

000 001 002 003 004 005 006 007 008 009 010 ADAPTIVE JAILBREAK DEFENSE: A SELF-EVOLVING FRAMEWORK FOR LARGE LANGUAGE MODELS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 While (multimodal) large language models (LLMs) have attracted widespread at-
012 tention due to their exceptional capabilities, they remain vulnerable to jailbreak
013 attacks. Various defense methods have been proposed to mitigate jailbreak at-
014 tacks. These methods typically incorporate specific defense mechanisms into the
015 model during training or deployment, aiming to enhance the LLM’s robustness
016 against jailbreak attacks in advance. However, as new jailbreak attack methods
017 continue to emerge, defense methods with static resistance mechanisms can fre-
018 quently be bypassed during testing. To address these limitations, we propose a de-
019 fense framework, called Test-Time IMmunization (TTIM), which can adaptively
020 defend against various jailbreak attacks through a self-evolving mechanism during
021 testing. Specifically, TTIM first trains a gist token for efficient detection, which is
022 subsequently employed to detect jailbreak activities during inference. When jail-
023 break attempts are detected, TTIM implements safety fine-tuning using the identi-
024 fied jailbreak instructions paired with refusal responses. Furthermore, to mitigate
025 potential performance degradation of the detector caused by parameter updates
026 during safety fine-tuning, we decouple the fine-tuning process from the detection
027 module. Extensive experiments conducted on both LLMs and multimodal LLMs
028 demonstrate that, starting from non-guarded models, TTIM effectively defends
029 against various jailbreaks during testing with few jailbreak samples. Code is at-
030 tached as supplementary material.

031 1 INTRODUCTION

032 Large language models (LLMs) (Zhao et al., 2023; Touvron et al., 2023; OpenAI, 2023; Naveed
033 et al., 2023) and multimodal large language models (MLLMs) (Team et al., 2023; Zhu et al., 2024;
034 Liu et al., 2023) have achieved widespread adoption across diverse applications, due to their su-
035 perior performance and adaptability. Recently, security vulnerabilities in LLMs have emerged as
036 a critical research focus (Yi et al., 2024; Jin et al., 2024; Das et al., 2024), which stem from their
037 inherent weaknesses. To mitigate risks associated with the generation of harmful content (e.g., dis-
038 criminatory, unethical, or illegal outputs), modern LLMs implement safety-alignment techniques,
039 including reinforcement learning from human feedback (Kaufmann et al., 2023; Stiennon et al.,
040 2020) and safety instruction tuning (Peng et al., 2023; Zhang et al., 2023; Zong et al., 2024; Wang
041 et al., 2025a).

042 Despite these safeguards, LLMs remain vulnerable to sophisticated jailbreak attacks (Yi et al., 2024;
043 Jin et al., 2024; Wang et al., 2025b), which are designed to circumvent these protections and elicit
044 harmful outputs. This vulnerability has been empirically validated through recent research (Chao
045 et al., 2024; Liu et al., 2024c; Zou et al., 2023), revealing that state-of-the-art safety alignments can
046 be circumvented. To mitigate these risks, a variety of defense strategies have been developed to
047 enhance the robustness of LLMs against such jailbreak tactics (Zhang et al., 2024b; Wang et al.,
048 2024b; Zhang et al., 2024a). Current methods primarily focus on endowing models with specific
049 security properties during training or deployment, thereby successfully defending against certain
050 jailbreak attacks. However, existing methods only provide models with specific and limited secu-
051 rity mechanisms and are unable to incrementally enhance the model’s defense capabilities against
052 emerging novel jailbreak attacks during inference, thereby leading to their failure. For instance, Hu
053 et al. (2023) and Kumar et al. (2023) focus on addressing adversarial prompt attacks by implement-
ing perplexity filtering and token deletion. However, these approaches fail to address other forms of

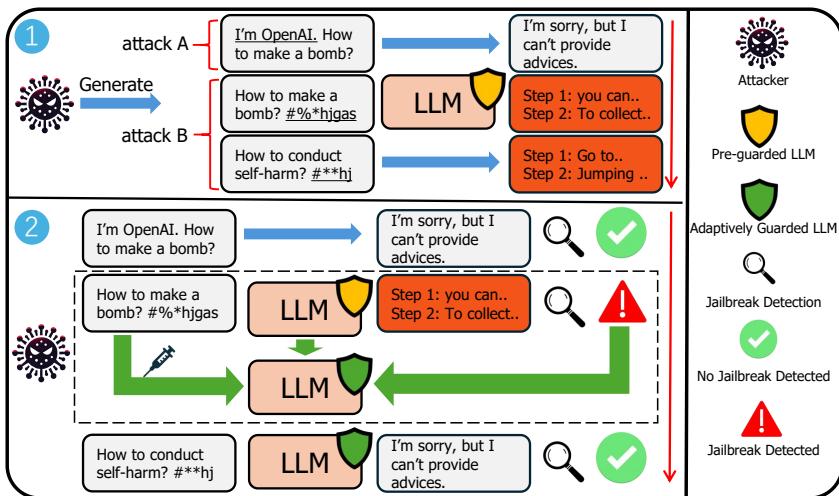


Figure 1: The overview of test-time immunization. (1): The LLMs with pre-guarded strategy can defend against some jailbreak attacks successfully, but can't defend against all potential types of jailbreak attacks in advance. (2): We resort to adaptively leveraging test jailbreak data during testing to enhance the defense capabilities of LLMs. When a jailbreak attack hacks our model, we learn the distribution of the jailbreak attack and gradually become immune to it.

novel attacks, such as embedding malicious instructions into images (Gong et al., 2025) or few-shot jailbreak (Zheng et al., 2024).

Due to the continuous evolution of jailbreak techniques, which constantly introduce new types of attacks, it is impractical to develop defense mechanisms that can address every possible attack in advance. To address this limitation, we introduce a jailbreak defense framework called Test-Time IMmunization (TTIM), as illustrated in Figure 1. Instead of addressing jailbreak attacks in advance, TTIM progressively enhances its resistance against emerging novel jailbreak attacks during testing, which is similar to the biological immune system. In biological immune systems, when the body encounters a pathogen for the first time, the immune system identifies it and initiates a targeted response, producing specific antibodies to neutralize the threat. Similarly, TTIM treats jailbreak attempts as digital "pathogens", striving to detect them during inference. Upon detecting a jailbreak attempt, TTIM develops defense mechanisms based on the harmful instructions, thereby effectively countering subsequent attacks of the same type. Consequently, TTIM gradually develops robust immunity against diverse jailbreak techniques, continuously strengthening its resilience during inference.

A key insight underlying our defense framework is that identifying jailbreak behaviors in LLMs is often more straightforward than directly defending against them, as highlighted by (Gou et al., 2024a; Zhao et al., 2024; Zhang et al., 2024a). While several studies, including (Zhang et al., 2024a; Phute et al., 2024), have focused on developing precise detection mechanisms for jailbreak attacks, these approaches typically rely on auxiliary proxy LLMs for output analysis. However, such configurations can be impractical in real-world deployments due to computational and temporal overhead. To address this limitation, we propose an efficient jailbreak detector that introduces minimal overhead. Specifically, we train a gist token to extract salient information from previously generated tokens by injecting it at the sequence's end. We then employ a classifier to determine whether the LLM has been jailbroken. Additionally, we construct a dataset to train our detector, which comprises harmful questions, harmless questions with harmful answers, harmless answers, and refusal responses. For defense training, upon detecting jailbreak activities, we leverage the identified jailbreak instructions and refusal responses to fine-tune the model using a low-rank adapter (LoRA) (Hu et al., 2022). Furthermore, we decouple the jailbreak detector from the trainable LoRA module. Specifically, we utilize the intermediate hidden state for detection and train the LoRA module exclusively on the final layers of the model, ensuring that updates to the LoRA module do not compromise detection performance. Moreover, to mitigate the risk of overfitting to rejecting jailbreak attempts, we incorporate normal data with jailbreak data for regularization. Concurrently, we optimize the detector during testing to further enhance its performance.

