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ABSTRACT

Recent advancements in image-to-3D reconstruction and generation have yielded
remarkable progress. However, applying these methods to occluded objects in
cluttered scenes remains challenging due to the incomplete information in oc-
cluded areas. To tackle this issue, we present a feed-forward method for recon-
structing 3D occluded shapes using a data-driven approach. Our method utilizes
a large-scale dataset of cluttered scenes and incorporates multi-view occlusion-
aware 3D reconstruction through a Transformer architecture that draws inspira-
tion from masked autoencoders. Our model, Masked Multi-view Volumetric Trans-
former, utilizes global reasoning from arbitrary number of multi-view 2D image
information and cross-attention between 3D-lifted obstacle mask volumes and
volumetric latents, enabling the model to predict information for occluded re-
gions accurately. Furthermore, we have created a synthetic cluttered scene dataset
comprising ~30,000 scenes with Objaverse objects, designed to illustrate various
occlusion scenarios. Our approach surpasses previous methods in predicting com-
plete shapes from occluded images of unseen objects, achieving completed mesh
extraction in five seconds.

1 INTRODUCTION

Reconstructing 3D shapes and synthesizing novel views from multi-view images are critical tasks
in fields such as 3D computer vision (Hong et al., 2023; Tochilkin et al., 2024; Xu et al., 2024b;a;
Chen et al., 2024a) and autonomous driving (Li et al., 2023). Recently, approaches utilizing the
Transformer (Vaswani, 2017) architecture have successfully produced high-quality 3D reconstruc-
tions and novel view images with short runtimes. In particular, 3D reconstruction methods from
single image (Hong et al., 2023; Tochilkin et al., 2024) and multiple images (Xu et al., 2024b;a;
Chen et al., 2024a) have achieved high-quality 3D reconstruction or novel view synthesis in sec-
onds. These methods typically extract latent image features using a pre-trained image encoder and
employ attention mechanisms to establish relationships between image features and implicit 3D
representations, such as triplane representations or Gaussian volumes.

Nonetheless, reconstructing occluded areas remains a significant challenge for these methods. While
they excel in single-object settings, accurately predicting the entire shape of each object in cluttered
scenes remains challenging due to occlusions between objects. Several approaches (Chen et al.,
2024b; Weber et al., 2024) have sought to address this issue by inpainting the occluded areas of
the target object using image generation models such as Stable Diffusion (Rombach et al., 2022).
Despite the strong performance of image generation models, large inpainting masks can generate
unintended background artifacts, resulting in incorrect 3D shape predictions. This challenge also re-
stricts inpainting methods to using human-guided, tight masks around targets, which is impractical.
Moreover, multi-view image inpainting often yields inconsistent generations across different view-
points, degrading the quality of reconstruction and view synthesis results. For these reasons, using
inpainting-based methods for general occlusion reconstruction remains impractical.

From the restrictions of inpainting-based methods, Amodal3R (Wu et al., 2025) suggests a new
pipeline based on a 3D object generation model (Xiang et al., 2025). Using the mask-weighted cross-
attention in the DiT (Peebles & Xie, 2023) structure, the model can generate better completed 3D
shapes than methods that utilize 2D image completion. Nevertheless, Amodal3R is also susceptible
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Figure 1: We present a feed-forward 3D reconstruction method for occluded objects. Our approach
ensures multi-view consistency while recovering the missing image information due to occlusion.
As a result, our model performs highly at zero-shot 3D occluded shape reconstruction in under five
seconds. To improve visibility, we intentionally brighten non-target regions in the left images.

to generative artifacts, which can result in outputs that deviate significantly from the input image
conditions.

In this paper, we propose a faster and more generalizable method for 3D amodal completion based
on the multi-view Transformer architecture, Masked Multi-view Volumetric Transformer (MMVT),
which addresses current challenges and enhances the practicality of reconstructing occluded areas.
Our approach consists of two key components: a data-driven approach that utilizes our large-scale
cluttered scene dataset, and a multi-view consistent occlusion-aware image-to-3D reconstruction
pipeline.

