

ADAPTIVE THINKING: LARGE LANGUAGE MODELS KNOW WHEN TO THINK IN LATENT SPACE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) test-time computing have introduced the capability to perform intermediate chain-of-thought (CoT) reasoning (thinking) before generating answers. While increasing the thinking budget yields smooth performance improvements at inference time, the relationship between LLM capability, query complexity, and optimal budget allocation remains poorly understood for achieving compute-optimal inference. To address this challenge, we utilize *self-consistency*, the agreement among multiple reasoning paths, as a proxy for thinking necessity. We first identify that lower self-consistency indicates when queries require extended thinking to reach correct answers. Building on this insight, we introduce **Sonata** (**S**elf-**C**onsistency-**G**uided **A**dapter for **T**hinking **A**llocation), a lightweight approach that adaptively allocates thinking budgets to optimize the performance-efficiency tradeoff. **Sonata** includes an adapter trained offline on a calibration dataset to predict self-consistency directly from the last layer hidden representations during the query prefilling stage. This prediction then guides on-the-fly budget allocation before thinking. The adapter is general, transferable across diverse tasks once trained, and introduces $< 1\%$ computational overhead during inference. Notably, **Sonata** is compatible with existing CoT compression methods, enabling further efficiency gains when managing thinking budgets across queries. Extensive experiments on multiple models (Qwen3-8B, Qwen3-32B, GPT-OSS-120B, Qwen3-235B-A22B) and benchmarks (AIME25, GSM8K, MATH500, GPQA, [LiveCodeBench](#)) demonstrate that **Sonata** achieves 20% to 60% reduction in thinking tokens while maintaining the same accuracy, or up to 2% improvement in accuracy with the same token cost.

1 INTRODUCTION

The ability to perform extended reasoning at inference time has emerged as a transformative capability for large language models (LLMs), enabling them to tackle complex problems through chain-of-thought (CoT) reasoning (Wei et al., 2022; Kojima et al., 2022). Recent advances in test-time compute scaling have demonstrated that allowing LLMs to “think” before answering, generating intermediate CoT reasoning tokens, can yield significant performance improvements on challenging tasks (Snell et al., 2024; Wu et al., 2025a; Yang et al., 2025a; DeepSeek-AI et al., 2025; Gemini Team et al., 2025). This thinking capability enables these LLMs to explore diverse reasoning paths, reflect on their decisions, refine solutions, and rigorously verify correctness, during inference time (DeepSeek-AI et al., 2025; OpenAI, 2024).

However, adaptively determining the optimal thinking budget for each query remains a critical challenge, as excessive thinking wastes computational resources on simple queries and may even hurt performance (Li et al., 2025c; Hassid et al., 2025; Wu et al., 2025b; Hou et al., 2025), while insufficient thinking leads to errors on complex ones (Snell et al., 2024; Wu et al., 2025a). The core problem lies in identifying how much thinking a specific query really requires before generating the response tokens. Existing approaches either rely on superficial proxies like entropy (Xia et al., 2024;

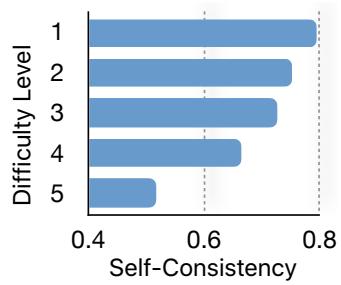


Figure 1: Average *self-consistency* across various difficulty levels, derived from Qwen3-8B model on the MATH-500 task.

054 [Zhang et al., 2025a](#)), which fail to capture the intrinsic reasoning difficulty, or require costly online
 055 computation ([Han et al., 2025](#)) or sample-specific calibration, limiting their practical applicability.
 056

057 *Can we enable LLMs to adaptively allocate thinking budget given queries, optimizing the thinking
 058 performance-efficiency trade-off at test time?* In this work, we utilize *self-consistency* ([Wang et al.,
 059 2023; Chen et al., 2023](#)), *i.e.* the agreement among multiple reasoning paths when sampling from
 060 the LLM given the same query, as a principled proxy for thinking necessity. As shown in Figure 1,
 061 queries of higher difficulty levels demonstrate lower self-consistency scores. Self-consistency di-
 062 rectly measures the model’s confidence in solving a problem, as queries with high self-consistency
 063 (where multiple reasoning attempts converge to the same answer) typically require minimal think-
 064 ing, while those with low self-consistency benefit from extended CoT reasoning. We further analyze
 065 the hidden representations of various queries in thinking LLMs and observe that they are highly dis-
 066 tinguishable in the latent space. Building on this insight, we introduce **Sonata** (**S**elf-**C**onsistency-
 067 **G**uided **A**dapter for **T**hinking **A**llocation), a lightweight approach that first learns to predict self-
 068 consistency directly from query hidden representations in the last layer. During inference, Sonata
 069 adapter takes the query’s last layer hidden representations as input during the prefilling stage and
 070 adaptively allocates thinking budgets before decoding. This adapter, trained offline on a calibra-
 071 tion dataset, introduces < 1% computational overhead and is generalizable across tasks without
 072 task-specific fine-tuning. Moreover, Sonata is compatible to LLMs trained with existing CoT
 073 compression techniques ([Zhang et al., 2025b; Hou et al., 2025; Lu et al., 2025](#)), enabling further
 074 efficiency gains while maintaining performance.
 075

076 Our contributions and findings are summarized as follows: (i) **Self-consistency as a reasoning indi-
 077 cator:** We utilize self-consistency as an effective proxy for evaluating LLMs’ reasoning capabilities,
 078 revealing that prompts exhibiting different self-consistency levels are highly distinguishable in the
 079 latent space; (ii) **Adaptive reasoning with Sonata:** We introduce Sonata, a lightweight adapter
 080 with negligible cost that adaptively determines both *when* to conduct reasoning and *how much* rea-
 081 soning budget to allocate. (iii) **Superior performance-efficiency tradeoff:** Extensive experiments
 082 across models of various scales (Qwen3-8B, Qwen3-32B, GPT-OSS-120B, Qwen3-235B-A22B)
 083 and tasks of various difficulties (AIME25, GSM8K, MATH500, GPQA, [LiveCodeBench](#)) validate
 084 that our approach reduces average token consumption by up to 60% while maintaining task per-
 085 formance.
 086

2 RELATED WORKS

087 **Token Efficiency for Thinking LLMs.** Recent research has attempted to attack the efficiency
 088 challenge of LLM thinking by reducing the number of tokens spent. One line of work focuses on
 089 post-training. [Hassid et al. \(2025\)](#) observes that shorter reasoning chains are often more accurate and
 090 proposes an early-exit inference strategy. Similarly, [Jiang et al. \(2025\)](#) employs a verification model
 091 to decide when to terminate the reasoning process. Other methods intervene more directly during
 092 generation. [Li et al. \(2025a\)](#) inserts a reasoning terminator token early based on attention analysis,
 093 while [Qiao et al. \(2025\)](#) uses a confidence-guided approach to suppress redundant reflection steps.
 094 Another category of methods uses reinforcement learning (RL) to encourage brevity. [Hou et al.
 095 \(2025\)](#) uses RL with a token limit to prune long chains of thought, and [Yi et al. \(2025\)](#) defines a
 096 Sample Optimal Length to guide the model toward more efficient outputs. [Zhang et al. \(2025b\)](#)
 097 introduces a length-regularized RL method, and [Li et al. \(2025c\)](#) trains a model to pre-estimate its
 098 own token budget. Some approaches refine the training data itself; for instance, [Lu et al. \(2025\)](#)
 099 uses a search algorithm to discover shorter, more effective reasoning paths for distillation. Notably,
 100 our work is compatible with these compression and pruning techniques. By adaptively allocating a
 101 thinking budget *before* the reasoning process begins, Sonata can be combined with these methods
 102 to further optimize the performance-efficiency tradeoff across queries.
 103

104 **Self-Consistency in LLMs.** Self-consistency has been proposed as a decoding strategy that im-
 105 proves CoT reasoning by sampling multiple diverse reasoning paths and selecting the answer that
 106 appears most frequently via majority vote ([Wang et al., 2023](#)). While effective, this approach incurs
 107 significant computational costs and is primarily applicable to tasks with easily extractable, closed-
 108 form answers. To overcome these limitations, subsequent research has focused on enhancing SC’s
 109 efficiency and applicability. [Chen et al. \(2023\)](#) extends the method to free-form generation tasks by
 110 using the LLM itself to identify the most consistent response among multiple candidates, remov-

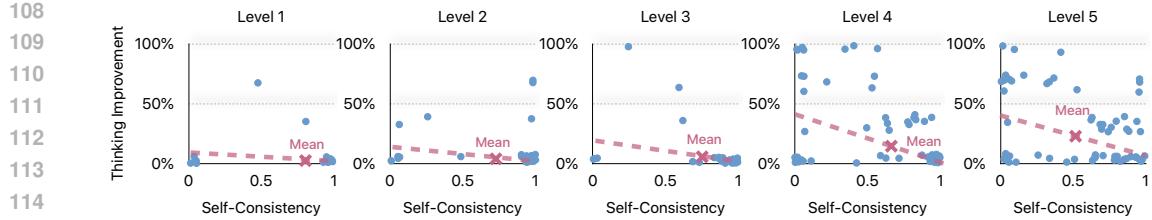


Figure 2: Correlation between self-consistency and thinking improvement across five difficulty levels on MATH-500 using Qwen3-8B. Each point denotes an individual query, with self-consistency computed from $N = 32$ samples in non-thinking mode (x-axis) and accuracy improvement from enabling thinking averaged over 3 runs (y-axis).

ing the need for answer extraction. Other works aim to reduce the high sampling cost. Wan et al. (2025) introduces an early stopping mechanism by evaluating the quality of the intermediate reasoning paths, not just the final answers. Wang et al. (2025) propose to first use the LLM to assess a query’s difficulty, then allocate a proportional sampling number, which saves resources on simpler problems. In this work, we utilize the insight that self-consistency can serve as a proxy of the need for extended CoT reasoning, enabling us to allocate the thinking budget adaptively.