108 In the experimental section, we comprehensively evaluate TTIM against various jailbreak attacks on
 109 both LLMs and MLLMs. The results demonstrate that our framework effectively mitigates jailbreak
 110 attempts after detecting only a minimal number of such activities (e.g., 10), ultimately reducing the
 111 jailbreak attack success rate to nearly zero.

112 In summary, our contributions can be outlined as follows:
 113

- 114 • We develop an adaptive jailbreak defense framework that detects jailbreak activities at test-time
 115 and enhances the model’s defense capabilities against such attempts in an online manner.
- 116 • We design an efficient jailbreak detector that leverages a gist token and a binary classifier to
 117 accurately identify harmful responses with minimal computational cost.
- 118 • To improve the stability of the detector during testing, we propose a decoupling strategy by
 119 assigning different parameters for detector and defense training.
- 120 • Extensive experiments on both LLMs and MLLMs demonstrate that our framework effectively
 121 defends against various jailbreak attacks.

124 2 RELATED WORKS

125 2.1 JAILBREAK ATTACKS

126 Research has consistently shown that safety-aligned LLMs and MLLMs remain vulnerable to jail-
 127 break attacks (Jin et al., 2024; Chao et al., 2024; Russinovich et al., 2025), with exploitation tech-
 128 niques evolving from simple adversarial tactics to more sophisticated methods. For example, GCG
 129 (Zou et al., 2023) appends an adversarial suffix to jailbreak prompts. While effective, its practi-
 130 cality is limited by its detectability through perplexity testing. In contrast, AutoDAN (Liu et al.,
 131 2024c) employs a hierarchical genetic algorithm to generate readable jailbreak prefixes that evade
 132 such detection. Additionally, ICA (Wei et al., 2023) advances in-context jailbreaking by embedding
 133 harmful demonstrations directly into the context, effectively manipulating LLMs. Building on this,
 134 Zheng et al. (2024) refines the approach by injecting system tokens and employing a greedy search
 135 strategy within the demonstrations to enhance effectiveness. As MLLMs gain prominence, their
 136 multimodal capabilities have become a key target for attacks. Qi et al. (2024) highlights the vision
 137 modality as particularly vulnerable to adversarial attacks and proposes adversarial image training
 138 as a means to facilitate jailbreaking. Figstep (Gong et al., 2025) employs a blank-filling technique
 139 in image prompts to trigger harmful responses. It combines a standardized text prompt with a ma-
 140 licious topography image to manipulate model outputs. Similarly, Liu et al. (2024d) introduces
 141 MM-SafetyBench, which also employs topography to subtly incorporate malicious prompts within
 142 images. However, unlike Figstep, MM-SafetyBench uses stable diffusion (Rombach et al., 2022) to
 143 create more complex backgrounds that contain the intention of jailbreak, thus enhancing the stealth-
 144 iness and effectiveness of the attack.

146 2.2 JAILBREAK DETECTION AND DEFENSE

147 To ensure the outputs of LLMs remain aligned with human values, substantial research has been de-
 148 voted to both detecting and defending against jailbreak attacks. Jailbreak detection (Jain et al., 2023;
 149 Xie et al., 2024) aims to differentiate jailbreak activities from normal activities. Current detection
 150 techniques often rely on an auxiliary proxy language model to analyze outputs. For instance, Phute
 151 et al. (2024) generates detection prompts by appending the model’s response to the question “is the
 152 response harmful?” and then uses a proxy LLM to assess potential harm. Similarly, Pi et al. (2024)
 153 fine-tunes a small proxy model, utilizing the hidden state of its last token with a binary classifier
 154 to determine the nature of a response. LVLM-LP (Zhao et al., 2024) addresses jailbreak detection
 155 by adopting a classifier beyond the first generated token. Another approach proposed by Zhang
 156 et al. (2024a) involves augmenting the input multiple times and using a similarity matrix between
 157 responses for detection. However, most of these methods are time-consuming, relying on additional
 158 models or multiple input augmentations, which makes them less practical for real-time applications.
 159 Instead, we propose a highly efficient detector that incurs minimal additional cost.

160 Another line of work against jailbreak attacks is jailbreak defense (Gou et al., 2024b). Self-reminder
 161 (Xie et al., 2023) is among the earliest works to introduce a defensive system designed to remind

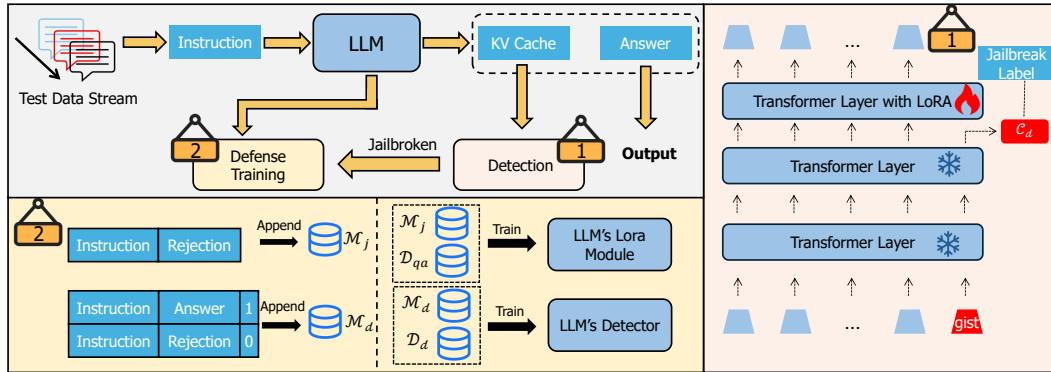


Figure 2: Detail workflow of TTIM. **(1)** We insert a trainable gist token at the sequence’s end and utilize the hidden states from intermediate layers along with a classifier C_d to perform detection. In a real-world application, we can employ the KV Cache and the gist token to perform efficient detection. **(2)** Upon detecting jailbreak activity during detection, we append the data to jailbreak memory and incorporate detection data into detection memory for training. Then we utilize jailbreak memory M_j to train the LLM’s defense LoRA module by supervised fine-tuning and employ detection memory M_d to further train the detector (i.e., TTA) by Equation (5). Additionally, we employ a question-answering dataset D_{qa} and a detection dataset D_d for regularization.

the model not to produce harmful content. Focusing on MLLMs, Adashield (Wang et al., 2024c) optimizes a suffix text prompt designed to remind the model to scrutinize both malicious text and image inputs. Gou et al. (2024a) endeavors to translate image inputs into corresponding text prompts to defend against jailbreak attacks that embed malicious intent within images to circumvent safety alignments. In contrast, Zong et al. (2024) focuses on improving model safety during training by creating a dataset of malicious images to supervise model fine-tuning, making it more resilient to structure-based attacks like MM-SafetyBench and Figstep. Some works also resort to techniques like machine unlearning (Lu et al., 2024), multi-agent (Zeng et al., 2024), and decoding control (Xu et al., 2024b). IMMUNE (Ghosal et al., 2024) is a concurrent work that employs a safety reward model to guide the decoding generation process more securely. Recently, Peng et al. (2024) shows that only a few harmful examples can be used to mitigate jailbreak successfully. Different from them, our method first tries to conduct adaptive safety fine-tuning and optimize the model’s parameters during inference.

2.3 TEST-TIME LEARNING

Test-time learning is an innovative paradigm where a model is learning during testing to improve performance and adapt to new conditions. Early test-time learning was often used to solve the problem of distribution shift and alleviate the performance degradation caused by the difference between test data and training data (Liang et al., 2024; Yu et al., 2024), namely test-time adaptation (TTA). While most TTA works focus on the recognition performance, Sheng et al. (2024) aims to enhance the safety of the model (i.e., resistance to backdoor attack). Moreover, Guan et al. (2024) proposes test-time repairing to remove the backdoor during testing. In addition, a lot of works pay attention to defense against adversarial attacks during test time (Nayak et al., 2022; Deng et al., 2021). A recent work (Lin et al., 2024) introduces test-time training to improve the model’s adversarial robustness through adaptive thresholding and feature distribution alignment. Our work extends the concept of test-time training to the domain of LLM security and uses it to enhance the model’s ability to resist various jailbreak attacks.

