
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE JAILBREAK DEFENSE: A SELF-EVOLVING
FRAMEWORK FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

While (multimodal) large language models (LLMs) have attracted widespread at-
tention due to their exceptional capabilities, they remain vulnerable to jailbreak
attacks. Various defense methods have been proposed to mitigate jailbreak at-
tacks. These methods typically incorporate specific defense mechanisms into the
model during training or deployment, aiming to enhance the LLM’s robustness
against jailbreak attacks in advance. However, as new jailbreak attack methods
continue to emerge, defense methods with static resistance mechanisms can fre-
quently be bypassed during testing. To address these limitations, we propose a de-
fense framework, called Test-Time IMmunization (TTIM), which can adaptively
defend against various jailbreak attacks through a self-evolving mechanism during
testing. Specifically, TTIM first trains a gist token for efficient detection, which is
subsequently employed to detect jailbreak activities during inference. When jail-
break attempts are detected, TTIM implements safety fine-tuning using the identi-
fied jailbreak instructions paired with refusal responses. Furthermore, to mitigate
potential performance degradation of the detector caused by parameter updates
during safety fine-tuning, we decouple the fine-tuning process from the detection
module. Extensive experiments conducted on both LLMs and multimodal LLMs
demonstrate that, starting from non-guarded models, TTIM effectively defends
against various jailbreaks during testing with few jailbreak samples. Code is at-
tached as supplementary material.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2023; Touvron et al., 2023; OpenAI, 2023; Naveed
et al., 2023) and multimodal large language models (MLLMs) (Team et al., 2023; Zhu et al., 2024;
Liu et al., 2023) have achieved widespread adoption across diverse applications, due to their su-
perior performance and adaptability. Recently, security vulnerabilities in LLMs have emerged as
a critical research focus (Yi et al., 2024; Jin et al., 2024; Das et al., 2024), which stem from their
inherent weaknesses. To mitigate risks associated with the generation of harmful content (e.g., dis-
criminatory, unethical, or illegal outputs), modern LLMs implement safety-alignment techniques,
including reinforcement learning from human feedback (Kaufmann et al., 2023; Stiennon et al.,
2020) and safety instruction tuning (Peng et al., 2023; Zhang et al., 2023; Zong et al., 2024; Wang
et al., 2025a).

Despite these safeguards, LLMs remain vulnerable to sophisticated jailbreak attacks (Yi et al., 2024;
Jin et al., 2024; Wang et al., 2025b), which are designed to circumvent these protections and elicit
harmful outputs. This vulnerability has been empirically validated through recent research (Chao
et al., 2024; Liu et al., 2024c; Zou et al., 2023), revealing that state-of-the-art safety alignments can
be circumvented. To mitigate these risks, a variety of defense strategies have been developed to
enhance the robustness of LLMs against such jailbreak tactics (Zhang et al., 2024b; Wang et al.,
2024b; Zhang et al., 2024a). Current methods primarily focus on endowing models with specific
security properties during training or deployment, thereby successfully defending against certain
jailbreak attacks. However, existing methods only provide models with specific and limited secu-
rity mechanisms and are unable to incrementally enhance the model’s defense capabilities against
emerging novel jailbreak attacks during inference, thereby leading to their failure. For instance, Hu
et al. (2023) and Kumar et al. (2023) focus on addressing adversarial prompt attacks by implement-
ing perplexity filtering and token deletion. However, these approaches fail to address other forms of
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Figure 1: The overview of test-time immunization. (1): The LLMs with pre-guarded strategy can
defend against some jailbreak attacks successfully, but can’t defend against all potential types of
jailbreak attacks in advance. (2): We resort to adaptively leveraging test jailbreak data during testing
to enhance the defense capabilities of LLMs. When a jailbreak attack hacks our model, we learn the
distribution of the jailbreak attack and gradually become immune to it.

novel attacks, such as embedding malicious instructions into images (Gong et al., 2025) or few-shot
jailbreak (Zheng et al., 2024).

Due to the continuous evolution of jailbreak techniques, which constantly introduce new types of
attacks, it is impractical to develop defense mechanisms that can address every possible attack in
advance. To address this limitation, we introduce a jailbreak defense framework called Test-Time
IMmunization (TTIM), as illustrated in Figure 1. Instead of addressing jailbreak attacks in advance,
TTIM progressively enhances its resistance against emerging novel jailbreak attacks during testing,
which is similar to the biological immune system. In biological immune systems, when the body
encounters a pathogen for the first time, the immune system identifies it and initiates a targeted
response, producing specific antibodies to neutralize the threat. Similarly, TTIM treats jailbreak
attempts as digital ”pathogens”, striving to detect them during inference. Upon detecting a jailbreak
attempt, TTIM develops defense mechanisms based on the harmful instructions, thereby effectively
countering subsequent attacks of the same type. Consequently, TTIM gradually develops robust
immunity against diverse jailbreak techniques, continuously strengthening its resilience during in-
ference.

