
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE JAILBREAK DEFENSE: A SELF-EVOLVING
FRAMEWORK FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

While (multimodal) large language models (LLMs) have attracted widespread at-
tention due to their exceptional capabilities, they remain vulnerable to jailbreak
attacks. Various defense methods have been proposed to mitigate jailbreak at-
tacks. These methods typically incorporate specific defense mechanisms into the
model during training or deployment, aiming to enhance the LLM’s robustness
against jailbreak attacks in advance. However, as new jailbreak attack methods
continue to emerge, defense methods with static resistance mechanisms can fre-
quently be bypassed during testing. To address these limitations, we propose a de-
fense framework, called Test-Time IMmunization (TTIM), which can adaptively
defend against various jailbreak attacks through a self-evolving mechanism during
testing. Specifically, TTIM first trains a gist token for efficient detection, which is
subsequently employed to detect jailbreak activities during inference. When jail-
break attempts are detected, TTIM implements safety fine-tuning using the identi-
fied jailbreak instructions paired with refusal responses. Furthermore, to mitigate
potential performance degradation of the detector caused by parameter updates
during safety fine-tuning, we decouple the fine-tuning process from the detection
module. Extensive experiments conducted on both LLMs and multimodal LLMs
demonstrate that, starting from non-guarded models, TTIM effectively defends
against various jailbreaks during testing with few jailbreak samples. Code is at-
tached as supplementary material.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2023; Touvron et al., 2023; OpenAI, 2023; Naveed
et al., 2023) and multimodal large language models (MLLMs) (Team et al., 2023; Zhu et al., 2024;
Liu et al., 2023) have achieved widespread adoption across diverse applications, due to their su-
perior performance and adaptability. Recently, security vulnerabilities in LLMs have emerged as
a critical research focus (Yi et al., 2024; Jin et al., 2024; Das et al., 2024), which stem from their
inherent weaknesses. To mitigate risks associated with the generation of harmful content (e.g., dis-
criminatory, unethical, or illegal outputs), modern LLMs implement safety-alignment techniques,
including reinforcement learning from human feedback (Kaufmann et al., 2023; Stiennon et al.,
2020) and safety instruction tuning (Peng et al., 2023; Zhang et al., 2023; Zong et al., 2024; Wang
et al., 2025a).

Despite these safeguards, LLMs remain vulnerable to sophisticated jailbreak attacks (Yi et al., 2024;
Jin et al., 2024; Wang et al., 2025b), which are designed to circumvent these protections and elicit
harmful outputs. This vulnerability has been empirically validated through recent research (Chao
et al., 2024; Liu et al., 2024c; Zou et al., 2023), revealing that state-of-the-art safety alignments can
be circumvented. To mitigate these risks, a variety of defense strategies have been developed to
enhance the robustness of LLMs against such jailbreak tactics (Zhang et al., 2024b; Wang et al.,
2024b; Zhang et al., 2024a). Current methods primarily focus on endowing models with specific
security properties during training or deployment, thereby successfully defending against certain
jailbreak attacks. However, existing methods only provide models with specific and limited secu-
rity mechanisms and are unable to incrementally enhance the model’s defense capabilities against
emerging novel jailbreak attacks during inference, thereby leading to their failure. For instance, Hu
et al. (2023) and Kumar et al. (2023) focus on addressing adversarial prompt attacks by implement-
ing perplexity filtering and token deletion. However, these approaches fail to address other forms of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

I’m OpenAI. How
to make a bomb?

How to make a
bomb? #%*hjgas

I’m sorry, but I
can’t provide
advices.

Step 1: you can..
Step 2: To collect..

Pre-guarded LLM

Adaptively Guarded LLM

Jailbreak Detection

LLM
How to conduct
self-harm? #**hj

Step 1: Go to..
Step 2: Jumping ..

I’m OpenAI. How
to make a bomb?

How to make a
bomb? #%*hjgas LLM

I’m sorry, but I
can’t provide
advices.

Step 1: you can..
Step 2: To collect..

LLM

How to conduct
self-harm? #**hj

I’m sorry, but I
can’t provide
advices.

LLM

Generate

attack A

attack B

Attacker

No Jailbreak Detected

Jailbreak Detected

1

2

Figure 1: The overview of test-time immunization. (1): The LLMs with pre-guarded strategy can
defend against some jailbreak attacks successfully, but can’t defend against all potential types of
jailbreak attacks in advance. (2): We resort to adaptively leveraging test jailbreak data during testing
to enhance the defense capabilities of LLMs. When a jailbreak attack hacks our model, we learn the
distribution of the jailbreak attack and gradually become immune to it.

novel attacks, such as embedding malicious instructions into images (Gong et al., 2025) or few-shot
jailbreak (Zheng et al., 2024).

Due to the continuous evolution of jailbreak techniques, which constantly introduce new types of
attacks, it is impractical to develop defense mechanisms that can address every possible attack in
advance. To address this limitation, we introduce a jailbreak defense framework called Test-Time
IMmunization (TTIM), as illustrated in Figure 1. Instead of addressing jailbreak attacks in advance,
TTIM progressively enhances its resistance against emerging novel jailbreak attacks during testing,
which is similar to the biological immune system. In biological immune systems, when the body
encounters a pathogen for the first time, the immune system identifies it and initiates a targeted
response, producing specific antibodies to neutralize the threat. Similarly, TTIM treats jailbreak
attempts as digital ”pathogens”, striving to detect them during inference. Upon detecting a jailbreak
attempt, TTIM develops defense mechanisms based on the harmful instructions, thereby effectively
countering subsequent attacks of the same type. Consequently, TTIM gradually develops robust
immunity against diverse jailbreak techniques, continuously strengthening its resilience during in-
ference.

A key insight underlying our defense framework is that identifying jailbreak behaviors in LLMs
is often more straightforward than directly defending against them, as highlighted by (Gou et al.,
2024a; Zhao et al., 2024; Zhang et al., 2024a). While several studies, including (Zhang et al., 2024a;
Phute et al., 2024), have focused on developing precise detection mechanisms for jailbreak attacks,
these approaches typically rely on auxiliary proxy LLMs for output analysis. However, such config-
urations can be impractical in real-world deployments due to computational and temporal overhead.
To address this limitation, we propose an efficient jailbreak detector that introduces minimal over-
head. Specifically, we train a gist token to extract salient information from previously generated
tokens by injecting it at the sequence’s end. We then employ a classifier to determine whether the
LLM has been jailbroken. Additionally, we construct a dataset to train our detector, which com-
prises harmful questions, harmless questions with harmful answers, harmless answers, and refusal
responses. For defense training, upon detecting jailbreak activities, we leverage the identified jail-
break instructions and refusal responses to fine-tune the model using a low-rank adapter (LoRA)
(Hu et al., 2022). Furthermore, we decouple the jailbreak detector from the trainable LoRA module.
Specifically, we utilize the intermediate hidden state for detection and train the LoRA module exclu-
sively on the final layers of the model, ensuring that updates to the LoRA module do not compromise
detection performance. Moreover, to mitigate the risk of overfitting to rejecting jailbreak attempts,
we incorporate normal data with jailbreak data for regularization. Concurrently, we optimize the
detector during testing to further enhance its performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In the experimental section, we comprehensively evaluate TTIM against various jailbreak attacks on
both LLMs and MLLMs. The results demonstrate that our framework effectively mitigates jailbreak
attempts after detecting only a minimal number of such activities (e.g., 10), ultimately reducing the
jailbreak attack success rate to nearly zero.