Reasoning in Latent Space. Recent studies show that LLMs implicitly perform latent reasoning within their hidden computations (Yan et al., 2025b; Shalev et al., 2024b; Lindsey et al., 2025; Tack et al., 2025). This line of research investigates how LLMs process multi-hop queries by maintaining distributions over potential intermediate answers in hidden states, a mechanism that persists even without sufficient knowledge for correct answers (Shalev et al., 2024a). Beyond discrete tokens, recent work trains models to reason directly in continuous latent space by recirculating hidden states as inputs, enabling efficient patterns like breadth-first search (Hao et al., 2024). This latent reasoning is controllable by identifying representations of thought patterns (*e.g.*, execution, reflection), targeted interventions can steer reasoning processes to improve accuracy and efficiency (Chen et al., 2025). Alternative approaches construct “soft” concept tokens from probability-weighted embeddings to implicitly explore multiple reasoning trajectories (Zhang et al., 2025c), or enhance pretraining by integrating continuous concepts extracted via sparse autoencoders into hidden states (Tack et al., 2025). These findings collectively suggest the underlying connection between reasoning capabilities and latent representations, motivating our use of hidden states for adaptive thinking.

3 PRELIMINARY

In this section, we provide the foundation for adaptive thinking allocation in LLMs. We first demonstrate that self-consistency serves as a reliable indicator for when models need extended chain-of-thought reasoning in Section 3.1. We then show that self-consistency patterns are distinguishable in the latent space, enabling efficient prediction from hidden representations in Section 3.2.

3.1 SELF-CONSISTENCY INDICATING WHEN TO THINK

Self-consistency has initially emerged as a powerful decoding strategy that enhances CoT reasoning in large language models by leveraging the intuition that complex reasoning problems often admit multiple valid reasoning paths leading to the same correct answer (Wang et al., 2023; Chen et al., 2023). When an LLM generates multiple CoT chains for the same query, the consistency among their final answers serves as a strong indicator of the model’s confidence and reasoning capability on that particular query. Inspired by these existing works, we hypothesize that for reasoning models,

low self-consistency indicates the need for extended CoT reasoning.

Formally, we define self-consistency as the ratio of correct samples among multiple repeated sampling. Given a query q and an LLM \mathcal{M} , we sample N independent answers $\{a_1, a_2, \dots, a_N\}$ ¹. The self-consistency score is computed as $SC(q) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}[a_i = a^*]$, where $\mathbb{I}[\cdot]$ is the indicator function and a^* denotes the correct answer².

To investigate the relationship between self-consistency and the necessity for extended thinking, we conduct experiments measuring the performance gain from thinking *vs.* non-thinking modes.

¹We used $N = 32$ for all experiments in our work.

²We employ a verifier to determine correctness rather than relying solely on majority voting, which allows us to accurately assess self-consistency for calibration.

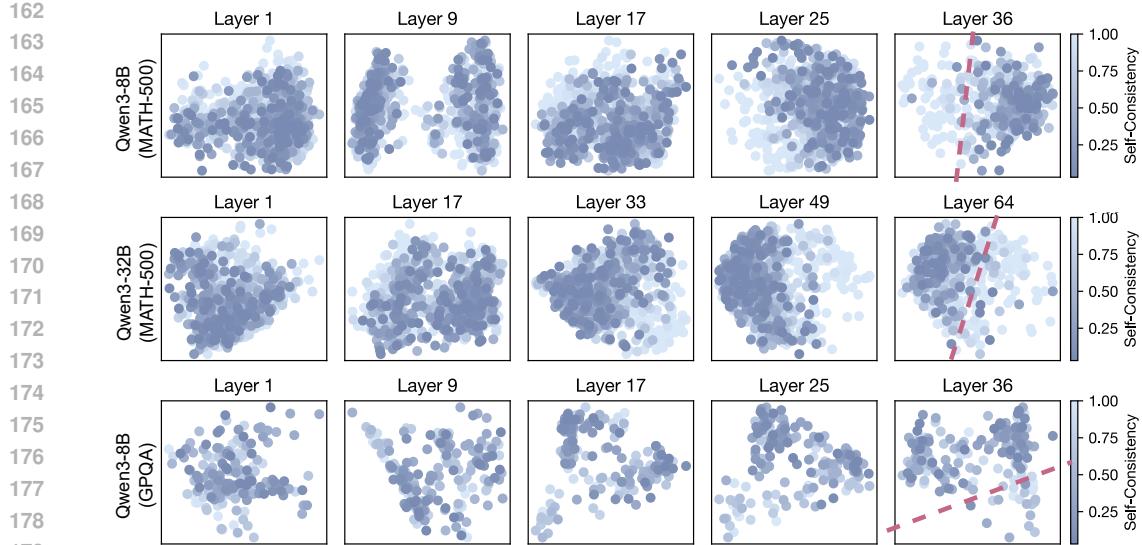


Figure 3: PCA visualization of query hidden representations across different transformer layers, colored by self-consistency scores, evaluated on both MATH-500 (math reasoning) and GPQA (scientific reasoning) benchmarks. Self-consistency patterns become increasingly distinguishable in deeper layers, with the last layers (*i.e.* 36, 64) showing the most pronounced separation. High self-consistency queries (dark) form tight clusters while low self-consistency queries (light) are more dispersed, demonstrating that self-consistency signals are learnable from latent representations across diverse reasoning domains.

Specifically, for each query q in our calibration set, we compute: ① the self-consistency score $SC(q)$ when the model operates without thinking, by enforcing the thinking terminate token `</think>` right after starting token `<think>`, following Yang et al. (2025a); DeepSeek-AI et al. (2025), and ② the accuracy improvement $\Delta_{\text{think}}(q) = \text{Acc}_{\text{think}}(q) - \text{Acc}_{\text{non-think}}(q)$, where $\text{Acc}_{\text{think}}$ and $\text{Acc}_{\text{non-think}}$ represent the accuracy with and without chain-of-thought reasoning, respectively. As illustrated in Figure 2, we observe a strong negative correlation between self-consistency in non-thinking mode and the performance gains from thinking. Each point is an individual query from our calibration dataset. Queries with low self-consistency exhibit significant improvements when thinking is enabled, while queries with high self-consistency show minimal improvements. The cluster of points in the lower-left corner represents intrinsically difficult problems where both self-consistency and thinking improvements are low, indicating queries that remain challenging even with extended reasoning. These empirical results validate our hypothesis that self-consistency serves as a principled indicator for adaptive thinking budget allocation.

3.2 SELF-CONSISTENCY PATTERNS ARE DISTINGUISHABLE IN LATENT SPACE

While self-consistency provides a reliable signal for thinking necessity, computing it requires expensive repeated sampling that defeats the purpose of efficient inference. This raises a critical question: *can we predict self-consistency directly from the model’s internal representations without explicit sampling?* We present two key observations that enable efficient self-consistency prediction.

Observation 1: Self-consistency patterns are highly distinguishable in latent representations. We analyze the hidden states of queries with varying self-consistency levels by extracting the last token’s representation from the final transformer layer. Specifically, given a query q with the chat template, we obtain the hidden state $\mathbf{H} \in \mathbb{R}^d$ from the last position before any decoding begins. We apply Principal Component Analysis (PCA) to project \mathbf{H} onto a two-dimensional space. As shown in Figure 3, queries naturally cluster according to their self-consistency levels in this projected space. High self-consistency queries (darker blue) naturally form tight clusters, indicating similar reasoning patterns, while low self-consistency queries (lighter blue) are more dispersed.