3 METHODOLOGY

3.1 PRELIMINARY

Generation of Large Language Model. Given a large language model $M = \{\mathcal{E}_l, \mathcal{C}_l\}$ with a token set \mathbb{T} and hidden space \mathbb{R}^m , and an input sequence $T = [t_1, \dots, t_K | t_k \in \mathbb{T}]$, where \mathcal{E}_l is the encoder,

216 \mathcal{C}_l is the logit projector, and K is the sequence length. The model generates the next token t_{K+1} by:
 217

$$218 \quad t_{K+1} = \arg \max_i \mathcal{C}_l(h_K)_i = \arg \max_i \mathcal{C}_l(\mathcal{E}_l(T))_i, \quad (1)$$

219 where $h_K \in \mathbb{R}^m$ is the hidden state of the last token.
 220

221 Indeed, LLMs generate tokens autoregressively, using the previous output token to predict the sub-
 222 sequent token. This generation process continues until a stop condition is met, which may involve
 223 reaching a maximum token limit or generating a specific end-of-sequence token. Additionally, in
 224 modern LLMs, the Key-Value Cache (KV Cache) (Radford, 2018) technique is extensively utilized
 225 during inference to speed up attention map computations. We then introduce the framework of TTIM
 226 in three parts: jailbreak detection, defense training, and the decoupling of the two. *The algorithm of*
 227 *our method can be found in Appendix C.*

228 **3.2 JAILBREAK DETECTION WITH GIST TOKEN**
 229

230 Most previous jailbreak detection methods either require proxy LLMs to analyze the model’s output
 231 or involve multiple augmentations to the model’s input, which are time-consuming and impractical
 232 for real-world applications. Therefore, we propose training an efficient jailbreak detector that lever-
 233 ages the autoregressive generation properties of the model. Specifically, as shown in the right block
 234 in Figure 2, we train an additional gist token t_g with trainable embedding and a binary classifier \mathcal{C}_d
 235 to perform detection. Given the question T^q and the generated answer T^a , we combine it with the
 236 gist token:
 237

$$T_{aug} = [T^q, T^a, t_g]. \quad (2)$$

238 The detection process operates as follows:
 239

$$p^{det} = \mathcal{C}_d(h_g) = \mathcal{C}_d(\mathcal{E}_l(T_{aug})), \quad (3)$$

240 where h_g is the hidden state of the last token t_g . Then we obtain the detection results as follows:
 241

$$242 \quad \hat{y} = \arg \max_{c \in \{0,1\}} p_c^{det}, \quad (4)$$

243 where $\hat{y} = 0$ indicates benign content and $\hat{y} = 1$ indicates jailbreak attempt. We inject the t_g at the
 244 end of the sequence. Since the keys and values of the previous tokens are cached during generation,
 245 the hidden state of t_g can be computed efficiently based on the KV Cache. For instance, for a
 246 sequence with a length of 2000, the cost of detecting jailbreak activities is approximately 1/1000 of
 247 the total generation time. A simpler alternative would be to remove the gist token and directly use
 248 the hidden state of the last token to perform detection. However, intuitively, the hidden state of the
 249 last token is used for generation and may not encapsulate the information relevant to the harmfulness
 250 of the response. Therefore, we train a gist token designed to capture the harmfulness of the previous
 251 answer. Additionally, we construct a dataset $\mathcal{D}_d = (T_i^q, T_i^a, y_i)_{i=1}^{|\mathcal{D}_d|}$ to train our detector, where T_i^q
 252 represents the question, T_i^a represents the answer, and y_i is the label indicating jailbreak activities.
 253 We train the detector using naive cross-entropy loss, as follows:
 254

$$255 \quad t_g^*, \mathcal{C}_d^* = \arg \min_{t_g, \mathcal{C}_d} \mathbb{E}_{(T_i^q, T_i^a, y_i) \sim \mathcal{D}_d} \left[- \sum_{c=0}^1 \mathbf{1}_{(y_i=c)} \log p_{i,c}^{det} \right], \quad (5)$$

256 where $p_i^{det} = \mathcal{C}_d(\mathcal{E}_l(T_i^q, T_i^a, t_g))$ represents the predicted jailbreak probability of jailbreak detector.
 257 Specifically, we train a linear layer as our binary classifier.
 258

259 **3.3 ADAPTIVE DEFENSE TRAINING**
 260

261 Since detecting jailbreak activity is easier than directly defending against it, we developed a test-time
 262 jailbreak defense system that mimics the biological immune system. Like how the body detects
 263 and responds to pathogens, our system treats jailbreak activities as threats and uses a detector to
 264 identify them. Once detected, the system initiates a defense response to neutralize the attack and
 265 builds immunity against similar future threats. Specifically, when jailbreak activities are detected,
 266 our framework adds the detected jailbreak instruction T_i^q along with a refusal response T_{ref} into
 267 jailbreak memory \mathcal{M}_j :
 268

$$269 \quad \mathcal{M}_j \leftarrow \mathcal{M}_j \cup \{(T_i^q, T_{ref})\} \quad (6)$$

We then use \mathcal{M}_j to supervise fine-tuning the model. In this way, we progressively collect jailbreak data during the model testing and enhance the defense capabilities of the model against various jailbreak attacks. For normal instruction, our model does not alter its behavior but only incurs a slight time cost for detecting jailbreak activities. Additionally, to prevent the model from becoming overly defensive against normal activities, we use the traditional question-answering (QA) dataset \mathcal{D}_{qa} , to regularize the model during training.

Furthermore, we adopt the concept of **test-time adaptation (TTA)** (Wang et al., 2021) and build a detection memory \mathcal{M}_d to train our jailbreak detector while detecting jailbreak behaviors during testing. Specifically, we online update \mathcal{M}_d with detected jailbreak instructions along with their corresponding answers T_i^a as jailbreak QA pairs, and jailbreak instructions with refusal responses as normal QA pairs by:

$$\mathcal{M}_d \leftarrow \mathcal{M}_d \cup \{(T_i^q, T_i^a, 1)\} \cup \{(T_i^q, T_{ref}, 0)\} \quad (7)$$

Then we use \mathcal{M}_d to train our detector by Equation (5). Additionally, we also use the detection dataset \mathcal{D}_d for regularization training. We keep the maximum size of \mathcal{M}_d and \mathcal{M}_j to 40 in our experiments and adopt the FIFO (First-In, First-Out) strategy when memory is full.

3.4 PARAMETERS DECOUPLING OF DETECTION AND TRAINING

Directly combining the above detection and defense training strategy comes with a drawback: the detector and defense training share a set of parameters (i.e., parameters in \mathcal{E}_l). The updates to model parameters by defense training are likely to impair the detector. To address this issue, we propose decoupling the detector and defense training. For detection, we utilize the hidden state of the intermediate layer, rather than the last layer, to perform detection. For defense training, we apply the LoRA module (Hu et al., 2022) to the layers behind the intermediate detection layer, treating them as trainable parameters, as shown in the right block of Figure 2. We ensure that parameter updates to the detector and the defense training do not interfere with each other in this way. After that, we obtain the overall pipeline of TTIM.

4 EXPERIMENTS

Table 1: The experimental results under the MM-SafetyBench (Liu et al., 2024d). TTIM’s ASR is reported in the format of ASR/ASR-50 (same in the subsequent manuscript).