In summary, our contributions can be outlined as follows:

• We develop an adaptive jailbreak defense framework that detects jailbreak activities at test-time
and enhances the model’s defense capabilities against such attempts in an online manner.

• We design an efficient jailbreak detector that leverages a gist token and a binary classifier to
accurately identify harmful responses with minimal computational cost.

• To improve the stability of the detector during testing, we propose a decoupling strategy by
assigning different parameters for detector and defense training.

• Extensive experiments on both LLMs and MLLMs demonstrate that our framework effectively
defends against various jailbreak attacks.

2 RELATED WORKS

2.1 JAILBREAK ATTACKS

Research has consistently shown that safety-aligned LLMs and MLLMs remain vulnerable to jail-
break attacks (Jin et al., 2024; Chao et al., 2024; Russinovich et al., 2025), with exploitation tech-
niques evolving from simple adversarial tactics to more sophisticated methods. For example, GCG
(Zou et al., 2023) appends an adversarial suffix to jailbreak prompts. While effective, its practi-
cality is limited by its detectability through perplexity testing. In contrast, AutoDAN (Liu et al.,
2024c) employs a hierarchical genetic algorithm to generate readable jailbreak prefixes that evade
such detection. Additionally, ICA (Wei et al., 2023) advances in-context jailbreaking by embedding
harmful demonstrations directly into the context, effectively manipulating LLMs. Building on this,
Zheng et al. (2024) refines the approach by injecting system tokens and employing a greedy search
strategy within the demonstrations to enhance effectiveness. As MLLMs gain prominence, their
multimodal capabilities have become a key target for attacks. Qi et al. (2024) highlights the vision
modality as particularly vulnerable to adversarial attacks and proposes adversarial image training
as a means to facilitate jailbreaking. Figstep (Gong et al., 2025) employs a blank-filling technique
in image prompts to trigger harmful responses. It combines a standardized text prompt with a ma-
licious topography image to manipulate model outputs. Similarly, Liu et al. (2024d) introduces
MM-SafetyBench, which also employs topography to subtly incorporate malicious prompts within
images. However, unlike Figstep, MM-SafetyBench uses stable diffusion (Rombach et al., 2022) to
create more complex backgrounds that contain the intention of jailbreak, thus enhancing the stealth-
iness and effectiveness of the attack.

2.2 JAILBREAK DETECTION AND DEFENSE

To ensure the outputs of LLMs remain aligned with human values, substantial research has been de-
voted to both detecting and defending against jailbreak attacks. Jailbreak detection (Jain et al., 2023;
Xie et al., 2024) aims to differentiate jailbreak activities from normal activities. Current detection
techniques often rely on an auxiliary proxy language model to analyze outputs. For instance, Phute
et al. (2024) generates detection prompts by appending the model’s response to the question “is the
response harmful?” and then uses a proxy LLM to assess potential harm. Similarly, Pi et al. (2024)
fine-tunes a small proxy model, utilizing the hidden state of its last token with a binary classifier
to determine the nature of a response. LVLM-LP (Zhao et al., 2024) addresses jailbreak detection
by adopting a classifier beyond the first generated token. Another approach proposed by Zhang
et al. (2024a) involves augmenting the input multiple times and using a similarity matrix between
responses for detection. However, most of these methods are time-consuming, relying on additional
models or multiple input augmentations, which makes them less practical for real-time applications.
Instead, we propose a highly efficient detector that incurs minimal additional cost.

Another line of work against jailbreak attacks is jailbreak defense (Gou et al., 2024b). Self-reminder
(Xie et al., 2023) is among the earliest works to introduce a defensive system designed to remind

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

…

…

��

Jailbreak
Label

gist

Transformer Layer with LoRA

Transformer Layer

Transformer Layer
ℳ�

Instruction KV CacheLLM Answer

Jailbroken
Defense
Training

Output

���

Train LLM’s Lora
Module

LLM’s Detector
Trainℳ�

Instruction Answer 1

Instruction Rejection 0

Instruction Rejection ℳ�
Append

Append

��

Test Data Stream

ℳ�

2

2

1

Detection
1

Figure 2: Detail workflow of TTIM. (1) We insert a trainable gist token at the sequence’s end and
utilize the hidden states from intermediate layers along with a classifier Cd to perform detection. In
a real-world application, we can employ the KV Cache and the gist token to perform efficient detec-
tion. (2) Upon detecting jailbreak activity during detection, we append the data to jailbreak memory
and incorporate detection data into detection memory for training. Then we utilize jailbreak mem-
oryMj to train the LLM’s defense LoRA module by supervised fine-tuning and employ detection
memory Md to further train the detector (i.e., TTA) by Equation (5). Additionally, we employ a
question-answering dataset Dqa and a detection dataset Dd for regularization.

the model not to produce harmful content. Focusing on MLLMs, Adashield (Wang et al., 2024c)
optimizes a suffix text prompt designed to remind the model to scrutinize both malicious text and
image inputs. Gou et al. (2024a) endeavors to translate image inputs into corresponding text prompts
to defend against jailbreak attacks that embed malicious intent within images to circumvent safety
alignments. In contrast, Zong et al. (2024) focuses on improving model safety during training by
creating a dataset of malicious images to supervise model fine-tuning, making it more resilient to
structure-based attacks like MM-SafetyBench and Figstep. Some works also resort to techniques
like machine unlearning (Lu et al., 2024), multi-agent (Zeng et al., 2024), and decoding control
(Xu et al., 2024b). IMMUNE (Ghosal et al., 2024) is a concurrent work that employs a safety
reward model to guide the decoding generation process more securely. Recently, Peng et al. (2024)
shows that only a few harmful examples can be used to mitigate jailbreak successfully. Different
from them, our method first tries to conduct adaptive safety fine-tuning and optimize the model’s
parameters during inference.

