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Abstract

The brain’s diverse spatiotemporal activity patterns are fundamental to cognition
and consciousness, yet how these macroscopic dynamics emerge from microscopic
neural circuitry remains a critical challenge. We take a step in this direction by
developing a spatially extended neural network model integrated with a spec-
tral theory of its connectivity matrix. Our theory quantitatively demonstrates
how local structural parameters, such as E/I neuron projection ranges, connec-
tion strengths, and density determine distinct features of the eigenvalue spectrum,
specifically outlier eigenvalues and a bulk disk. These spectral signatures, in
turn, precisely predict the network’s emergent global dynamical regime, encom-
passing asynchronous states, synchronous states, oscillations, localized activity
bumps, traveling waves, and chaos. Motivated by observations of shifting cor-
tical dynamics in mice across arousal states, our framework not only provides
a possible explanation for repertoire of behaviors but also offers a principled
starting point for inferring underlying effective connectivity changes from macro-
scopic brain activity. By mechanistically linking neural structure to dynamics,
this work advances a principled framework for dissecting how large-scale activity
patterns—central to cognition and open questions in consciousness research—arise
from, and constrain, local circuitry. The implementation code is available at
https://github.com/huang-yh20/spatial-linear-project.

1 Introduction

The brain’s activity is remarkably diverse, forming complex spatiotemporal patterns that vary with an
organism’s cognitive state and level of consciousness [[1H4]. Propagating waves of neural activity,
for example, are observed across numerous brain regions and species, from insects to humans
[5,16]. Recent high-resolution imaging in mice, as they transition from anesthesia to wakefulness,
has highlighted this complexity, revealing large-scale cortical waves during anesthesia and a shift
towards more localized, intricate spatiotemporal patterns upon awakening [4]]. Such observations
emphasize that the spatial organization of neural activity is a fundamental aspect of brain function
[7H10]. Consequently, a key challenge is to understand how these macroscopic dynamical states,
which distinguish brain states, arise from the underlying microscopic neural architecture and effective
connectivity rules. Since many critical brain dynamics are inherently spatial, involving coordinated
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activity across neural tissue, models must incorporate spatial extent to capture these phenomena
faithfully [[11]].

Previous developments in neural field theory have revealed a variety of rich dynamical phenomena in
spatially distributed neural networks, such as traveling waves and bump-like activity patterns [[12H18]].
Meanwhile, previous development of dynamical mean-field theory (DMFT) [19-25]] has uncovered
the emergence of chaotic neural activity in large-scale brain networks. However, A comprehensive
framework that quantitatively links a broad range of local network structures to the full spectrum of
emergent global dynamics in spatially extended systems is still developing. Current theories often
explain particular aspects, but a general theory predicting the emergence of, and transitions between,
diverse spatiotemporal patterns from fundamental structural properties across a wide parameter space
remains a critical need. For a detailed comparison with prior approaches, including neural field
theory, numerical simulation and random matrix theory, please refer to Appendix [A.1]

To address this, we present a unifying theoretical framework centered on a spatially extended recurrent
neural network model with excitatory (E) and inhibitory (I) populations. The core of our approach is a
spectral analysis of the network’s connectivity matrix. Building upon theories of random matrices [26-
30], we provide an analytical formulation for the spectral bulk arising from connection heterogeneity
and, critically, demonstrate that the inherent spatial organization of the network itself constitutes a
low-rank structure. This allows us to characterize a rich set of outlier eigenvalues, reflecting specific
spatiotemporal modes determined by the network’s geometry. We show that this comprehensive
“spectral blueprint” - encompassing both the derived bulk and the spatially determined outliers -
quantitatively links key local structural parameters (spatial reach of E/I connections, relative strengths,
local density, weight variability) to a full repertoire of global dynamical phases. This framework
offers predictive power, enabling us to anticipate the network’s spatiotemporal behavior from its
effective connectivity structure. These predicted phases include stable asynchronous states, global
synchrony, oscillations, localized bumps, traveling waves, and chaotic dynamics. Our work thus
provides a principled understanding of how network structure dictates emergent neural activity.

Road-map We first define the spatial E/I network (Section 2, then analytically derive its bulk-plus-
outlier spectrum (Section Appendix [A.T3). The spectrum predicts six dynamical phases (Section
[3.3] Appendix[A.TT]| & [A.14). The comparison to experimental data can be found in Section [3.3}[3.6
Parameters and numerical validation are in Appendix

2 Spatial Extended Neural Networks

2.1 Model Definition

To explore the link between structure, dynamics, and the eigenvalue spectrum, we constructed a
minimal rate-based neural network model with biologically realistic features. The network consists of
excitatory and inhibitory neurons, sparse connectivity that decays with distance, and synaptic weights
drawn from a Gaussian distribution (Fig. [I).

We consider a network consisting of Ng excitatory neurons and /N; inhibitory neurons, where
Ng : Ny = 4 : 1. Both excitatory neurons and inhibitory neurons are evenly distributed in the region
[0,1) x [0, 1). The dynamics of the neurons are described by the following equation:

dha —h“+ZZJ“%ﬂ hg) + €2 (). (1)

Here, h indicates the membrane potential of neurons, ¢(-) is the activation function of neurons,
a, B € {E, I} denotes the neuronal populations, £ represents the external input received by the
population « ,and J represents the synaptic weights between neurons. The external input is modeled
as independent white noise with intensity £y = 0.1.

The connections between neurons are sparse. The probability of connection between a o neuron
located at x; and a 3 neuron located at x; is given by,

km;gt
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Figure 1: (a) and (b) Mesoscopic optical imaging of the anesthetized and full awake mouse cortex [4].
Model schematic. (c) Spatially extended neural network with excitatory (E) and inhibitory (I) neurons
embedded in 2D space. (d) Synaptic weights follow a distance-dependent Gaussian distribution. (e)
Connection probability follow a distance-dependent wrapped Gaussian distribution.
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This indicates that the probability of connection between neurons decays according to a wrapped
Gaussian profile with a characteristic decay length of d,g. Here, kg%t represents the average out-
degree, namely the number of « neurons to which a single 8 neuron projects.

Two neurons are connected with a probability of p&? (|z; — x|). If two neurons are indeed connected,
the connection weight follows an independent Gaussian distribution with a mean of g,/ kf;ét and a

variance of 02 ;/kS%, namely, J;” N (Gag/ koY 02 5/ kSY).

The activation function ¢(-) can be arbitrary. In our experiment, we chose the activation function
¢r(x) = tanh(z) for excitatory neurons and ¢;(z) = 5tanh(z/5) for inhibitory neurons for the
reason that the saturated firing rate of inhibitory neurons is substantially higher than that of excitatory
neurons[31]. However, the choice of activation function has little impact on the conclusions, and we
discuss this in detail in the Appendix [A.6] In the Appendix[A.6] we also show the results with the
activation function as ¢ (x) = 10 - ReLU (x) and ¢;(x) = 2 - ReLU (x)?.

2.2 A Repertoire of Emergent Dynamical Phases

Asynchronous State The balance between excitatory and inhibitory interactions shapes the net-
work’s synchronization and stability. When inhibition dominates or excitation and inhibition are
balanced (Fig.[2Ja)), the network exhibits low synchronization and small deviations from the steady
firing rate. We define this regime as the asynchronous state (Fig.[2Jc)). In the asynchronous state,
neuronal membrane potentials fluctuate around the fixed point (zero) due to external input. Neural
activity remains weakly correlated across neurons, and no spatial patterns emerge. This regime aligns
with the classical asynchronous state described by [21]].

Synchronous State When excitation dominates (Fig. [2[a)), the network can enter a highly synchro-
nized regime with large deviations from the steady-state firing rate, which we term the synchronous
state phase. In this phase, the firing rates of all neurons shift away from the fixed point, and strong
global synchronization emerges across the network (Fig. 2|c)). This globally synchronized activity
resembles pathological brain states such as epileptic seizures [32].
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Figure 2: Dynamical regimes in spatially extended networks. (a,b) Phase diagrams under different
parameters (see Appendix [A-T0). Wave-chaos phase boundaries determined as in Appendix [A.T4]
(c) Representative neural activity showing temporal evolution (left) and spatial patterns (right) with
shared colorbar; enhanced versions in Appendix [A.12]show the asynchronous state with individual
scaling.
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Oscillatory Phase Neural oscillations emerge when excitation-inhibition coupling strengthens in
highly synchronized networks (Fig.[2(a)). We term this dynamical regime the oscillatory phase, char-
acterized by periodic membrane potential changes and synchronized neural activity (Fig.[2[c)). Our
identified excitation-inhibition loop mechanism aligns with established experimental and theoretical
work. This consistency supports the biological plausibility of our model, as evidenced by prior studies
on neural oscillations [[1, [33]].