Inspired by recent developments in masked autoencoders within the image domain (He et al., 2022;
Weinzaepfel et al., 2022; 2023), we propose a multi-view consistent occluded object reconstruction
architecture based on the MAE-like latent information reconstruction method. Achieving multi-view
consistency is essential for accurate 3D shape reconstruction and novel view synthesis from multi-
view images. We introduce a multi-view MAE-like latent reconstruction method that employs alter-
nating attention structure, inspired by VGGT (Wang et al., 2025), which includes full self-attention
over concatenated multi-view tokens and frame-level self-attention layers. Global reasoning with
self-attention across all image features, modulated with Pliicker rays, allows the prediction of miss-
ing latent information in occluded regions while ensuring multi-view consistency.

We also propose an occlusion-aware feed-forward reconstruction model, which enables 3D-aware
handling of occlusions. For each viewpoint, corresponding 3D-lifted obstacle masks could work
as an indicator of the occluded voxels in the 3D space. With the cross-attention between the mask
volumes and the volumetric latent, our model enables accurate occlusion-aware 3D reconstruction.

Moreover, a large and diverse dataset of cluttered scenes is essential for learning general object
shapes and understanding the complexities of occlusion in a data-driven approach. However, existing
datasets featuring real-world scenes (Xiang et al., 2018; Kaskman et al., 2019; Tyree et al., 2022)
consist of only a limited number of objects, which is insufficient for training generalizable shape and
occlusion representations across a wide range of objects. To address this limitation, we propose a
synthetic dataset comprising 29,358 scenes featuring various objects from Objaverse (Deitke et al.,
2023), which enables our model to generalize effectively in reconstructing occluded areas.

In a zero-shot evaluation using our evaluation dataset consisting of unseen objects from Google
Scanned Objects (GSO) (Downs et al., 2022) dataset, we observed that our method could recon-
struct occluded regions even when faced with larger occlusions than those manageable by previous
inpainting-based methods. Our model is highly effective, as it can produce the whole shape of hidden
objects in just 5 seconds, making it significantly quicker than earlier approaches.

‘We summarize our contributions as follows:

* We propose a Masked Multi-view Volumetric Transformer architecture for multi-view con-
sistent token reconstruction, utilizing global reasoning through self-attention over concate-
nated multi-view tokens and volumetric amodal completion via cross-attention with 3D
obstacle masks.
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Figure 2: Our proposed Masked Multi-view Volumetric Transformer (MMVT) method. Our
MAE-like method reconstructs missing latent representations for image feature tokens at masked
patches of the occluded region by reasoning from multi-view information. Additionally, the 3D
lifted obstacle mask volume guides the model to identify potentially occluded voxels in 3D space.

* We constructed a large-scale synthetic dataset of cluttered scenes for training and evaluation
using various objects from Objaverse (Deitke et al., 2023) and GSO (Downs et al., 2022),
enabling a data-driven approach for understanding complex occlusions.

* Our method effectively reconstructs occluded regions in unseen datasets, requiring only
five seconds to produce completed 3D shapes for target objects.

2 RELATED WORK

Large reconstruction models. The advent of large-scale 3D datasets (Deitke et al., 2023; 2024)
has empowered learning-based models to perform 3D reconstructions from single or few-view im-
ages. Large reconstruction models (LRMs) (Hong et al., 2023; Tochilkin et al., 2024) leverage a
scalable transformer architecture to map a single image to an implicit 3D triplane NeRF, effectively
learning generic 3D priors. Building on the capabilities of diffusion models, several approaches (Xu
et al., 2024a; Li et al., 2024) have used multi-view diffusion techniques to synthesize additional
views, extending LRM into a sparse-view reconstruction framework. Recently, LGM (Tang et al.,
2025) and GRM (Xu et al., 2024b) have improved rendering efficiency by adopting 3D Gaussian
representations with transformer or U-Net architectures instead of the triplane representation. Simi-
larly, LaRa (Chen et al., 2024a) utilizes 2D Gaussian representations, enhancing mesh reconstruction
quality compared to 3D Gaussian splatting while maintaining efficient rendering.

Despite these advancements, most feed-forward models are mainly designed for single-object re-
constructions. This limits their ability to reconstruct occluded objects in more complex scenes,
highlighting the need for effective occlusion handling methods in image-to-3D reconstruction.