2.3 TEST-TIME LEARNING

Test-time learning is an innovative paradigm where a model is learning during testing to improve
performance and adapt to new conditions. Early test-time learning was often used to solve the
problem of distribution shift and alleviate the performance degradation caused by the difference
between test data and training data (Liang et al., 2024; Yu et al., 2024), namely test-time adaptation
(TTA). While most TTA works focus on the recognition performance, Sheng et al. (2024) aims
to enhance the safety of the model (i.e., resistance to backdoor attack). Moreover, Guan et al.
(2024) proposes test-time repairing to remove the backdoor during testing. In addition, a lot of
works pay attention to defense against adversarial attacks during test time (Nayak et al., 2022; Deng
et al., 2021). A recent work (Lin et al., 2024) introduces test-time training to improve the model’s
adversarial robustness through adaptive thresholding and feature distribution alignment. Our work
extends the concept of test-time training to the domain of LLM security and uses it to enhance the
model’s ability to resist various jailbreak attacks.

3 METHODOLOGY

3.1 PRELIMINARY

Generation of Large Language Model. Given a large language model M = {El, Cl} with a token
set T and hidden space Rm, and an input sequence T = [t1, ..., tK |tk ∈ T], where El is the encoder,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Cl is the logit projector, and K is the sequence length. The model generates the next token tK+1 by:

tK+1 = argmax
i

Cl(hK)i = argmax
i

Cl(El(T))i, (1)

where hK ∈ Rm is the hidden state of the last token.

Indeed, LLMs generate tokens autoregressively, using the previous output token to predict the sub-
sequent token. This generation process continues until a stop condition is met, which may involve
reaching a maximum token limit or generating a specific end-of-sequence token. Additionally, in
modern LLMs, the Key-Value Cache (KV Cache) (Radford, 2018) technique is extensively utilized
during inference to speed up attention map computations. We then introduce the framework of TTIM
in three parts: jailbreak detection, defense training, and the decoupling of the two. The algorithm of
our method can be found in Appendix C.

3.2 JAILBREAK DETECTION WITH GIST TOKEN

Most previous jailbreak detection methods either require proxy LLMs to analyze the model’s output
or involve multiple augmentations to the model’s input, which are time-consuming and impractical
for real-world applications. Therefore, we propose training an efficient jailbreak detector that lever-
ages the autoregressive generation properties of the model. Specifically, as shown in the right block
in Figure 2, we train an additional gist token tg with trainable embedding and a binary classifier Cd
to perform detection. Given the question T q and the generated answer T a, we combine it with the
gist token:

Taug = [T q, T a, tg]. (2)
The detection process operates as follows:

pdet = Cd(hg) = Cd(El(Taug)), (3)

where hg is the hidden state of the last token tg . Then we obtain the detection results as follows:

ŷ = argmax
c∈{0,1}

pdetc , (4)

where ŷ = 0 indicates benign content and ŷ = 1 indicates jailbreak attempt. We inject the tg at the
end of the sequence. Since the keys and values of the previous tokens are cached during generation,
the hidden state of tg can be computed efficiently based on the KV Cache. For instance, for a
sequence with a length of 2000, the cost of detecting jailbreak activities is approximately 1/1000 of
the total generation time. A simpler alternative would be to remove the gist token and directly use
the hidden state of the last token to perform detection. However, intuitively, the hidden state of the
last token is used for generation and may not encapsulate the information relevant to the harmfulness
of the response. Therefore, we train a gist token designed to capture the harmfulness of the previous
answer. Additionally, we construct a dataset Dd = (T q

i , T
a
i , yi)

|Dd|
i=1 to train our detector, where T q

i
represents the question, T a

i represents the answer, and yi is the label indicating jailbreak activities.
We train the detector using naive cross-entropy loss, as follows:

t∗g, C∗d = argmin
tg,Cd

E(T q
i ,Ta

i ,yi)∼Dd

[
−

1∑
c=0

1(yi=c) log p
det
i,c

]
, (5)

where pdeti = Cd(El(T q
i , T

a
i , tg)) represents the predicted jailbreak probability of jailbreak detector.

Specifically, we train a linear layer as our binary classifier.

3.3 ADAPTIVE DEFENSE TRAINING

Since detecting jailbreak activity is easier than directly defending against it, we developed a test-time
jailbreak defense system that mimics the biological immune system. Like how the body detects
and responds to pathogens, our system treats jailbreak activities as threats and uses a detector to
identify them. Once detected, the system initiates a defense response to neutralize the attack and
builds immunity against similar future threats. Specifically, when jailbreak activities are detected,
our framework adds the detected jailbreak instruction T q

i along with a refusal response Tref into
jailbreak memoryMj :

Mj ←Mj ∪ {(T q
i , Tref)} (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We then useMj to supervise fine-tuning the model. In this way, we progressively collect jailbreak
data during the model testing and enhance the defense capabilities of the model against various
jailbreak attacks. For normal instruction, our model does not alter its behavior but only incurs a
slight time cost for detecting jailbreak activities. Additionally, to prevent the model from becoming
overly defensive against normal activities, we use the traditional question-answering (QA) dataset
Dqa, to regularize the model during training.

Furthermore, we adopt the concept of test-time adaptation (TTA) (Wang et al., 2021) and build
a detection memory Md to train our jailbreak detector while detecting jailbreak behaviors during
testing. Specifically, we online update Md with detected jailbreak instructions along with their
corresponding answers T a

i as jailbreak QA pairs, and jailbreak instructions with refusal responses
as normal QA pairs by:

Md ←Md ∪ {(T q
i , T

a
i , 1)} ∪ {(T

q
i , Tref , 0)} (7)

Then we use Md to train our detector by Equation (5). Additionally, we also use the detection
dataset Dd for regularization training. We keep the maximum size of Md and Mj to 40 in our
experiments and adopt the FIFO (First-In, First-Out) strategy when memory is full.

3.4 PARAMETERS DECOUPLING OF DETECTION AND TRAINING

Directly combining the above detection and defense training strategy comes with a drawback: the
detector and defense training share a set of parameters (i.e., parameters in El). The updates to
model parameters by defense training are likely to impair the detector. To address this issue, we
propose decoupling the detector and defense training. For detection, we utilize the hidden state of
the intermediate layer, rather than the last layer, to perform detection. For defense training, we apply
the LoRA module (Hu et al., 2022) to the layers behind the intermediate detection layer, treating
them as trainable parameters, as shown in the right block of Figure 2. We ensure that parameter
updates to the detector and the defense training do not interfere with each other in this way. After
that, we obtain the overall pipeline of TTIM.

4 EXPERIMENTS

Table 1: The experimental results under the MM-SafetyBench (Liu et al., 2024d). TTIM’s ASR is
reported in the format of ASR/ASR-50 (same in the subsequent manuscript).