Localized Bump Phase Mismatched projection ranges between neuron types generate structured
spatial activity patterns. When excitatory neurons project locally while inhibitory neurons extend
farther, the system exhibits bump phases and wave phases (Fig. [2fa)). The bump phase produces
localized spatial patterns dependent on activation functions. Neural activity synchronizes within
discrete regions, forming stripes (Fig. [J{c)). Rectified linear and threshold power-law functions yield
spot-like patterns (see Appendix [A.6), aligning with previous simulation results of spiking neural
networks|[[15} [17]. Similar wavelength-specific patterns occur in juvenile visual cortex [34]], with
persistent long-range correlations in adulthood [35].

Wave Phase The wave phase features propagating oscillations with location-dependent phase shifts
(Fig.2|c)). This mirrors biological observations of traveling alpha/gamma waves [6] [5]], suggesting
our model captures essential mechanisms of spatial-temporal dynamics.

Chaotic Phase High connection sparsity and weight variance drive neural activity into a chaotic
regime (Fig.[2[b) and Fig.[9[a)). We term this disordered state the chaos phase, where spatial patterns
collapse due to uncorrelated neural firing. Neurons exhibit large-amplitude, weakly correlated
fluctuations in the chaos phase (Fig. [JJc)). Membrane potentials vary erratically, matching the second
type of asynchronous state described in spiking networks [21]]. This aligns with dynamic mean-field
theory predictions of chaotic dynamics in rate-based neural networks [[19]].

3 The Spectral Blueprint: Decoding Dynamics from Connectivity Structure

3.1 Effective Connectivity and its Eigenvalues

Building on the neuroscience perspective of effective connectivity (EC) as a model-based measure
of directed interactions [36], we propose that the linearized Jacobian matrix —I + J¢’(x*)—derived
from the recurrent neural network’s fixed-point dynamics—serves as an analogous EC matrix. Here,
structural connectivity J is dynamically modulated by nonlinear gains ¢’(x*), mirroring how anatom-
ical constraints and state-dependent plasticity jointly shape brain network interactions. To unravel
how such connectivity shapes collective behavior, we analyze its eigenvalue spectrum, which governs
stability and activity patterns. In the following sections, we employ random matrix theory to charac-
terize this spectrum, revealing universal dynamical regimes emergent from its structure. In the main
text, we use the tanh activation function, so the connectivity matrix J can be regarded as the effective
interaction matrix. We also present results with alternative activation functions in the appendix

and [A 11l

3.2 Eigenvalue Spectrum of Spatially Extended Networks

The eigenvalue spectrum of spatially distributed neural networks’ connectivity matrix J comprises
two distinct components: a bulk disk region and a set of spectral outliers, which respectively reflect
heterogeneous neuron interactions and population-averaged connectivity patterns. Following the ma-
trix decomposition J = J + §J, where J denotes the expectation matrix and dJ represents zero-mean
random fluctuations, we observe that 6J governs the bulk spectrum through its stochastic components
while J generates spectral outliers through its low-rank structure. This aligns with the perturbation
framework established by [27], wherein low-rank modifications to random matrices predominantly
affect outlier positioning while preserving the original bulk spectral radius (see Appendix [A.13.2]for
details). The dichotomy between these spectral components provides a mathematical characterization
of neural network dynamics - the deterministic outliers capture macroscopic interaction features,
whereas the bulk spectrum encodes microscopic connection variability.
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3.2.1 Outliers

The matrix J determines the outlier part of the eigenvalue spectrum [27]]. The expected connectivity
between neurons exhibits spatial translational invariance. We can decompose the activities of neurons
into different spatial Fourier modes (See Appendix [A.13.4). For each spatial Fourier mode, the
effective connectivity matrix is

— |1k]12d% — [1k]12d7
—(k) Jppexp|(—— 52 ) grpexp|—— 5 &
Jeff = 2 52 2 ;2 5 (3)
Ty €Xp _ 1]l dE1> Gy7 exp _ ]l du)
2 2

where k = (2mng,2mny), Ng,ny =0,£1,£2, -

The eigenvalue spectrum of the connectivity matrix reveals distinct outliers generated by spatial
Fourier modes at different wave vectors k. Each outlier corresponds to collective population dynamics
mediated by k-specific interaction submatrices. These submatrices encode spatially modulated
couplings between excitatory and inhibitory populations, with effective weights determined by three
components: (1) baseline inter-population connectivity (g, between populations « and f3), (2)

k-dependent modulation of spatial interaction range exp (| k| [d2 5/ 2).

3.2.2 Bulk Disk

The matrix 6J governs the bulk disk part of the eigenvalue spectrum, of which the radius is determined
by the local sparsity of neuronal connections and the variance of the weights. Analytical tools
developed in [28| [29] characterize the spectral distribution of random matrices with independent,
zero-mean, finite-variance entries. Applying these results, we can determine that the eigenvalues are
extended within a circle of a specific radius r = y/max (A(M)), where the elements of the matrix
M represent the variances of the elements of the connectivity matrix J. The variance of the elements
of the connectivity matrix J is given by (See Appendix for details),

— 2 2
« aB? a « gaﬁ a Oap

M = B[0I57] = 0 (i = ayl) (1 =92 (s = 3)) <2y 0 (s — ) T @)
af af

The eigenvalues of this matrix are equivalent to those of the reduced matrix, where the elements rep-
resent the heterogeneity of connections between different types of neurons. For the two-dimensional
case, this reduced matrix is

Nj | Jas kag 2
Mos = 2 1- . 5
R [kg;;; Irdas® N, ) 07 ®

Based on the above equations, the radius of the circular part of the eigenvalue spectrum is given by,

. Mgg + M+ \/(Mgg — Mi1)? + 4MpiMig
= 5 _

(6)

We can observe that the heterogeneous matrix M,z is composed of two parts: sparsity and variability
in synaptic weights. The left half of Equation 5| represents the heterogeneity brought about by the
sparse connections between neurons, while the right half of Equation [5|represents the heterogeneity
due to the variability in the weights of the neuronal connections. As the local sparsity of neuronal
connections and the variance of weights increase, the radius of the bulk disk part of the eigenvalue
spectrum also increases.

3.3 Linking Spectral Features to Dynamical Phases

The eigenvalue spectrum of the effective connectivity matrix J¢'(x*) governs network dynamics: the
dominant eigenvalue (largest real part) determines stability near the fixed point. A real part exceeding
the critical threshold (Re(Agom) > 1) quantifies deviation magnitude, while the dominant eigenvector
specifies the spatial activity pattern. We thus classify neural networks into distinct dynamical phases
based on their eigenvalue spectrum, as summarized in the table|l] (See Appendix for details),



Table 1: Dynamical Phases and Spectral Features

Phase R(Adom) Condition Adom Type Wavenumber (k)
Asynchronous State R(Agom) < 1 - -

Synchronized State ~ R(Agom) > 1 Outliers, Real k=0

Oscillatory Phase R(Adom) > 1 Outliers, Complex k=0

Bump Phase R(Adom) > 1 Outliers, Real k+#0

Wave Phase R(Adom) > 1 Outliers, Complex k& # 0

Chaotic Phase R(Adom) > 1 Bulk Disk -

3.4 The Role of Key Structural Parameters in Shaping the Spectrum

Excitaion-Inhibition Balance The magnitude of excitatory and inhibitory interaction affects the
magnitude of the real parts of the outlier eigenvalues, which in turn influences the degree of deviation
of neural activity from the fixed point and the level of synchronization. As shown in Eq.[3] the
magnitude of excitatory and inhibitory interactions influences the elements of the effective interaction
matrix. As shown in Fig.[2(a), the more excitatory interaction there is, the larger the real part of the
outlier eigenvalues, the greater the degree to which neural activity deviates from the fixed point, and
the more synchronized the neural activity becomes; the opposite is also true.