Methods	LLaVA-v1.6-Vicuna-7B		LLaVA-v1.6-Vicuna-13B		Qwen2VL-7B		Average	
	ASR (↓)	ODR (↓)	ASR (↓)	ODR (↓)	ASR (↓)	ODR (↓)	ASR (↓)	ODR (↓)
No Defense	99.8	0.2	100.0	0.4	95.2	0.0	98.3	0.2
FSD	99.8	0.2	99.7	0.0	69.0	0.1	89.5	0.1
Adashield	7.0	14.0	43.8	51.5	47.4	31.0	32.7	32.2
VLGuard	1.4	6.5	0.2	4.7	0.1	0.0	0.6	3.7
TTIM (w/o gist)	1.4	10.7	3.0	3.8	1.5	8.4	2.0	7.6
TTIM	1.0/0.0	2.3	4.8/0.0	0.4	2.0/0.0	0.1	2.6/0.0	0.9

4.1 SETUP

▷ **Jailbreak Attack/Defense Methods.** We evaluate our defense methods against various jailbreak attack methods. For experiments on MLLMs, we choose Figstep (Gong et al., 2025) and MM-SafetyBench (Liu et al., 2024d). For experiments on LLMs, we utilize I-FSJ and GCG (in the Appendix B) as the jailbreak attack method. For jailbreak defense methods, we consider FSD (Gong et al., 2025), Adashield (Wang et al., 2024c), and VLGuard (Zong et al., 2024) for MLLM, and Retokenization (Jain et al., 2023) and SmoothLLM (Robey et al., 2023) for LLM. Additionally, we introduce another baseline, TTIM (w/o gist), which is identical to our method but uses the final hidden state of the last token for detection. To assess the impact of our defense training on detection, we report results for TTIM (w/o adapt.), where no defense training and optimization occur during testing. Linear Probing (LP) represents a method that neither uses the gist token nor adapts during testing (i.e., LLMs with a linear probing binary detector on the last generated token). Furthermore, we compare our detector against detection baselines, including Self Defense (Phute et al., 2024) and LVLM-LP (Zhao et al., 2024), in LLM experiments.

Table 2: The experimental results under Figstep (Gong et al., 2025).

Methods	LLaVA-Vicuna-7B		LLaVA-Mistral-7B		LLaVA-Vicuna-13B		Qwen2VL-7B		Average	
	ASR (↓)	ODR (↓)	ASR (↓)	ODR (↓)	ASR (↓)	ODR (↓)	ASR (↓)	ODR (↓)	ASR (↓)	ODR (↓)
No Defense	100.0	0.0	100.0	0.0	100.0	0.0	89.4	0.0	97.4	0.0
FSD	100.0	0.0	100.0	0.0	100.0	0.0	70.8	0.2	92.7	0.1
Adashield	0.0	14.0	0.0	7.2	0.0	51.2	32.8	31.8	8.2	26.1
VLGuard	0.0	7.0	0.0	1.8	0.0	5.2	0.0	0.0	0.0	3.5
TTIM (w/o gist)	1.6	0.0	0.4	0.4	0.8	1.6	9.4	0.4	3.1	0.6
TTIM	1.4/0.0	0.0	0.6/0.0	0.0	1.8/0.0	0.4	1.6/0.0	0.0	1.4/0.0	0.1

▷ **Metrics.** We evaluate jailbreak methods from two perspectives: the effectiveness of defense against jailbreak attacks and the model's ability to respond to normal instructions. For evaluating the effectiveness of defense against jailbreak attacks, we adopt the Attack Success Rate (ASR) as a metric, as is common in most studies (Wang et al., 2024c; Chao et al., 2024). We define ASR as the proportion of jailbreak instructions that are not rejected, relative to all the jailbreak instructions. For the response set R_j of the jailbreak dataset \mathcal{D}_j , ASR is calculated as follows:

$$ASR = \frac{|R_j| - \sum_{r \in R_j} isReject(r)}{|R_j|}, \quad (8)$$

where $isReject(r) = \begin{cases} 1, & r \text{ is rejection,} \\ 0, & r \text{ is not rejection.} \end{cases}$

We employ prefix matching to determine whether a response is rejected. Specifically, we compile a set of rejection prefixes. If the model’s response matches any prefix in the rejection set, we consider the instruction rejected. The rejection prefixes employed are listed in the Appendix A.4. Since our method aims to enhance the model’s security capabilities incrementally, we also report ASR-50, which calculates ASR for jailbreak samples in the last 50% of the test sequences. This reflects the model’s performance after it has learned to defend against jailbreak attacks. Although defense methods improve the model’s ability to reject malicious instructions, they may also cause the model to reject an excessive number of normal queries. Thus, we use the Over-Defense Rate (ODR) to assess the model’s ability to respond to normal instructions. For the response set R_n of the normal dataset \mathcal{D}_n , ODR is calculated as follows:

$$ODR = \frac{\sum_{r \in R_n} isReject(r)}{|R_n|}. \quad (9)$$

Additionally, to evaluate the detector's performance, we report the Accuracy (ACC), True Positive Rate (TPR), and False Positive Rate (FPR) (Swets, 1988). **Moreover, we provide the details of our dataset construction, experiment setups, and our baselines in the Appendix A.**

4.2 MAIN RESULTS

Table 3: The experimental results under text-based attack, I-FSJ (Zheng et al., 2024).

Methods	LLaMA2-7B-chat			LLaMA3-8B-Instruct		
	ASR (↓)	ODR (↓)	TPR (↑)	ASR (↓)	ODR (↓)	TPR (↑)
No Defense	99.2	5.5	-	94.3	0.2	-
Retokenization (20%)	97.5	8.3	-	83.0	0.2	-
SmoothLLM (insert 20%)	76.6	26.7	-	100.0	0.4	-
SmoothLLM (swap 20%)	93.4	55.8	-	60.0	1.8	-
SmoothLLM (patch 20%)	80.9	27.5	-	57.4	6.4	-
TTIM (w/o adapt.)	-	-	98.9	-	-	18.2
TTIM (w/o gist)	0.6	4.9	100.0	12.7	19.7	1.5
TTIM	2.6/0.0	0.6	100.0	1.0/0.0	0.2	40.0

► **Jailbreak Defense.** To evaluate the effectiveness of our method, we report the results on Figstep and MM-SafetyBench in Tables 1 and 3. As shown in the tables, Adashield demonstrates strong defensive capabilities, especially against Figstep, where it reduces the ASR to 0%. Similarly, the ASR on MM-SafetyBench is reduced to 7% by Adashield. Despite its effectiveness, Adashield suffers from a noticeable over-defense phenomenon with normal samples, with over 5% of them being rejected. After training on a specially designed dataset, VLGuard shows relatively excellent performance, achieving almost 0% ASR against jailbreak samples but still show over-rejects to normal

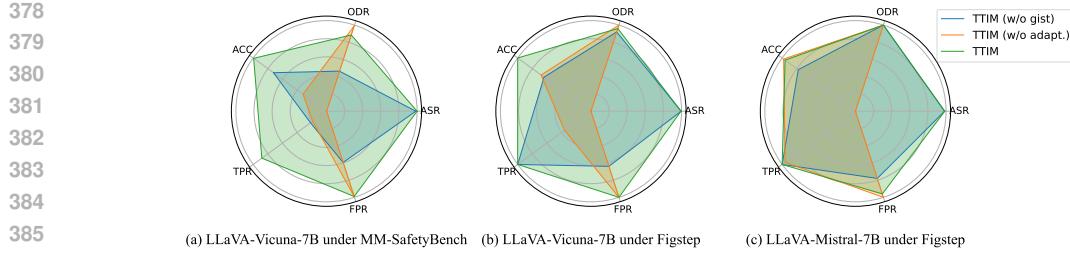
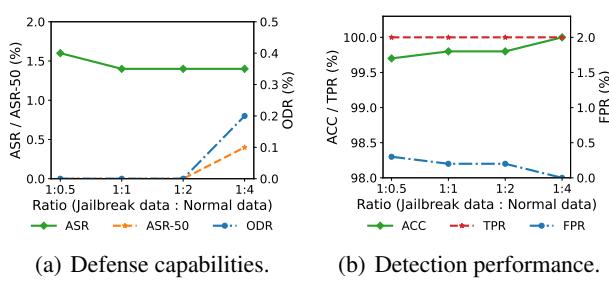


Figure 3: Performance of different variants of TTIM. All metrics are normalized. The larger areas represent better performance.

samples. Compared to VLGuard, TTIM gradually learn to reject jailbreak attacks during testing without any prior targeted training. It achieves an ASR of less than 2% at most experiments, and, among all the effective jailbreak attack defense methods, our approach causes the least damage to the model’s ability to respond to normal queries (i.e., ODR from 0.2% to 2.3% on MM-SafetyBench with LLaVA-v1.6-Vicuna-7B as backbone and nearly 0% on others). From the ASR, we can draw a conclusion that **TTIM only requires a few jailbreak samples to learn how to reject such types of jailbreak attacks** (on the Figstep dataset, this number is less than 10). Since our method progressively enhances the model’s defensive capabilities during testing, we believe that the ASR-50 metric better reflects the true effectiveness of our approach. Our method achieved 0% ASR-50 across all jailbreak attack datasets, indicating that, with continuous optimization, our model can achieve complete defense against individual attacks. Moreover, Table 3 shows the results for the text-based attack. Our method is also effective at defending against I-FSJ, a jailbreak method that only uses the language modality. TTIM not only achieves an ASR-50 of 0% but also reduces the model’s ODR.