Methods LLaVA-v1.6-Vicuna-7B LLaVA-v1.6-Vicuna-13B Qwen2VL-7B Average
ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓)

No Defense 99.8 0.2 100.0 0.4 95.2 0.0 98.3 0.2
FSD 99.8 0.2 99.7 0.0 69.0 0.1 89.5 0.1
Adashield 7.0 14.0 43.8 51.5 47.4 31.0 32.7 32.2
VLGuard 1.4 6.5 0.2 4.7 0.1 0.0 0.6 3.7
TTIM (w/o gist) 1.4 10.7 3.0 3.8 1.5 8.4 2.0 7.6
TTIM 1.0/0.0 2.3 4.8/0.0 0.4 2.0/0.0 0.1 2.6/0.0 0.9

4.1 SETUP

▷ Jailbreak Attack/Defense Methods. We evaluate our defense methods against various jailbreak
attack methods. For experiments on MLLMs, we choose Figstep (Gong et al., 2025) and MM-
SafetyBench (Liu et al., 2024d). For experiments on LLMs, we utilize I-FSJ and GCG (in the
Appendix B) as the jailbreak attack method. For jailbreak defense methods, we consider FSD (Gong
et al., 2025), Adashield (Wang et al., 2024c), and VLGuard (Zong et al., 2024) for MLLM, and
Retokenization (Jain et al., 2023) and SmoothLLM (Robey et al., 2023) for LLM. Additionally,
we introduce another baseline, TTIM (w/o gist), which is identical to our method but uses the final
hidden state of the last token for detection. To assess the impact of our defense training on detection,
we report results for TTIM (w/o adapt.), where no defense training and optimization occur during
testing. Linear Probing (LP) represents a method that neither uses the gist token nor adapts during
testing (i.e., LLMs with a linear probing binary detector on the last generated token). Furthermore,
we compare our detector against detection baselines, including Self Defense (Phute et al., 2024) and
LVLM-LP (Zhao et al., 2024), in LLM experiments.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: The experimental results under Figstep (Gong et al., 2025).

Methods LLaVA-Vicuna-7B LLaVA-Mistral-7B LLaVA-Vicuna-13B Qwen2VL-7B Average
ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓)

No Defense 100.0 0.0 100.0 0.0 100.0 0.0 89.4 0.0 97.4 0.0
FSD 100.0 0.0 100.0 0.0 100.0 0.0 70.8 0.2 92.7 0.1
Adashield 0.0 14.0 0.0 7.2 0.0 51.2 32.8 31.8 8.2 26.1
VLGuard 0.0 7.0 0.0 1.8 0.0 5.2 0.0 0.0 0.0 3.5
TTIM (w/o gist) 1.6 0.0 0.4 0.4 0.8 1.6 9.4 0.4 3.1 0.6
TTIM 1.4/0.0 0.0 0.6/0.0 0.0 1.8/0.0 0.4 1.6/0.0 0.0 1.4/0.0 0.1

▷ Metrics. We evaluate jailbreak methods from two perspectives: the effectiveness of defense
against jailbreak attacks and the model’s ability to respond to normal instructions. For evaluating
the effectiveness of defense against jailbreak attacks, we adopt the Attack Success Rate (ASR) as a
metric, as is common in most studies (Wang et al., 2024c; Chao et al., 2024). We define ASR as the
proportion of jailbreak instructions that are not rejected, relative to all the jailbreak instructions. For
the response set Rj of the jailbreak dataset Dj , ASR is calculated as follows:

ASR =
|Rj | −

∑
r∈Rj

isReject(r)

|Rj |
,

where isReject(r) =

{
1, r is rejection,
0, r is not rejection.

(8)

We employ prefix matching to determine whether a response is rejected. Specifically, we compile a
set of rejection prefixes. If the model’s response matches any prefix in the rejection set, we consider
the instruction rejected. The rejection prefixes employed are listed in the Appendix A.4. Since our
method aims to enhance the model’s security capabilities incrementally, we also report ASR-50,
which calculates ASR for jailbreak samples in the last 50% of the test sequences. This reflects
the model’s performance after it has learned to defend against jailbreak attacks. Although defense
methods improve the model’s ability to reject malicious instructions, they may also cause the model
to reject an excessive number of normal queries. Thus, we use the Over-Defense Rate (ODR) to
assess the model’s ability to respond to normal instructions. For the response set Rn of the normal
dataset Dn, ODR is calculated as follows:

ODR =

∑
r∈Rn

isReject(r)

|Rn|
. (9)

Additionally, to evaluate the detector’s performance, we report the Accuracy (ACC), True Positive
Rate (TPR), and False Positive Rate (FPR) (Swets, 1988). Moreover, we provide the details of our
dataset construction, experiment setups, and our baselines in the Appendix A.

4.2 MAIN RESULTS

Table 3: The experimental results under text-based attack, I-FSJ (Zheng et al., 2024).

Methods LLaMA2-7B-chat LLaMA3-8B-Instruct
ASR (↓) ODR (↓) TPR (↑) ASR (↓) ODR (↓) TPR (↑)

No Defense 99.2 5.5 - 94.3 0.2 -
Retokenization (20%) 97.5 8.3 - 83.0 0.2 -
SmoothLLM (insert 20%) 76.6 26.7 - 100.0 0.4 -
SmoothLLM (swap 20%) 93.4 55.8 - 60.0 1.8 -
SmoothLLM (patch 20%) 80.9 27.5 - 57.4 6.4 -
TTIM (w/o adapt.) - - 98.9 - - 18.2
TTIM (w/o gist) 0.6 4.9 100.0 12.7 19.7 1.5
TTIM 2.6/0.0 0.6 100.0 1.0/0.0 0.2 40.0

▷ Jailbreak Defense. To evaluate the effectiveness of our method, we report the results on Figstep
and MM-SafetyBench in Tables 1 and 3. As shown in the tables, Adashield demonstrates strong
defensive capabilities, especially against Figstep, where it reduces the ASR to 0%. Similarly, the
ASR on MM-SafetyBench is reduced to 7% by Adashield. Despite its effectiveness, Adashield suf-
fers from a noticeable over-defense phenomenon with normal samples, with over 5% of them being
rejected. After training on a specially designed dataset, VLGuard shows relatively excellent per-
formance, achieving almost 0% ASR against jailbreak samples but still show over-rejects to normal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ASR

ODR

ACC

TPR

FPR

(a) LLaVA-Vicuna-7B under MM-SafetyBench

ASR

ODR

ACC

TPR

FPR

(b) LLaVA-Vicuna-7B under Figstep

ASR

ODR

ACC

TPR

FPR

(c) LLaVA-Mistral-7B under Figstep

TTIM (w/o gist)
TTIM (w/o adapt.)
TTIM

Figure 3: Performance of different variants of TTIM. All metrics are normalized. The larger areas
represent better performance.

