl

}pOl ´ Oqblt}1 ` }Opblt ´ btq}1

ď

L´1
ÿ

l“1

ÿ

tPEl

}Ol ´ O}1}blt}1 ` }O}1}blt ´ bt}1 (Def. of Matrix Norms)

“

L´1
ÿ

l“1

ÿ

tPEl

}Ol ´ O}1 ` }blt ´ bt}1 (Since }blt}1 “ 1 and }O}1 = 1)

ď

L´1
ÿ

l“1

ÿ

tPEl

?
O}Ol ´ O}F ` }blt ´ bt}1

“

L´1
ÿ

l“1

nl

?
O}Ol ´ O}F `

L´1
ÿ

l“1

ÿ

tPEl

}blt ´ bt}1.

Let us now consider the last term appearing in the last inequality. It can be bounded by using the
result appearing in Lemma F.1. In particular, we have:

L´1
ÿ

l“1

ÿ

tPEl

}blt ´ bt}1 ď

L´1
ÿ

l“1

„

C1 ` C2 nl }Ol ´ O}F ` C3

ÿ

aPA
n

paq

l }Ta,l ´ Ta}F

ȷ

,
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with constants C1, C2 and C3 defined in Lemma F.1.
From the results above, we obtain the following result for the second term of Ψ:
L´1
ÿ

l“1

ÿ

tPEl

pglpb
l
tq ´ gpbtqq ď pL ´ 1qC1 ` pC2 ` 1q

L´1
ÿ

l“1

nl }Ol ´ O}F ` C3

L´1
ÿ

l“1

ÿ

aPA
n

paq

l }Ta,l ´ Ta}F .

(65)

Merge of Obtained Results and Final Bound

Let us recall the definition of the regret in line 49 and let us observe that it can be bounded using the
bound on the martingale in line 50 and the bound on line 53. We have just seen how line 64 and 65
allow us to bound the term Ψ in 53. By combining everything, we get:

RT ď

T´1
ÿ

t“0

pρ˚ ´ gpbtqq `
a

2T logp4{δq

ď 2L `
ÿ

aPA
n

paq

0 ` pL ´ 1q pD ` C1q `

d

2T log

ˆ

4

δ

˙

` D

d

2T log

ˆ

4

δ

˙

`

`
DpC2 `

?
Oq ` 2pC2 ` 1q

2

L´1
ÿ

l“1

nl }Ol ´ O}F `
2C3 ` DpC3 `

?
Sq

2

L´1
ÿ

l“1

ÿ

aPA
n

paq

l }Ta,l ´ Ta}F ,

ď 2L `
ÿ

aPA
n

paq

0

looomooon

pcq

`pL ´ 1q pD ` C1q `

d

2T log

ˆ

4

δ

˙

` D

d

2T log

ˆ

4

δ

˙

`

`
DC2

?
O

2

L´1
ÿ

l“1

nl }Ol ´ O}F

loooooooooomoooooooooon

pdq

`
DC3

?
S

2

L´1
ÿ

l“1

ÿ

aPA
n

paq

l }Ta,l ´ Ta}F

looooooooooooooomooooooooooooooon

peq

, (66)

Let us now focus on the quantities appearing in pcq and pdq. We have:

pcq ` pdq “
ÿ

aPA
n

paq

0 `

L´1
ÿ

l“1

nl }Ol ´ O}F ď n0 `

L´1
ÿ

l“1

nl
CO
ζplq

d

SAl logplO{δlq

Nl
(Theorem 5.4)

ď

L´1
ÿ

l“0

nl
CO
ζplq

d

SAl logp3SAl4O{δq

maxt1, Nlu

(From δl – δ
3SAl3 )

ď
CO
rζpLq

d

SAL log

ˆ

3SAL4O

δ

˙ L´1
ÿ

l“0

nl

d

1

maxt1, Nlu

(67)

ď
CO
rζpLq

d

SAL log

ˆ

3SAL4O

δ

˙

p
?
2 ` 1q

a

NL

(Lemma G.2)

ď
COp

?
2 ` 1q

rζpLq

d

SALT log

ˆ

3SAL4O

δ

˙

(68)

where for the first term of the inequality on the first line we used
ř

aPA n
paq

0 “ n0 and Theorem 5.4.
Here, we recall that Nl represents the number of samples used for the model estimation for the l-th
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episode. In line 67 we defined rζpLq – min
l

ζplq, while the last line simply follows by observing that

NL ď T .

We can apply similar considerations to bound the term peq. In particular:

peq “

L´1
ÿ

l“1

ÿ

aPA
n

paq

l }Ta,l ´ Ta}F

ď

L´1
ÿ

l“1

ÿ

aPA
n

paq

l

CT S

σSpOqζplq

d

Al logplO{δlq

N
paq

l

(Theorem 5.4)

ď
CT S

σSpOqrζpLq

d

AL log

ˆ

3SAL4O

δ

˙

ÿ

aPA

L´1
ÿ

l“0

n
paq

l

d

1

maxt1, N
paq

l u
(69)

ď
CT Sp

?
2 ` 1q

σSpOqrζpLq

d

AL log

ˆ

3SAL4O

δ

˙

ÿ

aPA

b

N
paq

L (Lemma G.2 for each a)

ď
CT Sp

?
2 ` 1q

σSpOqrζpLq

d

AL log

ˆ

3SAL4O

δ

˙

a

ANL (Cauchy-Schwarz inequality)

ď
CT SAp

?
2 ` 1q

σSpOqrζpLq

d

LT log

ˆ

3SAL4O

δ

˙

(70)

where the last but one inequality follows by recalling that NL “
ř

aPA N
paq

L .
From the result obtained in 68 and 70, we rewrite the bound on the regret reported in line 66 as:

RT ď 2L ` pL ´ 1q pD ` C1q `

d

2T log

ˆ

4

δ

˙

` D

d

2T log

ˆ

4

δ

˙

`

`
3D

?
OC2CO

2rζpLq

d

SALT log

ˆ

3SAL4O

δ

˙

`
3DS3{2AC3CT

2σSpOqrζpLq

d

LT log

ˆ

3SAL4O

δ

˙

,

holding with probability at least 1 ´ 2δ, obtained by using a union bound on the bound of the two
martingales (each one holding with probability at least 1 ´ δ{4) and on the bound of the optimistic
model which holds with probability at least 1 ´ p3{2qδ, as reported in Eq. (52).
The last step of the proof consists in observing that, for the stopping condition employed by the
algorithm, the number of total episodes can be bounded as L ď A logpT {Aq. Finally, the regret
expression can be simplified by highlighting the dependencies on the main terms as follows:

RT ď O

˜

DpSAq3{2

σSpOqrζpLq

d

TO log2
ˆ

SAOT

δ

˙

¸

.

This final step concludes the proof.

D Auxiliary Results for the Proof of Theorem 5.4

In this section, we will provide auxiliary results required for the proof of Theorem 5.4. They
are based on previous results on learning Hidden Markov Models (HMM) and POMDPs by [1]
and [3]. We carefully adapt the results to the Mixed Spectral Estimation strategy presented in
Algorithm 1.

Lemma D.1 (Error Bound of µpa,Lq

2,s ). Let pV pa,Lq

2 be the second view estimated using Algorithm 1

when the set of policies tπlu
L´1
l“0 is used to interact with the environment, and let pµpa,Lq

2,s P ∆pOq be

its s-th column. If N paq

L satisfies the conditions in Equation (95) and (102), then with probability at
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least 1 ´ 3δ, we have:

}µ
pa,Lq

2,s ´ pµ
pa,Lq

2,s }2 ď
16ϵ

pa,Lq

M

σSpK
pa,Lq

3,1 q
,

with ϵ
pa,Lq

M defined as in Equation (98) of Lemma D.4.