A key insight underlying our defense framework is that identifying jailbreak behaviors in LLMs
is often more straightforward than directly defending against them, as highlighted by (Gou et al.,
2024a; Zhao et al., 2024; Zhang et al., 2024a). While several studies, including (Zhang et al., 2024a;
Phute et al., 2024), have focused on developing precise detection mechanisms for jailbreak attacks,
these approaches typically rely on auxiliary proxy LLMs for output analysis. However, such config-
urations can be impractical in real-world deployments due to computational and temporal overhead.
To address this limitation, we propose an efficient jailbreak detector that introduces minimal over-
head. Specifically, we train a gist token to extract salient information from previously generated
tokens by injecting it at the sequence’s end. We then employ a classifier to determine whether the
LLM has been jailbroken. Additionally, we construct a dataset to train our detector, which com-
prises harmful questions, harmless questions with harmful answers, harmless answers, and refusal
responses. For defense training, upon detecting jailbreak activities, we leverage the identified jail-
break instructions and refusal responses to fine-tune the model using a low-rank adapter (LoRA)
(Hu et al., 2022). Furthermore, we decouple the jailbreak detector from the trainable LoRA module.
Specifically, we utilize the intermediate hidden state for detection and train the LoRA module exclu-
sively on the final layers of the model, ensuring that updates to the LoRA module do not compromise
detection performance. Moreover, to mitigate the risk of overfitting to rejecting jailbreak attempts,
we incorporate normal data with jailbreak data for regularization. Concurrently, we optimize the
detector during testing to further enhance its performance.
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In the experimental section, we comprehensively evaluate TTIM against various jailbreak attacks on
both LLMs and MLLMs. The results demonstrate that our framework effectively mitigates jailbreak
attempts after detecting only a minimal number of such activities (e.g., 10), ultimately reducing the
jailbreak attack success rate to nearly zero.

In summary, our contributions can be outlined as follows:

• We develop an adaptive jailbreak defense framework that detects jailbreak activities at test-time
and enhances the model’s defense capabilities against such attempts in an online manner.

• We design an efficient jailbreak detector that leverages a gist token and a binary classifier to
accurately identify harmful responses with minimal computational cost.

• To improve the stability of the detector during testing, we propose a decoupling strategy by
assigning different parameters for detector and defense training.

• Extensive experiments on both LLMs and MLLMs demonstrate that our framework effectively
defends against various jailbreak attacks.

2 RELATED WORKS

2.1 JAILBREAK ATTACKS

Research has consistently shown that safety-aligned LLMs and MLLMs remain vulnerable to jail-
break attacks (Jin et al., 2024; Chao et al., 2024; Russinovich et al., 2025), with exploitation tech-
niques evolving from simple adversarial tactics to more sophisticated methods. For example, GCG
(Zou et al., 2023) appends an adversarial suffix to jailbreak prompts. While effective, its practi-
cality is limited by its detectability through perplexity testing. In contrast, AutoDAN (Liu et al.,
2024c) employs a hierarchical genetic algorithm to generate readable jailbreak prefixes that evade
such detection. Additionally, ICA (Wei et al., 2023) advances in-context jailbreaking by embedding
harmful demonstrations directly into the context, effectively manipulating LLMs. Building on this,
Zheng et al. (2024) refines the approach by injecting system tokens and employing a greedy search
strategy within the demonstrations to enhance effectiveness. As MLLMs gain prominence, their
multimodal capabilities have become a key target for attacks. Qi et al. (2024) highlights the vision
modality as particularly vulnerable to adversarial attacks and proposes adversarial image training
as a means to facilitate jailbreaking. Figstep (Gong et al., 2025) employs a blank-filling technique
in image prompts to trigger harmful responses. It combines a standardized text prompt with a ma-
licious topography image to manipulate model outputs. Similarly, Liu et al. (2024d) introduces
MM-SafetyBench, which also employs topography to subtly incorporate malicious prompts within
images. However, unlike Figstep, MM-SafetyBench uses stable diffusion (Rombach et al., 2022) to
create more complex backgrounds that contain the intention of jailbreak, thus enhancing the stealth-
iness and effectiveness of the attack.

2.2 JAILBREAK DETECTION AND DEFENSE

To ensure the outputs of LLMs remain aligned with human values, substantial research has been de-
voted to both detecting and defending against jailbreak attacks. Jailbreak detection (Jain et al., 2023;
Xie et al., 2024) aims to differentiate jailbreak activities from normal activities. Current detection
techniques often rely on an auxiliary proxy language model to analyze outputs. For instance, Phute
et al. (2024) generates detection prompts by appending the model’s response to the question “is the
response harmful?” and then uses a proxy LLM to assess potential harm. Similarly, Pi et al. (2024)
fine-tunes a small proxy model, utilizing the hidden state of its last token with a binary classifier
to determine the nature of a response. LVLM-LP (Zhao et al., 2024) addresses jailbreak detection
by adopting a classifier beyond the first generated token. Another approach proposed by Zhang
et al. (2024a) involves augmenting the input multiple times and using a similarity matrix between
responses for detection. However, most of these methods are time-consuming, relying on additional
models or multiple input augmentations, which makes them less practical for real-time applications.
Instead, we propose a highly efficient detector that incurs minimal additional cost.