samples. Compared to VLGuard, TTIM gradually learn to reject jailbreak attacks during testing
without any prior targeted training. It achieves an ASR of less than 2% at most experiments, and,
among all the effective jailbreak attack defense methods, our approach causes the least damage to
the model’s ability to respond to normal queries (i.e., ODR from 0.2% to 2.3% on MM-SafetyBench
with LLaVA-v1.6-Vicuna-7B as backbone and nearly 0% on others). From the ASR, we can draw a
conclusion that TTIM only requires a few jailbreak samples to learn how to reject such types of
jailbreak attacks (on the Figstep dataset, this number is less than 10). Since our method progres-
sively enhances the model’s defensive capabilities during testing, we believe that the ASR-50 metric
better reflects the true effectiveness of our approach. Our method achieved 0% ASR-50 across all
jailbreak attack datasets, indicating that, with continuous optimization, our model can achieve com-
plete defense against individual attacks. Moreover, Table 3 shows the results for the text-based
attack. Our method is also effective at defending against I-FSJ, a jailbreak method that only uses the
language modality. TTIM not only achieves an ASR-50 of 0% but also reduces the model’s ODR.

▷ Jailbreak Detection. Next, we analyze the role of our jailbreak detector from two perspectives:
1) What advantages does our detector’s design offer compared to TTIM (w/o gist)? 2) How does
training the detector during testing enhance the effectiveness of our framework?

First, addressing the former question, the results in Table 4 show that TTIM (w/o adapt.) exhibits
clear improvements over LP in three metrics: Accuracy, TPR, and FPR. This improvement is primar-
ily attributed to our introduction of the gist token, which is specifically designed to extract malicious
information from previously generated sequences, rather than relying solely on the output of the
last token for classification. This strategy has improved the expressive capacity of our detector.
Secondly, the performance of the detector is shown in Figure 3. It is evident that TTIM (w/o gist)
exhibits a significant increase in FPR compared to TTIM, suggesting that it misclassifies more nor-
mal samples as jailbreak samples. One consequence of this issue is the use of more normal samples
in defense training, which leads to an increase in the model’s ODR, as shown in the Tables 1 and 3.
The cause of this issue arises from the detector sharing parameters with the defense training. The pa-
rameters’ update during defense training will affect the performance of the detector. TTIM resolves
this issue by decoupling the defense training from the jailbreak detector by separating parameters.

1:0.5 1:1 1:2 1:4
Ratio (Jailbreak data : Normal data)

0.0

0.5

1.0

1.5

2.0

AS
R

/ A
SR

-5
0

(%
)

ASR ASR-50 ODR

0.0

0.1

0.2

0.3

0.4

0.5

OD
R

(%
)

(a) Defense capabilities.

1:0.5 1:1 1:2 1:4
Ratio (Jailbreak data : Normal data)

98.0

98.5

99.0

99.5

100.0

AC
C

/ T
PR

 (%
)

ACC TPR FPR

0.0

0.5

1.0

1.5

2.0

FP
R

(%
)

(b) Detection performance.
Figure 4: Results under varying jailbreak data ratios.

Table 4: The detection performance
under I-FSJ (Zheng et al., 2024) at-
tack with LLaMA2-7B-chat.

Methods ACC (↑) TPR (↑) FPR (↓)
Self Defense 64.4 42.9 14.2
LVLM-LP 67.7 36.3 0.8
LP 88.5 77.4 0.7
TTIM (w/o adapt.) 99.1 98.9 0.6
TTIM (w/o gist) 99.4 100.0 0.6
TTIM 99.9 100.0 0.1

4.3 ADDITIONAL ANALYSIS

In real-world scenarios, the situations encountered by models can be both complex and diverse.
Therefore, we conduct additional experiments to directly assess the robustness of our method in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

complex scenarios. The results of transferability, continually changing jailbreak, and GCG attack
are provided in the Appendix B.

▷ Sensitivity to the Detector. The ability of our method to resist jailbreak attacks intuitively depends
on the detector’s effectiveness at identifying attacks. As shown in Table 3, our detector exhibited
a relatively lower TPR under certain extreme conditions. Specifically, TTIM (w/o adapt.) detected
only 18.2% of jailbreak activities; however, with adaptation of the detector, TTIM significantly im-
proved detection performance, achieving a TPR of 40%. We hypothesize that this reduced detection
efficacy occurs because I-FSJ requires 8 context demonstrations to jailbreak LLaMA3-8B-Instruct,
resulting in a substantial discrepancy between the token lengths encountered during detector train-
ing and those in testing scenarios. The average token lengths for instructions and answers during
detector training are 13 and 271, respectively, whereas the average token length for jailbreak in-
structions using I-FSJ reaches 3061. Despite this limitation, our method effectively resists attacks
on LLaMA3, demonstrating robustness even when the detector’s performance degrades.

ASR ODR ACC TPR FPR0

20

40

60

80

100

Sc
or

e
(%

)

TTIM (w/o adapt.)
TTIM

Figure 5: Results under hybrid jailbreak
attack. We randomly selected 300 jail-
break samples from MM-SafetyBench
(Liu et al., 2024d) and 300 from Figstep
(Gong et al., 2025), combining them
into a new jailbreak dataset.

▷ Results under Hybrid Jailbreak Attack. In deploy-
ment scenarios, attackers may employ multiple meth-
ods simultaneously to launch jailbreak attacks against the
model. Accordingly, we designed experiments involving
hybrid jailbreak attacks. The results, presented in Fig-
ure 5, indicate that under our method, the ASR can still
be reduced to a very low level, while the model’s ability
to respond to normal queries remains largely unaffected.

▷ Results under Different Jailbreak Data Ratios. In
practical applications, the proportion of jailbreak data
within the model’s test data is typically not fixed. The
model may simultaneously receive a large number of jail-
break attack requests, or it might not encounter any jail-
break instructions for extended periods. Thus, we report
the results of our method under varying proportions of
jailbreak attack data in Figure 4. The results presented in the table demonstrate that our method
achieves stable and effective performance across various proportions, both in terms of defending
against jailbreak attacks and the detection performance of our detector.

Table 5: Average inference cost (seconds) for each instruction. All experiments are conducted with
I-FSJ jailbreak. The test samples are mixed with 520 normal samples and 520 jailbreak samples.