Proof. Let us recall that each column µ
pa,Lq

2,s of the second view matrix V
pa,Lq

2 can be obtained from

µ
pa,Lq

3 by inverting Equation (6). We can thus write the following:

}µ
pa,Lq

2,s ´ pµ
pa,Lq

2,s }2 “ }K
pa,Lq

2,1

´

K
pa,Lq

3,1

¯:

µ
pa,Lq

3,s ´ xK
pa,Lq

2,1

´

xK
pa,Lq

3,1

¯:

pµ
pa,Lq

3,s }2 (71)

ď

›

›

›

›

K
pa,Lq

2,1 ´ xK
pa,Lq

2,1

›

›

›

›

2

›

›

›

›

´

K
pa,Lq

3,1

¯:
›

›

›

›

2

›

›

›

›

µ
pa,Lq

3,s

›

›

›

›

2

`

`

›

›

›

›

K
pa,Lq

2,1

›

›

›

›

2

›

›

›

›

´

K
pa,Lq

3,1

¯:

´

´

xK
pa,Lq

3,1

¯:
›

›

›

›

2

›

›

›

›

µ
pa,Lq

3,s

›

›

›

›

2

`

`

›

›

›

›

K
pa,Lq

2,1

›

›

›

›

2

›

›

›

›

´

K
pa,Lq

3,1

¯:
›

›

›

›

2

›

›

›

›

µ
pa,Lq

3,s ´ pµ
pa,Lq

3,s

›

›

›

›

2

. (72)

The terms in 72 can be bounded by using i) Lemma D.3 for the concentration bound of empir-

ical estimates for
›

›

›
K

pa,Lq

2,1 ´ xK
pa,Lq

2,1

›

›

›

2
, ii) Proposition D.5 for

›

›

›

›

´

K
pa,Lq

3,1

¯:

´

´

xK
pa,Lq

3,1

¯:
›

›

›

›

2

, iii)

Lemma D.2 for
›

›

›
µ

pa,Lq

3,s ´ pµ
pa,Lq

3,s

›

›

›

2
, iv)

›

›

›
K

pa,Lq

2,1

›

›

›

2
ď 1, v)

›

›

›

›

´

K
pa,Lq

3,1

¯:
›

›

›

›

2

ď 1{σSpK
pa,Lq

3,1 q and vi)
›

›

›
µ

pa,Lq

3,s

›

›

›

2
ď 1. Thus we have:

}µ
pa,Lq

2,s ´ pµ
pa,Lq

2,s }2 ď
rG

σSpK
pa,Lq

3,1 qp1 ´ rηq

d

8L log p2OL{δq

N
paq

L

`

`
2 rG

”

σSpK
pa,Lq

3,1 q

ı2

p1 ´ rηq

d

8L log p2OL{δq

N
paq

L

`
14ϵ

pa,Lq

M

σSpK
pa,Lq

3,1 q

ď
16ϵ

pa,Lq

M

σSpK
pa,Lq

3,1 q
,

holding with probability at least 1 ´ 3δ. The last inequality follows from observing that each of the
first two terms is ď ϵ

pa,Lq

M {σSpK
pa,Lq

3,1 q.

Lemma D.2 (Error Bound for µ
pa,Lq

3,s ). Let pV pa,Lq

3 be the third view estimated in Algorithm 1 when

the set tπlu
L´1
l“0 of policies is used to interact with the environment, and let pµpa,Lq

3,s P ∆pOq be its s-th

column. If N paq

L satisfies the condition in Equation (95) reported in Lemma D.4 then, with probability
at least 1 ´ 2δ, we have:

}µ
pa,Lq

3,s ´ pµ
pa,Lq

3,s }2 ď 14ϵ
pa,Lq

M ,

with ϵ
pa,Lq

M defined as in Equation (98) of Lemma D.4.

Proof. The theoretical guarantees on the estimation quality of the third view pV
pa,Lq

3 are related to the
guarantees provided by Spectral Decomposition approaches.
In past works such as [1] and [30], it has been shown that among the different spectral algorithms,
those relying on tensor decomposition are more sample efficient. Our approach relies on the Robust
Tensor Power (RTP) method presented in [1], which is applied to the symmetrized and whitened third-
order moment tensor. We will now denote the steps required to transform the empirical estimates and
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provide them to the RTP algorithm. The definition of some of the quantities that are used throughout
this proof, together with the employed notation, is discussed in Section E.

Let us consider now the empirical matrices and tensors (without symmetrization) defined as:

ĂM
pa,Lq

2 –
1

N
paq

L

L´1
ÿ

l“0

n
paq

l E
”

v
pa,lq
1 b v

pa,lq
2

ı

ĂM
pa,Lq

3 –
1

N
paq

L

L´1
ÿ

l“0

n
paq

l E
”

v
pa,lq
1 b v

pa,lq
2 b v

pa,lq
3

ı

. (73)

We observe that the definition of the non-symmetrized matrix ĂM
pa,Lq

2 coincides with the one of
K

pa,Lq

1,2 . These non-symmetrized versions13 indeed differ from the symmetrized one M
pa,Lq

3 and

M
pa,Lq

3 presented in Theorem 5.3.

Using the multilinear map notation introduced in Section E, we define the symmetrized and whitened
tensor as ĂM

pa,Lq

3 pW
pa,Lq

1 ,W
pa,Lq

2 ,W
pa,Lq

3 q P RSˆSˆS , where W
pa,Lq

1 P ROˆS , W pa,Lq

2 P ROˆS

and W
pa,Lq

3 P ROˆS are the corresponding symmetrization-whitening matrices for each of the tensor
dimensions. By using Lemma D.4, it is possible to show that for a sufficient number of samples N paq

L ,

the error ϵpa,Lq

M on the estimated symmetrized and whitened tensor xĂM pa,Lq

3 pxW
pa,Lq

1 ,xW
pa,Lq

2 ,xW
pa,Lq

3 q

can be bounded with probability at least 1 ´ δ as:

ϵ
pa,Lq

M ď

2
?
2 rG

1´rη

c

8L logppO2`Oq2L{δq

N
paq

L

ˆ

b

ω
pa,Lq

min minν σSpV
pa,Lq
ν q

˙3 `

¨

˝

4ĂG
1´ rη

c

8L logp4OL{δq

N
paq
L

ˆ

b

ω
pa,Lq

min minν σSpV
pa,Lq
ν q

˙2

˛

‚

3

b

ω
pa,Lq

min

. (74)

From Lemma D.4, we can also observe that when a sufficient number of samples N
paq

L is used,
the estimation properties of the RTP method are guaranteed. In particular, let us denote with
`

p

rµ
pa,Lq

3,s , prω
pa,Lq
s

˘

sPS the set of robust eigenvector/eigenvalue pairs provided as output by RTP. Then,
from [1], with probability at least 1 ´ 2δ the following holds:14

›

›

›

›

›

ĂM
pa,Lq

3 pW
pa,Lq

1 ,W
pa,Lq

2 ,W
pa,Lq

3 q ´
ÿ

sPS

p

rωpa,Lq
s

´

p

rµ
pa,Lq

3,s

¯b3
›

›

›

›

›

2

ď 55ϵ
pa,Lq

M , (75)

}rµ
pa,Lq

3,s ´ p

rµ
pa,Lq

3,s }2 ď
8ϵ

pa,Lq

M

rω
pa,Lq
s

, |rωpa,Lq
s ´ p

rωpa,Lq
s | ď 5ϵ

pa,Lq

M . (76)

Let us now denote with ϵ
pa,Lq

3 – }µ
pa,Lq

3,s ´ pµ
pa,Lq

3,s }2 the error of the s-th column of the third view

matrix V
pa,Lq

3 .
We recall that in order to obtain the estimate pµ

pa,Lq

3,s from the corresponding robust eigenvec-

tor/eigenvalue pair
`

p

rµ
pa,Lq

3,s , prω
pa,Lq
s

˘

given as output by RTP, we have to de-whiten vector p

rµ
pa,Lq

3,s
which can done by the following relation:

pµ
pa,Lq

3,s “ p

rωpa,Lq
s

pB p

rµ3,s,

where we defined pB P ROˆS as the Moore-Penrose inverse of
´

xW
pa,Lq

3

¯J

. The equation above
is obtained by inverting the first Equation appearing in (116), which relates the robust eigenvec-
tor/eigenvalue pair of the whitened tensor with that of the non-whitened counterpart.