Occlusion-aware reconstruction methods. Recent studies aim to enhance reconstruction models
for handling occluded objects. A common strategy for handling occluded objects involves a two-
stage pipeline (Chen et al., 2024b; Han et al., 2024; Dogaru et al., 2024; Ozguroglu et al., 2024; Hu
et al., 2024): first, completing the missing regions in 2D using 2D diffusion priors, and then utilize
off-the-shelf image-to-3D models from these completed images. However, this pipeline’s critical
challenge is multi-view inconsistency, as independent 2D completions can introduce significant ar-
tifacts to the final 3D shape. Various methods attempt to solve this consistency issue within the
two-stage framework. NeRFiller (Weber et al., 2024) uses a grid prior to inpaint multiple views si-
multaneously , while ObjFiller-3D (Feng et al., 2025) treats views as a video sequence to enforce
temporal coherence. Despite these improvements, they remain vulnerable to error propagation from
the 2D stage. Departing from this 2D-centric pipeline, other works perform completion directly in
3D. Amodal3R (Wu et al., 2025) adapts a 3D generative diffusion model to complete shapes in a
latent space, which ensures 3D consistency but suffers from the slow, iterative nature of diffusion
models. The method by Cho et al. (2025) offers a fast, regression-based alternative that jointly seg-
ments and reconstructs the shape from a single image, though its architecture is not designed to fully
leverage multi-view inputs.
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(a) Examples of incorrect reconstruc- (b) Generation of obstacle mask from given instance segmentation
tion cases for occluded images from the map, for our Masked Multi-view Volumetric Transformer. Obstacle
previous method (Chen et al., 2024a).  masks are patchified with the same patch size with image features.

Figure 3: Overall illustration of the example of incorrect results and our masking strategy.

Our work addresses these gaps, proposing a fast, feed-forward model specifically designed for multi-
view inputs, which reconstructs complete 3D shapes end-to-end without relying on separate 2D
inpainting modules or time-consuming iterative generation.

MAE-like architectures for 3D reconstruction. Recent advances that train ViT (Dosovitskiy et al.,
2021) with a masked autoencoder (He et al., 2022) training scheme have enabled ViTs to learn ro-
bust image representations by reconstructing masked tokens. Building on this, VoxFormer (Li et al.,
2023) employs an MAE-like architecture to jointly predict occupancy and semantic segmentation
for occluded regions, resulting in improved performance compared to previous methods. Inspired by
VoxFormer, OctMAE (Iwase et al., 2024) integrates an octree framework with an MAE-based de-
sign to reconstruct scenes involving multiple occluded objects from an RGB-D image. This method
achieves efficiency through sparse 3D operations guided by depth information.

Our work aims to generate complete objects within seconds from multi-view images of occluded
objects, even when occlusion obscures a substantial portion of the object in multi-view inputs.

3 METHOD

3.1 PROBLEM SETUP

Our pipeline aims to predict a Gaussian volume V¢ from occluded images that represent the com-

plete shape of an occluded object. Given N sparse-view images I = (I3, - - - , Iy) from the cluttered
scene, along with their corresponding instance segmentation masks M = (M, - -+ , M) and cam-
era parameters T = (7, - - - , ) for each image, the output of our model is a Gaussian volume Vg

that represents the complete shape of the target object.

To generalize our problem settings more practically, we use an obstacle object mask as our masking
strategy. The obstacle object mask is the union of instance masks except for the target object mask,
denoted as Mps = |J M, where M, refers to the obstacle mask and M € M \ {Miarget }. The
mask represents the occluders’ region in the corresponding image for our occlusion reconstruction
pipeline, which may include the area of the occluded parts of the target object. The mask is then
patchified as shown in fig. 3b, indicating patch positions for determining where to reconstruct.

Unlike previous methods that rely on human-guided masks, our approach utilizes larger, automati-
cally generated masks that require no human intervention. This enables a more generalizable recon-
struction of the occluded area.