Excitation-Inhibition Loop The Excitation-Inhibition Loop is considered a crucial component
for the emergence of neural oscillations [[1,[33]]. Our theory explains this from the perspective of the
eigenvalue spectrum. As shown in Fig. [2fa), the greater the magnitude of the interaction between
excitatory and inhibitory neurons, the more likely it is for the outlier eigenvalues to have an imaginary
part, causing neural oscillations to emerge(Eq. [3). This is because g;z and g are located on the
off-diagonal elements of the effective interaction matrix, and an increase in g7 and gg; can lead to
the appearance of an imaginary part in the outliers.

The mismatch of Excitation/Inhibition projection range The mismatch of projection range dqz
of types of neurons causes the emergence of spatial patterns. As shown in Eq.[3] the elements of

the effective matrix J éff) contain decay factors exp (—||k||2d s/ 2) If all the projection ranges

dnp are the same and let’s denote d,3 = d, the eigenvalues would follow the relationship as
A = X exp (—|[k||?d?/2). In this case, only the eigenvalues corresponding to the wave vector
k = 0 can have the largest real part. However, if the projection range d,zg of types of neurons is
mismatched, eigenvalues corresponding to wave vector k # 0 can have the largest real part.

A common way for a spatial pattern to emerge is when the projection range of inhibitory neurons is
greater than that of excitatory neurons, which is known as lateral inhibition [35}[34]]. As shown in the
comparison between two figures of Fig.[2a), this mechanism is also applicable in our model. Our
theory explains this from the perspective of the eigenvalue spectrum. This is because the elements of

the effective matrix J' f) contain decay factors exp (f ||Kk||2d? s/ 2) and the elements decay faster

with k if dg is larger. Therefore, the inhibitory elements of the effective matrix may decay faster
than excitatory ones. In some wave vectors k, the excitation exceeds the inhibition and the real part
of these eigenvalues may exceed 1 and spatial patterns of neural activity emerge.

Local sparsity Local sparsity, rather than the overall sparsity, plays a significant role in chaotic
neural activity. In a spatially extended neural network, the number of neurons connected to a given
neuron is certainly sparse compared to the total number of neurons. However, Eq. [5]indicates that
what truly determines the dynamics is the ratio of the number of connections a neuron has to the
number of neurons within its projection range kg’ét /(md,, gQ - N,,), namely the "local sparsity" that

plays a role in the radius of the bulk disk part, which is different from "standard sparsity" kOUt /Ny in
the situation without spatial distribution. This suggests that even under globally sparse condltlons
the relative density of local connections between neurons in the brain may be the reason it can
generate synchronized activities such as traveling waves. Besides, the concept of "local sparsity"
also demonstrates many phenomena in numerical simulation, including both spike-based and rate-
based models. In most numerical simulations that produce neural activity with spatial patterns,
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the connection between neurons is often very dense, sometimes even with full connection locally
[8} 194 23]], while numerical simulations that produce neural activity without spatial patterns are often
sparse [37].

3.5 Analyzing Dynamical Transitions

To elucidate phase transitions between distinct dynamical phases, we analyze the spatiotemporal
organization of emergent activity patterns. We derive phase velocity fields from network activity to
capture the local direction and speed of patterns like propagating waves. By applying Singular Value
Decomposition (SVD) to these velocity fields, we identify dominant spatiotemporal modes of activity
flow. This allows us to systematically study how these modes reconfigure as the system traverses
different dynamical regimes and critical boundaries between them, offering a quantitative window
into the nature of these transitions.

Our analysis reveals a key phenomenon at phase boundaries: “mode mixing”, where SVD modes
characteristic of both adjacent pure phases significantly contribute, indicating dynamically hybrid
states consistent with underlying spectral properties near instability (Fig. @fa-b)). Crucially, the
dominant spatial SVD modes identified in our model (e.g., plane waves, spirals) exhibit compelling
qualitative similarities to patterns observed in mesoscopic optical imaging of the mouse cortex across
different arousal states (Fig.[@(c-d)) [4]. This correspondence suggests our model captures salient
principles of spatiotemporal pattern formation and transition relevant to real brain dynamics. See
Appendix [A.3]for methods and supplementary results.

3.6 The corresponding phase of different degrees of consciousness

Having seen the similarity between patterns in our model and the experiment, we aim to establish a
relationship between different degrees of consciousness and the corresponding phases in our model.
Although the phase might be a multivalued function of brain states (multiple phase patterns may
coexist in one brain state), within the phase space we have searched and for a limited number of
experimental samples, by comparing order parameters (Fig. [5] see Appendix [A.9]for details), we
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found preliminary evidence that from the anesthetized to the fully awake state (increasing degree of
consciousness), the corresponding E-to-I coupling strength decreased, moving from the interior of
the wave phase towards the wave-bump phase boundary.

This aligns well with [8], which discovered that stronger E-to-I coupling in a spatially extended
network led to propagating waves (corresponding to the wave phase in our model), while a weaker
one led to bump phase. Pure propagating waves in [8] could not be modulated by external stimuli
and had a lower decoding accuracy, aligning with the physiological properties of the anesthetized
state. At the wave-bump phase boundary, the network entered a critical state where the modulation
effect of stimuli was maximized, aligning with the fully awake state.

4 Conclusions and Discussions

We introduced a spectral theory for spatially extended neural networks, quantitatively linking local
connectivity (E/I projection ranges, strengths, and local sparsity) to global dynamics via the eigenvalue
spectrum of the connectivity matrix. This spectral blueprint, characterized by outlier modes and a
bulk disk, accurately predicts a rich repertoire of emergent behaviors including asynchronous states,
oscillations, bumps, waves, and chaos, providing a mechanistic bridge from structure to dynamics.

Besides, unlike classical neural field models[12H14]], our approach makes no assumption of ho-
mogeneous connectivity or the continuum limit, enabling the emergence of chaotic dynamics that
traditional neural field theory cannot capture. While such chaotic regimes have been extensively
characterized in non-spatial networks using dynamical mean-field theory[19-21]], their counterparts
in spatially structured systems remain largely unexplored. Our RMT-based analysis bridges this gap,
providing a unified and elegant perspective: the outlier eigenvalues correspond to Fourier modes,
as in neural field theory, whereas the bulk spectrum reflects DMFT-like statistics. This connection
highlights how RMT can serve as a powerful theoretical lens for integrating spatial structure and
randomness in large-scale neural dynamics.

This framework contextualizes how observed brain dynamics, such as state-dependent patterns [4]],
arise. It aligns with neural field theories [14]] regarding pattern formation and offers refined insights
into chaos generation compared to globally coupled models [19]], highlighting the role of local density.
Crucially, we posit that our model’s static connectivity represents time-varying effective connectivity
in the brain, which is constantly reshaped by neuromodulation, stimuli, and attention [38}39]. Thus,
the identified dynamical phases might offer a new perspective: they could serve as candidate states
within a larger phase space that the brain potentially traverses, possibly corresponding to different
states of consciousness—an idea open to experimental testing.

Key limitations guide future work Extending the theory to nonlinear neural/node’s dynamics
[21]] and incorporating synaptic plasticity to model adaptive spectral changes and learning [40Q] are
paramount. Addressing structural complexities beyond isotropic connectivity, modeling the explicit
time-variance of effective connectivity, and robustly inferring spectral features from empirical data
[41] are also critical. Also, a more direct characterization of chaos needs to be done in future
works. Furthermore, elucidating the direct computational roles of these spectrally-defined dynamical
regimes remains a vital pursuit [42]. Besides, multiple phase patterns may superimpose or coexist
simultaneously due to nonlinear mode-coupling, which need to be further investigated.
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» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate our computation resources at Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics.
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» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
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impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work doesn’t involve data and models with a high risk.
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly credit the data of mouse cortex imaging we used.
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* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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the asset’s creators.
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* The answer NA means that the paper does not release new assets.
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* The paper should discuss whether and how consent was obtained from people whose
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* At submission time, remember to anonymize your assets (if applicable). You can either
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
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should clearly state this in the paper.
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A Appendixes

A.1 Supplementary discussion

Our calculation of the bulk disk radius builds upon foundational random matrix theory concerning the
circular law, applicable even to non-Gaussian weight distributions [26]], and methods for structured
random networks [30, 29} 28]]. The emergence of outlier eigenvalues from low-rank perturbations
to such random matrices is also well-established [27]. Our novelty lies in systematically deriving
both these spectral components for spatially extended E/I networks and explicitly linking them
to distinct dynamical phases. While prior work has explored outlier eigenvalues in non-spatial
networks, often focusing on single global outliers [43]], population modes [44] without considering
spatial, or randomly distributed local outliers that can be removed by zero-sum constrain[30, 45]], and
while some studies noted the presence of spatially-organized eigenvalues as a secondary observation
without direct calculation or dynamic linkage [46]], our framework uniquely connects the full set of
spatially-indexed outlier eigenvalues (for wave vectors) and the bulk disk radius to the emergence of
diverse spatiotemporal patterns and chaos, respectively.