13We use symbolr to denote the non-symmetrized quantities ĂM2 and ĂM3 in order to distinguish them from
the symmetrized ones M2 and M3.

14To be more precise, the statement refers to a permutation of the found eigenvector/eigenvalue pairs satisfying
the condition above. However, to avoid clutter, we consider that the bounds are defined for the correct permutation
of these estimates.
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Let us now analyze the error ϵpa,Lq

3 :

ϵ
pa,Lq

3 “ }µ
pa,Lq

3,s ´ pµ
pa,Lq

3,s }2 (77)

ď

›

›

›
rωpa,Lq
s B rµ

pa,Lq

3,s ´ p

rωpa,Lq
s

pB p

rµ
pa,Lq

3,s

›

›

›

2
(78)

“

›

›

›
rωpa,Lq
s B rµ

pa,Lq

3,s ´ rωpa,Lq
s

pB rµ
pa,Lq

3,s ` rωpa,Lq
s

pB rµ
pa,Lq

3,s ´ p

rωpa,Lq
s

pB p

rµ
pa,Lq

3,s

›

›

›

2
(79)

“

›

›

›
rωpa,Lq
s rµ

pa,Lq

3,s

›

›

›

2

›

›

›
B ´ pB

›

›

›

2
looooooooooooooomooooooooooooooon

(a)

`

›

›

›

pB
›

›

›

2

›

›

›
rωpa,Lq
s rµ

pa,Lq

3,s ´ p

rωpa,Lq
s

p

rµ
pa,Lq

3,s

›

›

›

2
looooooooooooooooooooooomooooooooooooooooooooooon

(b)

. (80)

We can bound the error of each term separately. Let us start with (a). For the first term of (a), we
have:

›

›

›
rωpa,Lq
s rµ

pa,Lq

3,s

›

›

›

2
ď rωpa,Lq

s

›

›

›
rµ

pa,Lq

3,s

›

›

›

2
“ rωpa,Lq

s “
1

b

ω
pa,Lq
s

, (81)

where the first equality follows from the fact that rµpa,Lq

3,s is a unit vector, while the last equality

follows from the definition in Equation (116) linking the original eigenvalue ω
pa,Lq
s with the one of

the whitened tensor rωpa,Lq
s . For the second term of (a), we have:

›

›

›
B ´ pB

›

›

›

2
ď

4} ĂM
pa,Lq

2 ´
x

ĂM
pa,Lq

2 }2

ω
pa,Lq

min

”

minν σSpV
pa,Lq
ν q

ı2 , (82)

where the result directly follows from Equation (112) in Proposition D.8.

Let us now consider the term (b). We have:

(b) “

›

›

›

pB
›

›

›

2

›

›

›
rωpa,Lq
s rµ

pa,Lq

3,s ´ p

rωpa,Lq
s

p

rµ
pa,Lq

3,s

›

›

›

2
(83)

ď

›

›

›
rωpa,Lq
s rµ

pa,Lq

3,s ´ p

rωpa,Lq
s

p

rµ
pa,Lq

3,s

›

›

›

2
(84)

ď

›

›

›
rωpa,Lq
s rµ

pa,Lq

3,s ´ rωpa,Lq
s

p

rµ
pa,Lq

3,s ` rωpa,Lq
s

p

rµ
pa,Lq

3,s ´ p

rωpa,Lq
s

p

rµ
pa,Lq

3,s

›

›

›

2
(85)

ď rωpa,Lq
s

›

›

›
rµ

pa,Lq

3,s ´ p

rµ
pa,Lq

3,s

›

›

›

2
`

›

›

›
rωpa,Lq
s ´ p

rωpa,Lq
s

›

›

›

2

›

›

›

p

rµ
pa,Lq

3,s

›

›

›

2
(86)

ď rωpa,Lq
s

8ϵM

rω
pa,Lq
s

` 5ϵ
pa,Lq

M (From results in Equation (76))

“ 13ϵ
pa,Lq

M . (87)

where the inequality in line 84 follows from } pB}2 ď 1.

By combining the expressions in 81, 82 and 87, with probability at least 1 ´ 2δ, we get:

}µ3,s ´ pµ3,s}2 ď
4} ĂM

pa,Lq

2 ´
x

ĂM
pa,Lq

2 }2
b

ω
pa,Lq
s ω

pa,Lq

min

”

minν σSpV
pa,Lq
ν q

ı2
` 13ϵ

pa,Lq

M ď 14ϵ
pa,Lq

M ,

where the last inequality is obtained by observing that the first term of the summation is ď ϵ
pa,Lq

M .
This last expression completes the proof.

Lemma D.3 (Concentration Bounds for Covariance Matrices obtained from Multiple Policies).
Let tπlu

L´1
l“0 policies interact with a POMDP Q generating trajectories Γ “ tτlu

L´1
l“0 . Let Assump-

tion 4.3 hold for each action a P A and for each policy πl P P . Then, for any ν, ν1 P t1, 2, 3u and
ν ‰ ν1, with probability at least 1 ´ δ, the following holds:
›

›

›

›

›

›

1

N
paq

L

L´1
ÿ

l“0

¨

˝

ÿ

tPT paq

l

”

v
pa,lq
ν,t b v

pa,lq
ν1,t

ı

´ E

»

–

ÿ

tPT paq

l

v
pa,lq
ν,t b v

pa,lq
ν1,t

fi

fl

˛

‚

›

›

›

›

›

›

2

ď
rG

1 ´ rη

d

8L log p2OL{δq

N
paq

L

.
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For the tensor case, for rν, ν1, ν2s being any permutation of the set t1, 2, 3u, with probability at least
1 ´ δ, it holds:

›

›

›

›

›

›

1

N
paq

L

L´1
ÿ

l“0

¨

˝

ÿ

tPT paq

l

”

v
pa,lq
ν,t b v

pa,lq
ν1,t b v

pa,lq
ν2,t

ı

´ E

»

–

ÿ

tPT paq

l

v
pa,lq
ν,t b v

pa,lq
ν1,t b v

pa,lq
ν2,t

fi

fl

˛

‚

›

›

›

›

›

›

2

ď
rG

1 ´ rη

d

8L log ppO2 ` OqL{δq

N
paq

L

,

where rG – max
lPr0,L´1s

Gpπlq and rη – min
lPr0,L´1s

ηpπlq. Here, 1 ď Gpπlq ă 8 is the geometric

ergodicity constant of the Markov Chain obtained from policy πl and 0 ď ηpπlq ă 1 represents the
related contraction coefficient.