Vanilla Detection Test-time Defense
LLaMA2-7B + TTIM’s Detector + Self Defense TTIM Training Inside

7.18 7.21 (+0.4%) 36.13 5.49 0.67 (12.2%)

▷ Computation Cost Analysis. The computational cost of our method is reported in Table 5.
As shown, our detector introduces a negligible overhead—only 0.4% of the standard inference
cost—making it substantially more efficient than Self Defense (Phute et al., 2024), which adopts
a proxy LLM to analyze the generated output. In addition, the training cost constitutes merely
12.2% of the overall computational budget. Overall, the inference time of TTIM is lower than that
of the vanilla model. This is primarily because TTIM generates short rejection responses to jailbreak
attempts, rather than generating long malicious outputs.

5 CONCLUSION

In this paper, we address the challenge of defending against diverse jailbreak attacks. We propose
a universal test-time defense framework designed to dynamically detect jailbreak attacks during
testing and utilize detected jailbreak instructions to defensively train the model, thus gradually en-
hancing the defense capability of the model. To enhance jailbreak attack detection, we introduce
a specialized gist token designed to extract harmful information from model responses with almost
no additional cost, which is then classified using a binary classifier. Furthermore, to minimize the
impact of model updates on the detector, we decouple the detector from defense training, ensuring
they operate on separate parameters and do not interfere with each other. Extensive experiments
demonstrate the efficacy of our method across a variety of scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation were involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets are available in the supplementary material to facilitate replication and verification.
The experimental setup, including training steps, model configurations, and hardware details, is
described in detail in the paper. We have also provided a full description of TTIM and attached the
code to assist others in reproducing our experiments. Additionally, jailbreak benchmarks, such as
MMSafetyBench, Figstep, and I-FSJ, are publicly available, ensuring consistent and reproducible
evaluation results. We believe these measures will enable other researchers to reproduce our work
and further advance the field.

REFERENCES

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
Jailbreaking black box large language models in twenty queries. In Workshop on Proc. NeurIPS,
2024.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy challenges of large
language models: A survey. ACM Computing Surveys, 2024.

Zhijie Deng, Xiao Yang, Shizhen Xu, Hang Su, and Jun Zhu. Libre: A practical bayesian approach
to adversarial detection. In Proc. CVPR, 2021.

Soumya Suvra Ghosal, Souradip Chakraborty, Vaibhav Singh, Tianrui Guan, Mengdi Wang, Ah-
mad Beirami, Furong Huang, Alvaro Velasquez, Dinesh Manocha, and Amrit Singh Bedi. Im-
mune: Improving safety against jailbreaks in multi-modal llms via inference-time alignment.
arXiv preprint arXiv:2411.18688, 2024.

Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan,
and Xiaoyun Wang. Figstep: Jailbreaking large vision-language models via typographic visual
prompts. In Proc. AAAI, 2025.

Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James T
Kwok, and Yu Zhang. Eyes closed, safety on: Protecting multimodal llms via image-to-text
transformation. In Proc. ECCV, 2024a.

Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James T
Kwok, and Yu Zhang. Eyes closed, safety on: Protecting multimodal llms via image-to-text
transformation. In Proc. ECCV, 2024b.

Jiyang Guan, Jian Liang, and Ran He. Backdoor defense via test-time detecting and repairing. In
Proc. CVPR, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In Proc. ICLR, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhengmian Hu, Gang Wu, Saayan Mitra, Ruiyi Zhang, Tong Sun, Heng Huang, and Viswanathan
Swaminathan. Token-level adversarial prompt detection based on perplexity measures and con-
textual information. arXiv preprint arXiv:2311.11509, 2023.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh Chi-
ang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. Baseline defenses
for adversarial attacks against aligned language models. arXiv preprint arXiv:2309.00614, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Haibo Jin, Leyang Hu, Xinuo Li, Peiyan Zhang, Chonghan Chen, Jun Zhuang, and Haohan
Wang. Jailbreakzoo: Survey, landscapes, and horizons in jailbreaking large language and vision-
language models. arXiv preprint arXiv:2407.01599, 2024.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback. arXiv preprint arXiv:2312.14925, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Aaron Jiaxun Li, Soheil Feizi, and Himabindu
Lakkaraju. Certifying llm safety against adversarial prompting. arXiv preprint arXiv:2309.02705,
2023.

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distri-
bution shifts. International Journal of Computer Vision, pp. 1–34, 2024.

Jinpeng Lin, Xulei Yang, Tianrui Li, and Xun Xu. Improving adversarial robustness for 3d point
cloud recognition at test-time through purified self-training. arXiv preprint arXiv:2409.14940,
2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proc. ECCV,
2014.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Proc.
NeurIPS, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proc. CVPR, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. In Proc. ICLR, 2024c.

Xin Liu, Yichen Zhu, Jindong Gu, Yunshi Lan, Chao Yang, and Yu Qiao. Mm-safetybench: A
benchmark for safety evaluation of multimodal large language models. In Proc. ECCV, 2024d.

Weikai Lu, Ziqian Zeng, Jianwei Wang, Zhengdong Lu, Zelin Chen, Huiping Zhuang, and Cen
Chen. Eraser: Jailbreaking defense in large language models via unlearning harmful knowledge.
arXiv preprint arXiv:2404.05880, 2024.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. arXiv preprint arXiv:2307.06435, 2023.

Gaurav Kumar Nayak, Ruchit Rawal, and Anirban Chakraborty. Dad: Data-free adversarial defense
at test time. In Proc. WACV, pp. 3562–3571, 2022.

11

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Alwin Peng, Julian Michael, Henry Sleight, Ethan Perez, and Mrinank Sharma. Rapid response:
Mitigating llm jailbreaks with a few examples. arXiv preprint arXiv:2411.07494, 2024.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Mansi Phute, Alec Helbling, Matthew Daniel Hull, ShengYun Peng, Sebastian Szyller, Cory Cor-
nelius, and Duen Horng Chau. Llm self defense: By self examination, llms know they are being
tricked. In The Second Tiny Papers Track at ICLR, 2024.

Renjie Pi, Tianyang Han, Jianshu Zhang, Yueqi Xie, Rui Pan, Qing Lian, Hanze Dong, Jipeng
Zhang, and Tong Zhang. Mllm-protector: Ensuring mllm’s safety without hurting performance.
Proc. EMNLP, 2024.

Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal.
Visual adversarial examples jailbreak aligned large language models. In Proc. AAAI, 2024.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. Smoothllm: Defending large
language models against jailbreaking attacks. arXiv preprint arXiv:2310.03684, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proc. CVPR, 2022.

Mark Russinovich, Ahmed Salem, and Ronen Eldan. Great, now write an article about that: The
crescendo {Multi-Turn}{LLM} jailbreak attack. In 34th USENIX Security Symposium (USENIX
Security 25), pp. 2421–2440, 2025.

Lijun Sheng, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Can we trust the unlabeled target data?
towards backdoor attack and defense on model adaptation. arXiv preprint arXiv:2401.06030,
2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In Proc.
NeurIPS, 2020.