The explicit calculation of eigenvalues associated with specific wave vectors is crucial for under-
standing spatially patterned activity. While some models of cortical networks have implicitly or
explicitly involved such wave numbers, they often relied on simplifications from neural field theory
for analytical tractability [18 17} 23] or focused on conditions for specific instabilities, such as how
E/I imbalance can lead to pattern formation at particular wave numbers [[15]. Our approach provides
a more general matrix-based spectral method that directly ties the parameters of the spatially explicit
network (projection ranges, strengths) to the entire outlier spectrum without necessarily reducing to a
continuum field limit, thereby offering a direct bridge from discrete network structure to emergent
spatial dynamics like bumps and waves.

A.2 Experimental Data of different degrees of consciousness of mice

The experiment [4] (https://doi.org/10.5281/zenodo.7574791) used mesoscopic optical imaging of
mice expressing a genetically encoded voltage indicator in cortical pyramidal neurons, to access
spontaneous population voltage activity across both hemispheres of the dorsal cortex. "Anesthetized"
refers to that the mice underwent light anesthesia induced by a bolus injection of pentobarbiturate.
"Post woken" refers to that the mice woke up from anesthesia as indicated by occasional spontaneous
coordinated whisker and body movements. "Fully awake" refers to that the mice were well habituated
to the imaging conditions and had been free of anesthesia for at least 3 days prior to the imaging
session.

A.3 Phase Velocity Field analysis and Wave Pattern Detection

Signal Pre-processing for Phase Extraction: To analyze wave patterns from time-series data
recorded at multiple spatial sites (e.g., from optical imaging or electrophysiological arrays), we first
extract the instantaneous phase from each recording site. This process involves two main steps:

1. Band-pass Filtering: The raw signal from each site, denoted as s, (t), is first band-pass
filtered to isolate activity within a frequency range of interest. This step serves to remove
high-frequency noise and focus the analysis on specific neural oscillations (e.g., delta: 0.5-4
Hz; theta: 4-8 Hz [47]); alpha: 8-13 Hz) or on frequency bands containing significant signal
power as determined by power spectral analysis of the recordings. The choice of frequency
band is also constrained by the temporal resolution of the recording technique. Let the
filtered signal be x(t).

2. Phase Extraction via Hilbert Transform: The instantaneous phase ¢(t) is extracted from
the filtered signal 2(t) at each site using the Hilbert transform. The analytic signal z(t) is
constructed as,

2(t) = 2(t) + iH{xz ()} = A1)’ "™, @)

where H{x(t)} is the Hilbert transform of x(t), A(t) is the instantaneous amplitude, and ¢
is the imaginary unit. The instantaneous phase ¢(t) is then obtained as,

¢(t) = arctan2(H{z(t)}, 2(1)), ®
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where arctan2(y, ) is the two-argument arctangent function that correctly resolves the
phase into all four quadrants. The result of this pre-processing is a phase time series ¢, ()
for each spatial recording site j.

Optical Flow Method for Phase Velocity Field Estimation: To quantify the propagation of
phase patterns across the spatial recording array, we employ an optical flow method, specifically
the Horn-Schunck algorithm, adapted for phase data. This method estimates a 2D velocity field
(ve(z,y,t),vy(x,y,t)) that describes the motion of surfaces of constant phase.

Let I(x,y,t) = ¢(x,y,t) represent the instantaneous phase at spatial location (2, y) and time ¢. The
core assumption of optical flow is brightness constancy, which for phase translates to phase constancy
along a trajectory: I(x + vydt,y + vydt,t + dt) = I(x,y,t). A first-order Taylor expansion yields
the optical flow constraint equation:

Tyvg +Iyvy + 1 = 0, )
where I, = 27{:’ I, = %, and I, = % are the spatial and temporal partial derivatives of the phase
field.

To solve for the two unknown velocity components (v,,v,) from this single equation, the Horn-
Schunck method introduces a global smoothness constraint, minimizing an energy functional E:

B= [[ (et oy + 107 + a2Vl + 90, 7)) oy, (10

where a? is a regularization parameter that weights the smoothness term. Minimization of this

functional leads to a system of coupled partial differential equations for v,, and v,,. Discretizing these
equations (e.g., using finite differences for derivatives and the Laplacian V?2) results in a large system
of linear equations:
LIy, + Iy, + 1) — o*V?u, =0, (11a)
IL,(Iv, + Ly, + 1) — a*V?0, = 0, (11b)
where v, and v, now represent values at discrete grid points (;, y;). The Laplacian terms VZv,,
and V?v, are typically approximated using a five-point stencil, e.g., Vv, (2, y) ~ %,
where T (z, y) is the average of v,, at the four cardinal neighbors of (x,y), and Az = Ay is grid
spacing.
This system is solved iteratively for each time step ¢:

plFtl) = (k) If(ImW(k) + Iy@(k) + It)
’ ' 2412422 ’
pk+1) — (k) _ Iy(Ia:@(k) + Iy@(k) + 1)
' ’ 241242 7

(12a)

(12b)

where (k) denotes the iteration number, and \? (related to o and grid spacing Az, Ay, e.g.,
A2 =~ (2a/ Ar)?) encapsulates the smoothness constraint. Iterations proceed until convergence or for
a fixed number of steps.

Implementation Details:

* Partial Derivatives: Spatial derivatives I,;, I,, were computed from the phase maps ¢(z, y, t)
at each time ¢ using a Sobel filter or a five-point central difference scheme, averaged between
two consecutive time frames ¢ and ¢ + dt. The temporal derivative I; was computed using
a forward difference between ¢(x,y,t + dt) and ¢(z,y, t), potentially after local spatial
averaging to reduce noise.

* Boundary Conditions: For calculating spatial derivatives near boundaries, appropriate
schemes (e.g. Neumann boundary conditions where derivatives are zero) were applied. For
the averaging terms v, vy, in the iterative update, Neumann or zero-padding (Dirichlet-like)
boundary conditions were typically used for the velocity components outside the defined
spatial grid. The specific choice of derivative computation and boundary conditions was
validated on test data to ensure reasonable velocity fields.
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* Regularization Parameter a:: The value of a (or \s) was chosen empirically to balance
adherence to the optical flow constraint with the smoothness of the resulting velocity field,
often by visual inspection of results on synthetic or sample data.

This procedure yields a phase velocity field (v, (z, y,t), v, (z,y,t)) for each time point, which can
then be further analyzed to characterize wave properties like direction, speed, and coherence.

Supplementary Results of Phase Velocity Field Analysis Our spectral understanding of how
network structure dictates distinct dynamical phases can also illuminate the nature of transitions
between these phases. To quantitatively characterize these transitions, particularly at phase boundaries
and triple points where multiple dynamical tendencies may coexist or compete, we analyze the
spatiotemporal structure of phase velocity fields. Analyzing the instantaneous phase ¢(z, y, t) offers
several advantages for understanding organized spatiotemporal patterns. The phase captures the
relative timing of oscillatory activity across different spatial locations, making it particularly sensitive
to propagating waves, synchronized domains, and their complex interactions. By then computing
the optical flow of these phase maps, we obtain a velocity field (vy(z,y,t), vy (2, y,t)) that directly
quantifies the local direction and speed of these emergent patterns. This provides a rich, time-
varying representation of the network’s collective spatiotemporal organization, which is amenable
to techniques like Singular Value Decomposition (SVD) for identifying dominant modes of activity
flow.