Proof. The proof of this lemma follows from standard concentration bounds on HMM when adapted
to the observations conditioned on a specific action a. Let us first observe that the covariance matrix
obtained from policy πl is exactly defined as:

K
pa,lq
ν,ν1 –

1

n
paq

l

E

»

–

ÿ

tPT paq

l

v
pa,lq
ν,t b v

pa,lq
ν1,t

fi

fl , (88)

and we can define an analogous quantity for the tensor case as:

K
pa,lq
ν,ν1,ν2 –

1

n
paq

l

E

»

–

ÿ

tPT paq

l

v
pa,lq
ν,t b v

pa,lq
ν1,t b v

pa,lq
ν2,t

fi

fl , (89)

where we recall that npaq

l – |T paq

l |. By applying Theorem 13 in [3], when a single policy πl is used,
the error on the quantities defined above can be bounded as:

}K
pa,lq
ν,ν1 ´ pK

pa,lq
ν,ν1 }2 ď

Gpπlq

1 ´ ηpπlq

d

8
log p2O{δq

n
paq

l

,

}K
pa,lq
ν,ν1,ν2 ´ pK

pa,lq
ν,ν1,ν2 }2 ď

Gpπlq

1 ´ ηpπlq

d

8
log ppO2 ` Oq{δq

n
paq

l

,

with probability at least 1 ´ δ. In this version of the proof, differently from what done in [3], we
bound the distance by assuming that the expectation defining both K

pa,lq
ν,ν1 and K

pa,lq
ν,ν1,ν2 is defined with

respect to the initial (arbitrary) state distribution, which may be different from the stationary one15.

Since we assume to have multiple policies interacting with the environment, our objective is to
provide a bound for a mixing covariance matrix and a mixing tensor, respectively denoted as:

K
pa,Lq

ν,ν1 –
1

N
paq

L

L´1
ÿ

l“0

n
paq

l K
pa,lq
ν,ν1 “

1

N
paq

L

L´1
ÿ

l“0

E

»

–

ÿ

tPT paq

l

v
pa,lq
ν,t b v

pa,lq
ν1,t

fi

fl , (90)

K
pa,Lq

ν,ν1,ν2 –
1

N
paq

L

L´1
ÿ

l“0

n
paq

l K
pa,lq
ν,ν1,ν2 “

1

N
paq

L

L´1
ÿ

l“0

E

»

–

ÿ

tPT paq

l

v
pa,lq
ν,t b v

pa,lq
ν1,t b v

pa,lq
ν2,t

fi

fl . (91)

15Indeed, for Spectral decomposition techniques to be applied, it is not required that the moments are defined
with respect to the stationary state distribution.
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We will study the error for the mixed covariance matrices. The same steps will hold for the tensor
case. We have:

}K
pa,Lq

ν,ν1 ´ xK
pa,Lq

ν,ν1 }2 ď

›

›

›

›

›

1

N
paq

L

L´1
ÿ

l“0

n
paq

l

´

K
pa,lq
ν,ν1 ´ pK

pa,lq
ν,ν1

¯

›

›

›

›

›

2

(92)

ď
1

N
paq

L

L´1
ÿ

l“0

n
paq

l }K
pa,lq
ν,ν1 ´ pK

pa,lq
ν,ν1 }2 (Triangle Inequality)

ď
1

N
paq

L

L´1
ÿ

l“0

n
paq

l

Gpπlq

1 ´ ηpπlq

d

8
log p2OL{δq

n
paq

l

(Union Bound)

ď
rG

N
paq

L p1 ´ rηq

a

8 log p2OL{δq

L´1
ÿ

l“0

n
paq

l

d

1

n
paq

l

(93)

“
rG

N
paq

L p1 ´ rηq

a

8 log p2OL{δq

L´1
ÿ

l“0

b

n
paq

l (94)

ď
rG

1 ´ rη

d

8L log p2OL{δq

N
paq

L

(Cauchy-Schwarz)

where in line 93, we use the new terms rG – max
lPr0,L´1s

Gpπlq and rη – min
lPr0,L´1s

ηpπlq. We finally

observe that the bound on the mixture covariance matrix presents a further term
?
L in the bound due

to the application of the union bound.
The final result follows by substituting the definition of the covariance matrix in the statement of the
lemma.

D.1 Minimum Number of Samples Required for Applying Tensor Decomposition

Lemma D.4. Let ĂM
pa,Lq

2 and ĂM
pa,Lq

3 be defined as in Equations (73). Let Assumptions 4.1, 4.2
and 4.3 hold. Then, if the number of samples satisfies:

N
paq

L ě

¨

˚

˝

2 rG{p1 ´ rηq

ω
pa,Lq

min

”

minν σSpV
pa,Lq
ν q

ı2

˛

‹

‚

2

8L log

ˆ

2LpO2 ` Oq

δ

˙

Ω (95)

where

Ω “ max

$

’

&

’

%

1,
8S

C2 ω
pa,Lq

min

”

minν σSpV
pa,Lq
ν q

ı2 , 16

˜

S

C2ω
pa,Lq

min

¸1{3
,

/

.

/

-

then the following relation holds:

} ĂM
pa,Lq

2 ´
x

ĂM
pa,Lq

2 }2 ď p1{2qσSp ĂM
pa,Lq

2 q. (96)
Hence, this condition allows applying the RTP approach on the estimated tensor
x

ĂM
pa,Lq

3

´

xW
pa,Lq

1 ,xW
pa,Lq

2 ,xW
pa,Lq

3

¯

, as prescribed in Proposition D.8.
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Proof. We recall here the result in Proposition D.8 which allows us to provide a bound on the

estimation error ϵpa,Lq

M of matrix x

ĂM
pa,Lq

3

´

xW
pa,Lq

1 ,xW
pa,Lq

2 ,xW
pa,Lq

3

¯

. We have:

ϵ
pa,Lq

M ď

2
?
2

›

›

›

›

ĂM
pa,Lq

3 ´
x

ĂM
pa,Lq

3

›

›

›

›

2
ˆ

b

ω
pa,Lq

min minν σSpV
pa,Lq
ν q

˙3 `

¨

˝

4

›

›

›

›

ĂM
pa,Lq

2 ´
x

ĂM
pa,Lq

2

›

›

›

›

2
ˆ

b

ω
pa,Lq

min minν σSpV
pa,Lq
ν q

˙2

˛

‚

3

b

ω
pa,Lq

min

(97)

ď

2
?
2 rG

1´rη

c

8L logppO2`Oq2L{δq

N
paq

L

ˆ

b

ω
pa,Lq

min minν σSpV
pa,Lq
ν q

˙3

loooooooooooooooooomoooooooooooooooooon

First Term

`

¨

˝

4ĂG
1´ rη

c

8L logp4OL{δq

N
paq
L

ˆ

b

ω
pa,Lq

min minν σSpV
pa,Lq
ν q

˙2

˛

‚

3

b

ω
pa,Lq

min
loooooooooooooooooomoooooooooooooooooon

Second Term

, (98)

where this last inequality uses concentration results on the empirical estimates of ĂM
pa,Lq

2 and
ĂM

pa,Lq

3 (Lemma D.3), and holds with probability at least 1 ´ δ.