John A Swets. Measuring the accuracy of diagnostic systems. Science, 240(4857):1285–1293, 1988.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In Proc. ICLR, 2021.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Yanbo Wang, Jiyang Guan, Jian Liang, and Ran He. Do we really need curated malicious data
for safety alignment in multi-modal large language models? arXiv preprint arXiv:2504.10000,
2025a.

Yanbo Wang, Yongcan Yu, Jian Liang, and Ran He. A comprehensive survey on trustworthiness in
reasoning with large language models. arXiv preprint arXiv:2509.03871, 2025b.

Yihan Wang, Zhouxing Shi, Andrew Bai, and Cho-Jui Hsieh. Defending llms against jailbreaking
attacks via backtranslation. In Proc. ACL Findings, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yu Wang, Xiaogeng Liu, Yu Li, Muhao Chen, and Chaowei Xiao. Adashield: Safeguarding multi-
modal large language models from structure-based attack via adaptive shield prompting. In Proc.
ECCV, 2024c.

Zeming Wei, Yifei Wang, Ang Li, Yichuan Mo, and Yisen Wang. Jailbreak and guard aligned
language models with only few in-context demonstrations. arXiv preprint arXiv:2310.06387,
2023.

Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, and
Fangzhao Wu. Defending chatgpt against jailbreak attack via self-reminders. Nature Machine
Intelligence, 5(12):1486–1496, 2023.

Yueqi Xie, Minghong Fang, Renjie Pi, and Neil Gong. Gradsafe: Detecting jailbreak prompts for
llms via safety-critical gradient analysis. In Proc. ACL, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
wei Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow
complex instructions. In Proc. ICLR, 2024a.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan Jia, Bill Yuchen Lin, and Radha Poovendran.
Safedecoding: Defending against jailbreak attacks via safety-aware decoding. In Proc. ACL,
2024b.

Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei He, Jiaxing Song, Ke Xu, and Qi Li. Jailbreak
attacks and defenses against large language models: A survey. arXiv preprint arXiv:2407.04295,
2024.

Yongcan Yu, Lijun Sheng, Ran He, and Jian Liang. Stamp: Outlier-aware test-time adaptation with
stable memory replay. In Proc. ECCV, 2024.

Yifan Zeng, Yiran Wu, Xiao Zhang, Huazheng Wang, and Qingyun Wu. Autodefense: Multi-agent
llm defense against jailbreak attacks. arXiv preprint arXiv:2403.04783, 2024.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023.

Xiaoyu Zhang, Cen Zhang, Tianlin Li, Yihao Huang, Xiaojun Jia, Ming Hu, Jie Zhang, Yang Liu,
Shiqing Ma, and Chao Shen. Jailguard: A universal detection framework for llm prompt-based
attacks. arXiv preprint arXiv:2312.10766, 2024a.

Zhexin Zhang, Junxiao Yang, Pei Ke, Fei Mi, Hongning Wang, and Minlie Huang. Defending large
language models against jailbreaking attacks through goal prioritization. In Proc. ACL, 2024b.

Qinyu Zhao, Ming Xu, Kartik Gupta, Akshay Asthana, Liang Zheng, and Stephen Gould. The first
to know: How token distributions reveal hidden knowledge in large vision-language models? In
Proc. ECCV, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Jing Jiang, and Min Lin. Improved few-shot
jailbreaking can circumvent aligned language models and their defenses. In Proc. NeurIPS, 2024.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. In Proc. ICLR, 2024.

Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, and Timothy Hospedales. Safety
fine-tuning at (almost) no cost: A baseline for vision large language models. In Proc. ICML,
2024.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE DETAILS OF EXPERIMENTAL SETUP

A.1 DATASET CONSTRUCTION

To construct the detection dataset, we initially collected original malicious instructions from Ad-
vBench (Zou et al., 2023) and MM-SafetyBench (Liu et al., 2024d). To obtain malicious answers,
we employed Wizard-Vicuna-7B-Uncensored (Xu et al., 2024a), a model without safety alignment,
to generate answers. To obtain refusal answers, we utilized LLaMA2-13B-chat to generate an-
swers with various refusal prefixes. We employed GPT4-LLM-Cleaned (Peng et al., 2023) and
LLaVA-Instruct-150K (Liu et al., 2023) as clean instructions for LLMs and MLLMs, respectively.
Furthermore, to generate clean answers, we utilized LLaMA2-7B-chat and LLaVA-v1.6-Vicuna-7B
for GPT4-LLM-Cleaned and LLaVA-Instruct-150K, respectively. Our detection dataset comprises
four parts: 1) malicious instructions with malicious answers, classified as jailbroken; 2) malicious
instructions with refusal answers, classified as not jailbroken; 3) clean instructions with clean an-
swers, classified as not jailbroken; 4) clean instructions with malicious answers, classified as jail-
broken. The details of Dd are depicted in Table 6 The primary focus of the dataset is to determine
whether the answer is harmful, rather than assessing the harm of the instruction itself. For the vi-
sual question-answering (VQA) dataset, since the original malicious instructions lack images, we
randomly selected images from the COCO dataset (Lin et al., 2014) for them. It is important to note
that our malicious instructions are original and unaffected by jailbreak attacks, meaning we do not
use jailbreak-processed instructions during detector training. For the evaluation dataset, we com-
bine normal QA/VQA instructions from GPT4-LLM-Cleaned/LLaVA-Instruct-150K with jailbreak
instructions to simulate real deployment environments in experiments on LLMs/MLLMs.

Table 6: The details of detectin dataset Dd. The information is provided with (#samples, jailbreak
label)

Malicious Answer Normal Answer Rejection Answer

Malicious Question (2198, 1) - (2100, 0)
Normal Question (2198, 1) (4000, 0) -

A.2 BASELINES

Figstep (Gong et al., 2025) conceals harmful content within text prompts using typography, embed-
ding it into blank images to circumvent text-modality safety alignments.

MM-SafetyBench (Liu et al., 2024d) initially generates a malicious background image using harm-
ful keywords from jailbreak prompts and subsequently converts text-based harmful content into
images using topography.

I-FSJ (Zheng et al., 2024), based on in-context jailbreak (Wei et al., 2023), aims to induce the model
to generate harmful content through several jailbreak demonstrations. Additionally, I-FSJ employs
system tokens to enhance its attack capabilities. Furthermore, a greedy search is used to select the
optimal demonstration from the datasets.

GCG (Zou et al., 2023) is a white-box method utilizing an adversarial text suffix to jailbreak LLMs.

FSD (Gong et al., 2025) is a defense method that introduces a specific system prompt, reminding
the model to focus on malicious text within images.