The methodology for obtaining phase velocity fields from neural activity (either model-generated or
experimental) involves band-pass filtering (e.g., 0-40 Hz, based on signal power spectrum), Hilbert
transform to extract instantaneous phase ¢(x,y,t), and an optical flow algorithm to compute the
velocity vectors of phase propagation. Full details of this pre-processing and optical flow computation
are provided in Appendix [A.3]

To analyze the structure of these time-varying phase velocity fields Veq(z, y,t), we employ SVD.
The velocity field data across all spatial sites (both v, and v, components) and time points is
arranged into a matrix X, where rows typically represent time and columns represent flattened spatial
components. SVD decomposes this matrix as X = UX VT, where columns of U are temporal modes,
columns of V are spatial modes, and X contains the singular values indicating the contribution of
each mode.

To study phase transitions, we first identify a set of common spatial modes by performing SVD on
a combined dataset of phase velocity fields from parameter sets spanning different phases, phase
boundaries, and triple points (see markers in Fig. @p). Then, for each individual parameter set
(numbered markers at a phase boundary in Fig. @), its phase velocity field time series is projected
onto these common spatial modes. The resulting projection weights quantify how much each common
spatial mode contributes to the dynamics of that specific parameter set. By examining the profile of
these projection weights (variance explained by each mode) for parameter sets systematically chosen
along a path crossing a phase boundary, we can characterize the transition.

Fig. [ illustrates this for points near the asynchrony-wave phase boundary. Parameter sets located on
a phase boundary exhibit projection profiles that are hybrid, sharing features with the profiles of the
pure phases they separate. SVD modes characteristic of both pure asynchrony and pure wave states
contribute significantly. At a triple point, the dynamics reflect a richer mixture, with contributions
from modes associated with all three converging phases (see Fig[f)). This suggests that at these critical
junctures in parameter space, the system’s dynamics are not committed to a single attractor but can
explore or blend features of multiple underlying dynamical regimes.

This “mode mixing” at boundaries and triple points can be intuitively understood from our spectral
theory. Near these critical regions, the eigenvalue spectrum of the connectivity matrix may exhibit
near-degeneracies, where multiple eigenvalues (corresponding to different potential dynamical pat-
terns, e.g., a k = 0 oscillatory mode and a k£ # 0 wave mode) have comparable real parts close
to the instability threshold. Small amounts of perturbation can then cause the system to fluctuate
between, or simultaneously express aspects of, these competing dynamical modes. This is consistent
with experimental observations where brain activity can show transient or mixed features, especially
during state transitions [48]49].

Encouragingly, the dominant SVD spatial modes extracted from our model’s phase velocity fields,
such as plane waves or spiral patterns (Fig. df), show qualitative similarities to modes extracted
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Figure 6: Analysis of all the phase boundaries and triple points. (a) Asynchrony-bump-wave phase
diagram, and projection curves onto SVD modes of the combined time series of the parameter sets
marked by crossings in the phase diagram. Sky blue line refers to asynchrony center, green line refers
to oscillation center, dark blue line refers to synchrony center. Circles, triangle and squares refers
to the corresponding parameter sets marked by numbers in the phase diagram. The inset shows the
projection curves onto the first ten modes. (b) Same as (a), pink line refers to wave center, dark red
line refers to bump center. (c) Same as (a), orange line refers to chaos center.
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from mesoscopic optical imaging of mouse cortex [4] across different arousal states (Fig. [dd). This
suggests that the underlying principles governing the formation and transition of spatiotemporal
patterns in our model may capture salient aspects of real brain dynamics.

A.4 Order Parameters

In order to numerically validate the correctness of the prediction of phase. We introduce order
parameters CV. (Coefficient of Variation) and Mean Acti. (Mean Activity) to detect the magnitude of
the neural activity fluctuation, introduce Osc. index(Oscillation Index) to detect the neural oscillation,
introduce Local Sync. (Local Synchronization) and Moran’s Index to detect the spatial patterns of
neural activity.

Mean Acti. (Mean Activity) This order parameter calculates the magnitude of neurons’ firing rate.
This order parameter is useful for neural networks with hyperbolic tangent activation functions, given
by

Mean Acti. = <|(;S(hlE)\>Z .

CV. (Coefficient of Variation) This order parameter describes the magnitude of neural activity
fluctuation. It calculates the ratio between the standard deviation and mean of the neural firing rate.
This order parameter is useful for neural networks with rectified linear, supra-linear and etc. activation

functions: v (¢(hE))
v = (),

Osc. Index (Oscillation Index) This parameter describes the magnitude of neural oscillation. Similar
to [50]], we define this order parameter as the fraction of the Fourier spectrum energy of the peak
concentrated at oscillation frequency. The Fourier spectrum is calculated by averaging the Fourier
spectrum of all the excitatory neurons.

Local Sync. (Local Synchronization) This parameter describes the degree of local synchronization of
neural activity. It calculates the ratio between the mean of the firing rate and the mean of the absolute
value of the firing rate of local neurons. We define local neurons as the neurons within a square with
a side length of 10 times the inter-neuron spacing. We chose this side length so that it’s similar to
the detection range of local field potential. This order parameter is useful for neural networks with
hyperbolic tangent activation functions:

Local Sync. = < (P(hF(1)))i, tocal > .

<|¢(h1E (t)) |>7,, local
Moran’s Index This parameter detects the existence of spatial patterns. It calculates the ratio between

the mean of correlation between local neurons and the mean of correlation between all neurons. The
definition of "local neurons" is the same to Local Sync:

Moran' Irdes — < SNE(S(hE (L) — S(hE () e ((RE () — H(RE(2))) > |

N SN2 ($(RE (1)) — H(RE(?)))

PH. (Persistent Homology) This parameter is used to characterize the degree of spatial localization
in a 2D scalar field f(z,y). The method is to set a threshold ¢ and increase it from the minimum
to the maximum value of f(x,y), and then recognize connected components in the sublevel sets
Xt = {(x,y)|f(z,y) <t} at each threshold t. As we sweep through ¢, new connected components
(blobs) are born, and existing ones merge or vanish. Each such event is recorded as a birth-death pair
(bs, d;), representing the threshold at which a component appears and disappears respectively. The
lifetime of a blob is defined as d; — b;. The persistent homology of f(x,y) is defined as the sum of
the lifetime of all the blobs. Larger persistent homology means a higher degree of pattern localization.
Persistent homology is independent of the size of the field (number of grid points here), and is only
dependent on the spatial pattern and the contrast of the pattern.

Before calculating PH., we first smooth the image for both model and experiment using ndim-
age.generic_filter from scipy. The kernel size is 20 x 20 and 2 x 2 for model and experiment
respectively, proportional to their field size (200 x 200 for model, ~ 20 x 40 for each hemisphere
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of the cortex). After smoothing, we take the z-scored image by subtracting the mean from it and
then dividing by the standard deviation. When calculating PH. of the z-scored image, we remove the
birth-death pairs whose lifetime is less than 2% of the range of the z-scored image to further remove
high-frequency noise. Specifically, for the experimental data, we first take the z-scored image with
two hemispheres as a whole, and then calculate PH. separately for each hemisphere and finally take
the mean value.

(a) (b)
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Figure 7: (a) Smoothed network pattern of the center of the wave phase, marked by black star in Fig.
E} (b) Red dots represent blobs found. (c) Death and birth values of blobs. (d) Lifetime of blobs.

A.5 Numerical Simulation

For the theoretical prediction of phase, we predict 61 x 61 gird points for a single phase diagram.
For numerical simulation of phase prediction, the grid points is 21 x 21. For each grid point,
we independently initialize the connectivity matrix and conduct 5 times simulations with a total
simulation time of 100 times of time constant of membrane potential 7 and a step length of 0.017. We
only begin to calculate the order parameters after 257 of simulation in order to avoid the influence of
the transient process. Our numerical experiments were conducted on a computing cluster consisting
of 16 nodes, each equipped with an Intel(R) Xeon(R) CPU E5-2407 0 @ 2.20GHz.