In order to successfully apply the RTP method on the estimated tensor, the estimation error ϵpa,Lq

M
should be reasonably small. In particular, the result in Equation (97) holds under the assumption that

i)
›

›

›

›

ĂM
pa,Lq

2 ´
x

ĂM
pa,Lq

2

›

›

›

›

2

ď 1
2σSp ĂM

pa,Lq

2 q, as prescribed in Proposition D.8. In addition, from [2], it

is required that ii) ϵpa,Lq

M ď C?
S

for some constant C. From condition i), we require that:

N
paq

L ě

¨

˚

˝

2 rG{p1 ´ rηq

ω
pa,Lq

min

”

minν σSpV
pa,Lq
ν q

ı2

˛

‹

‚

2

8L log p4OL{δq , (99)

while for condition ii), it surely holds when each of the terms appearing in (98) is upper bounded by
C{p2

?
Sq under a suitable constant C, namely:

(First Term in (98)) ď
C

2
?
S

(Second Term in (98)) ď
C

2
?
S
.

From the previous bounds, we obtain respectively:

N
paq

L ě

¨

˚

˚

˚

˝

4
?
2 rG{p1 ´ rηq

C

„

b

ω
pa,Lq

min minν σSpV
pa,Lq
ν q

ȷ3

˛

‹

‹

‹

‚

2

8SL log
`

2LpO2 ` Oq{δ
˘

, (100)

N
paq

L ě

¨

˚

˚

˚

˝

8 rG{p1 ´ rηq
„

C
´

ω
pa,Lq

min

¯7{2
ȷ1{3

´

minν σSpV
pa,Lq
ν q

¯2

˛

‹

‹

‹

‚

2

8S1{3L log p4OL{δq . (101)

By rearranging the results reported in Equations (99), (100) and (101), we get the final result of the
lemma on the minimum number of samples required for the condition 96 to hold.
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D.2 Auxiliary Propositions

Proposition D.5. Let xKpa,Lq

3,1 be an empirical estimate of Kpa,Lq

3,1 obtained using N
paq

L samples. Then
if:

N
paq

L ě

˜

2 rG

σSpK
pa,Lq

3,1 qp1 ´ rηq

¸2

8L log p2OL{δq . (102)

then with probability at least 1 ´ δ, the covariance matrix pK
pa,Lq

3,1 is invertible and it holds that:
›

›

›

›

´

K
pa,Lq

3,1

¯´1

´

´

xK
pa,Lq

3,1

¯´1
›

›

›

›

2

ď
2 rG

”

σSpK
pa,Lq

3,1 q

ı2

p1 ´ rηq

d

8L log p2OL{δq

N
paq

L

Proof. Since xK
pa,Lq

3,1 “ 1

N
paq

L

řL´1
l“0 n

paq

l E
”

v
pa,lq
3 b v

pa,lq
1

ı

, we can apply lemma D.3 and get

›

›

›
K

pa,Lq

3,1 ´ xK
pa,Lq

3,1

›

›

›

2
ď

rG

1 ´ rη

d

8L log p2OL{δq

N
paq

L

. (103)

Let us consider the condition:
›

›

›

›

´

K
pa,Lq

3,1

¯´1
›

›

›

›

2

›

›

›

›

K
pa,Lq

3,1 ´ xK
pa,Lq

3,1

›

›

›

›

2

ď 1{2. (104)

By denoting with σSpK
pa,Lq

3,1 q the minimum singular value of matrix K
pa,Lq

3,1 we have
›

›

›

›

´

K
pa,Lq

3,1

¯´1
›

›

›

›

2

“ 1{σSpK
pa,Lq

3,1 q. By using the bound in 103, it is easy to show that this con-

dition( 104) is verified with probability 1 ´ δ when:

N
paq

L ě

˜

2 rG

σSpK
pa,Lq

3,1 qp1 ´ rηq

¸2

8L log p2OL{δq . (105)

Under condition (104), we can state the following:

›

›

›

›

´

K
pa,Lq

3,1

¯´1

´

´

xK
pa,Lq

3,1

¯´1
›

›

›

›

2

ď

›

›

›

›

´

K
pa,Lq

3,1

¯´1
›

›

›

›

2

2

›

›

›

›

K
pa,Lq

3,1 ´ xK
pa,Lq

3,1

›

›

›

›

2

1 ´

›

›

›

›

´

K
pa,Lq

3,1

¯´1
›

›

›

›

2

›

›

›

›

K
pa,Lq

3,1 ´ xK
pa,Lq

3,1

›

›

›

›

2

(106)

ď 2

›

›

›

›

´

K
pa,Lq

3,1

¯´1
›

›

›

›

2

2

›

›

›

›

K
pa,Lq

3,1 ´ xK
pa,Lq

3,1

›

›

›

›

2

(107)

ď
2 rG

”

σSpK
pa,Lq

3,1 q

ı2

p1 ´ rηq

d

8L log p2OL{δq

N
paq

L

(108)

where line 106 derives from Lemma E.4 in [2], while line 107 is obtained by substituting at the
denominator the condition in 104.

Proposition D.6. (From [3]) Let W P RY ˆX and xW P RY ˆX with Y ě X be any pair of matrices
such that xW “ W ` E for a suitable error matrix E and let σXpxW q be the X-th singular value of
matrix xW . If the error matrix is such that:

}E}2 ď
σXpW q

2
, (109)

then we can derive the following:

}xW :}2 ď
1

σXpxW q
ď

2

σXpW q
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Proof. Given that xW is a perturbation of the true matrix W , we can use Weyl inequality to have a
bound on the difference of the minimum singular value:

|σXpxW q ´ σXpW q| ď }xW ´ W }2

which leads to
σXpxW q ě σXpW q ´ }xW ´ W }2.

Since we have assumed that the perturbation is not too large, we can safely invert this bound to obtain:
1

σXpxW q
ď

1

σXpW q ´ }xW ´ W }2

ď
1

σXpW q{2

where the last inequality follows from the precondition on the perturbation error (109).
Hence, we can derive the final result as:

}xW :}2 ď
1

σXpxW q
ď

2

σXpW q
.

Proposition D.7. (From [22]) Let W and xW be any pair of matrices such that xW “ W ` E for a
suitable error matrix E. Then we have:

}W : ´ xW :}2 ď
1 `

?
5

2
max

␣

}W :}2, }xW :}2
(

}E}2,

with } ¨ }2 denoting the spectral norm.

Proposition D.8 (From [3]). Let ĂM paq

2 – Erv
paq

1 b v
paq

2 s and ĂM
paq

3 – Erv
paq

1 b v
paq

2 b v
paq

3 s be
the matrices associated with action a P A, with the expectations defined by policy π P P . Let also
denote with ĂM

paq

3 pW
paq

1 ,W
paq

2 ,W
paq

3 q the symmetrized and whitened third-moment tensor, as defined
in Section E. If Assumptions 4.1, 4.2 and 4.3 hold, then, under the condition16

}ĂM
paq

2 ´
x

ĂM
paq

2 }2 ď p1{2qσSpĂM
paq

2 q, (110)
the two following statements hold:
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ω
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›

›

›
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ω
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”

minν σSpV
paq
ν q

ı2 . (112)

E Symmetrization and Whitening

This section shows how the symmetrization and the whitening steps can be used for the quantities
defined in this work. To reduce clutter, we will avoid using the apices a and L in this section.

Notation

We will stick here with the notation used in [1]. Let us denote a p-th order tensor as A P
Âp

i“1 Rni .
When n1 “ n2 “ ¨ ¨ ¨ “ np “ n, we can simply write A P bpRn. For a vector v P Rn let us use

16The requirements on the minimum number of samples needed to satisfy (110) are reported in Lemma D.4.
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vbp – v b v b ¨ ¨ ¨ b v P
Âp Rn to denote its p-th order tensor.