Another line of work against jailbreak attacks is jailbreak defense (Gou et al., 2024b). Self-reminder
(Xie et al., 2023) is among the earliest works to introduce a defensive system designed to remind
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Figure 2: Detail workflow of TTIM. (1) We insert a trainable gist token at the sequence’s end and
utilize the hidden states from intermediate layers along with a classifier Cd to perform detection. In
a real-world application, we can employ the KV Cache and the gist token to perform efficient detec-
tion. (2) Upon detecting jailbreak activity during detection, we append the data to jailbreak memory
and incorporate detection data into detection memory for training. Then we utilize jailbreak mem-
oryMj to train the LLM’s defense LoRA module by supervised fine-tuning and employ detection
memory Md to further train the detector (i.e., TTA) by Equation (5). Additionally, we employ a
question-answering dataset Dqa and a detection dataset Dd for regularization.

the model not to produce harmful content. Focusing on MLLMs, Adashield (Wang et al., 2024c)
optimizes a suffix text prompt designed to remind the model to scrutinize both malicious text and
image inputs. Gou et al. (2024a) endeavors to translate image inputs into corresponding text prompts
to defend against jailbreak attacks that embed malicious intent within images to circumvent safety
alignments. In contrast, Zong et al. (2024) focuses on improving model safety during training by
creating a dataset of malicious images to supervise model fine-tuning, making it more resilient to
structure-based attacks like MM-SafetyBench and Figstep. Some works also resort to techniques
like machine unlearning (Lu et al., 2024), multi-agent (Zeng et al., 2024), and decoding control
(Xu et al., 2024b). IMMUNE (Ghosal et al., 2024) is a concurrent work that employs a safety
reward model to guide the decoding generation process more securely. Recently, Peng et al. (2024)
shows that only a few harmful examples can be used to mitigate jailbreak successfully. Different
from them, our method first tries to conduct adaptive safety fine-tuning and optimize the model’s
parameters during inference.

2.3 TEST-TIME LEARNING

Test-time learning is an innovative paradigm where a model is learning during testing to improve
performance and adapt to new conditions. Early test-time learning was often used to solve the
problem of distribution shift and alleviate the performance degradation caused by the difference
between test data and training data (Liang et al., 2024; Yu et al., 2024), namely test-time adaptation
(TTA). While most TTA works focus on the recognition performance, Sheng et al. (2024) aims
to enhance the safety of the model (i.e., resistance to backdoor attack). Moreover, Guan et al.
(2024) proposes test-time repairing to remove the backdoor during testing. In addition, a lot of
works pay attention to defense against adversarial attacks during test time (Nayak et al., 2022; Deng
et al., 2021). A recent work (Lin et al., 2024) introduces test-time training to improve the model’s
adversarial robustness through adaptive thresholding and feature distribution alignment. Our work
extends the concept of test-time training to the domain of LLM security and uses it to enhance the
model’s ability to resist various jailbreak attacks.

3 METHODOLOGY

3.1 PRELIMINARY

Generation of Large Language Model. Given a large language model M = {El, Cl} with a token
set T and hidden space Rm, and an input sequence T = [t1, ..., tK |tk ∈ T], where El is the encoder,
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Cl is the logit projector, and K is the sequence length. The model generates the next token tK+1 by:

tK+1 = argmax
i

Cl(hK)i = argmax
i

Cl(El(T ))i, (1)

where hK ∈ Rm is the hidden state of the last token.

Indeed, LLMs generate tokens autoregressively, using the previous output token to predict the sub-
sequent token. This generation process continues until a stop condition is met, which may involve
reaching a maximum token limit or generating a specific end-of-sequence token. Additionally, in
modern LLMs, the Key-Value Cache (KV Cache) (Radford, 2018) technique is extensively utilized
during inference to speed up attention map computations. We then introduce the framework of TTIM
in three parts: jailbreak detection, defense training, and the decoupling of the two. The algorithm of
our method can be found in Appendix C.

3.2 JAILBREAK DETECTION WITH GIST TOKEN

Most previous jailbreak detection methods either require proxy LLMs to analyze the model’s output
or involve multiple augmentations to the model’s input, which are time-consuming and impractical
for real-world applications. Therefore, we propose training an efficient jailbreak detector that lever-
ages the autoregressive generation properties of the model. Specifically, as shown in the right block
in Figure 2, we train an additional gist token tg with trainable embedding and a binary classifier Cd
to perform detection. Given the question T q and the generated answer T a, we combine it with the
gist token:

Taug = [T q, T a, tg]. (2)
The detection process operates as follows:

pdet = Cd(hg) = Cd(El(Taug)), (3)

where hg is the hidden state of the last token tg . Then we obtain the detection results as follows:

ŷ = argmax
c∈{0,1}

pdetc , (4)

where ŷ = 0 indicates benign content and ŷ = 1 indicates jailbreak attempt. We inject the tg at the
end of the sequence. Since the keys and values of the previous tokens are cached during generation,
the hidden state of tg can be computed efficiently based on the KV Cache. For instance, for a
sequence with a length of 2000, the cost of detecting jailbreak activities is approximately 1/1000 of
the total generation time. A simpler alternative would be to remove the gist token and directly use
the hidden state of the last token to perform detection. However, intuitively, the hidden state of the
last token is used for generation and may not encapsulate the information relevant to the harmfulness
of the response. Therefore, we train a gist token designed to capture the harmfulness of the previous
answer. Additionally, we construct a dataset Dd = (T q

i , T
a
i , yi)

|Dd|
i=1 to train our detector, where T q

i
represents the question, T a

i represents the answer, and yi is the label indicating jailbreak activities.
We train the detector using naive cross-entropy loss, as follows:

t∗g, C∗d = argmin
tg,Cd

E(T q
i ,Ta

i ,yi)∼Dd

[
−

1∑
c=0

1(yi=c) log p
det
i,c

]
, (5)

where pdeti = Cd(El(T q
i , T

a
i , tg)) represents the predicted jailbreak probability of jailbreak detector.