3.2 RESOLVING OCCLUSIONS WITH MASK TOKENS

Due to missing information from occluded regions, existing 3D reconstruction methods (Xu et al.,
2024a; Chen et al., 2024a) cannot accurately predict the shapes of these regions, as illustrated in
fig. 3a. The key challenge in recovering the occluded parts is: How fo predict the image information
of the occluded regions? Several feed-forward image-to-3D reconstruction methods (Hong et al.,
2023; Li et al., 2024; Xu et al., 2024a; Tochilkin et al., 2024; Chen et al., 2024a) utilize pretrained
image encoder (Caron et al., 2021) features to obtain detailed structural and texture information.
However, we found that while image features provide appropriate feature tokens for the visible parts
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of objects, the non-existence of feature tokens from the occluded regions negatively impacts object
shape prediction. This leads to incorrect shape reconstructions, as shown in fig. 3a.

To address this problem, we propose a multi-view MAE-like architecture that reconstructs the ab-
sent latent from visible feature tokens in a data-driven manner, as shown in the left part of fig. 2.
We employ a multi-view MAE structure, comprised of global and frame-level self-attention over
concatenated multi-view tokens, to achieve the multi-view consistency required for accurate 3D
reconstruction from multi-view images. This structure enables consistent latent completion across
multiple images.

Given RGB images, we apply a pre-trained DINOv3 (Siméoni et al., 2025) image encoder to extract
per-view image features h, following Hong et al. (2023); Xu et al. (2024a), and inject Pliicker ray
directions via adaptive layer normalization. After Pliicker ray modulation, we obtain patch-wise
feature tokens of the j-th image, denoted as h; ¢ REL*dE where L is the number of patches and
dg is the dimension of the latent features. This modulation allows for considering camera poses to
reconstruct multi-view feature tokens.

Multi-view consistency in token reconstruction is crucial for accurately predicting the complete
shape of an object when reconstructing an occluded object from multi-view images. As shown
in fig. 3a, inconsistent reconstructions across views can result in artifacts or incorrect shapes.
CroCo (Weinzaepfel et al., 2022) proposed an MAE method for cross-view completion by employ-
ing decoders with alternating self-attention and cross-attention to integrate stereo-view information
(CrossBlock) or by using self-attention with concatenating two input sets from stereo images (Cat-
Block). Inspired by the CatBlock-based decoder, we developed a multi-view MAE-like feature token
reconstruction method utilizing Transformer blocks with full self-attention layers.

In contrast to CroCo, where occluded areas are present in only specific images, our scenario allows
for occluded areas in every image. Thus, tokens from all images require cross-view reasoning across
all pairs of images. This is done by global self-attention layers in our multi-view Transformer. We
concatenate the modulated image features to complete the learnable mask tokens and apply full
self-attention to this cross-view global reasoning. Given masked image feature tokens hy,agked, We
concatenate the feature tokens for cross-view reasoning as hj,,, = Concat(hy,..., hy). The
concatenated tokens are fed into X Transformer blocks, which include multi-head self-attention and
MLP layers. These blocks reconstruct the missing latent representations using information from the
visible regions in each image. From the output of the Transformer blocks, we replace the tokens of
non-occluded patches with the original DINOvV3 tokens to maintain the quality of the latent repre-
sentations of the visible parts of the target object and reconstruct the tokens of the occluded parts.
Consequently, we obtain the reconstructed image feature tokens h,eco, € RY*LX4® corresponding
to the N multi-view images by reconstructing masked tokens with our Transformer-based method.

To understand the 3D relationship across multi-view images, the model should be conditioned on
camera parameters. We utilize Pliicker rays with Adaptive Layer Normalization (AdaLN) (Peebles
& Xie, 2023) for camera conditioning at each image feature token, enabling patch-level camera
modulation through unique ray representations for each patch. AdaLN with Pliicker rays acts as a
positional embedding for each image token, facilitating reasoning with camera information within
the self-attention mechanisms of the Transformer blocks. Additionally, we utilize PRoPE (Li et al.,
2025) for global self-attention layers to inject relative positional information into the model.