Adashield (Wang et al., 2024c) is a test-time alignment method proposing the addition of a defense
prompt following the input text prompt. The defense prompts can be static or adaptive, which are
called Adashield-S or Adashield-A, respectively. We consider Adashield-S in our experiments.

VLGuard (Zong et al., 2024) is a training-time alignment method that involves additional safety
fine-tuning on a specific dataset. It constructs a safety instruction tuning dataset containing mali-
cious images to defend against structure-based jailbreak methods like Figstep and MM-SafetyBench.
Unlike VLGuard, our detector’s training dataset contains no prior knowledge of the jailbreak attack
method (e.g., malicious images).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 EXPERIMENTAL DETAILS

For MLLM experiments, we select Qwen2VL-7B (Wang et al., 2024a) and LLaVA-v1.6 (Liu et al.,
2023; 2024b;a) built on different language backbones like Vicuna-7B/13B (Chiang et al., 2023) and
Mistral-7B (Jiang et al., 2023) as the base models. For LLM experiments, we use LLaMA2-7B-chat
and LLaMA3-8B-Instruct (Touvron et al., 2023) as the base model. The weights for all base models
are sourced from Hugging Face. We set the learning rate, number of epochs, and batch size for
detector training to 1e-3, 5, and 32, respectively. We use the Adam optimizer (Kingma, 2014) for
defense training, setting the learning rates to 0.001 for MLLMs and 0.002 for LLMs. We apply
LoRA (Hu et al., 2022) with a rank of 16 to the query and value matrix in the last 15 transformer
blocks. The regularization batch size is set to 40, while the batch sizes for refusal training and
detector training during test time are set to 1 and 6, respectively. Furthermore, during jailbreak
activity detection, we train the defense capabilities and the detector for 1 and 5 steps, respectively.
We incorporate an equal mix of jailbreak instructions and clean instructions in the test data. All the
experiments are conducted on 4*RTX A6000.

A.4 THE JAILBREAK EVALUATION

For the refusal judgment, we use the prefixes match method. We think the model refused to answer
if the respones start with the following prefixes.

I’m sorry
Sorry
I am sorry
I apologize
As an
As a responsible
I’m an
I’m just
As an Assistant
If you have any other non-malicious requests

I do not
I cannot
As a language model
I’m really sorry
My apologies
I’m not able to provide
I am really sorry
I can’t provide
I can’t assist
I’m unable to

B ADDITIONAL RESULTS

Table 7: ASR(%) under continual
changing environments.

Attack Order (−→)
Figstep MM-SafetyBench Figstep

1.4 6.6 0.0

Robustness against continual changing attack. To val-
idate the effectiveness of our method under continuous
exposure to various forms of jailbreak attacks, we con-
ducted experiments as shown in Table 7. We selected
500 different samples for each type of jailbreak attack
and conducted the attacks in varying orders. As can be
seen, even after undergoing the MM-SafetyBench attack,
our method still maintains good defensive performance
during the second exposure to the Figstep attack, without experiencing catastrophic forgetting.

Table 8: The transferability results. We first adopt TTIM on the source jailbreak attack. Then, we
freeze the fine-tuned model and evaluate it on the target attack. We report the ASR while adopting
the LLaVA-v1.6-Vicuna-7B as the backbone. The numbers in brackets represent the changes of
ASR compared to the Vanilla Model.

Figstep −→MM-SafetyBench MM-SafetyBench −→ Figstep

84.3 (-15.5) 0.0 (-100.0)

Transferability of defense training. We demonstrate the static transferability of the fine-tuned
model in Table 8. It is effective when migrating from a more complex attack (MM) to a simpler one
(Figstep), but its effectiveness is limited in the reverse direction. However, it’s worth noting that our

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

method is an online adaptive defense method. New types of jailbreaks will be adaptively defended
against as they emerge.

Table 9: Experimental Results under GCG jailbreak attacks.

ASR ODR

LLaMA2-7B-chat 21.5 0.2
+TTIM 7.7 (-13.8%) 2.7 (+2.5%)

(a) Accumulated ASR

(b) Accumulated TPR

(c) Accumulated ODR

(d) Accumulated FPR

Figure 6: Changes in metrics during the test process against Figstep. TTIM-NA represents TTIM
(w/o adapt.)

Results under GCG attack. We supplemented the results of the white-box attack, GCG, in Table 9.
TTIM decreased the ASR from 21.5% to 7.7%, demonstrating its effectiveness against GCG.

Performance curve during testing. To demonstrate the performance of our method as the test
progresses, we report the relevant indicators in the Figures 6 and 7. As can be seen, as the test
progresses, the ASR of our method continues to decrease, indicating that our model has learned how
to resist this type of jailbreak attack, and our method only needs a small number of samples to fully
learn how to defend. In addition, our other indicators remain stable during the test, which shows the
robustness of our method.

C ALGORITHM OF TTIM

We summarize the pipeline of TTIM in Algorithm 1.

D BROADER IMPACTS

While this work does not directly target societal or community-level outcomes, it contributes to
the broader scientific enterprise by advancing foundational understanding in jailbreak studies. The
methods and findings presented may support future theoretical developments and inspire new direc-
tions in related research areas. Furthermore, the technical tools and insights generated can serve as
a resource for researchers pursuing similar challenges, fostering further academic collaboration and
exploration.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Accumulated ASR

(b) Accumulated TPR

(c) Accumulated ODR

(d) Accumulated FPR

Figure 7: Changes in metrics during the testing against MM-SafetyBench. TTIM-NA represents
TTIM (w/o adapt.)

Algorithm 1 The Pipeline of TTIM

Initailize: LLM {El, Cd}, Gist token tg and Detection Classifier Cd, Jailbreak Memory Mj ,
Detection MemoryMd, Instruction Dataset Dqa, Detection Dataset Dd, Refusal Answer Tref .
Input: An instruction T q .
Generate the answer T a of T q by Equation (1)
Obtain the jailbreak label by Equation (3) and Equation (4).
if jailbreak label equals 1 then

Append {(T q, Tref)} intoMj .
Append {(T q, Tref , 0), (T

q, T a, 1)} intoMd.
Train the Adapter of El withMj and Dqa.
Train tg and Cd withMd and Dd

end if
Output: Answer T a

E LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

17

	Introduction
	Related Works
	Jailbreak Attacks
	Jailbreak Detection and Defense
	Test-Time Learning

	Methodology
	Preliminary
	Jailbreak Detection with Gist Token
	Adaptive Defense Training
	Parameters Decoupling of Detection and Training

	Experiments
	Setup
	Main Results
	Additional Analysis

	Conclusion
	The Details of Experimental Setup
	Dataset Construction
	Baselines
	Experimental Details
	The jailbreak Evaluation

	Additional Results
	Algorithm of TTIM
	Broader Impacts
	LLM Usage