Specifically, we train a linear layer as our binary classifier.

3.3 ADAPTIVE DEFENSE TRAINING

Since detecting jailbreak activity is easier than directly defending against it, we developed a test-time
jailbreak defense system that mimics the biological immune system. Like how the body detects
and responds to pathogens, our system treats jailbreak activities as threats and uses a detector to
identify them. Once detected, the system initiates a defense response to neutralize the attack and
builds immunity against similar future threats. Specifically, when jailbreak activities are detected,
our framework adds the detected jailbreak instruction T q

i along with a refusal response Tref into
jailbreak memoryMj :

Mj ←Mj ∪ {(T q
i , Tref )} (6)
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We then useMj to supervise fine-tuning the model. In this way, we progressively collect jailbreak
data during the model testing and enhance the defense capabilities of the model against various
jailbreak attacks. For normal instruction, our model does not alter its behavior but only incurs a
slight time cost for detecting jailbreak activities. Additionally, to prevent the model from becoming
overly defensive against normal activities, we use the traditional question-answering (QA) dataset
Dqa, to regularize the model during training.

Furthermore, we adopt the concept of test-time adaptation (TTA) (Wang et al., 2021) and build
a detection memory Md to train our jailbreak detector while detecting jailbreak behaviors during
testing. Specifically, we online update Md with detected jailbreak instructions along with their
corresponding answers T a

i as jailbreak QA pairs, and jailbreak instructions with refusal responses
as normal QA pairs by:

Md ←Md ∪ {(T q
i , T

a
i , 1)} ∪ {(T

q
i , Tref , 0)} (7)

Then we use Md to train our detector by Equation (5). Additionally, we also use the detection
dataset Dd for regularization training. We keep the maximum size of Md and Mj to 40 in our
experiments and adopt the FIFO (First-In, First-Out) strategy when memory is full.

3.4 PARAMETERS DECOUPLING OF DETECTION AND TRAINING

Directly combining the above detection and defense training strategy comes with a drawback: the
detector and defense training share a set of parameters (i.e., parameters in El). The updates to
model parameters by defense training are likely to impair the detector. To address this issue, we
propose decoupling the detector and defense training. For detection, we utilize the hidden state of
the intermediate layer, rather than the last layer, to perform detection. For defense training, we apply
the LoRA module (Hu et al., 2022) to the layers behind the intermediate detection layer, treating
them as trainable parameters, as shown in the right block of Figure 2. We ensure that parameter
updates to the detector and the defense training do not interfere with each other in this way. After
that, we obtain the overall pipeline of TTIM.

4 EXPERIMENTS

Table 1: The experimental results under the MM-SafetyBench (Liu et al., 2024d). TTIM’s ASR is
reported in the format of ASR/ASR-50 (same in the subsequent manuscript).

Methods LLaVA-v1.6-Vicuna-7B LLaVA-v1.6-Vicuna-13B Qwen2VL-7B Average
ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓)

No Defense 99.8 0.2 100.0 0.4 95.2 0.0 98.3 0.2
FSD 99.8 0.2 99.7 0.0 69.0 0.1 89.5 0.1
Adashield 7.0 14.0 43.8 51.5 47.4 31.0 32.7 32.2
VLGuard 1.4 6.5 0.2 4.7 0.1 0.0 0.6 3.7
TTIM (w/o gist) 1.4 10.7 3.0 3.8 1.5 8.4 2.0 7.6
TTIM 1.0/0.0 2.3 4.8/0.0 0.4 2.0/0.0 0.1 2.6/0.0 0.9

4.1 SETUP

▷ Jailbreak Attack/Defense Methods. We evaluate our defense methods against various jailbreak
attack methods. For experiments on MLLMs, we choose Figstep (Gong et al., 2025) and MM-
SafetyBench (Liu et al., 2024d). For experiments on LLMs, we utilize I-FSJ and GCG (in the
Appendix B) as the jailbreak attack method. For jailbreak defense methods, we consider FSD (Gong
et al., 2025), Adashield (Wang et al., 2024c), and VLGuard (Zong et al., 2024) for MLLM, and
Retokenization (Jain et al., 2023) and SmoothLLM (Robey et al., 2023) for LLM. Additionally,
we introduce another baseline, TTIM (w/o gist), which is identical to our method but uses the final
hidden state of the last token for detection. To assess the impact of our defense training on detection,
we report results for TTIM (w/o adapt.), where no defense training and optimization occur during
testing. Linear Probing (LP) represents a method that neither uses the gist token nor adapts during
testing (i.e., LLMs with a linear probing binary detector on the last generated token). Furthermore,
we compare our detector against detection baselines, including Self Defense (Phute et al., 2024) and
LVLM-LP (Zhao et al., 2024), in LLM experiments.
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Table 2: The experimental results under Figstep (Gong et al., 2025).