▷ **Jailbreak Detection.** Next, we analyze the role of our jailbreak detector from two perspectives: 1) What advantages does our detector’s design offer compared to TTIM (w/o gist)? 2) How does training the detector during testing enhance the effectiveness of our framework?

First, addressing the former question, the results in Table 4 show that TTIM (w/o adapt.) exhibits clear improvements over LP in three metrics: Accuracy, TPR, and FPR. This improvement is primarily attributed to our introduction of the gist token, which is specifically designed to extract malicious information from previously generated sequences, rather than relying solely on the output of the last token for classification. This strategy has improved the expressive capacity of our detector. Secondly, the performance of the detector is shown in Figure 3. It is evident that TTIM (w/o gist) exhibits a significant increase in FPR compared to TTIM, suggesting that it misclassifies more normal samples as jailbreak samples. One consequence of this issue is the use of more normal samples in defense training, which leads to an increase in the model’s ODR, as shown in the Tables 1 and 3. The cause of this issue arises from the detector sharing parameters with the defense training. The parameters’ update during defense training will affect the performance of the detector. TTIM resolves this issue by decoupling the defense training from the jailbreak detector by separating parameters.



(a) Defense capabilities. (b) Detection performance.

Figure 4: Results under varying jailbreak data ratios.

Table 4: The detection performance under I-FSJ (Zheng et al., 2024) attack with LLaMA2-7B-chat.

Methods	ACC (\uparrow)	TPR (\uparrow)	FPR (\downarrow)
Self Defense	64.4	42.9	14.2
VLML-LP	67.7	36.3	0.8
LP	88.5	77.4	0.7
TTIM (w/o adapt.)	99.1	98.9	0.6
TTIM (w/o gist)	99.4	100.0	0.6
TTIM	99.9	100.0	0.1

4.3 ADDITIONAL ANALYSIS

In real-world scenarios, the situations encountered by models can be both complex and diverse. Therefore, we conduct additional experiments to directly assess the robustness of our method in

432 complex scenarios. *The results of transferability, continually changing jailbreak, and GCG attack*
 433 *are provided in the Appendix B.*

434
 435 **▷ Sensitivity to the Detector.** The ability of our method to resist jailbreak attacks intuitively depends
 436 on the detector’s effectiveness at identifying attacks. As shown in Table 3, our detector exhibited
 437 a relatively lower TPR under certain extreme conditions. Specifically, TTIM (w/o adapt.) detected
 438 only 18.2% of jailbreak activities; however, with adaptation of the detector, TTIM significantly im-
 439 proved detection performance, achieving a TPR of 40%. We hypothesize that this reduced detection
 440 efficacy occurs because I-FSJ requires 8 context demonstrations to jailbreak LLaMA3-8B-Instruct,
 441 resulting in a substantial discrepancy between the token lengths encountered during detector train-
 442 ing and those in testing scenarios. The average token lengths for instructions and answers during
 443 detector training are 13 and 271, respectively, whereas the average token length for jailbreak in-
 444 structions using I-FSJ reaches 3061. Despite this limitation, our method effectively resists attacks
 445 on LLaMA3, demonstrating robustness even when the detector’s performance degrades.

446
 447 **▷ Results under Hybrid Jailbreak Attack.** In deploy-
 448 ment scenarios, attackers may employ multiple meth-
 449 ods simultaneously to launch jailbreak attacks against the
 450 model. Accordingly, we designed experiments involving
 451 hybrid jailbreak attacks. The results, presented in Fig-
 452 ure 5, indicate that under our method, the ASR can still
 453 be reduced to a very low level, while the model’s ability
 454 to respond to normal queries remains largely unaffected.

455
 456 **▷ Results under Different Jailbreak Data Ratios.** In
 457 practical applications, the proportion of jailbreak data
 458 within the model’s test data is typically not fixed. The
 459 model may simultaneously receive a large number of jail-
 460 break attack requests, or it might not encounter any jail-
 461 break instructions for extended periods. Thus, we report
 462 the results of our method under varying proportions of
 463 jailbreak attack data in Figure 4. The results presented in the table demonstrate that our method
 464 achieves stable and effective performance across various proportions, both in terms of defending
 465 against jailbreak attacks and the detection performance of our detector.

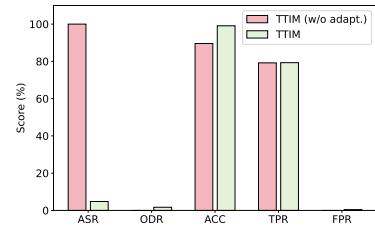
466 Table 5: Average inference cost (seconds) for each instruction. All experiments are conducted with
 467 I-FSJ jailbreak. The test samples are mixed with 520 normal samples and 520 jailbreak samples.

468 469 470 471 472 473 474 475 476 477	Vanilla 478 479 480 481 482 483 484 485	486 Detection		487 Test-time Defense	
		488 LLaMA2-7B 489 + TTIM’s Detector	490 + Self Defense	491 TTIM	492 Training Inside
	7.18	7.21 (+0.4%)	36.13	5.49	0.67 (12.2%)

478
 479 **▷ Computation Cost Analysis.** The computational cost of our method is reported in Table 5.
 480 As shown, our detector introduces a negligible overhead—*only 0.4% of the standard inference*
 481 *cost*—making it substantially more efficient than Self Defense (Phute et al., 2024), which adopts
 482 a proxy LLM to analyze the generated output. In addition, the training cost constitutes merely
 483 12.2% of the overall computational budget. Overall, the inference time of TTIM is lower than that
 484 of the vanilla model. This is primarily because TTIM generates short rejection responses to jailbreak
 485 attempts, rather than generating long malicious outputs.

5 CONCLUSION

486 In this paper, we address the challenge of defending against diverse jailbreak attacks. We propose
 487 a universal test-time defense framework designed to dynamically detect jailbreak attacks during
 488 testing and utilize detected jailbreak instructions to defensively train the model, thus gradually en-
 489 hancing the defense capability of the model. To enhance jailbreak attack detection, we introduce
 490 a specialized gist token designed to extract harmful information from model responses with almost
 491 no additional cost, which is then classified using a binary classifier. Furthermore, to minimize the
 492 impact of model updates on the detector, we decouple the detector from defense training, ensuring
 493 they operate on separate parameters and do not interfere with each other. Extensive experiments
 494 demonstrate the efficacy of our method across a variety of scenarios.