3.3 OCCLUSION-AWARE FEED-FORWARD 3D RECONSTRUCTION

With reconstructed image feature tokens hyeco, from the previously described MAE-like recon-
struction method, we then feed the tokens into a feed-forward image-to-3D reconstruction model
as described in the fig. 2. We utilized pre-trained LaRa (Chen et al., 2024a) as our base multi-view
feed-forward 3D reconstruction model due to its efficiency in training and high quality of 3D recon-
struction results.

Reconstructed image feature tokens are split for each image as hl,. ., - , A, and modulated
with adaptive layer normalization with Pliicker ray directions. Following LaRa, these features are
then lifted to a 3D volume feature by back-projection to a canonical volume with given camera
poses and work as an image condition for predicting the Gaussian volume Vg, which represents the

completed shape of the target object.
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Figure 4: Example scenes of our cluttered scene dataset. Training datasets consist of Objaverse
objects, and the evaluation dataset is based on the Google Scanned Objects (GSO) dataset.

To account for occlusions in the 3D reconstruction process, we build a volumetric obstacle mask
and use the mask to obtain information about possibly occluded 3D voxels. Analogous to lifting 2D
image features into a 3D space, we lifted the obstacle mask to create a volumetric representation.
During this process, a 3D binary occlusion mask was generated for each viewpoint by thresholding
the values obtained through grid sampling; values exceeding 0.5 were set to 1, and all others to 0.
We then applied group cross-attention between the embedding volume and this binary 3D mask,
which enables the model to identify and learn to complete potentially occluded regions.

From the predicted Gaussian volume from our occlusion-aware volumetric Transformer, images of
novel views and the mesh of objects are facilitated via the rasterization process and TSDF integration
using Open3D (Zhou et al., 2018), following the original process from Gaussian splatting (Kerbl
et al., 2023; Huang et al., 2024).

3.4 TRAINING OBJECTIVES

For training of our model, we incorporate image reconstruction objectives and regularization terms
following Chen et al. (2024a); Zhang et al. (2024). Specifically, we use the MSE loss between the
rendered image 7 and the non-occluded ground-truth image 7, calculated only on the non-masked
patches. Also, we use the SSIM loss and the Perceptual loss as follows:

L= LMSE (Iv ja M) + )\SSIMESSIM (I7 ZA-) + )\Perceptualf’Perceptual (Iv j) + LReg- (1)

The regularization term Lreg consists of distortion and normal regularization components, following
Huang et al. (2024); Chen et al. (2024a):

T
CRegzvdZwiwﬂzi—zj|+'ynZwi (1-n/N). 2
i, i
The depth distortion regularization term encourages the concentration of the weight distribution, im-
proving geometry reconstruction. The normal consistency regularization ensures that the 2D splats
are aligned with the predicted shape’s surface.

4 DATASET

Existing datasets (Xiang et al., 2018; Kaskman et al., 2019; Tyree et al., 2022) are often limited
by a restricted number of object categories or insufficient specificity, which hinders the occluded
object reconstruction. To overcome this limitation, we generated a novel training dataset comprising
29,853 occluded object scenes with Objaverse (Deitke et al., 2023) objects. The dataset comprises
frames from 955K viewpoints, including RGB, depth, normal, and segmentation maps, rendered
using BlenderProc (Denninger et al., 2019). We utilized a filtered subset of objects proposed in
LGM (Tang et al., 2025), ensuring a high-quality representation.
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Figure 5: Qualitative results on our GSO-based evaluation dataset. To enhance visibility, we
emphasize the target object of each scene by brightening the non-target regions in the left images.
Additional qualitative results are provided in appendix A. (Please zoom in for more details.)

Each central object was normalized within a bounding box defined by dimensions [—0.5,0.5]® in
world coordinates and positioned at the origin. To represent occlusion, we placed obstacle objects on
the same plane as the central target object and conducted collision tests to ensure that there was no
overlap, thereby maximizing the diversity of occlusion. Obstacles were randomly selected from the
30K central objects, creating diverse occlusion patterns. To avoid full occlusion from all viewpoints,
obstacles were scaled to half the size of the central object. Each scene includes one central object
and three obstacles.