Methods LLaVA-Vicuna-7B LLaVA-Mistral-7B LLaVA-Vicuna-13B Qwen2VL-7B Average
ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓) ASR (↓) ODR (↓)

No Defense 100.0 0.0 100.0 0.0 100.0 0.0 89.4 0.0 97.4 0.0
FSD 100.0 0.0 100.0 0.0 100.0 0.0 70.8 0.2 92.7 0.1
Adashield 0.0 14.0 0.0 7.2 0.0 51.2 32.8 31.8 8.2 26.1
VLGuard 0.0 7.0 0.0 1.8 0.0 5.2 0.0 0.0 0.0 3.5
TTIM (w/o gist) 1.6 0.0 0.4 0.4 0.8 1.6 9.4 0.4 3.1 0.6
TTIM 1.4/0.0 0.0 0.6/0.0 0.0 1.8/0.0 0.4 1.6/0.0 0.0 1.4/0.0 0.1

▷ Metrics. We evaluate jailbreak methods from two perspectives: the effectiveness of defense
against jailbreak attacks and the model’s ability to respond to normal instructions. For evaluating
the effectiveness of defense against jailbreak attacks, we adopt the Attack Success Rate (ASR) as a
metric, as is common in most studies (Wang et al., 2024c; Chao et al., 2024). We define ASR as the
proportion of jailbreak instructions that are not rejected, relative to all the jailbreak instructions. For
the response set Rj of the jailbreak dataset Dj , ASR is calculated as follows:

ASR =
|Rj | −

∑
r∈Rj

isReject(r)

|Rj |
,

where isReject(r) =

{
1, r is rejection,
0, r is not rejection.

(8)

We employ prefix matching to determine whether a response is rejected. Specifically, we compile a
set of rejection prefixes. If the model’s response matches any prefix in the rejection set, we consider
the instruction rejected. The rejection prefixes employed are listed in the Appendix A.4. Since our
method aims to enhance the model’s security capabilities incrementally, we also report ASR-50,
which calculates ASR for jailbreak samples in the last 50% of the test sequences. This reflects
the model’s performance after it has learned to defend against jailbreak attacks. Although defense
methods improve the model’s ability to reject malicious instructions, they may also cause the model
to reject an excessive number of normal queries. Thus, we use the Over-Defense Rate (ODR) to
assess the model’s ability to respond to normal instructions. For the response set Rn of the normal
dataset Dn, ODR is calculated as follows:

ODR =

∑
r∈Rn

isReject(r)

|Rn|
. (9)

Additionally, to evaluate the detector’s performance, we report the Accuracy (ACC), True Positive
Rate (TPR), and False Positive Rate (FPR) (Swets, 1988). Moreover, we provide the details of our
dataset construction, experiment setups, and our baselines in the Appendix A.

4.2 MAIN RESULTS

Table 3: The experimental results under text-based attack, I-FSJ (Zheng et al., 2024).

Methods LLaMA2-7B-chat LLaMA3-8B-Instruct
ASR (↓) ODR (↓) TPR (↑) ASR (↓) ODR (↓) TPR (↑)

No Defense 99.2 5.5 - 94.3 0.2 -
Retokenization (20%) 97.5 8.3 - 83.0 0.2 -
SmoothLLM (insert 20%) 76.6 26.7 - 100.0 0.4 -
SmoothLLM (swap 20%) 93.4 55.8 - 60.0 1.8 -
SmoothLLM (patch 20%) 80.9 27.5 - 57.4 6.4 -
TTIM (w/o adapt.) - - 98.9 - - 18.2
TTIM (w/o gist) 0.6 4.9 100.0 12.7 19.7 1.5
TTIM 2.6/0.0 0.6 100.0 1.0/0.0 0.2 40.0

▷ Jailbreak Defense. To evaluate the effectiveness of our method, we report the results on Figstep
and MM-SafetyBench in Tables 1 and 3. As shown in the tables, Adashield demonstrates strong
defensive capabilities, especially against Figstep, where it reduces the ASR to 0%. Similarly, the
ASR on MM-SafetyBench is reduced to 7% by Adashield. Despite its effectiveness, Adashield suf-
fers from a noticeable over-defense phenomenon with normal samples, with over 5% of them being
rejected. After training on a specially designed dataset, VLGuard shows relatively excellent per-
formance, achieving almost 0% ASR against jailbreak samples but still show over-rejects to normal
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(a) LLaVA-Vicuna-7B under MM-SafetyBench
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TPR

FPR

(b) LLaVA-Vicuna-7B under Figstep

ASR

ODR

ACC

TPR

FPR

(c) LLaVA-Mistral-7B under Figstep

TTIM (w/o gist)
TTIM (w/o adapt.)
TTIM

Figure 3: Performance of different variants of TTIM. All metrics are normalized. The larger areas
represent better performance.

samples. Compared to VLGuard, TTIM gradually learn to reject jailbreak attacks during testing
without any prior targeted training. It achieves an ASR of less than 2% at most experiments, and,
among all the effective jailbreak attack defense methods, our approach causes the least damage to
the model’s ability to respond to normal queries (i.e., ODR from 0.2% to 2.3% on MM-SafetyBench
with LLaVA-v1.6-Vicuna-7B as backbone and nearly 0% on others). From the ASR, we can draw a
conclusion that TTIM only requires a few jailbreak samples to learn how to reject such types of
jailbreak attacks (on the Figstep dataset, this number is less than 10). Since our method progres-
sively enhances the model’s defensive capabilities during testing, we believe that the ASR-50 metric
better reflects the true effectiveness of our approach. Our method achieved 0% ASR-50 across all
jailbreak attack datasets, indicating that, with continuous optimization, our model can achieve com-
plete defense against individual attacks. Moreover, Table 3 shows the results for the text-based
attack. Our method is also effective at defending against I-FSJ, a jailbreak method that only uses the
language modality. TTIM not only achieves an ASR-50 of 0% but also reduces the model’s ODR.