26



A.6 Numerical Experiments with Alternative Activation Functions
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Figure 8: Dynamical regimes in spatially extended networks with alternative activation functions.
(a) The Phase diagram under alternative activation functions. (b) Representative neural activity and
spatial patterns of excitatory neurons in different dynamical phases over time.
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A.7 Numerical Results of Order Parameters and Phase Diagrams
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Figure 9: Phase diagrams and order parameters under different parameters.
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A.8 Numerical Results of Order Parameters Calculated Using Membrane Potential

-0.3 -0.38 -0.45

When comparing order parameters of the model and the experiment, because the experimental data
are the spontaneous population membrane voltage fluctuations of pyramidal neurons, we should
correspondingly use the membrane potential of excitatory neurons when calculating order parameters
of our model. The results about order parameters above are calculated using neuron activity (by

applying an activation function to the membrane potential), and below in Fig. [T0]are results calculated
using membrane potential of excitatory neurons.
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A.9 Find the Corresponding Phase of Different Degrees of Consciousness

Firstly, we can determine which phases the experimental states are in by comparing order parameters
such as local sync. and osc. index of our model and the experiment. As is shown in Fig. [5]and
Fig. [T0] all three states of the experiment have high local sync.; thus we can exclude the asynchrony
and chaos phases. By comparing osc. index, we can exclude the bump and synchrony phases. To
distinguish between the oscillation and wave phases, we do not use Moran’s index as before because
the essential difference between unconscious and conscious states as reflected in Fig. [T]is the degree
of localization of patterns, which cannot be characterized by Moran’s index. Instead, we use PH. (see
Appendix [A-4), which can quantify the degree of pattern localization and distinguish between the
oscillation and wave phases at the same time. The oscillation phase has PH. generally lower than all
states of experiment, thus can also be excluded. To conclude, the three consciousness states are all in
the wave phase.

Next we try to identify their difference of location in the wave phase. In the region of the wave phase
we searched in the phase diagram varying d;; and o, (FigﬂlT[a)), the osc. index is too high to be
compatible with the experiment. Therefore we confine our region of interest to the wave phase in the
phase diagram varying |G/ /g| and |gre/gr| (Fig[10[b)). We cannot find the exact coordinate of a
brain state in the phase diagram, because the correspondence between network structural parameters
and the order parameters we used is not a bijection. Instead, each brain state corresponds to a region
in the phase diagram. In addition, the precise region location cannot be determined because our grids
are not dense enough. Therefore we are only concerned with the changing trend in the phase diagram
from the anesthetized to the fully awake state.

We can find a trajectory from the interior of the wave phase to the wave-bump phase boundary, as is
shown in Fig. [5] where the changing trends of local sync., osc. index and PH. are all similar between
model and experiment. The corresponding varying structure parameter is |Gy g /gr|, decreasing from
unconscious to conscious state, indicating that a higher degree of consciousness is associated with a
smaller coupling strength from excitatory to inhibitory neurons.

As for the limitation that a precise corresponding region location cannot be determined, future
research can utilize more order parameters to narrow down the possible region of brain states on
the phase diagram, and use denser grids to determine the exact region location. Additionally, our
experimental results are limited to one trial of the same mouse (there is only one mouse who has data
of all three degrees of consciousness in the open source dataset introduced in[A-Z)). Future validation
on different datasets with more mice and trials remains to be done.
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A.10 Parameters of Phase Diagrams

Parameter  Fig. 9(a) Fig. 9(b) Fig. 9(c)/2(a) Fig. 9(d)/2(a) Fig. 9(e) Fig. 9(f)

Ng 40000 40000 40000 40000 10000 40000
Ny 10000 10000 10000 10000 2500 10000
kot 62.8-439.8 596.90 1169.93 596.90 596.90 321.70
kot 15.7-110.0 149.23 292.48 149.23 149.23 80.42
kout 62.8-439.8 596.90 1169.93 1169.93 596.90 321.70
Koyt 15.7-110.0  149.2-859.5 292.48 292.48 23.9-596.9 29.0-205.9
dgE 0.05 0.05 0.07 0.05 0.10 0.04
drig 0.05 0.05 0.07 0.05 0.10 0.04
dir 0.05 0.05 0.07 0.07 0.10 0.04
drr 0.05-0.12 0.05-0.12 0.07 0.07 0.0-0.2 0.0-0.1
JEE 5.50 5.50 6.3-15.3 6.3-9.9 5.50 0.57
JIE 5 5 7.2-16.2 9.0-16.2 5 0.12
JEI -5 -5 -9 -9 -5 -1.90
gi1 -4.25 -4.25 -9 -9 -1.0--70 -0.3--0.5
OEE 0.55 0.3-1.1 0.10 0.10 0.10 0
ORI 0.55 0.3-1.1 0.10 0.10 0.10 0
OIE 0.55 0.3-1.1 0.10 0.10 0.10 0
orr 0.55 0.3-1.1 0.10 0.10 0.10 0

A.11 Relation between Eigenvalues and Dynamics

We want to understand the relationship between connectivity structure and dynamics of spatial
distributed neural networks. To begin with, we first consider a simple linear neural network, of which
dynamics follows:
dh;
dt

= —hi+ Y Jijhj + &(t). (13)
J

Because it’s a linear dynamical system, the dynamics can be decomposed into different independent
modes. Let’s assume the connectivity matrix .J is diagonalizable. J = AAA~!, where A is composed

of eigenvectors of connectivity matrix, A = [v1, v, -+ ,vn],and A = [A1, Ag, - -+, An] is composed
of eigenvalues of connectivity matrix. The dynamical equation can be rewritten as,

d

a(A—lh) =—AT'h+ AAT TR+ AT (). (14)

Therefore, we can consider the dynamics of each eigenvector component to be independent. The
activity of neurons is a superposition of components in different directions. Let h(t) = >, ¢;(t)v;.
c; is the magnitude of independent components, which satisfies,

de;

S0 (= e+ AT, (15)
dt

For a component with Re()\;) < 1, the magnitude is bounded and fluctuates around 0. For a

component with Re()\;) > 1, the magnitude increases over time as a rate of eRe(X)=1 Therefore, the
component with an eigenvalue with the largest real part dominates the dynamics of neural networks.

For a non-linear neural network, we can also use eigenvalues to understand the relationship between
connectivity structure and eigenvalues. We only need to perform a linear expansion around the fixed
point of neural activity. Let’s denote the fixed point of membrane potential as ~2*, and the deviation
from the fixed point as dh. The neural activity follows,

dh
dt

=it 3 Jdlhg) + &), (10
J

We can perform a linear expansion around the fixed point 2*. The deviation dh from fixed point
follows,
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d o
7 0hi = —6h; +ZJZ-]-¢ (h3)0h; + &(t). (17)

J

Therefore, we can consider a nonlinear neural network equivalent to a linear neural network with an
effective connectivity matrix J;; = J;;¢'(h}).

The dynamical regime of neural networks can be characterized through spectral analysis of the

effective connectivity matrix .J;;. When all eigenvalues satisfy Re();) < 1, neural activity remains
bounded near the fixed point, exhibiting small-amplitude fluctuations around the steady-state firing
rate. This regime corresponds to asynchronous irregular activity due to the absence of dominant
eigenmodes.

When spectral outliers emerge with Re()\;) > 1, the corresponding eigenmodes dominate network
dynamics. These regimes can be systematically classified (Table[I)) based on two spectral properties
of the dominant eigenvalues: 1) temporal frequency (real vs. complex eigenvalues) and 2) spatial
frequency (wave vector k of eigenvectors). Spatial organization in eigenvectors generates distinct
spatiotemporal patterns, enabling classification into four phases: synchronized state, oscillatory phase,
bump attractor, and traveling wave.

In contrast, when dominant eigenvalues reside within the bulk spectral disk, the system enters a chaotic
phase characterized by: (i) spatially unstructured eigenvectors, (ii) large-amplitude fluctuations, and
(iii) weak inter-neuronal correlations. Intuitively, the absence of spatial patterning in neural activity
stems from the structural homogeneity of dominant spectral bulk eigenmodes. Weak inter-neuronal
correlations emerge from high-dimensional superposition of components satisfying Re()\; > 1).
While spectral analysis provides initial insights, analytical determination of phase boundaries requires
dynamical mean-field theory, as detailed in Appendix [A.T4]

This method is not fully mathematically rigorous. First, it cannot fully deal with the case of multiple
fixed points. Second, it cannot fully predict the dynamic behavior when the network activity goes far
from a fixed point. Besides, it cannot fully characterize the dynamic behavior where the fixed point is
heterogeneous between different neurons.

Therefore, to verify the validity of our theory under nonlinear conditions, we performed many
numerical experiments as aforementioned to demonstrate that our theory is indeed correct under
nonlinear conditions and is useful and informative in understanding the relationship between neural
networks’ dynamics and their connectivity structure.

A.12 Neural Activity of the Asynchronous State
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Figure 11: Neural activity of asynchronous state. (a) temporal evolution of membrane potentials of
excitatory neurons. (b) spatial patterns of excitatory neurons’ firing rate.