We sampled 32 views from random orientations for each scene, rendered at a resolution of 512x512
pixels. Camera poses were randomly set within a radius ranging from [1.5, 2.2] and an elevation
range of [0, 30] degrees.

For evaluation, we employed the Google Scanned Objects (GSO) dataset (Downs et al., 2022),
rendering test scenes similarly to the training setup. Each object in the evaluation set was normalized
as in training, surrounded by three obstacles. In contrast to the training dataset, the azimuth angles
of cameras in the evaluation dataset were uniformly sampled at consistent intervals to provide 360-
degree coverage, while the elevation angle was fixed at 20 degrees.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation details. For the training, we employed the AdamW optimizer with a learning rate
of 2 x 104, scheduled via cosine annealing. The model was trained over 40 epochs on four A6000
GPUs with a batch size of 2, requiring approximately four days to complete. The input and rendering
image resolutions were set to 512 x 512 pixels, utilizing a DINOv3 image encoder with a ViT-B/16
backbone. Our Masked Multi-view Volumetric Transformer architecture consists of six Transformer
blocks for 2D image feature reconstruction and twelve blocks for occlusion-aware feed-forward 3D
reconstruction.

Evaluation metrics. We evaluate the 3D reconstruction quality and 2D novel view synthesis from
the completed shapes. To assess the quality of the 3D reconstruction, we report the Chamfer Distance
(CD) and F-Score (FS) with a threshold of 0.001. For the 3D metrics, we uniformly sample 100,000
points from the resulting meshes obtained via TSDF-based mesh extraction and the ground truth
meshes. We then align both point clouds to the same coordinate system, rescale all meshes to fit
within a [—1,1]3 cube, and perform an Iterative Closest Point (ICP) registration to align the point
clouds. For 2D visual quality evaluation, we report the Peak Signal-to-Noise Ratio (PSNR), the
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(a) Qualitative results on our real-world captured dataset. (b) Qualitative comparison between Oct-
MAE (Iwase et al., 2024) and our method.

Figure 6: Additional qualitative comparisons.

Structural Similarity Index Measure (SSIM), and the Learned Perceptual Image Patch Similarity
(LPIPS).

Baseline methods. Our baselines are as follows:

* LaRa (Chen et al., 2024a) - LaRa with no inpainting and no additional training for occluded
inputs.

* SD (Image Cond) - Inpainting from image and obstacle mask without text prompt condi-
tioning. Based on Stable Diffusion 2 (Rombach et al., 2022).

* SD (Text Cond) - Inpainting conditioned with a text prompt. Based on Stable Diffusion 2.
* Grid Prior - Inpainting with grid prior, proposed by Weber et al. (2024).
* pix2gestalt (Ozguroglu et al., 2024) - 2D amodal completion with image and visible mask.

* OctMAE (Iwase et al., 2024) - OctMAE with a single RGB-D image input sampled from
our evaluation dataset.

* Amodal3R (Wu et al., 2025) - Amodal 3D reconstruction model based on 3D object gener-
ation model (Xiang et al., 2025).

We utilize our generated obstacle masks for inpainting and use the object name for the text prompt
conditions as “A photo of {description}”. In appendix C, we described detailed information on the
text prompt.

Experimental setup. For comparison with inpainting methods, we use the same input images as
ours for the methods’ inputs and employ the inpainting results as the inputs to the LaRa method.
Additionally, we developed the qualitative comparison solely to compare OctMAE’s result with
ours, as OctMAE’s problem setting, which utilizes a single RGB-D image of all objects in a cluttered
scene, differs from our problem setup.

We utilized our clutter scene dataset, which contains objects from the Google Scanned Objects
dataset, comprising 1,030 unseen scenes. We select four novel views for the input of each method
for quantitative analysis and use the remaining 12 views for evaluation.

Also, we conduct a zero-shot experiment with real-world captured images to evaluate the in-the-
wild performance of our approach. The images are extracted from the frames of real-world captured
videos, and we center-cropped the images by adjusting the camera intrinsics. Camera poses and
obstacle masks are generated using COLMAP and SAM2 from the center-cropped images.