▷ Jailbreak Detection. Next, we analyze the role of our jailbreak detector from two perspectives:
1) What advantages does our detector’s design offer compared to TTIM (w/o gist)? 2) How does
training the detector during testing enhance the effectiveness of our framework?

First, addressing the former question, the results in Table 4 show that TTIM (w/o adapt.) exhibits
clear improvements over LP in three metrics: Accuracy, TPR, and FPR. This improvement is primar-
ily attributed to our introduction of the gist token, which is specifically designed to extract malicious
information from previously generated sequences, rather than relying solely on the output of the
last token for classification. This strategy has improved the expressive capacity of our detector.
Secondly, the performance of the detector is shown in Figure 3. It is evident that TTIM (w/o gist)
exhibits a significant increase in FPR compared to TTIM, suggesting that it misclassifies more nor-
mal samples as jailbreak samples. One consequence of this issue is the use of more normal samples
in defense training, which leads to an increase in the model’s ODR, as shown in the Tables 1 and 3.
The cause of this issue arises from the detector sharing parameters with the defense training. The pa-
rameters’ update during defense training will affect the performance of the detector. TTIM resolves
this issue by decoupling the defense training from the jailbreak detector by separating parameters.
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Figure 4: Results under varying jailbreak data ratios.

Table 4: The detection performance
under I-FSJ (Zheng et al., 2024) at-
tack with LLaMA2-7B-chat.

Methods ACC (↑) TPR (↑) FPR (↓)
Self Defense 64.4 42.9 14.2
LVLM-LP 67.7 36.3 0.8
LP 88.5 77.4 0.7
TTIM (w/o adapt.) 99.1 98.9 0.6
TTIM (w/o gist) 99.4 100.0 0.6
TTIM 99.9 100.0 0.1

4.3 ADDITIONAL ANALYSIS

In real-world scenarios, the situations encountered by models can be both complex and diverse.
Therefore, we conduct additional experiments to directly assess the robustness of our method in
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complex scenarios. The results of transferability, continually changing jailbreak, and GCG attack
are provided in the Appendix B.

▷ Sensitivity to the Detector. The ability of our method to resist jailbreak attacks intuitively depends
on the detector’s effectiveness at identifying attacks. As shown in Table 3, our detector exhibited
a relatively lower TPR under certain extreme conditions. Specifically, TTIM (w/o adapt.) detected
only 18.2% of jailbreak activities; however, with adaptation of the detector, TTIM significantly im-
proved detection performance, achieving a TPR of 40%. We hypothesize that this reduced detection
efficacy occurs because I-FSJ requires 8 context demonstrations to jailbreak LLaMA3-8B-Instruct,
resulting in a substantial discrepancy between the token lengths encountered during detector train-
ing and those in testing scenarios. The average token lengths for instructions and answers during
detector training are 13 and 271, respectively, whereas the average token length for jailbreak in-
structions using I-FSJ reaches 3061. Despite this limitation, our method effectively resists attacks
on LLaMA3, demonstrating robustness even when the detector’s performance degrades.

ASR ODR ACC TPR FPR0

20

40

60

80

100

Sc
or

e 
(%

)

TTIM (w/o adapt.)
TTIM

Figure 5: Results under hybrid jailbreak
attack. We randomly selected 300 jail-
break samples from MM-SafetyBench
(Liu et al., 2024d) and 300 from Figstep
(Gong et al., 2025), combining them
into a new jailbreak dataset.

▷ Results under Hybrid Jailbreak Attack. In deploy-
ment scenarios, attackers may employ multiple meth-
ods simultaneously to launch jailbreak attacks against the
model. Accordingly, we designed experiments involving
hybrid jailbreak attacks. The results, presented in Fig-
ure 5, indicate that under our method, the ASR can still
be reduced to a very low level, while the model’s ability
to respond to normal queries remains largely unaffected.

▷ Results under Different Jailbreak Data Ratios. In
practical applications, the proportion of jailbreak data
within the model’s test data is typically not fixed. The
model may simultaneously receive a large number of jail-
break attack requests, or it might not encounter any jail-
break instructions for extended periods. Thus, we report
the results of our method under varying proportions of
jailbreak attack data in Figure 4. The results presented in the table demonstrate that our method
achieves stable and effective performance across various proportions, both in terms of defending
against jailbreak attacks and the detection performance of our detector.

Table 5: Average inference cost (seconds) for each instruction. All experiments are conducted with
I-FSJ jailbreak. The test samples are mixed with 520 normal samples and 520 jailbreak samples.

Vanilla Detection Test-time Defense
LLaMA2-7B + TTIM’s Detector + Self Defense TTIM Training Inside

7.18 7.21 (+0.4%) 36.13 5.49 0.67 (12.2%)

▷ Computation Cost Analysis. The computational cost of our method is reported in Table 5.
As shown, our detector introduces a negligible overhead—only 0.4% of the standard inference
cost—making it substantially more efficient than Self Defense (Phute et al., 2024), which adopts
a proxy LLM to analyze the generated output. In addition, the training cost constitutes merely
12.2% of the overall computational budget. Overall, the inference time of TTIM is lower than that
of the vanilla model. This is primarily because TTIM generates short rejection responses to jailbreak
attempts, rather than generating long malicious outputs.