We can consider A to be a multilinear map when it holds that for a set of matrices tVi P Rnˆmi : i P

rpsu, the pi1, i2, . . . , ipq-th entry in of the tensor ApV1, V2, . . . , Vpq P Rm1ˆm2ˆ¨¨¨ˆmp is

rApV1, V2, . . . , Vpqsi1,i2,...,ip :“
ÿ

j1,j2,...,jpPrns

Aj1,j2,...,jprV1sj1,i1rV2sj2,i2 ¨ ¨ ¨ rVpsjp,ip .

So, if A is a matrix pp “ 2q, then we have:

ApV1, V2q “ V J
1 AV2. (113)

Symmetrization

Let us now denote with v1 P Rd1 , v2 P Rd2 and v3 P Rd3 the three view vectors, and let V1 P Rd1ˆk,
V2 P Rd2ˆk and V3 P Rd3ˆk be the associated view matrices, with k ď dν for ν P t1, 2, 3u17.
We use µν,i to denote the i-th column of the view matrix Vν . Let us consider the second moment
ĂM2 P Rd1ˆd2 and third moment ĂM3 P Rd1ˆd2ˆd3 of the three views as follows:

ĂM2 – E rv1 b v2s “

k
ÿ

i“1

ωi µ1,i b µ2,i
ĂM3 – E rv1 b v2 b v3s “

k
ÿ

i“1

ωi µ1,i b µ2,i b µ3,i.

(114)

Our objective is to represent these views as the second-order tensor and the third-order tensor with
respect to view v3. In order to achieve this result, we need to modify the views v1 and v2 by making
use of the covariance matrices as follows:

rv1 “ K3,2 pK1,2q
:

loooooomoooooon

RJ
1

v1 rv2 “ K3,1 pK2,1q
:

loooooomoooooon

RJ
2

v2,

with R1 P Rd1ˆd3 and R2 P Rd2ˆd3 being the rotation matrices of the views v1 and v2 respectively.
Using notation in Equation (113), it is possible to show that the symmetized version M2 P Rd3ˆd3

can be defined as:

M2 – ĂM2pR1, R2q “ RJ
1
ĂM2 R2 “ E rv3 b v3s “

k
ÿ

i“1

ωi µ3,i b µ3,i.

Whitening

When the symmetrization step is concluded, the third-order matrix needs to be whitened in order to
run the Robust Tensor Power (RTP) method on it. The whitening transformation is defined through
the matrix W P Rd3ˆk and is such that:

M2pW,W q “ WJ M2W “ I,

with M2 being the symmetrized matrix defined above and I P Rkˆk is the identity matrix.
From the relations above, we also have:

M2pW,W q “ WJM2W “ WJRJ
1
ĂM2R2W “ ĂM2p R1W

loomoon

W1

, R2W
loomoon

W2

q, (115)

which introduces the symmetrization-whitening matrices W1 P Rd1ˆk and W2 P Rd2ˆk. Since the
third view does not need to be symmetrized but only whitened, we have W3 – W P Rd3ˆk.

Let us now define:

rµ3,i –
?
ωi W

J µ3,i, rωi –
1

?
ωi

(116)

and we observe that:

ĂM2pW1,W2q “ M2pW,W q “

k
ÿ

i“1

WJ p
?
ωiµ3,iq p

?
ωiµ3,iq

J
W “

k
ÿ

i“1

rµ3,i rµ
J
3,i “ I,

17In our POMDP setting, we have d1 “ d2 “ d3 “ O and k “ S.

44



from which we also observe that rµ3,i P Rk are orthonormal vectors.
We can now define the symmetrized and whitened tensor ĂM3pW1,W2,W3q P Rkˆkˆk as:

ĂM3pW1,W2,W3q “ M3pW,W,W q “

k
ÿ

i“1

ωi

`

WJµ3,i

˘b3
“

k
ÿ

i“1

1
?
ωi

rµb3
3,i “

k
ÿ

i“1

rωi rµ
b3
3,i , (117)

where the first equality follows from analogous considerations as those in Equation (115).
The decomposition expressed in the last equality allows representing tensor ĂM3pW1,W2,W3q in
terms of the orthonormal eigenvectors rµ3,i and the related eigenvalues rωi. In this form, the tensor
can be provided as input to the RTP method [1]. The RTP method will then provide as output an
estimate of the robust eigenvector/eigenvalue pairs prµ3,i, rωiq for each i P rks.
Finally, the original eigenvector/eigenvalue pairs pµ3,i, ωiq can be recovered by inverting the Equa-
tions in (116).

F Belief Vector Concentration Bound

We present here Lemma F.1 that will be fundamental for proving the regret result of the Mixed
Spectral UCRL algorithm.

Lemma F.1. Let Q be a POMDP instance satisfying Assumption 6.1. Let pO and pT “ tpTauaPA
be the estimate of the observation and transition model and let T “ tpot, atquTt“0 be a trajectory
generated while interacting with the environment. We have that:

T
ÿ

t“0

}pbt ´ bt}1 ďC1 ` C2T }O ´ pO}F ` C3

ÿ

aPA
npaq }Ta ´ pTa}F ,

where C1, C2, C3 are finite constants, while npaq represents the number of times each action a P A
is chosen during the interaction.

Proof. We denote withpbt and bt the estimated and real belief vector at time t updated using Equation 1,
using respectively the estimated and real transition model. From the belief decomposition reported
in [10], we derive that the belief error bound at time t is:

}pbt ´ bt}1 ď 4ηt

˜

}pb0 ´ b0}2

ϵ

¸

`
4p1 ´ ϵq

ϵ

t´1
ÿ

l“0

ηt´l´1

˜

}pTal
´ Tal

}F

ϵ
`

?
SO

}pO ´ O}F

co

¸

(118)

where η – 1 ´ ϵ
1´ϵ , while co is a finite constant based on both the transition and the observation

model such that co – min
oPO

min
aPA

min
sPS

ř

s1PS Taps1|sqOpo|s1q which is always positive thanks to

Assumption 6.1.
We proceed by bounding 118 as:

}pbt ´ bt}1 ď
8ηt

ϵ
`

4p1 ´ ϵq

ϵ2

t´1
ÿ

l“0

ηt´l´1
´

}pTal
´ Tal

}F

¯

`
4
?
SOp1 ´ ϵq

ϵco

t´1
ÿ

l“0

ηt´l´1}pO ´ O}F ,

where the inequality simply follows by observing that }pb0 ´ b0}2 ď }pb0 ´ b0}1 ď 2.

This bound shows that the error in the belief vector depends on the sequence of actions and the
contribution in the error of each action scales geometrically with time. Using the relations above, let
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us now bound the sum of belief errors over T ` 1 different time steps:
T
ÿ

t“0

}pbt ´ bt}1 ď 2 `

T
ÿ

t“1

«

8ηt

ϵ
`

4p1 ´ ϵq

ϵ2

t´1
ÿ

l“0

ηt´l´1
´

}pTal
´ Tal

}F

¯

`

`
4

?
SOp1 ´ ϵq

ϵco

t´1
ÿ

l“0

ηt´l´1}pO ´ O}F

ff

“ 2 `

T
ÿ

t“1

„

8ηt

ϵ

ȷ

looooooomooooooon

(a)

`

T
ÿ

t“1

«

4
?
SOp1 ´ ϵq

ϵco

t´1
ÿ

l“0

ηt´l´1}pO ´ O}F

ff

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

(b)

`

`

T
ÿ

t“1

«

4p1 ´ ϵq

ϵ2

t´1
ÿ

l“0

ηt´l´1
´

}pTal
´ Tal

}F

¯

ff

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

(c)

,

where the constant 2 is obtained by bounding the first term }pb0 ´ b0}1 ď 2.
Let us now focus on the terms paq and pbq.

paq “ 2 `
8

ϵ

T
ÿ

t“1

ηt ď 2 `
8

ϵ

ˆ

1

1 ´ η

˙

ď
10

ϵ

ˆ

1

1 ´ η

˙

pbq “
4

?
SOp1 ´ ϵq}pO ´ O}F

ϵco

T
ÿ

t“1

t´1
ÿ

l“0

ηt´l´1 ď
4
?
SOp1 ´ ϵq}pO ´ O}F

ϵco
¨

T

1 ´ η
.