Observation 2: Deeper layers exhibit stronger self-consistency separability. We further investigate how self-consistency patterns evolve across different transformer layers. Let $\mathbf{H}^{(l)}$ denote the hidden representation at layer l . Figure 3 demonstrates that self-consistency becomes increasingly distinguishable in deeper layers, with the final layer showing the most pronounced separation. This

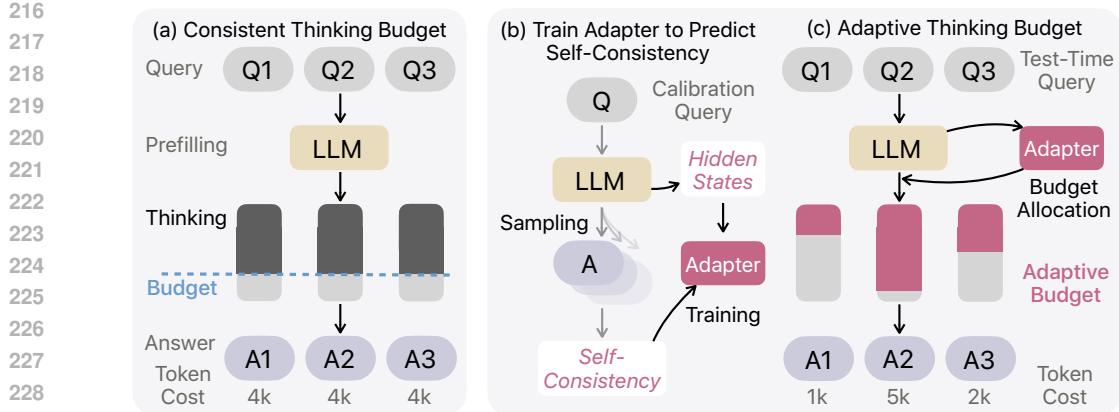


Figure 4: Overview of **Sonata**. (a) Conventional approaches (Yang et al., 2025a) where all queries receive the same fixed thinking budget (e.g. 4k tokens each) during thinking, regardless of query complexity, resulting in suboptimal token allocation. (b) Offline training phase where the MLP adapter learns to predict *self-consistency* from last-layer hidden states. For each calibration query Q , the LLM generates multiple responses, and self-consistency is computed as the accuracy among all sampled answers A . The adapter is trained to map the last hidden states to these self-consistency scores. (c) At inference time, **Sonata** employs the trained adapter to predict self-consistency from query hidden states during prefilling and adaptively allocates lower thinking budgets to higher self-consistency queries (e.g. Q_1 for 1k), reducing overall token cost while maintaining accuracy.

Algorithm 1 Offline Self-Consistency Adapter Training

Require: Calibration dataset $\mathcal{D}_{\text{cal}} = \{q_i\}_{i=1}^K$, LLM \mathcal{M} , sampling size N
Ensure: Trained adapter f_θ

- 1: Initialize $\mathcal{S} \leftarrow \emptyset$
- 2: **for** $i = 1 \rightarrow K$ **do**
- 3: Sample $\mathcal{A}_i \leftarrow \{a_j \sim P_{\mathcal{M}}(\cdot | q_i, \text{non-thinking})\}_{j=1}^N$
- 4: Compute $\text{SC}_i \leftarrow \frac{1}{N} \sum_{j=1}^N \mathbb{I}[a_j = a_i^*]$
- 5: Extract $\mathbf{h}_i \leftarrow \text{LLM}_L(q_i)$ {Last layer, last token}
- 6: $\mathcal{S} \leftarrow \mathcal{S} \cup \{(\mathbf{h}_i, \text{SC}_i)\}$
- 7: **end for**
- 8: $f_\theta \leftarrow \text{Train}(\mathcal{S}, \mathcal{L}_{\text{MSE}})$ {MSE loss}
- 9: **return** f_θ

aligns with literature that deeper layers encode more abstract, conceptual, and reasoning-related knowledge, while shallow layers primarily capture low-level linguistic features (Rogers et al., 2020; Jin et al., 2025). The strong self-consistency signals in final-layer representations enable our efficient on-the-fly adapter-based prediction approach, presented in Section 4.

4 METHODOLOGY

In this section, we present the **Sonata** framework for adaptive thinking budget. We introduce a lightweight adapter that learns to predict self-consistency from query representations in Section 4.1. Section 4.2 describes how this adapter enables on-the-fly thinking budget allocation during inference with negligible computational overhead, achieving optimal performance-efficiency trade-offs.

4.1 TRAINING ADAPTER TO PREDICT SELF-CONSISTENCY

We train a lightweight adapter to predict self-consistency directly from query representations, eliminating the need for expensive sampling during inference. Given a calibration dataset $\mathcal{D}_{\text{cal}} = \{q_1, q_2, \dots, q_K\}$, we first collect self-consistency labels by sampling N answers for each query q_k in non-thinking mode, by enforcing `</think>` immediately after `<think>`. The self-consistency score is computed as $\text{SC}(q_k) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}[a_k^{(i)} = a_k^*]$, where a_k^* is the ground-truth answer.

270 **Algorithm 2** Online Adaptive Thinking Decision

271 **Require:** Test query q , trained adapter f_θ , LLM \mathcal{M} , threshold τ_0

272 **Ensure:** Response r with adaptive thinking

273 1: Extract $\mathbf{h} \leftarrow \text{LLM}_L(q)$ {Prefilling stage: last layer, last token}

274 2: Predict $\hat{s} \leftarrow f_\theta(\mathbf{h})$ {Self-consistency prediction}

275 3: **if** $\hat{s} > \tau_0$ **then**

276 4: $r \leftarrow \text{Generate}(\mathcal{M}, q, \text{thinking} = \text{False})$ {Direct answer, no thinking}

277 5: **else**

278 6: $r \leftarrow \text{Generate}(\mathcal{M}, q, \text{thinking} = \text{True})$ {Generate with thinking}

279 7: **end if**

280 8: **return** r

281

282

283 As shown in Figure 4 (b), for each query with the chat template, right before decoding, we extract
 284 the last token’s hidden representation \mathbf{h}_k from the final transformer layer during prefilling. We then
 285 train a two-layer MLP adapter f_θ to map these representations to self-consistency scores, followed
 286 by a sigmoid mapping function. Algorithm 1 formally demonstrates the training procedure. Once
 287 trained offline on the calibration dataset, the *Sonata* adapter is generalizable across queries of
 288 diverse tasks without additional fine-tuning, introducing negligible computational overhead during
 289 inference as it requires only a single forward pass through the lightweight MLP.

290 4.2 ON-THE-FLY THINKING BUDGET ALLOCATION WITH ADAPTER

291 At test time, our trained adapter enables adaptive thinking budget allocation with negligible
 292 computational overhead. The adapter is model-specific—trained for each LLM architecture, while task-
 293 agnostic, generalizing across diverse downstream queries without retraining. As illustrated in Figure
 294 4(c), *Sonata* dynamically determines both whether to engage thinking and how much budget
 295 to allocate based on the query’s hidden representation.

296 Specifically, given a test-time query q , we extract its hidden representation $\mathbf{h} = \text{LLM}_L(q)$ during
 297 the prefilling stage, just before decoding begins. The adapter then predicts the self-consistency
 298 score $\hat{s} = f_\theta(\mathbf{h})$, which serves as our confidence indicator. With this prediction, we determine
 299 whether to think for a given query. We compare \hat{s} against a predefined threshold τ_0 ³. If $\hat{s} > \tau_0$, the
 300 model proceeds without thinking (directly generating the answer), as high predicted self-consistency
 301 indicates the query is straightforward. Otherwise, thinking is conducted with the model’s default
 302 thinking process. Algorithm 2 formally presents the online inference procedure.

303 The entire allocation process requires only a single forward pass through the lightweight MLP
 304 adapter, introducing virtually zero latency compared to the LLM’s inference time. Since the adapter
 305 operates on already-computed hidden states from prefilling, no additional LLM forward passes are
 306 needed. This enables *Sonata* to adaptively decide whether to think based on real-time query com-
 307 plexity, unlike the fixed allocation approach in Figure 4(a), significantly reducing average token
 308 consumption while maintaining performance.

310 5 EMPIRICAL EVALUATION

311 In this section, we present comprehensive experiments evaluating *Sonata*’s effectiveness in adapt-
 312 ing thinking budget allocation. In Section 5.1, we present our main experimental results across four
 313 thinking-capable models of varying scales (8B to 235B parameters) on four challenging reasoning
 314 benchmarks, demonstrating its effectiveness and efficiency. Section 5.2 provides detailed ablation
 315 and extended studies examining the impact of different proxy metrics, adapter architectures, thresh-
 316 old configurations, and the computational overhead during inference.

318 319 5.1 MAIN RESULTS

320 **Experimental Setup.** We evaluate *Sonata* on five challenging reasoning benchmarks: AIME25,
 321 GSM8K, MATH500, *LiveCodeBench*, and GPQA, covering mathematical, *code generation*, and
 322 general reasoning tasks and across diverse difficulties. We conduct experiments on four thinking

323 ³We find that $\tau_0 = 0.3$ generally works well, and thus we set it to 0.3 for all experiments in this work.

324
325
326
327
328
329

Table 1: Comparison results on the AIME25, MATH-500, GSM8K, **LiveCodeBench (LCB)** and GPQA across four models with thinking capability. We use `temperature` = 0.6, `top_p` = 0.95 for decoding. We report the average performance of three repeated trials for each run. Accuracy (Acc.) comparable to or higher than the vanilla baseline model are underlined, and the lowest thinking token counts (#Tokens) among those with underlined accuracy are marked in **bold**.