5 CONCLUSION

In this paper, we address the challenge of defending against diverse jailbreak attacks. We propose
a universal test-time defense framework designed to dynamically detect jailbreak attacks during
testing and utilize detected jailbreak instructions to defensively train the model, thus gradually en-
hancing the defense capability of the model. To enhance jailbreak attack detection, we introduce
a specialized gist token designed to extract harmful information from model responses with almost
no additional cost, which is then classified using a binary classifier. Furthermore, to minimize the
impact of model updates on the detector, we decouple the detector from defense training, ensuring
they operate on separate parameters and do not interfere with each other. Extensive experiments
demonstrate the efficacy of our method across a variety of scenarios.
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perimentation were involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets are available in the supplementary material to facilitate replication and verification.
The experimental setup, including training steps, model configurations, and hardware details, is
described in detail in the paper. We have also provided a full description of TTIM and attached the
code to assist others in reproducing our experiments. Additionally, jailbreak benchmarks, such as
MMSafetyBench, Figstep, and I-FSJ, are publicly available, ensuring consistent and reproducible
evaluation results. We believe these measures will enable other researchers to reproduce our work
and further advance the field.
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A THE DETAILS OF EXPERIMENTAL SETUP

A.1 DATASET CONSTRUCTION

To construct the detection dataset, we initially collected original malicious instructions from Ad-
vBench (Zou et al., 2023) and MM-SafetyBench (Liu et al., 2024d). To obtain malicious answers,
we employed Wizard-Vicuna-7B-Uncensored (Xu et al., 2024a), a model without safety alignment,
to generate answers. To obtain refusal answers, we utilized LLaMA2-13B-chat to generate an-
swers with various refusal prefixes. We employed GPT4-LLM-Cleaned (Peng et al., 2023) and
LLaVA-Instruct-150K (Liu et al., 2023) as clean instructions for LLMs and MLLMs, respectively.
Furthermore, to generate clean answers, we utilized LLaMA2-7B-chat and LLaVA-v1.6-Vicuna-7B
for GPT4-LLM-Cleaned and LLaVA-Instruct-150K, respectively. Our detection dataset comprises
four parts: 1) malicious instructions with malicious answers, classified as jailbroken; 2) malicious
instructions with refusal answers, classified as not jailbroken; 3) clean instructions with clean an-
swers, classified as not jailbroken; 4) clean instructions with malicious answers, classified as jail-
broken. The details of Dd are depicted in Table 6 The primary focus of the dataset is to determine
whether the answer is harmful, rather than assessing the harm of the instruction itself. For the vi-
sual question-answering (VQA) dataset, since the original malicious instructions lack images, we
randomly selected images from the COCO dataset (Lin et al., 2014) for them. It is important to note
that our malicious instructions are original and unaffected by jailbreak attacks, meaning we do not
use jailbreak-processed instructions during detector training. For the evaluation dataset, we com-
bine normal QA/VQA instructions from GPT4-LLM-Cleaned/LLaVA-Instruct-150K with jailbreak
instructions to simulate real deployment environments in experiments on LLMs/MLLMs.

Table 6: The details of detectin dataset Dd. The information is provided with (#samples, jailbreak
label)

Malicious Answer Normal Answer Rejection Answer

Malicious Question (2198, 1) - (2100, 0)
Normal Question (2198, 1) (4000, 0) -

A.2 BASELINES

Figstep (Gong et al., 2025) conceals harmful content within text prompts using typography, embed-
ding it into blank images to circumvent text-modality safety alignments.

MM-SafetyBench (Liu et al., 2024d) initially generates a malicious background image using harm-
ful keywords from jailbreak prompts and subsequently converts text-based harmful content into
images using topography.

I-FSJ (Zheng et al., 2024), based on in-context jailbreak (Wei et al., 2023), aims to induce the model
to generate harmful content through several jailbreak demonstrations. Additionally, I-FSJ employs
system tokens to enhance its attack capabilities. Furthermore, a greedy search is used to select the
optimal demonstration from the datasets.

GCG (Zou et al., 2023) is a white-box method utilizing an adversarial text suffix to jailbreak LLMs.

FSD (Gong et al., 2025) is a defense method that introduces a specific system prompt, reminding
the model to focus on malicious text within images.

Adashield (Wang et al., 2024c) is a test-time alignment method proposing the addition of a defense
prompt following the input text prompt. The defense prompts can be static or adaptive, which are
called Adashield-S or Adashield-A, respectively. We consider Adashield-S in our experiments.