Differently, the term c can be bounded by using the result from [26] (see their Lemma D.1) and we
obtain that:

pcq ď
4p1 ´ ϵq

p1 ´ ηqϵ2

ÿ

aPA
npaq }Ta ´ pTa}F “

4p1 ´ ϵq2

ϵ3

ÿ

aPA
npaq}Ta ´ pTa}F

where npaq represents the number of times action a P A is chosen during the interaction, while the
last step follows by using the definition of η.

By combining the results in paq, pbq and pcq, we get:
T
ÿ

t“0

}pbt ´ bt}1 ď
10

ϵ

ˆ

1

1 ´ η

˙

`
4

?
SOp1 ´ ϵq}pO ´ O}F

ϵco
¨

T

1 ´ η
`

4p1 ´ ϵq2

ϵ3

ÿ

aPA
npaq }pTa ´ Ta}F

“
10p1 ´ ϵq

ϵ2
`

4
?
SOp1 ´ ϵq2}pO ´ O}F T

ϵ2co
`

4p1 ´ ϵq2

ϵ3

ÿ

aPA
npaq }pTa ´ Ta}F

(119)

where in the last line we simply substituted the definition of η into the bound. The final result of the
lemma simply follows by defining the constants

C1 –
10p1 ´ ϵq

ϵ2
, C2 –

4
?
SOp1 ´ ϵq2

ϵ2co
, C3 –

4p1 ´ ϵq2

ϵ3
. (120)

From the considerations reported above, we can derive the following corollary for the one-step belief
error.

Corollary F.2. (One-step Belief Bound) Let Q be a POMDP instance satisfying Assumption 6.1. Let
us denote with pO,Taq and ppO, pTaq respectively the real and estimated model parameters related to
action a. Starting from a common belief vector b0, and choosing action a P A, the one-step error in
the estimated belief vector can be bounded as:

}pb1 ´ b1}1 ď C2 }pO ´ O}F ` C3 }pTa ´ Ta}F .
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where constants C2 and C3 are defined in line 120.

Proof. The proof of this corollary easily follows from the bound in 118 by using t “ 1 and having
that b0 “ pb0.

G Miscellanea of Useful Results

This section is devoted to the presentation of some useful results used throughout the work.

The first one is taken from [34] and relates the maximum span of the bias function spanpvq with a
finite constant D.

Proposition G.1 (Uniform bound on the bias span from [34]). Let us assume to have a POMDP
instance that can be rewritten as a belief MDP. If Assumption 6.1 holds, then for ρ, v satisfying the
Bellman Equation (2), we have the span of the bias function spanpvq :“ maxbPB vpbq ´minbPB vpbq
is bounded by Dpϵq, where:

Dpϵq :“
8
´

2
p1´αq2

` p1 ` αq logα
`

1´α
8

˘

¯

1 ´ α
, with α “

1 ´ 2ϵ

1 ´ ϵ
P p0, 1q.

Hence, this proposition ensures that spanpvq is bounded by D “ Dpϵ{2q for any bias functions v
associated with a belief MDP derived from a POMDP instance Q.

This second result is used in the bound of Theorem 6.2.

Lemma G.2 (Lemma 19 in [14]). For any sequence of numbers y0, . . . , yn´1 with 0 ď yk ď Yk and
Yk – maxt1,

řk´1
i“0 yiu:

n´1
ÿ

k“0

yk
?
Yk

ď
`
?
2 ` 1

˘

a

Yn.

H Comparison with Related Literature

We provide here a detailed comparison of our Mixed Spectral UCRL with respect to the SEEU
and the SM-UCRL algorithms tackling the infinite-horizon average reward setting (Section H.1),
while we devote Section H.2 to a discussion on the differences of our formulation with respect to
Maximum-Likelihood approaches typically used in episodic settings.

H.1 Comparison with Algorithms in the Infinite-horizon setting

We provide here a comparison in terms of assumptions and theoretical guarantees of our Mixed
Spectral UCRL algorithm with other algorithms in the literature that tackle this setting. Some key
aspects are reported in Table 1. In particular:

Comparison with SEEU [32]. Our approach strictly improves over the SEEU algorithm both in terms
of assumptions and results. Indeed, unlike SEEU, our algorithm does not require an assumption on
the minimum values of the observation model. Additionally, we introduce the sample reuse strategy
for adaptive policies, leading to an improved sample efficiency which, together with a more refined
theoretical analysis, also translates to an improved regret bound with respect to the interaction horizon,
from rOpT 2{3q to rOp

?
T q.

Comparison with SM-UCRL [3]. Similarly, we also make improvements over the SM-UCRL algorithm.
Indeed, the SM-UCRL algorithm employs stochastic memoryless policies which are known to suffer
linear regret when compared against the optimal POMDP policy. The employed policy class
includes those policies for which each action can be chosen with a minimum probability ι ą 0 at
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every time step. By introducing our sample reuse strategy, we improve sample efficiency, and we are
not obliged to continuously choose every action since we can use those observed in the past, hence
being able to eliminate stochastic policies and allowing for ι “ 0.
On the other hand, our approach employs the stronger class of belief-based policies. This comes at
the cost of requiring an assumption on the minimum value of the transition model (as also done in
SEEU) in order to bound the error of the estimated belief vector, as explained in Section 6 of the main
paper.

Both SEEU and SM-UCRL subsume Assumption 4.3. We show here how both the SEEU and the
SM-UCRL algorithms rely on assumptions that imply our Assumption 4.3. In particular:

• the SEEU algorithm directly employs the one-step reachability assumption (our Assumption 6.1)
for learnability. Differently, we use the weaker Assumption 4.3 for learning the model parameters,
and then require the stronger one-step reachability assumption to ensure guarantees for the Mixed
Spectral UCRL algorithm.

• the SM-UCRL algorithm assumes standard ergodicity assumptions (not conditioned on action)
but restricts to the class of stochastic policies (ι ą 0). Under this set of stochastic policies
and the ergodicity assumption, the state-action distribution dπ8ps, aq always exists and satisfies
dπ8ps, aq ą 0 for any ps, aq P S ˆ A. Consequently, the conditional state distribution ωpa,πq is
always well-defined (since, under the considered policy class, dπ8paq ą 0 for any a P A) and its
elements are always strictly positive, hence satisfying Assumption 4.3.

Finally, we remark that the set of Assumptions 4.1, 4.2 and 4.3 employed in our work constitute the
minimum working assumptions for learning in the infinite-horizon average-reward POMDP
setting.