495 Figure 5: Results under hybrid jailbreak attack. We randomly selected 300 jail-
 496 break samples from MM-SafetyBench (Liu et al., 2024d) and 300 from Figstep
 497 (Gong et al., 2025), combining them into a new jailbreak dataset.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
489 perimentation were involved. All datasets used were sourced in compliance with relevant usage
490 guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
491 natory outcomes in our research process. No personally identifiable information was used, and no
492 experiments were conducted that could raise privacy or security concerns. We are committed to
493 maintaining transparency and integrity throughout the research process.
494495 REPRODUCIBILITY STATEMENT
496497 We have made every effort to ensure that the results presented in this paper are reproducible. All
498 code and datasets are available in the supplementary material to facilitate replication and verification.
499 The experimental setup, including training steps, model configurations, and hardware details, is
500 described in detail in the paper. We have also provided a full description of TTIM and attached the
501 code to assist others in reproducing our experiments. Additionally, jailbreak benchmarks, such as
502 MMSafetyBench, Figstep, and I-FSJ, are publicly available, ensuring consistent and reproducible
503 evaluation results. We believe these measures will enable other researchers to reproduce our work
504 and further advance the field.
505506 REFERENCES
507508 Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
509 Jailbreaking black box large language models in twenty queries. In *Workshop on Proc. NeurIPS*,
510 2024.511 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
512 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
513 impressing gpt-4 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April
514 2023), 2(3):6, 2023.515 Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy challenges of large
516 language models: A survey. *ACM Computing Surveys*, 2024.518 Zhijie Deng, Xiao Yang, Shizhen Xu, Hang Su, and Jun Zhu. Libre: A practical bayesian approach
519 to adversarial detection. In *Proc. CVPR*, 2021.
520521 Soumya Suvra Ghosal, Souradip Chakraborty, Vaibhav Singh, Tianrui Guan, Mengdi Wang, Ah-
522 mad Beirami, Furong Huang, Alvaro Velasquez, Dinesh Manocha, and Amrit Singh Bedi. Im-
523 mune: Improving safety against jailbreaks in multi-modal llms via inference-time alignment.
524 *arXiv preprint arXiv:2411.18688*, 2024.525 Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan,
526 and Xiaoyun Wang. Figstep: Jailbreaking large vision-language models via typographic visual
527 prompts. In *Proc. AAAI*, 2025.529 Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James T
530 Kwok, and Yu Zhang. Eyes closed, safety on: Protecting multimodal llms via image-to-text
531 transformation. In *Proc. ECCV*, 2024a.532 Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James T
533 Kwok, and Yu Zhang. Eyes closed, safety on: Protecting multimodal llms via image-to-text
534 transformation. In *Proc. ECCV*, 2024b.
535536 Jiyang Guan, Jian Liang, and Ran He. Backdoor defense via test-time detecting and repairing. In
537 *Proc. CVPR*, 2024.538 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
539 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *Proc. ICLR*, 2022.

540 Zhengmian Hu, Gang Wu, Saayan Mitra, Ruiyi Zhang, Tong Sun, Heng Huang, and Viswanathan
 541 Swaminathan. Token-level adversarial prompt detection based on perplexity measures and con-
 542 textual information. *arXiv preprint arXiv:2311.11509*, 2023.

543

544 Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh Chi-
 545 ang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. Baseline defenses
 546 for adversarial attacks against aligned language models. *arXiv preprint arXiv:2309.00614*, 2023.

547

548 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 549 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
 550 Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.

551

552 Haibo Jin, Leyang Hu, Xinuo Li, Peiyan Zhang, Chonghan Chen, Jun Zhuang, and Haohan
 553 Wang. Jailbreakzoo: Survey, landscapes, and horizons in jailbreaking large language and vision-
 554 language models. *arXiv preprint arXiv:2407.01599*, 2024.

555

556 Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
 557 learning from human feedback. *arXiv preprint arXiv:2312.14925*, 2023.

558

559 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 560 2014.

561

562 Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Aaron Jiaxun Li, Soheil Feizi, and Himabindu
 563 Lakkaraju. Certifying llm safety against adversarial prompting. *arXiv preprint arXiv:2309.02705*,
 564 2023.

565

566 Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distri-
 567 bution shifts. *International Journal of Computer Vision*, pp. 1–34, 2024.

568

569 Jinpeng Lin, Xulei Yang, Tianrui Li, and Xun Xu. Improving adversarial robustness for 3d point
 570 cloud recognition at test-time through purified self-training. *arXiv preprint arXiv:2409.14940*,
 571 2024.

572

573 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 574 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Proc. ECCV*,
 575 2014.

576

577 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Proc.*
 578 *NeurIPS*, 2023.

579

580 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 581 tuning. In *Proc. CVPR*, 2024a.

582

583 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 584 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

585

586 Xiaogeng Liu, Nan Xu, Muhamao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
 587 prompts on aligned large language models. In *Proc. ICLR*, 2024c.

588

589 Xin Liu, Yichen Zhu, Jindong Gu, Yunshi Lan, Chao Yang, and Yu Qiao. Mm-safetybench: A
 590 benchmark for safety evaluation of multimodal large language models. In *Proc. ECCV*, 2024d.

591

592 Weikai Lu, Ziqian Zeng, Jianwei Wang, Zhengdong Lu, Zelin Chen, Huiping Zhuang, and Cen
 593 Chen. Eraser: Jailbreaking defense in large language models via unlearning harmful knowledge.
 594 *arXiv preprint arXiv:2404.05880*, 2024.

595

596 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
 597 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
 598 models. *arXiv preprint arXiv:2307.06435*, 2023.

599

600 Gaurav Kumar Nayak, Ruchit Rawal, and Anirban Chakraborty. Dad: Data-free adversarial defense
 601 at test time. In *Proc. WACV*, pp. 3562–3571, 2022.

594 R OpenAI. Gpt-4 technical report. arxiv 2303.08774. *View in Article*, 2(5), 2023.
 595

596 Alwin Peng, Julian Michael, Henry Sleight, Ethan Perez, and Mrinank Sharma. Rapid response:
 597 Mitigating llm jailbreaks with a few examples. *arXiv preprint arXiv:2411.07494*, 2024.

598 Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
 599 with gpt-4. *arXiv preprint arXiv:2304.03277*, 2023.
 600

601 Mansi Phute, Alec Helbling, Matthew Daniel Hull, ShengYun Peng, Sebastian Szyller, Cory Cor-
 602 nelius, and Duen Horng Chau. Llm self defense: By self examination, llms know they are being
 603 tricked. In *The Second Tiny Papers Track at ICLR*, 2024.

604 Renjie Pi, Tianyang Han, Jianshu Zhang, Yueqi Xie, Rui Pan, Qing Lian, Hanze Dong, Jipeng
 605 Zhang, and Tong Zhang. Mllm-protector: Ensuring mllm’s safety without hurting performance.
 606 *Proc. EMNLP*, 2024.

607 Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal.
 608 Visual adversarial examples jailbreak aligned large language models. In *Proc. AAAI*, 2024.
 609

610 Alec Radford. Improving language understanding by generative pre-training. 2018.

611 Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. Smoothllm: Defending large
 612 language models against jailbreaking attacks. *arXiv preprint arXiv:2310.03684*, 2023.

613

614 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 615 resolution image synthesis with latent diffusion models. In *Proc. CVPR*, 2022.

616

617 Mark Russinovich, Ahmed Salem, and Ronen Eldan. Great, now write an article about that: The
 618 crescendo {Multi-Turn}{LLM} jailbreak attack. In *34th USENIX Security Symposium (USENIX
 619 Security 25)*, pp. 2421–2440, 2025.

620 Lijun Sheng, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Can we trust the unlabeled target data?
 621 towards backdoor attack and defense on model adaptation. *arXiv preprint arXiv:2401.06030*,
 622 2024.

623 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 624 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In *Proc.
 625 NeurIPS*, 2020.

626

627 John A Swets. Measuring the accuracy of diagnostic systems. *Science*, 240(4857):1285–1293, 1988.

628 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 629 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 630 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

631

632 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 633 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 634 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

635 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
 636 test-time adaptation by entropy minimization. In *Proc. ICLR*, 2021.

637 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 638 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 639 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

640

641 Yanbo Wang, Jiyang Guan, Jian Liang, and Ran He. Do we really need curated malicious data
 642 for safety alignment in multi-modal large language models? *arXiv preprint arXiv:2504.10000*,
 643 2025a.

644 Yanbo Wang, Yongcan Yu, Jian Liang, and Ran He. A comprehensive survey on trustworthiness in
 645 reasoning with large language models. *arXiv preprint arXiv:2509.03871*, 2025b.

646

647 Yihan Wang, Zhouxing Shi, Andrew Bai, and Cho-Jui Hsieh. Defending llms against jailbreaking
 648 attacks via backtranslation. In *Proc. ACL Findings*, 2024b.

648 Yu Wang, Xiaogeng Liu, Yu Li, Muhan Chen, and Chaowei Xiao. Adashield: Safeguarding multi-
 649 modal large language models from structure-based attack via adaptive shield prompting. In *Proc.*
 650 *ECCV*, 2024c.

651 Zeming Wei, Yifei Wang, Ang Li, Yichuan Mo, and Yisen Wang. Jailbreak and guard aligned
 652 language models with only few in-context demonstrations. *arXiv preprint arXiv:2310.06387*,
 653 2023.

654 Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, and
 655 Fangzhao Wu. Defending chatgpt against jailbreak attack via self-reminders. *Nature Machine*
 656 *Intelligence*, 5(12):1486–1496, 2023.