VLGuard (Zong et al., 2024) is a training-time alignment method that involves additional safety
fine-tuning on a specific dataset. It constructs a safety instruction tuning dataset containing mali-
cious images to defend against structure-based jailbreak methods like Figstep and MM-SafetyBench.
Unlike VLGuard, our detector’s training dataset contains no prior knowledge of the jailbreak attack
method (e.g., malicious images).
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A.3 EXPERIMENTAL DETAILS

For MLLM experiments, we select Qwen2VL-7B (Wang et al., 2024a) and LLaVA-v1.6 (Liu et al.,
2023; 2024b;a) built on different language backbones like Vicuna-7B/13B (Chiang et al., 2023) and
Mistral-7B (Jiang et al., 2023) as the base models. For LLM experiments, we use LLaMA2-7B-chat
and LLaMA3-8B-Instruct (Touvron et al., 2023) as the base model. The weights for all base models
are sourced from Hugging Face. We set the learning rate, number of epochs, and batch size for
detector training to 1e-3, 5, and 32, respectively. We use the Adam optimizer (Kingma, 2014) for
defense training, setting the learning rates to 0.001 for MLLMs and 0.002 for LLMs. We apply
LoRA (Hu et al., 2022) with a rank of 16 to the query and value matrix in the last 15 transformer
blocks. The regularization batch size is set to 40, while the batch sizes for refusal training and
detector training during test time are set to 1 and 6, respectively. Furthermore, during jailbreak
activity detection, we train the defense capabilities and the detector for 1 and 5 steps, respectively.
We incorporate an equal mix of jailbreak instructions and clean instructions in the test data. All the
experiments are conducted on 4*RTX A6000.

A.4 THE JAILBREAK EVALUATION

For the refusal judgment, we use the prefixes match method. We think the model refused to answer
if the respones start with the following prefixes.

I’m sorry
Sorry
I am sorry
I apologize
As an
As a responsible
I’m an
I’m just
As an Assistant
If you have any other non-malicious requests

I do not
I cannot
As a language model
I’m really sorry
My apologies
I’m not able to provide
I am really sorry
I can’t provide
I can’t assist
I’m unable to

B ADDITIONAL RESULTS

Table 7: ASR(%) under continual
changing environments.

Attack Order (−→)
Figstep MM-SafetyBench Figstep

1.4 6.6 0.0

Robustness against continual changing attack. To val-
idate the effectiveness of our method under continuous
exposure to various forms of jailbreak attacks, we con-
ducted experiments as shown in Table 7. We selected
500 different samples for each type of jailbreak attack
and conducted the attacks in varying orders. As can be
seen, even after undergoing the MM-SafetyBench attack,
our method still maintains good defensive performance
during the second exposure to the Figstep attack, without experiencing catastrophic forgetting.

Table 8: The transferability results. We first adopt TTIM on the source jailbreak attack. Then, we
freeze the fine-tuned model and evaluate it on the target attack. We report the ASR while adopting
the LLaVA-v1.6-Vicuna-7B as the backbone. The numbers in brackets represent the changes of
ASR compared to the Vanilla Model.

Figstep −→MM-SafetyBench MM-SafetyBench −→ Figstep

84.3 (-15.5) 0.0 (-100.0)

Transferability of defense training. We demonstrate the static transferability of the fine-tuned
model in Table 8. It is effective when migrating from a more complex attack (MM) to a simpler one
(Figstep), but its effectiveness is limited in the reverse direction. However, it’s worth noting that our
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method is an online adaptive defense method. New types of jailbreaks will be adaptively defended
against as they emerge.

Table 9: Experimental Results under GCG jailbreak attacks.

ASR ODR

LLaMA2-7B-chat 21.5 0.2
+TTIM 7.7 (-13.8%) 2.7 (+2.5%)

(a) Accumulated ASR

(b) Accumulated TPR

(c) Accumulated ODR

(d) Accumulated FPR

Figure 6: Changes in metrics during the test process against Figstep. TTIM-NA represents TTIM
(w/o adapt.)

Results under GCG attack. We supplemented the results of the white-box attack, GCG, in Table 9.
TTIM decreased the ASR from 21.5% to 7.7%, demonstrating its effectiveness against GCG.

Performance curve during testing. To demonstrate the performance of our method as the test
progresses, we report the relevant indicators in the Figures 6 and 7. As can be seen, as the test
progresses, the ASR of our method continues to decrease, indicating that our model has learned how
to resist this type of jailbreak attack, and our method only needs a small number of samples to fully
learn how to defend. In addition, our other indicators remain stable during the test, which shows the
robustness of our method.

C ALGORITHM OF TTIM

We summarize the pipeline of TTIM in Algorithm 1.

D BROADER IMPACTS

While this work does not directly target societal or community-level outcomes, it contributes to
the broader scientific enterprise by advancing foundational understanding in jailbreak studies. The
methods and findings presented may support future theoretical developments and inspire new direc-
tions in related research areas. Furthermore, the technical tools and insights generated can serve as
a resource for researchers pursuing similar challenges, fostering further academic collaboration and
exploration.
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(a) Accumulated ASR

(b) Accumulated TPR

(c) Accumulated ODR

(d) Accumulated FPR

Figure 7: Changes in metrics during the testing against MM-SafetyBench. TTIM-NA represents
TTIM (w/o adapt.)

Algorithm 1 The Pipeline of TTIM

Initailize: LLM {El, Cd}, Gist token tg and Detection Classifier Cd, Jailbreak Memory Mj ,
Detection MemoryMd, Instruction Dataset Dqa, Detection Dataset Dd, Refusal Answer Tref .
Input: An instruction T q .
Generate the answer T a of T q by Equation (1)
Obtain the jailbreak label by Equation (3) and Equation (4).
if jailbreak label equals 1 then

Append {(T q, Tref )} intoMj .
Append {(T q, Tref , 0), (T

q, T a, 1)} intoMd.
Train the Adapter of El withMj and Dqa.
Train tg and Cd withMd and Dd

end if
Output: Answer T a

E LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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