5.2 COMPARISON WITH BASELINE METHODS

As shown in table 1, our method outperforms other generative methods in 3D geometry metrics and
2D novel view synthesis metrics. Since the evaluation dataset consists entirely of unseen data for our
model, this result demonstrates that our method achieves zero-shot generalization in reconstructing
occluded shapes.

Fig. 5 presents qualitative comparison results on our GSO-based occlusion dataset. Our method
exhibits view-consistent completion results in these comparisons through our large dataset and the
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Table 1: Quantitative results on our test dataset based on objects from GSO. For inpainting-
based methods, all inpainted inputs are then reconstructed with LaRa.

CD), FSt PSNR{ SSIMt LPIPS, Time (s)|
LaRa (Occluded Inputs) (Chen et al., 2024a) 0.263 0.313 18916  0.903  0.135 1.707

SD (Image Cond) (Rombach et al., 2022) 0.187 0.454 18.461 0.875 0.171 10.61
SD (Text Cond) (Rombach et al., 2022) 0.182 0.454 18.739  0.875 0.169 10.49
Grid Prior (Weber et al., 2024) 0.141 0.501 22.091 0.901 0.133 24.79
pix2gestalt (Ozguroglu et al., 2024) 0.163 0.508 19.606  0.888 0.146 31.63
Amodal3R (Wu et al., 2025) 0.154 0.512 17419 0.874 0.150 9.303
Ours 0.065 0.706 25.746  0.923 0.101 2.296

MMVT. Previous methods, as depicted in fig. 5, generate artifacts or produce multi-view incon-
sistent inpainting results under our practical obstacle mask setup, leading to inaccurate 3D shape
predictions in image-to-3D methods. In contrast, our model accurately predicts occluded shapes by
reconstructing the missing latent representations from occluded images.

As demonstrated in fig. 6a, our model reliably reconstructs shapes from occluded regions in real-
world images under a zero-shot setup. Our model demonstrates artifact-free novel view synthesis
across various scenes, indicating its generalizability derived from learning general information from
our large-scale dataset of synthetic objects and its possibility of adapting to real-world tasks.

Additionally, as illustrated in fig. 6b, OctMAE struggles to distinguish individual objects or recon-
struct occluded regions when a significant portion of the object is hidden. In contrast, our proposed
method effectively reconstructs the geometry and texture of the target object, including its occluded
regions, even without utilizing depth data. This suggests our method has potential applications in
object separation and completion in real-world cluttered scenes.

5.3 ABLATION STUDIES

We conducted an ablation Table 2: Ablation study on the key components of our MMVT.
study to evaluate the con-

tributions of our method’s CD|/ FSt PSNRt SSIMt LPIPS|

key components: 2D im- "y .. (Occluded Inputs) 0263 0313 18916 0903  0.135
age feature reconstruction -
with a2 MAE-like architec- + 2D Reconstruction 0.098 0.587 23.671 0914 0.111

+ Volumetric Mask 0.076 0.655 24.810 0919 0.108

ture, and 3D occlusion-
aware reconstruction via
cross-attention with volumetric obstacle masks. In the ablation study, due to resource limitations, we
use model variants that were trained for 20 epochs. To analyze the impact of our 2D image feature
reconstruction with a large-scale occlusion dataset, we compared the original LaRa implementation
with our model.

In table 2, 2D Reconstruction refers to 2D image feature reconstruction via a multi-view MAE-like
architecture; Volumetric Mask indicates the occlusion-aware 3D reconstruction with cross-attention
between volumetric latents and 3D-lifted obstacle masks. From the table,

6 CONCLUSION

We presented the data-driven approach for multi-view consistent reconstruction of missing im-
age latent representations from occlusions. Our method employs a data-driven approach, utilizing
large datasets of cluttered scenes. It leverages multi-view consistent reconstruction, global reason-
ing over multiple latent and mask tokens, and occlusion-aware 3D reconstruction via volumetric
masks. Through our novel multi-view consistent masked area reconstruction and extensive dataset,
we achieve high-quality occluded area completion with efficient inference. Specifically, our model
outperforms previous methods and requires only five seconds for inference. In future work, we plan
to extend our method to real-world tasks such as multi-object manipulation in robotics. The limita-
tions are detailed in appendix E.
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