657 Yueqi Xie, Minghong Fang, Renjie Pi, and Neil Gong. Gradsafe: Detecting jailbreak prompts for
 658 llms via safety-critical gradient analysis. In *Proc. ACL*, 2024.

659 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
 660 wei Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow
 661 complex instructions. In *Proc. ICLR*, 2024a.

662 Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan Jia, Bill Yuchen Lin, and Radha Poovendran.
 663 Safedecoding: Defending against jailbreak attacks via safety-aware decoding. In *Proc. ACL*,
 664 2024b.

665 Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei He, Jiaxing Song, Ke Xu, and Qi Li. Jailbreak
 666 attacks and defenses against large language models: A survey. *arXiv preprint arXiv:2407.04295*,
 667 2024.

668 Yongcan Yu, Lijun Sheng, Ran He, and Jian Liang. Stamp: Outlier-aware test-time adaptation with
 669 stable memory replay. In *Proc. ECCV*, 2024.

670 Yifan Zeng, Yiran Wu, Xiao Zhang, Huazheng Wang, and Qingyun Wu. Autodefense: Multi-agent
 671 llm defense against jailbreak attacks. *arXiv preprint arXiv:2403.04783*, 2024.

672 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 673 Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. *arXiv*
 674 *preprint arXiv:2308.10792*, 2023.

675 Xiaoyu Zhang, Cen Zhang, Tianlin Li, Yihao Huang, Xiaojun Jia, Ming Hu, Jie Zhang, Yang Liu,
 676 Shiqing Ma, and Chao Shen. Jailguard: A universal detection framework for llm prompt-based
 677 attacks. *arXiv preprint arXiv:2312.10766*, 2024a.

678 Zhenxin Zhang, Junxiao Yang, Pei Ke, Fei Mi, Hongning Wang, and Minlie Huang. Defending large
 679 language models against jailbreaking attacks through goal prioritization. In *Proc. ACL*, 2024b.

680 Qinyu Zhao, Ming Xu, Kartik Gupta, Akshay Asthana, Liang Zheng, and Stephen Gould. The first
 681 to know: How token distributions reveal hidden knowledge in large vision-language models? In
 682 *Proc. ECCV*, 2024.

683 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 684 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv*
 685 *preprint arXiv:2303.18223*, 2023.

686 Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Jing Jiang, and Min Lin. Improved few-shot
 687 jailbreaking can circumvent aligned language models and their defenses. In *Proc. NeurIPS*, 2024.

688 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
 689 vision-language understanding with advanced large language models. In *Proc. ICLR*, 2024.

690 Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, and Timothy Hospedales. Safety
 691 fine-tuning at (almost) no cost: A baseline for vision large language models. In *Proc. ICML*,
 692 2024.

693 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
 694 Universal and transferable adversarial attacks on aligned language models. *arXiv preprint*
 695 *arXiv:2307.15043*, 2023.

702 A THE DETAILS OF EXPERIMENTAL SETUP
703704 A.1 DATASET CONSTRUCTION
705

706 To construct the detection dataset, we initially collected original malicious instructions from Ad-
707 vBench (Zou et al., 2023) and MM-SafetyBench (Liu et al., 2024d). To obtain malicious answers,
708 we employed Wizard-Vicuna-7B-Uncensored (Xu et al., 2024a), a model without safety alignment,
709 to generate answers. To obtain refusal answers, we utilized LLaMA2-13B-chat to generate an-
710 swers with various refusal prefixes. We employed GPT4-LLM-Cleaned (Peng et al., 2023) and
711 LLaVA-Instruct-150K (Liu et al., 2023) as clean instructions for LLMs and MLLMs, respectively.
712 Furthermore, to generate clean answers, we utilized LLaMA2-7B-chat and LLaVA-v1.6-Vicuna-7B
713 for GPT4-LLM-Cleaned and LLaVA-Instruct-150K, respectively. Our detection dataset comprises
714 four parts: 1) malicious instructions with malicious answers, classified as jailbroken; 2) malicious
715 instructions with refusal answers, classified as not jailbroken; 3) clean instructions with clean an-
716 swers, classified as not jailbroken; 4) clean instructions with malicious answers, classified as jail-
717 broken. The details of \mathcal{D}_d are depicted in Table 6. The primary focus of the dataset is to determine
718 whether the answer is harmful, rather than assessing the harm of the instruction itself. For the vi-
719 sual question-answering (VQA) dataset, since the original malicious instructions lack images, we
720 randomly selected images from the COCO dataset (Lin et al., 2014) for them. It is important to note
721 that our malicious instructions are original and unaffected by jailbreak attacks, meaning we do not
722 use jailbreak-processed instructions during detector training. For the evaluation dataset, we com-
723 bine normal QA/VQA instructions from GPT4-LLM-Cleaned/LLaVA-Instruct-150K with jailbreak
724 instructions to simulate real deployment environments in experiments on LLMs/MLLMs.

725 Table 6: The details of detectin dataset \mathcal{D}_d . The information is provided with (#samples, jailbreak
726 label)

	Malicious Answer	Normal Answer	Rejection Answer
Malicious Question	(2198, 1)	-	(2100, 0)
Normal Question	(2198, 1)	(4000, 0)	-

731
732 A.2 BASELINES
733

734 **Figstep** (Gong et al., 2025) conceals harmful content within text prompts using typography, embed-
735 ding it into blank images to circumvent text-modality safety alignments.

736 **MM-SafetyBench** (Liu et al., 2024d) initially generates a malicious background image using harm-
737 ful keywords from jailbreak prompts and subsequently converts text-based harmful content into
738 images using topography.

739 **I-FSJ** (Zheng et al., 2024), based on in-context jailbreak (Wei et al., 2023), aims to induce the model
740 to generate harmful content through several jailbreak demonstrations. Additionally, I-FSJ employs
741 system tokens to enhance its attack capabilities. Furthermore, a greedy search is used to select the
742 optimal demonstration from the datasets.

743 **GCG** (Zou et al., 2023) is a white-box method utilizing an adversarial text suffix to jailbreak LLMs.

744 **FSD** (Gong et al., 2025) is a defense method that introduces a specific system prompt, reminding
745 the model to focus on malicious text within images.

746 **Adashield** (Wang et al., 2024c) is a test-time alignment method proposing the addition of a defense
747 prompt following the input text prompt. The defense prompts can be static or adaptive, which are
748 called Adashield-S or Adashield-A, respectively. We consider Adashield-S in our experiments.

749 **VLGuard** (Zong et al., 2024) is a training-time alignment method that involves additional safety
750 fine-tuning on a specific dataset. It constructs a safety instruction tuning dataset containing mali-
751 cious images to defend against structure-based jailbreak methods like Figstep and MM-SafetyBench.
752 Unlike VLGuard, our detector’s training dataset contains no prior knowledge of the jailbreak attack
753 method (e.g., malicious images).

756 A.3 EXPERIMENTAL DETAILS
757

758 For MLLM experiments, we select Qwen2VL-7B (Wang et al., 2024a) and LLaVA-v1.6 (Liu et al.,
759 2023; 2024b;a) built on different language backbones like Vicuna-7B/13B (Chiang et al., 2023) and
760 Mistral-7B (Jiang et al., 2023) as the base models. For LLM experiments, we use LLaMA2-7B-chat
761 and LLaMA3-8B-Instruct (Touvron et al., 2023) as the base model. The weights for all base models
762 are sourced from Hugging Face. We set the learning rate, number of epochs, and batch size for
763 detector training to 1e-3, 5, and 32, respectively. We use the Adam optimizer (Kingma, 2014) for
764 defense training, setting the learning rates to 0.001 for MLLMs and 0.002 for LLMs. We apply
765 LoRA (Hu et al., 2022) with a rank of 16 to the query and value matrix in the last 15 transformer
766 blocks. The regularization batch size is set to 40, while the batch sizes for refusal training and
767 detector training during test time are set to 1 and 6, respectively. Furthermore, during jailbreak
768 activity detection, we train the defense capabilities and the detector for 1 and 5 steps, respectively.
769 We incorporate an equal mix of jailbreak instructions and clean instructions in the test data. All the
770 experiments are conducted on 4*RTX A6000.