Methods	AIME25		MATH-500		GSM8K		LCB		GPQA		Average	
	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)
Qwen3-8B	60.0	16995	97.6	4900	95.2	1994	<u>57.8</u>	14421	60.1	7458	<u>74.1</u>	<u>9154</u>
w. Const. Budget	30.0	4096 (24%)	93.2	4096 (84%)	95.0	4096 (205%)	<u>49.3</u>	4096 (28%)	57.1	4096 (55%)	<u>64.9</u>	4096 (45%)
w. Self-Judge	<u>60.0</u>	17019 (100%)	96.0	4315 (88%)	92.7	1076 (54%)	<u>57.1</u>	13496 (93%)	57.6	5913 (79%)	<u>72.7</u>	8364 (91%)
w. Sonata	<u>63.3</u>	16449 (97%)	<u>97.4</u>	3694 (75%)	<u>95.6</u>	890 (45%)	<u>58.2</u>	13054 (90%)	<u>62.0</u>	3590 (48%)	<u>75.3</u>	7535 (82%)
Qwen3-32B	70.0	14971	97.6	3670	94.8	1654	<u>63.8</u>	13729	63.6	5329	<u>78.0</u>	<u>7853</u>
w. Const. Budget	56.7	4096 (27%)	95.8	4096 (112%)	95.3	4096 (248%)	<u>47.0</u>	4096 (30%)	<u>64.1</u>	4096 (77%)	<u>69.8</u>	4096 (52%)
w. Self-Judge	73.3	15625 (104%)	96.2	3107 (85%)	93.1	666 (40%)	<u>59.3</u>	13360 (97%)	54.5	3807 (71%)	<u>75.3</u>	7313 (93%)
w. Sonata	<u>70.0</u>	14890 (100%)	<u>98.0</u>	2583 (70%)	<u>94.4</u>	728 (44%)	<u>63.4</u>	13600 (99%)	<u>63.1</u>	3568 (70%)	<u>77.8</u>	7074 (90%)
GPT-OSS-120B-High	86.7	14390	98.2	2331	85.8	494	-	-	75.8	9617	86.6	6708
w. Const. Budget	73.3	4096 (28%)	98.0	4096 (176%)	86.4	4096 (829%)	-	-	69.2	4096 (43%)	81.7	4096 (61%)
w. Self-Judge	83.3	14045 (98%)	94.4	890 (38%)	<u>87.0</u>	105 (21%)	-	-	64.1	5894 (61%)	82.2	5234 (78%)
w. Sonata	<u>86.7</u>	13817 (96%)	<u>98.0</u>	1683 (72%)	<u>86.7</u>	385 (78%)	-	-	70.2	8008 (83%)	<u>85.4</u>	5973 (89%)
Qwen3-235B-A22B	70.0	13831	97.6	4371	94.2	2261	-	-	69.2	7049	82.8	6878
w. Const. Budget	43.3	4096 (30%)	94.8	4096 (94%)	<u>95.7</u>	4096 (181%)	-	-	60.1	4096 (58%)	73.5	4096 (60%)
w. Self-Judge	73.3	13951 (101%)	<u>98.0</u>	4012 (92%)	93.3	1037 (46%)	-	-	68.2	6658 (94%)	<u>83.2</u>	6415 (93%)
w. Sonata	<u>73.3</u>	13890 (100%)	<u>98.0</u>	2984 (68%)	<u>94.0</u>	998 (44%)	-	-	<u>70.7</u>	4919 (70%)	<u>84.0</u>	5698 (83%)

models of varying scales: Qwen3-8B, Qwen3-32B, GPT-OSS-120B, and Qwen3-235B-A22B. We evaluate Qwen3-8B and Qwen3-32B in BF16, GPT-OSS-120B in MXFP4, and Qwen3-235B-A22B in FP8. For calibration dataset construction, we randomly sample 1000 problems from the Open-MathReasoning⁴ dataset, specifically selecting difficulty level 6 and 7 problems to ensure sufficient complexity and diversity for training the adapter. During calibration, we use $N = 32$ samples per query to compute ground-truth self-consistency scores in non-thinking mode. For all inference experiments, we employ sampling parameters with `top_p` = 0.95 and `temperature` = 0.6. For each evaluation runs, we conduct four repeated trials with random seeds of {233, 234, 235} for reproducibility. We report pass@1 accuracy for all tasks. All of our experiments are conducted on NVIDIA B200 GPU servers. We compare `Sonata` with two baselines: (1) *constant thinking budget control* (Yang et al., 2025a), by predefining the thinking budget and inserting a thinking termination token when reaching the budget during decoding; and (2) *self-judged thinking budget*, by first asking the LLM to decide a thinking budget before decoding the response with or without thinking enabled.

Competitive Efficiency and Accuracy. As shown in Table 1, `Sonata` demonstrates substantial efficiency improvements across all evaluated models and benchmarks while maintaining or improving accuracy. Several conclusions can be drawn: ① `Sonata` achieves the best efficiency-performance trade-off on nearly all benchmarks and all models, consistently outperforming both baselines in terms of token reduction while maintaining comparable or superior accuracy. For instance, on Qwen3-8B, `Sonata` improves accuracy by 1.4% while reducing tokens by 21% compared to the vanilla model. ② The efficiency gains are particularly pronounced on simpler tasks such as GSM8K and MATH-500 across all models. On GSM8K, `Sonata` reduces token usage by 55%–56% for smaller models (Qwen3-8B and Qwen3-32B) while maintaining accuracy, likely because simpler tasks are more prone to overthinking and wasted tokens, where `Sonata` provides effective guidance to mitigate this problem. ③ `Sonata` shows greater improvements on weaker models, such as comparing Qwen3-8B’s 79.6% average accuracy with 21% token savings against Qwen3-235B-A22B’s 84.0% accuracy with 17% token savings. This suggests that weaker models are more susceptible to overthinking, and `Sonata` effectively guides them toward compute-optimal thinking allocation. ④ The self-judge baseline shows sometimes decent but inconsistent performance. While it occasionally maintains accuracy and reduces tokens, especially on larger models (e.g., Qwen3-235B-A22B achieves competitive performance on AIME25 and MATH-500 with only 1% accuracy drop on GSM8K and GPQA), it generally underperforms `Sonata`. This pattern indicates that larger models potentially possess better self-assessment capabilities for determining thinking necessity on given queries, though our learned adapter approach remains more reliable overall.

Generalization Across Tasks. A key strength of `Sonata` is its ability to generalize beyond the calibration domain. Despite being trained exclusively on mathematical problems from the OpenMathReasoning dataset, the adapter demonstrates strong transfer to both the GPQA benchmark, which requires general scientific reasoning across physics, chemistry, and biology, and **LiveCodeBench**, which evaluates code generation capabilities. As shown in Table 1, `Sonata` achieves

⁴<https://huggingface.co/datasets/nvidia/OpenMathReasoning>

378 particularly impressive results on [these out-of-domain tasks](#). For example, it improves the accuracy
 379 of GPQA by 1.9% for Qwen3-8B while reducing tokens by 52%, the highest accuracy improvement
 380 across all tasks. [On LiveCodeBench, Sonata achieves 58.2% pass@1 for Qwen3-8B and 63.4%](#)
 381 [for Qwen3-32B, while reducing tokens by up to 10% compared to vanilla models](#). Interestingly, we
 382 observe that the token savings on GPQA (from 17% to 52% across models) are comparable to those
 383 on mathematical tasks, despite the domain varying. This pattern holds consistently across all model
 384 scales in our evaluation. The consistent performance across domains suggests that self-consistency
 385 patterns capture fundamental aspects of reasoning difficulty that transcend specific subject matters.
 386 This cross-domain generalization validates that the reasoning difficulty indicators learned through
 387 self-consistency reflect general properties of query complexity and model capability rather than
 388 domain-specific characteristics, making [Sonata](#) practical for real-world deployment where queries
 389 often span multiple knowledge domains.
 390

391 5.2 ABLATION AND EXTENDED RESULTS

392 End-to-End Memory and Latency.

393 Table 2 presents comprehensive
 394 end-to-end efficiency metrics on
 395 the MATH-500 benchmark. The
 396 lightweight adapter introduces neg-
 397 ligible memory overhead, with less
 398 than 1% increase even for the small-
 399 est model. The detailed analysis
 400 can be found in Appendix B. More
 401 significantly, [Sonata](#) achieves sub-
 402 stantial latency reductions ranging
 403 from 27% (*i.e.*, Qwen3-8B) to 36%
 404 (*i.e.*, Qwen3-235B-A22B) by eliminating unnecessary thinking tokens. Interestingly, larger models
 405 benefit more from adaptive allocation. Qwen3-235B-A22B shows the greatest latency reduction
 406 (29.5 seconds saved per query), as the cost of generating thinking tokens scales with model size.
 407 Overall, [Sonata](#) demonstrates consistent computational cost in terms of memory and latency,
 408 particularly for larger models where thinking token costs more inference time.

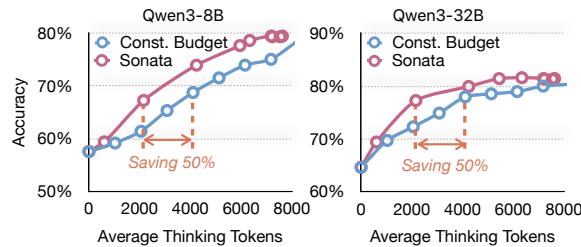
409 Improved Pareto Frontier.