H.2 Comparison between Spectral Decomposition and Maximum-likelihood Approaches

Besides Spectral Decomposition techniques, other methods can be used for parameter estimation.
Among the most common, we highlight those based on Maximum-Likelihood estimation mainly
adopted in the episodic setting, such as the OOM-UCB [19] or the Optimistic-MLE [20] algorithms.
We describe below the two key differences between these approaches:

1. MLE-based methods lack Estimation Guarantees for Latent Variable Models, differently
from Spectral Methods.
MLE-based methods are not guaranteed to recover the original parameters (O,T) when estimating
latent variable models, such as HMMs or POMDPs. In contrast, Spectral Decomposition methods
provide finite-sample guarantees for such models and represent the most computationally efficient
methods for estimating such models. Notably, MLE-based approaches are used to learn an
alternative POMDP parametrization known as the Observable Operator Model (OOM) for which
finite-sample guarantees can be derived by only employing the α-weakly revealing condition.
Crucially, it is important to highlight that knowledge of the Observable Operators does not alone
allow recovering the original POMDP parameters pO,Tq for which instead different techniques
(Spectral Decomposition) and further assumptions (invertibility of the transition matrices and
ergodicity-like conditions) are needed to ensure estimation guarantees.

2. MLE-based approaches typically addresses the finite-horizon setting, while our focus is on
the infinite-horizon one.
The difference between the two settings also lies in the class of optimal policies. Indeed, while
the best policy in the finite-horizon case depends on the sequence of observations and actions of
limited length (bounded by the episode length H) and does not rely on a notion of belief state,
the optimal policy for the infinite-horizon case depends on maintaining and updating a belief
vector over the hidden states. Since belief updates rely on the Bayes’ rule, which in turn requires
estimates of both the observation and transition models, we need to use estimation methods with
finite-sample guarantees (such as Spectral Methods) to recover the model parameters. This is in
contrast to the finite-horizon setting, where guarantees on the policy suboptimality can be related
to the quality of OOM estimates.
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I Discussion on Computational Complexity

We discuss here the computational complexity of the Mixed Spectral Estimation procedure.
The computational complexity of this approach is comparable with the estimation approaches used
both by SEEU and SM-UCRL since all of them rely on the underlying tensor decomposition. The
overall computational complexity of the method scales as OpAmaxtO3, S5 logSuq, where:

• The complexity scales linearly with the number of actions since SD is performed separately for
each action a P A,

• The first term in the max arises from inverting the covariance matrices having order O appearing
in Equation (6),

• The second term comes from the RTP strategy introduced in [1], which is used as a subroutine
by the Mixed Spectral Estimation strategy. This method operates on a symmetric and
whitened three-order tensor18 with dimension RSˆSˆS . Hence, each operation requires OpS3q

computations, and, assuming each eigenvector is computed from roughly OpSq initializations,
with OplogSq power iterations per initialization, the total time for obtaining the S different
eigenvector/eigenvalue pairs is OpS5 logSq. Some optimization techniques can reduce this
complexity to OpS4q.
We refer to [1] for a more detailed discussion on this matter.

J Additional Simulations and Simulation Details

This section provides details about the numerical simulations reported in the main paper. The
simulations illustrated in this work have been run on an 88 Intel(R) Xeon(R) CPU E7-8880 v4 @
2.20GHz CPUs with 94 GB of RAM.
The code can be found at https://github.com/alesnow97/Spectral_Learning_POMDP.git.

Transition and Observation Model Generation. For the generation of the different POMDPs, we
adopted a similar approach to the one followed in [25]. The matrices of both the observation and
transition models are randomly generated, and successive modifications are applied:

• Transition model Ta: we set a minimum value for each cell of the matrix that should be at least
ϵ “ 1{p10Sq.

• Observation model O: for each state, we define a subset of observations that may be observed
with higher probability with respect to the others. This caveat improves the informativeness of
the observation model, hence avoiding matrices with zero (or close to zero) minimum singular
values.

J.1 Simulations on Estimation Error of the Mixed Spectral Estimation Algorithm

In this section, we report further experiments on estimation errors of POMDP instances of different
sizes. In particular, we analyze the behavior of our estimation approach with both smaller and larger
instances with respect to the one presented in the main paper. The results are presented in Figure 3
and are expressed in terms of the Frobenius norm.

For the experiment on the left, we measured the estimation error over 10 different episodes, each one
having size 105 steps. Since the considered POMDP is smaller with respect to the others (S “ 3,
A “ 2, O “ 5), fewer samples are required to achieve good model estimates.
For the experiment on the right, we consider a larger POMDP instance (S “ 5, A “ 5, O “ 5)
and we run our simulation across 30 episodes, each one of length 1.2 ˚ 106 steps. As expected, the
estimation process in this case has more noise, but a decrease in the estimation error is evident across
the different episodes.

How Policies Vary across Episodes. The change of belief-policies across the different episodes is
implemented in the following way.

18See Appendix E for details.
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Figure 3: Frobenius norm of the estimation error of two different POMDP instances. For the instance
on the left we have S “ 3, A “ 2, O “ 5, for the one on the right S “ 5, A “ 3, O “ 5. (10 runs,
95 %c.i.).
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Figure 4: Regret comparison on a POMDP with S “ 3, A “ 3, O “ 4 violating Assumption 6.1 (10
runs, 95 %c.i.).

(i) Each policy has an internal transition and observation model that it uses to update its belief. When
the episode changes, we change as well these components. We remark that these models are only
used for the internal update of the belief and are independent of the transition and observation model
of the interacting POMDP instance.

(ii) Each policy has an internal vector r P RO of rewards associated to each observation. At each
step, the chosen action is the one maximizing the expected reward in the next time step. When the
episode changes, we change as well the internal reward vector r. As a last point, in order to ensure
enough exploration of all actions, the policy has a minimum probability of choosing every action at
each time step.

J.2 Simulations and Details on Regret Experiments

For the experiments on the regret, we adopted the following hyperparameters for the different
algorithms.

• Mixed Spectral UCRL: length of initial episode T0 “ 3 ˚ 105;

• SM-UCRL: length of initial episode T0 “ 3 ˚ 105, minimum action probability ι “ 0.02;

• SEEU: length of exploration phase τ1 “ 105, length of initial exploitation phase τ2 “ 3 ˚ 105. At
each new episode l, the length of the exploitation phase is computed as

?
l ` 1 τ2, as defined in

the original work.

Concerning the computation of the optimal policy, for both the SEEU and the Mixed Spectral UCRL
algorithm, we adopted the following approach. Since there is uncertainty in the model parameters, the
Extended Value Iteration algorithm [14] should be used to find a robust policy. However, in practice,
since we are in the POMDP setting, our approach consists in sampling multiple POMDPs within the
confidence region Clpδlq, discretize the belief space of each of the corresponding belief MDPs, find
the corresponding best policy by using Value Iteration on each discretized MDP, and finally return
the best among them. Similar approaches are also employed in [3]. For the considered simulations,
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we adopted a discretization step size of 0.04.
Since the SM-UCRL algorithm relies on memoryless policies, we applied a similar sampling procedure
and then directly the Value Iteration algorithm, replacing the state space with the observation space.

By following the suggestions in [3], we replaced the theoretical bounds with smaller values. This
approach is commonly used in experimental comparisons in these settings and generally results in
either a regret with larger multiplicative constants or guarantees holding with a lower probability.

Regret Experiment Violating Assumption 6.1. Our belief is that Assumption 6.1 can be relaxed in
practice while still guaranteeing sublinear regret, however it is hard to remove it from a technical
perspective.
To corroborate our intuition, we run new regret experiments on a POMDP instance that violates
Assumption 6.1. The experimental results are shown in Figure 4 and demonstrate how the tested
algorithms (both our Mixed Spectral UCRL and SEEU) show regret results that align with their
theoretical guarantees, hence showing robustness to failure of this assumption.
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