771 A.4 THE JAILBREAK EVALUATION
772

773 For the refusal judgment, we use the prefixes match method. We think the model refused to answer
774 if the responses start with the following prefixes.

I'm sorry	I do not
Sorry	I cannot
I am sorry	As a language model
I apologize	I'm really sorry
As an	My apologies
As a responsible	I'm not able to provide
I'm an	I am really sorry
I'm just	I can't provide
As an Assistant	I can't assist
If you have any other non-malicious requests	I'm unable to

786 B ADDITIONAL RESULTS
787

788
789
790 **Robustness against continual changing attack.** To validate the effectiveness of our method under continuous
791 exposure to various forms of jailbreak attacks, we conducted experiments as shown in Table 7. We selected
792 500 different samples for each type of jailbreak attack and conducted the attacks in varying orders. As can be
793 seen, even after undergoing the MM-SafetyBench attack, our method still maintains good defensive performance
794 during the second exposure to the Figstep attack, without experiencing catastrophic forgetting.
795
796

797 Table 8: The transferability results. We first adopt TTIM on the source jailbreak attack. Then, we
798 freeze the fine-tuned model and evaluate it on the target attack. We report the ASR while adopting
799 the LLaVA-v1.6-Vicuna-7B as the backbone. The numbers in brackets represent the changes of
800 ASR compared to the Vanilla Model.
801
802

Table 7: ASR(%) under continual changing environments.

Figstep	Attack Order (→)	
	MM-SafetyBench	Figstep
1.4	6.6	0.0

Figstep → MM-SafetyBench	MM-SafetyBench → Figstep
84.3 (-15.5)	0.0 (-100.0)

803
804 **Transferability of defense training.** We demonstrate the static transferability of the fine-tuned
805 model in Table 8. It is effective when migrating from a more complex attack (MM) to a simpler one
806 (Figstep), but its effectiveness is limited in the reverse direction. However, it's worth noting that our
807

method is an online adaptive defense method. New types of jailbreaks will be adaptively defended against as they emerge.

Table 9: Experimental Results under GCG jailbreak attacks.

	ASR	ODR
LLaMA2-7B-chat	21.5	0.2
+TTIM	7.7 (-13.8%)	2.7 (+2.5%)

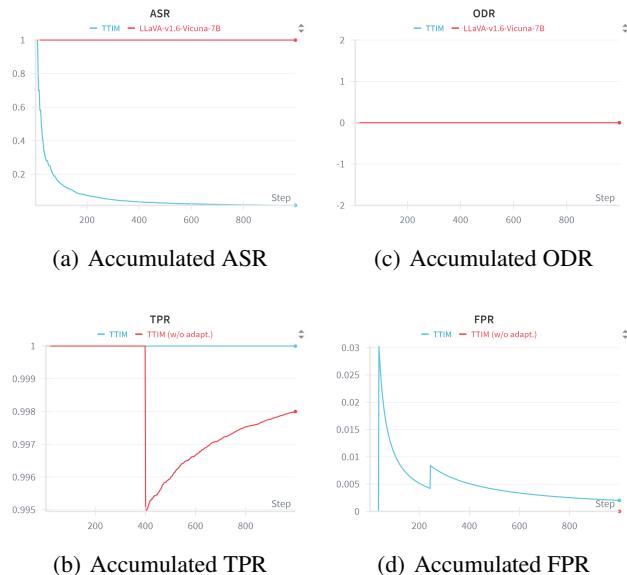


Figure 6: Changes in metrics during the test process against Figstep. TTIM-NA represents TTIM (w/o adapt.)

Results under GCG attack. We supplemented the results of the white-box attack, GCG, in Table 9. TTIM decreased the ASR from 21.5% to 7.7%, demonstrating its effectiveness against GCG.

Performance curve during testing. To demonstrate the performance of our method as the test progresses, we report the relevant indicators in the Figures 6 and 7. As can be seen, as the test progresses, the ASR of our method continues to decrease, indicating that our model has learned how to resist this type of jailbreak attack, and our method only needs a small number of samples to fully learn how to defend. In addition, our other indicators remain stable during the test, which shows the robustness of our method.

C ALGORITHM OF TTIM

We summarize the pipeline of TTIM in Algorithm 1.

D BROADER IMPACTS

While this work does not directly target societal or community-level outcomes, it contributes to the broader scientific enterprise by advancing foundational understanding in jailbreak studies. The methods and findings presented may support future theoretical developments and inspire new directions in related research areas. Furthermore, the technical tools and insights generated can serve as a resource for researchers pursuing similar challenges, fostering further academic collaboration and exploration.

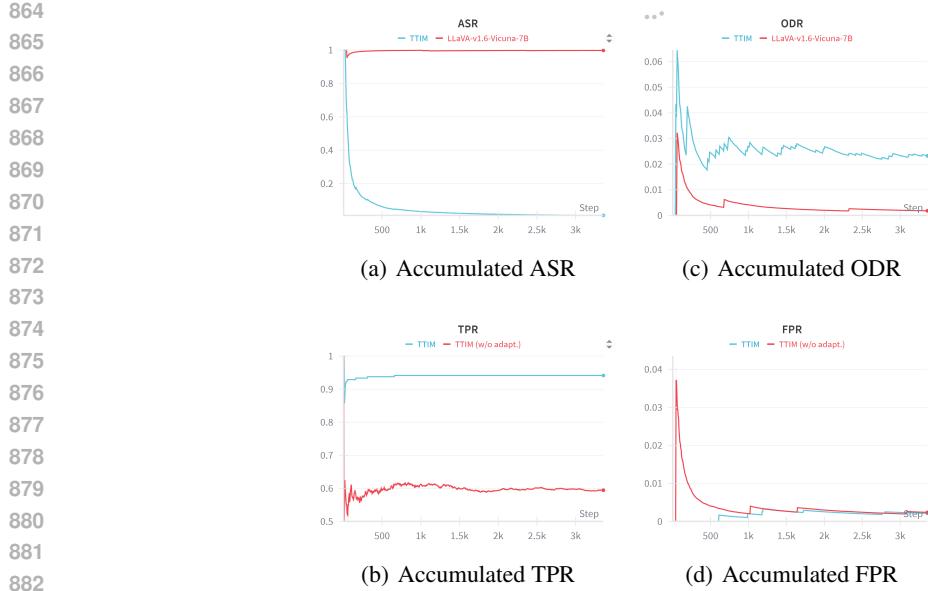


Figure 7: Changes in metrics during the testing against MM-SafetyBench. TTIM-NA represents TTIM (w/o adapt.)

Algorithm 1 The Pipeline of TTIM

Initialize: LLM $\{\mathcal{E}_l, \mathcal{C}_d\}$, Gist token t_g and Detection Classifier \mathcal{C}_d , Jailbreak Memory \mathcal{M}_j , Detection Memory \mathcal{M}_d , Instruction Dataset \mathcal{D}_{qa} , Detection Dataset \mathcal{D}_d , Refusal Answer T_{ref} .
Input: An instruction T^q .
 Generate the answer T^a of T^q by Equation (1)
 Obtain the jailbreak label by Equation (3) and Equation (4).
if jailbreak label equals 1 **then**
 Append $\{(T^q, T_{ref})\}$ into \mathcal{M}_j .
 Append $\{(T^q, T_{ref}, 0), (T^q, T^a, 1)\}$ into \mathcal{M}_d .
 Train the Adapter of \mathcal{E}_l with \mathcal{M}_j and \mathcal{D}_{qa} .
 Train t_g and \mathcal{C}_d with \mathcal{M}_d and \mathcal{D}_d
end if
Output: Answer T^a

900
E LLM USAGE

903 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
 904 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
 905 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
 906 grammar checking, and enhancing the overall flow of the text.

907 It is important to note that the LLM was not involved in the ideation, research methodology, or
 908 experimental design. All research concepts, ideas, and analyses were developed and conducted by
 909 the authors. The contributions of the LLM were solely focused on improving the linguistic quality
 910 of the paper, with no involvement in the scientific content or data analysis.

911 The authors take full responsibility for the content of the manuscript, including any text generated
 912 or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
 913 and does not contribute to plagiarism or scientific misconduct.