As illustrated in Fig. neural populations in the asynchronous state exhibit weak pairwise cor-
relations, resulting in the absence of emergent spatial patterns. Recent theoretical advances by
[25], however, demonstrate that low-rank connectivity structures can induce spectral outliers in the
long-time window covariance matrix. This finding motivates systematic investigation of spectral
properties of covariance matrices in spatially extended neural networks — a promising direction for
future research.

Notably, weak deviations from the fixed point emerge through external input modulation. In our
experimental paradigm, network input originates from independent white noise sources with low
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amplitude, resulting in small deviations from the fixed point. The neural activity under other types of
external input needs to be further explored.

A.13 Eigenvalues and Eigenvectors of Spatially Distributed Neural Networks
A.13.1 Circular Law

A classical result of the random matrix is the circular law. If you take an n X n matrix with independent

and identically distributed (i.i.d.) entries J;; N (0, %2), then as n grows large, the eigenvalues
of the matrix become uniformly distributed inside the disk with radius ¢ in the complex plane [51]].
This result can be further generalized to more general random matrices where the i.i.d distribution is
not Gaussian but has a finite variance.

Theorem 1 Let A,, be the n X n random matrix whose entries are i.i.d. complex random variables
with mean 0 and variance 1. The empirical spectral distribution of 1/+/n then converges (both in
probability and in the almost sure sense) to the uniform distribution on the unit disk [26]].

This theorem means that the circular law can not only be used in ideal Gaussian distribution but
also can be used in the case of other distributions like sparse connection and biologically plausible
log-normal distribution, etc. However, it still requires the distribution to be identical independent
distribution, while there are multiple types of neurons and connection probabilities that decay with
the distance between neurons. Therefore, we still can not use this theorem in biologically plausible
spatially distributed neural networks.
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Figure 12: The eigenspectrum of a random matrix with elements from i.i.d Gaussian distribution
with unit variance and zero mean.

Thanks to techniques of free probability theory [28], we can deal with the case that the distribution
is independent, zero-mean but not identical. Besides, using dynamical mean-field theory can also
derive similar results [29]].

Theorem 2 Let A,, = (0;;) be an n x n deterministic matrix, and X,, = (X;;) be an n x n random
matrix with i.i.d. centered entries of unit variance. Define the rescaled matrix:

1
Y, = %An o Xy,
where o denotes the Hadamard product. Let wY denote the empirical spectral distribution (ESD) of
Y,.. For variance profiles 0'1-2]- =2 (%, %), W, has a positive density on the centered disc of radius

o(Vin), where V,, = 102 and p(V,,) is its spectral radius. [28]

n- v

Using this theorem, we can deal with biologically plausible neural networks with multiple types of
neurons and spatial distribution. Although the connection strength distribution between different
types of neurons are different, and the distribution also varies with distance between neurons, we
only need to calculate a profile matrix o;; above to determine the radius of a eigenspectrum disk.
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A.13.2 Outliers of Eigenspectrum

The theorems mentioned above are all required of a zero-mean condition. However, in biologically
plausible case, due to Dale’s Law, the distribution of connection strength between certain types of
neurons cannot have a zero-mean. For example, the connection strength between excitatory neurons
must have a positive mean.

[43]] considers a special case of non-zero-mean distributions. In their model, neurons are sparsely
connected with a certain probability p for both excitatory and inhibitory neurons. The connection
strength are the same among excitatory synapses and inhibitory synapses separately. They showed
that the eigenspectrum of the connectivity matrix is composed of a bulk disk part and an outlier. This
outlier lies in the position of the mean connection strength of all synapses. Namely, the non-zero
mean of a distribution creates outliers.

The example above is actually a special case of low-rank perturbation on a zero-mean random matrix.
We can gain the following intuition. The connectivity matrix can be decomposed into two parts:
a determined mean part and a zero-mean random matrix part. The zero-mean random matrix part
creates a bulk disk eigenspectrum. And the determined mean part is actually a low-rank matrix
because its rank is less than the number of types of neurons. This low-rank perturbation creates
outliers in eigenspectrums [27]] provided a rigorous mathematical theorem on outliers and low-rank
perturbation.

Theorem 3 Let X, be an iid random matrix with finite fourth moment, and for each n, let C,
be a deterministic matrix with rank O(1) and operator norm O(1). Assume that for large n, C,,
has no eigenvalues in {z € C : 1+ ¢ < |z] < 1+ 3¢} and has j = O(1) eigenvalues in
{z € C: |z| > 1+ 3e}. Then, almost surely, for large n, ﬁXn + C), has exactly j eigenvalues

in{z € C:|z| > 1+ 2}, and these eigenvalues satisfy \; (ﬁXn + C’n) = X\(Cy) +0(1) as
n — oo foreach 1 < i < j [27].

With this theorem, we can finally characterize the eigenspectrum of biologically plausible neural
networks. The sparsity and variance of connection strength both contributed to the zero-mean random
part, which creates a bulk disk part of eigenspectrum. And the Dale’s law force the connectivity
matrix have a determined part. This part is often low-rank, thus creating outliers of the eigensepctrum.

A.13.3 Eigenspectrum of connectivity matrices of spatially extended neural networks

As mentioned above, the eigenvalues of the connectivity matrix J consist of a circular bulk part
and a set of outliers. [27] noted that for a random matrix subjected to a low-rank perturbation, the
eigenvalues of the new matrix largely remain within the original circle, with any outliers located
where the eigenvalues of the perturbation matrix lie. We can conceptualize the connectivity matrix
J as comprising the expected values of each element, J, and the deviations from this expectation,
0J. The matrix dJ corresponds to the aforementioned random matrix, while J corresponds to the
low-rank perturbation matrix. Therefore, dJ dictates the bulk part of the eigenvalue spectrum, while
J determines the outlier part.

A.13.4 Outliers

Eigenvectors and the Spatial Translation Invariance of Neural Networks The matrix J deter-
mines the outlier part of the eigenvalue spectrum [27]. In order to calculate the eigenvalues of the
matrix J, we need to utilize its property of spatial translation invariance

Let’s start with a relatively simple one-dimension case.

The expected component of the connectivity matrix, ./, can be expressed as a block matrix:
J=1\Z1e Zir|s
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where jaﬁ represents the expected connectivity from neurons of type 3 to neurons of type «, forming
a matrix of size N, x Ng. It satisfies the following relation,

—af g(x,@
Jlj kout

- PO (g — a51).

The element J ?jﬁ depends only on the distance between neurons 7 and j and their respective types.
In our model, the proportion of excitatory to inhibitory neurons satisfies Ng : Ny =4 : 1. We
can consider four excitatory neurons and one inhibitory neuron as forming a small unit, and the
neural network consists of repeated instances of this unit. When the neural network is collectively

translated by several unit distances in physical space, the matrix .J remains unchanged, indicating its
translational invariance.

We define the following block matrix P, which satisfies:
_ PE O
r=[o .
where P¢ is a matrix of size N, X N,:
Pl =64, Pl=06i;1.

ij i z,
The matrix P represents the translation of the neural network by one small unit and has the property:
PjpP~t=1.
This implies that the matrices P and .J share common eigenvectors.

The eigenvalues of P satisfy \,, = ej’NLI where k = 2mn,n =0, +1,. LN L |. Each eigenvalue

A is fivefold degenerate, with the eigenspace spanned by the vectors {Uz \l =0,1,...,4}, which
satisfy the following properties.

These vectors can be expressed as ugk) [u%l), u&l)] where u%cl)

is a vector of length Nj.
Forl=0,1,...,3:

is a vector of length Ny and u(llf)

_(k) Loid 2] k)
u ":5l,’mod4'76 Ny l4 , u = 0.
s = Bismon - = i)
Forl = 4: 1
k k ik
i)y =0 )y = =€
Thus, in the basis: {ul( )|l—0 1,...,4; k=2mn, n=0,1,...,N; — 1}, the matrix J can be

written as a block diagonal matrix, where each block corresponds to an effective connectivity matrix
for a specific Fourier mode. The effective connectivity matrix for a Fourier mode with wave vector k
is given by:

7 =l = 3250 T [,
out

gaﬂ k (!Ei - «Tj)Q .
= exp(—ikz;) exp | —————— | x exp(tkx;
Z Z p kout ﬁdaﬁ p ( 2d33 p( ])

1 2
ga,B 1 (xl ) .
/0 dx NI/O dz’ - N[—a X A exp( 72612 +ik(x; — x;) (18)
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This expression is accurate for long-wavelength modes. the matrix [7(k)} takes the form:

~(k ~(k ~(k
T T
k) _ | - :
7= ~ (k) ~(k) (k) ’
A
IE 91 911 1545

2 2
where gi’“ﬁ) = J]\%gaﬁ - exp (—%).