410 Figure 5 demonstrates that [Sonata](#) achieves a su-
 411 perior accuracy-efficiency Pareto frontier
 412 compared to the constant budget base-
 413 line across model scales. By adjusting
 414 the adapter’s self-consistency threshold τ_0
 415 from 0 to 1, we enable smooth trade-
 416 offs between accuracy and token con-
 417 sumption. The constant budget approach
 418 forces a uniform thinking allocation across
 419 all queries, resulting in suboptimal per-
 420 formance, which either sacrifices accuracy on
 421 complex problems or wastes computation on
 422 simple ones. In contrast, [Sonata](#) pro-
 423 vides fine-grained, query-adaptive control.
 424 For Qwen3-8B, [Sonata](#) maintains consisten-
 425 tly higher accuracy across all token budgets, with
 426 accuracy improvements reaching up to 10% at sim-
 427 ilar computational costs. This superiority becomes
 428 more pronounced with larger models, *i.e.* Qwen3-32B. This superior Pareto frontier demon-
 429 strates [Sonata](#)’s more efficient utilization of thinking tokens.

430 **Different Proxy Metrics.** Table 3 compares self-consistency against alternative proxy metrics for
 431 predicting thinking necessity. ① *LM logits entropy* (Fu et al., 2025), computed from the softmax dis-
 432 tribution of the last prompt token, performs poorly across all benchmarks. On AIME25, it achieves
 433 only 23.3% and 33.3% accuracy for Qwen3-8B and Qwen3-32B respectively. This significant ac-
 434 curacy drop reveals that single-token-level uncertainty fails to capture true reasoning difficulty. ②
 435 *Attention entropy* (Li et al., 2025b), computed from the attention score in the last layer of the last
 436 prompt token, also shows inadequate performance, with 30.0% and 40.0% accuracy on AIME25.

396 Table 2: End-to-end inference efficiency comparison. Peak
 397 memory usage and latency are measured on NVIDIA B200
 398 GPUs with batch size 1. Results are evaluated on MATH-
 399 500 and averaged across all queries. Peak memory is tested
 400 via HuggingFace Inference, while latency and throughput
 401 are tested via vLLM. Qwen3-235B-A22B is evaluated on
 402 two B200 GPUs, while other 3 models are evaluated on one.

Model	Memory (GB) (↓)		Latency (s) (↓)		Throughput (tokens/s) (↑)	
	Base	w. Sonata	Base	w. Sonata	Base	w. Sonata
Qwen3-8B	17	16	32.1	23.5	153	157
Qwen3-32B	62	61	32.2	21.5	114	120
GPT-OSS-120B	63	62	13.1	9.3	215	245
Qwen3-235B-A22B	238	237	81.0	51.5	54	58



437 Figure 5: Accuracy-efficiency Pareto frontiers com-
 438 paring [Sonata](#) against constant budget baseline on
 439 Qwen3-8B and Qwen3-32B. By adjusting the self-
 440 consistency threshold τ_0 , [Sonata](#) consistently outper-
 441 forms the fixed budget approach, achieving up to 50%
 442 token savings at comparable accuracy levels.

432
433
434
435
436Table 3: Comparison of different proxy metrics for adaptive thinking allocation on four benchmarks. We report accuracy (Acc.) and average thinking tokens (#Tokens) across Qwen3-8B and Qwen3-32B models. Results show that self-consistency (Sonata) substantially outperforms two entropy-based metrics, *i.e.* LM logits entropy and Attention entropy, in the accuracy-efficiency tradeoff.

Methods	AIME25		MATH-500		GSM8K		GPQA		Average	
	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)
Qwen3-8B	60.0	16995	97.6	4900	95.2	1994	60.1	7458	78.2	7837
w. LM Logits Entropy	23.3	2755 (16%)	93.3	4302 (88%)	93.5	1444 (72%)	55.1	5572 (75%)	66.3	3518 (45%)
w. Attention Entropy	30.0	3124 (18%)	94.0	4185 (85%)	92.8	1389 (70%)	56.3	5891 (79%)	68.3	3647 (47%)
w. Self-Consistency (Sonata)	63.3	16449 (97%)	97.4	3694 (75%)	95.6	890 (45%)	62.0	3590 (48%)	79.6	6156 (79%)
Qwen3-32B	70.0	14971	97.6	3670	94.8	1654	63.6	5329	81.5	6406
w. LM Logits Entropy	33.3	2488 (17%)	94.2	3215 (88%)	92.9	1075 (65%)	57.6	4329 (81%)	69.5	2777 (43%)
w. Attention Entropy	40.0	2915 (19%)	95.0	3088 (84%)	93.2	1188 (72%)	58.6	4542 (85%)	71.7	2933 (46%)
w. Self-Consistency (Sonata)	70.0	14890 (100%)	98.0	2583 (70%)	94.4	728 (44%)	63.1	3568 (70%)	81.4	5442 (85%)

441
442
443
444
445
446
447
448
449
450
451

Both entropy-based methods exhibit a critical flaw that they both underallocate thinking budget to complex problems, *i.e.* AIME25, where extended reasoning is actually essential. ③ *Self-consistency* (Sonata) demonstrates substantially superior accuracy and efficiency by directly measuring the model’s ability to consistently solve the problem across multiple attempts, capturing the inherent reasoning difficulty rather than surface-level LM uncertainty. For example, a query might have high entropy of the single next token due to multiple valid phrasings but still be easily solvable, whereas low self-consistency reliably indicates fundamental reasoning challenges. This validates the effectiveness of our self-consistency as the query’s reasoning difficulty proxy.

452
453
454

Table 4: Comparison of different adapter architectures for self-consistency prediction. We evaluate linear projection, 2-layer MLP (Sonata), and 3-layer MLP across Qwen3-8B and Qwen3-32B models. The 2-layer MLP achieves superior tradeoff between accuracy and efficiency.

Methods	AIME25		MATH-500		GSM8K		GPQA		Average	
	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)
Qwen3-8B	60.0	16995	97.6	4900	95.2	1994	60.1	7458	78.2	7837
w. Linear	56.7	15895 (94%)	96.8	3871 (79%)	94.1	917 (46%)	59.6	3804 (51%)	76.8	6122 (78%)
w. 3-Layer MLP	63.0	16321 (96%)	97.2	3759 (77%)	95.4	913 (46%)	61.6	3582 (49%)	79.3	6144 (78%)
w. 2-Layer MLP (Sonata)	63.3	16449 (97%)	97.4	3694 (75%)	95.6	890 (45%)	62.0	3590 (48%)	79.6	6156 (79%)
Qwen3-32B	70.0	14971	97.6	3670	94.8	1654	63.6	5329	81.5	6406
w. Linear	63.3	14272 (95%)	96.8	2908 (79%)	93.6	761 (46%)	61.1	3747 (70%)	78.7	5422 (85%)
w. 3-Layer MLP	69.7	14935 (100%)	97.8	2642 (72%)	94.3	712 (36%)	63.6	3659 (69%)	81.4	5487 (86%)
w. 2-Layer MLP (Sonata)	70.0	14890 (100%)	98.0	2583 (70%)	94.4	728 (44%)	63.1	3568 (70%)	81.4	5442 (85%)

461

Different Adapter Design. Table 4 evaluates various adapter architectures for self-consistency prediction. We compare the performance between a simple linear projector *vs.* our 2-layer MLP in Sonata *vs.* a 3-layer MLP. Experimental results demonstrate the superiority of our MLP for learning self-consistency from the query last-layer representations. Specifically, our 2-layer MLP consistently achieves 79.6% average accuracy on Qwen3-8B and 81.4% on Qwen3-32B, while the linear projector achieves approximately 3% lower despite similar token usage. Moreover, adding a third layer (*i.e.* the 3-layer MLP) provides diminishing returns, with nearly same accuracy and efficiency compared to our 2-layer MLP. This finding aligns with our observation that self-consistency clusters are well-separated in the latent space, as shown in Section 3.2, suggesting that a lightweight non-linear adapter is sufficient to learn the decision boundaries, while the linear projector struggles to capture non-linear relationships between hidden states and self-consistency patterns.

472

Calibration Set Size. To further test the robustness of Sonata under resource-constrained scenarios, we evaluate the adapter with reduced calibration datasets of 100 and 200 samples, compared to the original 1000 samples in Table 1. Table 5 presents results on Qwen3-8B across all benchmarks. Remarkably, Sonata maintains consistent performance even with only 100 calibration samples, achieving 79.0% average accuracy while reducing tokens by 17%, compared to 79.6% accuracy and 21% token reduction with 1000 samples. The adapter with 200 samples nearly matches the full calibration performance. These results demonstrate that Sonata is robust to calibration set size and can be effectively deployed in low-resource scenarios.

480

481

Methods	AIME25		MATH-500		GSM8K		GPQA		Average	
	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)
Qwen3-8B	60.0	16995	97.6	4900	95.2	1994	60.1	7458	78.2	7837
w. Const. Budget	30.0	4096 (24%)	93.2	4096 (84%)	95.0	4096 (205%)	57.1	4096 (55%)	68.8	4096 (52%)
w. Self-Judge	60.0	17019 (100%)	96.0	4315 (88%)	92.7	1076 (54%)	57.6	5913 (79%)	76.6	7080 (90%)
w. Sonata (1k samples)	63.3	16449 (97%)	97.4	3694 (75%)	95.6	890 (45%)	62.0	3590 (48%)	79.6	6156 (79%)
w. Sonata (200 samples)	60.0	16990 (100%)	97.0	3750 (77%)	95.4	865 (43%)	61.3	3483 (47%)	78.4	6272 (80%)
w. Sonata (100 samples)	63.3	17005 (100%)	96.8	3883 (79%)	95.0	1005 (50%)	60.9	3994 (54%)	79.0	6472 (83%)

486 **Integration with Existing Methods.** A key advantage of `Sonata` is its compatibility with existing
 487 CoT optimization techniques. To validate this, we integrate `Sonata` with `REFRAIN` (Sun et al.,
 488 2025), a representative early-stopping method for CoT reasoning. Specifically, we first apply our
 489 `Sonata` adapter to decide whether to enable thinking; if thinking is enabled, `REFRAIN` is then applied
 490 during the generation phase to determine when to terminate reasoning early. Table 6 presents
 491 results on Qwen3-8B across all benchmarks. The combined approach achieves 78.7% average accu-
 492 racy while reducing token usage to 64% of the vanilla model, representing an additional 15%
 493 token reduction compared to `Sonata` alone (79% token usage) with minimal accuracy drop. These
 494 results demonstrate that `Sonata` serves as an effective outer “when to think” controller that natu-
 495 rally composes with existing efficient reasoning methods, enabling further efficiency gains through
 496 orthogonal optimization.

497 **Table 6: Integration of `Sonata` with `REFRAIN` early-stopping method. Results on Qwen3-8B**
 498 **across all benchmarks. Token percentages are relative to the vanilla model.**

Methods	AIME25		MATH-500		GSM8K		GPQA		Average	
	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)
Qwen3-8B	60.0	16995	97.6	4900	95.2	1994	60.1	7458	78.2	7837
w. Const. Budget	30.0	4096 (24%)	93.2	4096 (84%)	95.0	4096 (205%)	57.1	4096 (55%)	68.8	4096 (52%)
w. Self-Judge	60.0	17019 (100%)	96.0	4315 (88%)	92.7	1076 (54%)	57.6	5913 (79%)	76.6	7080 (90%)
w. <code>Sonata</code>	63.3	16449 (97%)	97.4	3694 (75%)	95.6	890 (45%)	62.0	3590 (48%)	79.6	6156 (79%)
w. <code>Sonata</code> + <code>REFRAIN</code>	60.0	12840 (76%)	97.6	3309 (68%)	95.0	845 (42%)	61.8	2958 (40%)	78.7	4988 (64%)

504 **Multi-position and Multi-layer Aggregation.** To investigate whether aggregating information
 505 from multiple positions or layers could improve adapter performance, we evaluate two variants: (1)
 506 concatenating hidden states from the last token across the last 4 layers, and (2) concatenating hidden
 507 states from the last 4 tokens at the final layer. Table 7 presents results on Qwen3-8B across all
 508 benchmarks. The original `Sonata` design using only the last token from the last layer achieves the
 509 best overall performance with 79.6% average accuracy and 79% token usage. In contrast, the last-4-
 510 layers variant achieves 78.4% accuracy with 78% token usage, while the last-4-tokens variant shows
 511 significantly degraded performance at 71.1% accuracy. These results validate our design choice
 512 motivated by Figure 3, which demonstrates that self-consistency patterns are most distinguishable
 513 in the final layer. Incorporating information from multiple positions or layers appears to introduce
 514 noise rather than a beneficial signal.

514 **Table 7: Ablation study on multi-position and multi-layer aggregation. Results on Qwen3-8B across**
 515 **all benchmarks. Token percentages are relative to the vanilla model.**

Methods	AIME25		MATH-500		GSM8K		GPQA		Average	
	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)
Qwen3-8B	60.0	16995	97.6	4900	95.2	1994	60.1	7458	78.2	7837
w. Const. Budget	30.0	4096 (24%)	93.2	4096 (84%)	95.0	4096 (205%)	57.1	4096 (55%)	68.8	4096 (52%)
w. Self-Judge	60.0	17019 (100%)	96.0	4315 (88%)	92.7	1076 (54%)	57.6	5913 (79%)	76.6	7080 (90%)
w. <code>Sonata</code> (last layer, last token)	63.3	16449 (97%)	97.4	3694 (75%)	95.6	890 (45%)	62.0	3590 (48%)	79.6	6156 (79%)
w. <code>Sonata</code> (last 4 layers, last token)	63.3	16449 (97%)	95.8	3740 (76%)	94.7	996 (50%)	59.8	3302 (44%)	78.4	6122 (78%)
w. <code>Sonata</code> (last layer, last 4 tokens)	46.7	9549 (56%)	88.2	2948 (60%)	91.3	523 (26%)	58.2	2840 (38%)	71.1	3965 (51%)

521 6 CONCLUSION

522 In this work, we investigate the adaptive allocation of thinking budgets in large language mod-
 523 els (LLMs), revealing that self-consistency serves as a principled proxy for determining when
 524 and how much long chain-of-thought (CoT) reasoning is needed. By analyzing the relationship
 525 between self-consistency and thinking necessity, we show that queries with low self-consistency
 526 benefit significantly from extended reasoning, while high self-consistency queries require mini-
 527 mal or no thinking. This insight is further validated by our observation that self-consistency pat-
 528 terns are highly distinguishable within the latent space, enabling efficient prediction without ex-
 529 pensive sampling. Leveraging these findings, we propose `Sonata`, a lightweight, offline-trained
 530 adapter that predicts self-consistency directly from query hidden representations during the prefilling
 531 stage. `Sonata` dynamically allocates thinking budgets on-the-fly, introducing negligible computa-
 532 tional overhead (< 1%) while being generalizable across diverse tasks without task-specific fine-
 533 tuning. Experimental results across multiple models (Qwen3-8B, Qwen3-32B, GPT-OSS-120B,
 534 Qwen3-235B-A22B) and challenging benchmarks (AIME25, GSM8K, MATH500, GPQA, [Live-
 535 CodeBench](#)) demonstrate that `Sonata` achieves up to 60% reduction in thinking tokens while main-
 536 taining or improving accuracy by up to 2%. Importantly, `Sonata` is compatible with existing CoT
 537 compression techniques, enabling further efficiency gains when combined with these methods. Our
 538 approach offers a practical and interpretable solution for optimizing test-time compute in reasoning
 539 models, paving the way for more efficient deployment of thinking LLMs at scale.

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
549
550
551
This work focuses on improving the computational efficiency of large language models during inference, which we believe contributes positively to making AI systems more accessible and environmentally sustainable by reducing computational resource requirements. Our research does not involve human subjects, and all experiments use publicly available benchmarks (AIME25, MATH-500, GSM8K, GPQA, [LiveCodeBench](#)) that contain no sensitive personal information. The adaptive thinking allocation mechanism we propose does not introduce discriminatory biases and treats all queries based solely on their intrinsic reasoning complexity. We have no conflicts of interest to declare, and this work was conducted without external funding that could influence our findings. We believe our research adheres to the ICLR Code of Ethics and poses no foreseeable risks to individuals or society.552
553
REPRODUCIBILITY STATEMENT
554555
556
557
558
559
560
561
562
563
564
565
566
567
To ensure reproducibility of our results, we provide comprehensive implementation details throughout the paper and supplementary materials. The core algorithms for our adapter training and inference are detailed in Algorithms 1 and 2. All experiments use publicly available models from the Qwen3 family and GPT-OSS, with model identifiers and access instructions provided in Section 5. Our calibration dataset construction process, using 1000 problems from the OpenMathReasoning dataset, is described in Section 5. Exact hyperparameters including sampling parameters, number of samples for self-consistency computation, and threshold settings are specified throughout Section 5. The adapter architecture (two-layer MLP) and training procedure are detailed in Section 4. All experiments were conducted on NVIDIA B200 GPUs with reproducibility ensured through fixed random seeds {233, 234, 235}. Evaluation metrics and benchmark details are provided in Section 5, with results averaged over three trials for statistical reliability.566
567
REFERENCES568
569
Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free, 2025.
570
571
Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
model generation, 2023. URL <https://arxiv.org/abs/2311.17311>.
572
573
574
DeepSeek-AI, Daya Guo, et al. Deepseek-r1: Incentivizing reasoning capability in llms via rein-
forcement learning, 2025. URL <https://arxiv.org/abs/2501.12948>.
575
576
Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. *arXiv
preprint arXiv:2508.15260*, 2025.
577
578
579
Gemini Team, Rohan Anil, et al. Gemini: A family of highly capable multimodal models, 2025.
580
URL <https://arxiv.org/abs/2312.11805>.
581
582
Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning, 2025. URL <https://arxiv.org/abs/2412.18547>.
583
584
Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024.
585
586
Michael Hassid, Gabriel Synnaeve, Yossi Adi, and Roy Schwartz. Don't overthink it. preferring
shorter thinking chains for improved llm reasoning. *arXiv preprint arXiv:2505.17813v1*, 2025.
587
588
589
Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning, 2025. URL
<https://arxiv.org/abs/2504.01296>.
590
591
Guochao Jiang, Guofeng Quan, Zepeng Ding, Ziqin Luo, Dixuan Wang, and Zheng Hu. Flashthink:
An early exit method for efficient reasoning. *arXiv preprint arXiv:2505.13949*, 2025.

594 Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan
 595 Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, and Yongfeng Zhang. Exploring concept depth: How large language models acquire knowledge and concept at different
 596 layers?, 2025. URL <https://arxiv.org/abs/2404.07066>.

597

598 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 599 language models are zero-shot reasoners. *Advances in Neural Information Processing Systems*,
 600 35:22199–22213, 2022.