For the £ = 0 Fourier mode, the outliers are precisely the two eigenvalues given by 72Kf), each of
which is non-degenerate. For k # 0 modes, since the eigenvalues corresponding to +k coincide, they
exhibit twofold degeneracy.

For the two dimensions case, the mathematical derivation is almost the same. In the case of two
dimensions, the spatial translation can be done in both directions. Therefore, the eigenvectors are
plane waves.

Effective Connectivity Matrix and Eigenvalues For each spatial Fourier mode, we can further
simplify the effective connectivity matrix as follows:

_ k||2d>3 _ k||2d?
—oy  |Fepe _ H2 EE ;5 €Xp _ H2 B 1
Jer = | _ I - HZAYE (19)
JereXp\ — 3 grr€xXp |\ ——-5

where k = (2mng, 2mny),  Ng,ny =0,4+1,£2, ...

As k takes on different values, the effective connectivity matrices for different spatial Fourier modes
yield different eigenvalues. These eigenvalues constitute the outliers in the eigenvalue spectrum of
the connectivity matrix. In the case without spatial distribution, the number of outliers corresponds to
the number of neuron types; in the presence of spatial distribution, as the spatial scale of the network
increases, the number of outliers also increases and is ordered according to their corresponding
wave vectors k. When the spatial scale approaches infinity, these outliers will be arranged along a
continuous curve (here, we reference the figure from spatial effect).

The two-dimensional case is similar, except that the wave vector k is a vector that takes values
k= (2mng, 2mny),  ng,ny, = 0,41,+2,.... The eigenvalues in the two-dimensional case are
also given by the effective connectivity matrix eigenvalues for different k£ values. The eigenvectors
corresponding to the outlier eigenvalues are provided by the spatial Fourier modes indicated by k.

A.13.5 Bulk disk part

The matrix 0J governs the circular part of the eigenvalue spectrum. [28]] and [29] provide formulations
for the eigenvalue distribution of random matrices with independent entries, mean zero, and finite
variance. The eigenvalues are distributed within a circle of a specific radius r = /max (A(M)),
where the elements of the matrix M represent the variances of the elements of the connectivity matrix
J. The variance of the elements of the connectivity matrix J is given by:

2 Tus’ Cas?
M =B [8I5] = p2” (s = asl) (1= 98 (s = ) x 2255 92 (hs = 3]) -
af aB

(20)

Similar to the mean part, the matrix M iaﬂ is also a spatial translation invariant matrix, because both

the variance and connection probability of the synapses between two neurons are only related to

the relative distance between these two neurons. Therefore, the variance matrix M can also be
diagonalized into a series of small block matrices. Let’s start with the one dimension case,
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MF=0) 0 0 0

apB

o MEP 0 0
U'MU=| o o MET 0

0 0 0

Because the radius of the bulk disk of an eigenspectrum only depends on the largest eigenvalue

of M? and all the elements of M fj’-ﬁ are positive, we only need to consider the zero wave vector

1] ’
. (k=0)
submatrix M 5 -

Zero wave vectors are spatially uniform, thus the elements of submatrix MS;:O) are the average of

original elements of M;f . For simplicity, we denote the matrix M g;;o) as Myg. s

For the one-dimensional case, this reduced matrix Mg is:

Mg =3 (5Jgﬂ)2

J

-/ e NsE (372°)’] @n

Nj | Ja kas
_ Mot Fas (o Ker ) el
N, kaﬁ 2ﬁda5~Na

For the two-dimensional case, the reduced matrix Mg is:

Mg =3 (Mg")Q

J

+oo
- / dz - 27z - N3 E {(ij‘.ﬁﬂ 22)
0

N —=2 kZUt
N Gas () Fap )L, )
Na kg{% 47('da5 Na

A.14 Phase Boundary of Chaos Phase

As mentioned above, the theoretical prediction based on linearization and eigenspectrum cannot fully
characterize the dynamical behavior far away from a fixed point. The chaos phase is one of these
cases. The bulk disk of an eigenspectrum corresponds to neural activity without spatial patterns,
while outliers are related to spatially ordered neural activity. If both the radius of the bulk disk and
the real part of outliers are larger than 1, they will compete against each other and we cannot directly
determine whether the neural activity is spatially ordered. However, with the tool of dynamical
mean-field theory (DMFT) [19], we can mathematically rigorously derive the condition for spatial
patterns in the chaos phase.

For a neural network with the radius of a bulk disk part greater than 1, if the deviation of the mean
of the neurons’ membrane potential gradually amplifies after a perturbation, eventually the neural
activities of different neurons will become synchronized, and the neural network will no longer be
in the chaos phase. [52]] calculated how the mean and variance of the neuronal membrane potential
evolve after being subjected to perturbation,

(I-D+0)x® =E(gx +16(1)), (23)
(I— Ag+ 8,)x(t) = Bx® + Ad(t). (24)
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where,

At = (1) + (D) or(didy), (25)
Buu = goRi(616P) + (andf)], 26)
Dy = o [{81) + (9], 27
Ej = 205, (i) (28)

Here, taking the average (-) refers to averaging over the distribution of the neuronal membrane
potentials. The distribution of the neuronal membrane potentials follows a Gaussian distribution, the
mean and variance of which can be theoretically calculated based on dynamic mean-field theory [52].

Let’s denote the response matrix as follows,

_[1-Ag -B
R_{_Eg I_D} (29)

For a neural network with the radius of bulk disk part larger than 1, if all the eigenvalues of a response
matrix are less than 0, the chaotic neural activity is stable and the neural activity is within a chaos
phase.

We further extended this result to spatially extended neural networks. We can regard a neural network
with spatial distribution to be composed of lots of populations with area AS. Therefore, a neural
network with spatial distribution is equivalent to a neural network with infinite populations.

In the model presented in the main text, the activation function for neurons is the hyperbolic tangent
function, tanh. The distribution of membrane potential is a Gaussian distribution with zero mean.
Therefore, the matrix B and E are zero matrix. The response matrix R is a block diagonal matrix.
The submatrix I — Ag in the upper left corner represents the mean of membrane potential response
to external inputs, and the submatrix I — D in the lower right corner represents the variance of
membrane potential response to external inputs.

The stability of the mean of membrane potential determines the phase boundary between the chaos
phase and other phases with locally synchronized neural activity. Therefore, the largest real part of
eigenvalues of the matrix Ag determines the phase boundary of the chaos phase.

Similar to the calculation above, the matrix Ag is spatially translation invariant. Therefore, we can
diagonalize this matrix into a series of submatrices corresponding to different wave vectors k. The
elements of submatrices are as follows,

g _ |t e 'kd) (@) (h1))g 1z exp “k“d)
(G () r exp (55 ) (6 () exp (1154

where k = (2mng, 2mny), ng,ny =0,£1,£2,.... Averaging is performed over the distribution
of neuronal membrane potentials. Using the tool of dynamical mean-field theory [52], the distribution
of neuronal membrane potentials follows a Gaussian distribution. Let’s denote the expectation of
membrane potential as u,,, the expectation of firing rate as m,,, the variance of membrane potential
as A,, and the autocorrelation of firing rate as C,,. They satisfy,

(30)

= Gapmp + hY, 31)
l
Mo = <¢o¢( V Aaz + uk)>7 (32)
_ N 9ap kg%t 2 2
_;]\T lkout ( dndag? - N, +0as” | U + &, (33)
Co = ($*(V/ Az + uy)). (34)
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where hg is the direct current (DC) input to the 3 type of neurons. z follows a standard Gaussian
distribution with unit variance.

If the eigenvalues of all the submatrices are less than 1, the chaotic neural activity is stable and the
neural network is in the chaos phase. Otherwise, the chaotic neural activity is unstable. We can

assign its phase based on the wave vector k and whether the eigenvalues of instability are complex to
determine which phase it belongs to.
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