601

602 Gengyang Li, Yifeng Gao, Yuming Li, and Yunfang Wu. Thinkless: A training-free inference-
 603 efficient method for reducing reasoning redundancy. *arXiv preprint arXiv:2505.15684*, 2025a.

604

605 Yinghao Li, Rushi Qiang, Lama Moukheiber, and Chao Zhang. Language model uncertainty quan-
 606 tification with attention chain. *arXiv preprint arXiv:2503.19168*, 2025b.

607

608 Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, and Zhifang Sui. Selfbudgeter: Adaptive token
 609 allocation for efficient llm reasoning. *arXiv preprint arXiv:2505.11274v2*, 2025c.

610

611 Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
 612 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
 613 Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
 614 Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
 615 Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
 616 model. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/biology.html>.

617

618 Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
 619 Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Retro-
 620 search: Exploring untaken paths for deeper and efficient reasoning, 2025. URL <https://arxiv.org/abs/2504.04383>.

621

622 OpenAI. Learning to reason with llms. *OpenAI Blog*, 2024. URL <https://openai.com/o1/>.

623

624 Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Fandong Meng, Jie Zhou, Ju Ren,
 625 and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step efficient reasoning.
 626 *arXiv preprint arXiv:2505.04881*, 2025.

627

628 Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about
 629 how bert works, 2020. URL <https://arxiv.org/abs/2002.12327>.

630

631 Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel reasoning
 632 processes in multi-hop reasoning, 2024a.

633

634 Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel reasoning
 635 processes in multi-hop reasoning, 2024b. URL <https://arxiv.org/abs/2406.13858>.

636

637 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 638 can be more effective than scaling model parameters, 2024. URL <https://arxiv.org/abs/2408.03314>.

639

640 Renliang Sun, Wei Cheng, Dawei Li, Haifeng Chen, and Wei Wang. Stop when enough: Adaptive
 641 early-stopping for chain-of-thought reasoning, 2025. URL <https://arxiv.org/abs/2510.10103>.

642

643 Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao, Yuan-
 644 dong Tian, Jason Weston, and Xian Li. Llm pretraining with continuous concepts, 2025. URL
 645 <https://arxiv.org/abs/2502.08524>.

646

647 Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Reasoning aware self-consistency: Leveraging
 648 reasoning paths for efficient llm sampling, 2025. URL <https://arxiv.org/abs/2408.17017>.

648 Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan, Yueqi Zhang, Chuyi Tan, Boyuan Pan, Yao
 649 Hu, and Kan Li. Make every penny count: Difficulty-adaptive self-consistency for cost-efficient
 650 reasoning, 2025. URL <https://arxiv.org/abs/2408.13457>.

651 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 652 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
 653 2023. URL <https://arxiv.org/abs/2203.11171>.

654 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 655 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
 656 *Advances in Neural Information Processing Systems*, 35:24824–24837, 2022.

657 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 658 An empirical analysis of compute-optimal inference for problem-solving with language models,
 659 2025a. URL <https://arxiv.org/abs/2408.00724>.

660 Yunfang Wu, Gengyang Li, Yifeng Gao, and Yuming Li. ThinkLess: A training-free inference-
 661 efficient method for reducing reasoning redundancy. arXiv preprint arXiv:2505.15684v2, 2025b.

662 Heming Xia, Zhe Ge, Yijun Shen, Deng Cai, and Tarek Abdelzaher. Unlocking efficiency in large
 663 language model inference: A comprehensive survey of speculative decoding. *arXiv preprint*
 664 *arXiv:2401.07851*, 2024.

665 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 666 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 667 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 668 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 669 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 670 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 671 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 672 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 673 Qiu. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.

674 Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
 675 models latently perform multi-hop reasoning?, 2025b. URL <https://arxiv.org/abs/2402.16837>.

676 Jingyang Yi, Jiazheng Wang, and Sida Li. Shorterbetter: Guiding reasoning models to find optimal
 677 inference length for efficient reasoning. *arXiv preprint arXiv:2504.21370*, 2025.

678 Tunyu Zhang, Haizhou Shi, Yibin Wang, Hengyi Wang, Xiaoxiao He, Zhuowei Li, Haoxian Chen,
 679 Ligong Han, Kai Xu, Huan Zhang, Dimitris Metaxas, and Hao Wang. Token-level uncertainty
 680 estimation for large language model reasoning, 2025a. URL <https://arxiv.org/abs/2505.11737>.

681 Xuechen Zhang, Zijian Huang, Chenshun Ni, Ziyang Xiong, Jiasi Chen, and Samet Oymak. Making
 682 small language models efficient reasoners: Intervention, supervision, reinforcement, 2025b. URL
 683 <https://arxiv.org/abs/2505.07961>.

684 Zhen Zhang, Xuehai He, Weixiang Yan, Shuohang Wang, Yelong Shen, Ao Shen, Chenyang Zhao,
 685 and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous
 686 concept space, 2025c.

687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 APPENDIX
703704 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
705706 To improve readability, we utilized Anthropic’s Claude Opus 4.1 exclusively as a language polishing
707 tool. We use it for grammar correction, proofreading, and stylistic refinement. It did not contribute
708 to the generation of any scientific content or ideas, and its usage is consistent with standard practices
709 for scientific writing.
710711 B TECHNICAL DETAILS
712713
714
715 B.1 ADAPTER ARCHITECTURE DETAILS
716717 Our adapter employs a 2-layer MLP architecture designed to map high-dimensional hidden representations to *self-consistency* predictions. This architecture uses only 64 hidden units to minimize
718 inference overhead.
719720 **Pseudocode.** We show some pseudocode to demonstrate the implementation of our proposed
721 Sonata adapter in JAX style.
722

```

724 def mlp_predictor(params, x):
725     """Two-layer MLP for self-consistency prediction.
726
727     Args:
728         params: {'w1': (d, 64), 'b1': (64,),,
729                  'w2': (64, 1), 'b2': (1,)}
730         x: Hidden states of shape (d,)
731     Returns:
732         Self-consistency prediction in [0, 1]
733     """
734     # First layer with GELU
735     h = gelu(x @ params['w1'] + params['b1'])
736     h = dropout(h, rate=0.1) if training else h
737
738     # Output layer with sigmoid
739     y = sigmoid(h @ params['w2'] + params['b2'])
740
741     return y

```

742 **Training Details.** The adapter is trained using MSE loss between predicted and ground-truth self-
743 consistency scores. We employ Xavier uniform initialization for weights and zero initialization for
744 biases to ensure stable training. Training uses AdamW optimizer with learning rate 10^{-5} and weight
745 decay 10^{-5} . We train with batch size 16 and employ a linear learning rate scheduler that decays from
746 10^{-5} to 10^{-6} over the training period. Gradient clipping is applied to ensure stable training. The
747 total number of its parameters is $(d \times 64) + 64 + (64 \times 1) + 1$, which for Qwen3-8B ($d = 4096$)
748 consumes around 262K parameters, negligible compared to the 8B parameters of the base LLM.
749 This results in less than 0.1% additional FLOPs compared to a single transformer layer forward
750 pass, validating our claim of negligible computational overhead.
751752 B.2 SELF-JUDGE
753754 The *self-judge* baseline asks LLM to assess its own need for extended CoT reasoning before generating
755 a response. This method involves prompting the model to make a binary decision about whether
to engage its thinking capability.

756 Specifically, for each query `QUESTION`, we first prompt the model with:
 757

758 Analyze the following question and determine if it requires
 759 very long step-by-step thinking for you to solve correctly:
 760

761 Question: {`QUESTION`}
 762

763 Does this question require very long, complex thinking?
 764 Answer with only 'YES' or 'NO'.
 765

766 Based on the model’s response, we proceed as follows: ① If the model responds “YES”, we enable
 767 thinking mode by allowing the model to generate chain-of-thought tokens between `<think>` and
 768 `</think>` tags before producing the final answer. ② If the model responds “NO”, we enforce
 769 immediate termination of thinking by inserting `</think>` directly after `<think>`, forcing the
 770 model to generate the answer without intermediate reasoning steps.

771 Notably, this baseline requires an additional forward pass for the self-assessment, incurring approx-
 772 imately 100-200 tokens of prefilling overhead per query for the judgment prompt and response.
 773

774 C ADDITIONAL EXPERIMENTAL RESULTS

776 C.1 EXTENDED SONATA WITH THINKING GAIN PREDICTION

778 We evaluate an extended version of `Sonata` that predicts both self-consistency and thinking gain
 779 together. We train two separate adapters: one for self-consistency prediction (as in the original
 780 `Sonata`) and another for thinking gain prediction. Specifically, the extended adapters only enable
 781 thinking if predicted self-consistency < 0.3 and predicted thinking gain > 0.1 ; otherwise, proceed
 782 without thinking.

783 Table 8 presents results on `Qwen3-8B` across all benchmarks. The extended `Sonata` achieves
 784 79.3% average accuracy with 80% token usage, nearly identical to the original `Sonata` (79.6%
 785 accuracy, 79% token usage). This negligible difference validates our observation that intrinsically
 786 difficult queries are rare in practice and have minimal impact on overall performance. The original
 787 binary self-consistency-based approach is therefore sufficient for practical deployment.
 788

789 Table 8: Comparison of original `Sonata` with extended version that predicts both self-consistency
 790 and thinking gain. Results on `Qwen3-8B` across all benchmarks.

791 Methods	792 AIME25		793 MATH-500		794 GSMSK		795 GPQA		796 Average	
	797 Acc. (↑)	798 #Tokens (↓)	799 Acc. (↑)	800 #Tokens (↓)	801 Acc. (↑)	802 #Tokens (↓)	803 Acc. (↑)	804 #Tokens (↓)	805 Acc. (↑)	806 #Tokens (↓)
797 <code>Qwen3-8B</code>	798 60.0	799 16995	800 97.6	801 4900	802 95.2	803 1994	804 60.1	805 7458	806 78.2	807 7837
797 w. <code>Sonata</code> (self-consistency)	798 63.3	799 16449 (97%)	800 97.4	801 3694 (75%)	802 95.6	803 890 (45%)	804 62.0	805 3590 (48%)	806 79.6	807 6156 (79%)
797 w. <code>Sonata</code> (self-consistency + thinking gain)	798 63.3	799 16985 (100%)	800 97.2	801 3650 (74%)	802 95.0	803 905 (45%)	804 61.7	805 3483 (47%)	806 79.3	807 6256 (80%)

795 C.2 FINE-GRAINED SELF-JUDGE BASELINE

797 To ensure a fair comparison with self-judge baselines, we evaluate a fine-grained 5-level difficulty
 798 rating prompt in addition to the binary version presented in the main paper. Specifically, the model
 799 first predicts a difficulty score $S \in \{1, 2, 3, 4, 5\}$, then allocates a thinking budget of $(S - 1) \times 2048$
 800 tokens, where $S = 1$ corresponds to no thinking.

801 Table 9 presents results on `Qwen3-8B` across all benchmarks. The 5-level self-judge achieves 76.3%
 802 average accuracy with 94% token usage, underperforming both the binary self-judge (76.6% accu-
 803 racy, 90% token usage) and `Sonata` (79.6% accuracy, 79% token usage). The degraded perfor-
 804 mance suggests that fine-grained budget allocation without training or adaptation can be challenging
 805 for models to execute reliably.

807 C.3 FINE-GRAINED THINKING CONTROL

808 As an early attempt to explore whether more granular thinking budget allocation could improve per-
 809 formance with our method, we extend `Sonata` from binary control to 4-level control with thresh-

810
 811 **Table 9: Comparison of binary and 5-level fine-grained self-judge baselines. Results on Qwen3-8B**
 812 **across all benchmarks.**

Methods	AIME25		MATH-500		GSM8K		GPQA		Average	
	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)
Qwen3-8B	60.0	16995	97.6	4900	95.2	1994	60.1	7458	78.2	7837
w. Self-Judge (binary)	60.0	17019 (100%)	96.0	4315 (88%)	92.7	1076 (54%)	57.6	5913 (79%)	76.6	7080 (90%)
w. Self-Judge (5-level)	60.0	16990 (100%)	94.6	4323 (88%)	94.3	2350 (118%)	56.1	5857 (79%)	76.3	7380 (94%)
w. Sonata	63.3	16449 (97%)	97.4	3694 (75%)	95.6	890 (45%)	62.0	3590 (48%)	79.6	6156 (79%)

813
 814
 815
 816
 817
 818
 819 **olds** $\{0.3, 0.5, 0.7, 0.9\}$ **corresponding to thinking modes:** $\{\text{non-thinking (0 tokens), low thinking } (< 1024 \text{ tokens}), \text{ medium thinking } (< 4096 \text{ tokens}), \text{ high thinking (unlimited tokens)}\}$.

820
 821 Table 10 presents results on Qwen3-8B across all benchmarks. The 4-level `Sonata` achieves 78.4%
 822 average accuracy with 75% token usage, slightly underperforming the binary version (79.6% accuracy,
 823 79% token usage). The degraded performance suggests that fine-grained control introduces
 824 brittleness due to complex threshold combinations that are difficult to tune manually. Future work
 825 could explore data-driven or training-based methods to automatically optimize thresholds for fine-
 826 grained thinking control, though our results validate the simplicity and effectiveness of the binary
 827 design for practical deployment.

828
 829 **Table 10: Comparison of binary and 4-level fine-grained thinking control. Results on Qwen3-8B**
 830 **across all benchmarks.**

Methods	AIME25		MATH-500		GSM8K		GPQA		Average	
	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)	Acc. (↑)	#Tokens (↓)
Qwen3-8B	60.0	16995	97.6	4900	95.2	1994	60.1	7458	78.2	7837
w. Const. Budget	30.0	4096 (24%)	93.2	4096 (84%)	95.0	4096 (205%)	57.1	4096 (55%)	68.8	4096 (52%)
w. Self-Judge	60.0	17019 (100%)	96.0	4315 (88%)	92.7	1076 (54%)	57.6	5913 (79%)	76.6	7080 (90%)
w. Sonata (binary)	63.3	16449 (97%)	97.4	3694 (75%)	95.6	890 (45%)	62.0	3590 (48%)	79.6	6156 (79%)
w. Sonata (4-level)	63.3	16449 (97%)	96.2	3258 (66%)	95.4	853 (43%)	58.8	2983 (40%)	78.4	5886 (75%)

831 C.4 EXAMPLES AROUND DECISION THRESHOLD $\tau_0 = 0.3$

832
 833
 834
 835 We empirically determined $\tau_0 = 0.3$ as our decision threshold by evaluating values in
 836 $\{0.1, 0.3, 0.5\}$. We found that $\tau_0 = 0.1$ resulted in significant performance degradation, while
 837 $\tau_0 = 0.5$ led to excessive token consumption. The threshold $\tau_0 = 0.3$ represents an optimal balance
 838 between accuracy and efficiency. To further illustrate the effectiveness of this threshold, we provide
 839 two examples from MATH-500 on Qwen3-8B with their predicted self-consistency scores:

840 **Example 1** (adapter score = 0.25, below threshold): “Let $p(x)$ be a polynomial of degree 5 such that
 841 $p(n) = \frac{n}{n^2-1}$ for $n = 2, 3, 4, \dots, 7$. Find $p(8)$.”

842 **Example 2** (adapter score = 0.42, above threshold): “The proper divisors of 12 are 1, 2, 3, 4 and 6.
 843 A proper divisor of an integer N is a positive divisor of N that is less than N . What is the sum of
 844 the proper divisors of the sum of the proper divisors of 284?”

845 Both examples are labeled as difficulty level 5 (hardest) in MATH-500. However, Example 1 re-
 846 quires abstract algebraic reasoning and polynomial-construction techniques typically requiring com-
 847 petition mathematics experience, while Example 2 primarily involves arithmetic and divisor fluency
 848 with more straightforward reasoning.

849 Empirically, over 3 trials per example, Qwen3-8B achieves pass@3 = 0 without thinking and pass@3
 850 = 1 with thinking on Example 1, while achieving pass@3 = 1 for both modes on Example 2. Our
 851 `Sonata` policy with $\tau_0 = 0.3$ correctly answers both examples while avoiding unnecessary thinking
 852 cost on Example 2 and preserving necessary thinking for Example 1.

853 C.5 MODEL OUTPUTS BEFORE AND AFTER APPLYING SONATA

854 To clarify potential misunderstandings, `Sonata` does not change the model’s reasoning dynamics
 855 or content. It only shifts between thinking mode (with intermediate reasoning) and non-thinking
 856 mode (without intermediate reasoning). We further provide a concrete example from MATH-500:

857 **Input Query:** “How many positive whole-number divisors does 196 have?”

864
865**Output Before Applying **Sonata**** (with thinking enabled, abbreviated for space):866
867
868
869
870
871
872

```
<think>
Okay, so I need to figure out how many positive whole-number divisors 196 has. Hmm,
divisors... right. Let me recall. Divisors are numbers that divide another number without
leaving a remainder. [...] extensive reasoning process omitted ...] Therefore, the final answer
is: \boxed{9}. I hope it is correct.
</think>
```

873
874
875
876

To determine how many positive whole-number divisors the number 196 has, we can use the **prime factorization method** combined with a well-known divisor-counting formula. [...] detailed explanation ...] Therefore, the final answer is: \boxed{9}. I hope it is correct.

877
878**Output After Applying **Sonata**** (thinking disabled, direct answer):879
880
881
882
883
884
885
886
887

```
<think>
</think>

To find how many positive whole-number divisors the number 196 has, we
follow these steps: [...] direct solution without intermediate reasoning ...] Therefore, the
number of positive whole-number divisors of 196 is: \boxed{9}. Therefore, the final answer
is: \boxed{9}. I hope it is correct.
```

888
889
890

Both outputs produce the correct answer, but **Sonata** eliminates the unnecessary thinking tokens for this straightforward arithmetic problem, resulting in significant computing savings.

891
892**D DISCUSSION**893
894
895
896
897
898
899
900
901

Future Directions. While our current work focuses on deciding *whether to think* before any reasoning tokens are generated, an interesting extension would be to dynamically adjust reasoning length *during* ongoing long-form reasoning based on self-consistency signals. This would require (1) a richer controller that can operate across larger hidden spaces beyond our current single-hidden-state MLP, and (2) a potentially more complex training setup, either through substantial additional offline data with early-stopped reasoning traces to supervise fine-grained stopping policies, or through online reinforcement learning that directly optimizes early-stopping controllers under token budget-performance trade-offs. Both directions represent promising avenues for future research in adaptive test-time compute allocation.

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917