
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE THINKING: LARGE LANGUAGE MODELS
KNOW WHEN TO THINK IN LATENT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) test-time computing have in-
troduced the capability to perform intermediate chain-of-thought (CoT) reason-
ing (thinking) before generating answers. While increasing the thinking budget
yields smooth performance improvements at inference time, the relationship be-
tween LLM capability, query complexity, and optimal budget allocation remains
poorly understood for achieving compute-optimal inference. To address this chal-
lenge, we utilize self-consistency, the agreement among multiple reasoning paths,
as a proxy for thinking necessity. We first identify that lower self-consistency
indicates when queries require extended thinking to reach correct answers. Build-
ing on this insight, we introduce Sonata (Self-Consistency-Guided Adapter for
Thinking Allocation), a lightweight approach that adaptively allocates thinking
budgets to optimize the performance-efficiency tradeoff. Sonata includes an
adapter trained offline on a calibration dataset to predict self-consistency directly
from the last layer hidden representations during the query prefilling stage. This
prediction then guides on-the-fly budget allocation before thinking. The adapter
is general, transferable across diverse tasks once trained, and introduces < 1‰
computational overhead during inference. Notably, Sonata is compatible with
existing CoT compression methods, enabling further efficiency gains when man-
aging thinking budgets across queries. Extensive experiments on multiple mod-
els (Qwen3-8B, Qwen3-32B, GPT-OSS-120B, Qwen3-235B-A22B) and bench-
marks (AIME25, GSM8K, MATH500, GPQA, LiveCodeBench) demonstrate that
Sonata achieves 20% to 60% reduction in thinking tokens while maintaining the
same accuracy, or up to 2% improvement in accuracy with the same token cost.

1 INTRODUCTION

Table 1

Level Self-Consistency

1 0.79505813

2 0.751488095238

3 0.7277777777

4 0.6630859

5 0.51702425373

0.751488095238

1
2
3
4
5

0.4 0.6 0.8
Self-Consistency

Dif
fic

ult
y L

ev
el

1

Figure 1: Average self-consistency
across various difficulty levels, de-
rived from Qwen3-8B model on
the MATH-500 task.

The ability to perform extended reasoning at inference time
has emerged as a transformative capability for large language
models (LLMs), enabling them to tackle complex problems
through chain-of-thought (CoT) reasoning (Wei et al., 2022;
Kojima et al., 2022). Recent advances in test-time compute
scaling have demonstrated that allowing LLMs to “think” be-
fore answering, generating intermediate CoT reasoning to-
kens, can yield significant performance improvements on chal-
lenging tasks (Snell et al., 2024; Wu et al., 2025a; Yang et al.,
2025a; DeepSeek-AI et al., 2025; Gemini Team et al., 2025).
This thinking capability enables these LLMs to explore di-
verse reasoning paths, reflect on their decisions, refine so-
lutions, and rigorously verify correctness, during inference
time (DeepSeek-AI et al., 2025; OpenAI, 2024).

However, adaptively determining the optimal thinking budget for each query remains a critical chal-
lenge, as excessive thinking wastes computational resources on simple queries and may even hurt
performance (Li et al., 2025c; Hassid et al., 2025; Wu et al., 2025b; Hou et al., 2025), while in-
sufficient thinking leads to errors on complex ones (Snell et al., 2024; Wu et al., 2025a). The core
problem lies in identifying how much thinking a specific query really requires before generating the
response tokens. Existing approaches either rely on superficial proxies like entropy (Xia et al., 2024;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Zhang et al., 2025a), which fail to capture the intrinsic reasoning difficulty, or require costly online
computation (Han et al., 2025) or sample-specific calibration, limiting their practical applicability.

Can we enable LLMs to adaptively allocate thinking budget given queries, optimizing the thinking
performance-efficiency trade-off at test time? In this work, we utilize self-consistency (Wang et al.,
2023; Chen et al., 2023), i.e. the agreement among multiple reasoning paths when sampling from
the LLM given the same query, as a principled proxy for thinking necessity. As shown in Figure 1,
queries of higher difficulty levels demonstrate lower self-consistency scores. Self-consistency di-
rectly measures the model’s confidence in solving a problem, as queries with high self-consistency
(where multiple reasoning attempts converge to the same answer) typically require minimal think-
ing, while those with low self-consistency benefit from extended CoT reasoning. We further analyze
the hidden representations of various queries in thinking LLMs and observe that they are highly dis-
tinguishable in the latent space. Building on this insight, we introduce Sonata (Self-Consistency-
Guided Adapter for Thinking Allocation), a lightweight approach that first learns to predict self-
consistency directly from query hidden representations in the last layer. During inference, Sonata
adapter takes the query’s last layer hidden representations as input during the prefilling stage and
adaptively allocates thinking budgets before decoding. This adapter, trained offline on a calibra-
tion dataset, introduces < 1‰ computational overhead and is generalizable across tasks without
task-specific fine-tuning. Moreover, Sonata is compatible to LLMs trained with existing CoT
compression techniques (Zhang et al., 2025b; Hou et al., 2025; Lu et al., 2025), enabling further
efficiency gains while maintaining performance.

Our contributions and findings are summarized as follows: (i) Self-consistency as a reasoning indi-
cator: We utilize self-consistency as an effective proxy for evaluating LLMs’ reasoning capabilities,
revealing that prompts exhibiting different self-consistency levels are highly distinguishable in the
latent space; (ii) Adaptive reasoning with Sonata: We introduce Sonata, a lightweight adapter
with negligible cost that adaptively determines both when to conduct reasoning and how much rea-
soning budget to allocate. (iii) Superior performance-efficiency tradeoff: Extensive experiments
across models of various scales (Qwen3-8B, Qwen3-32B, GPT-OSS-120B, Qwen3-235B-A22B)
and tasks of various difficulties (AIME25, GSM8K, MATH500, GPQA, LiveCodeBench) validate
that our approach reduces average token consumption by up to 60% while maintaining task perfor-
mance.

2 RELATED WORKS

Token Efficiency for Thinking LLMs. Recent research has attempted to attack the efficiency
challenge of LLM thinking by reducing the number of tokens spent. One line of work focuses on
post-training. Hassid et al. (2025) observes that shorter reasoning chains are often more accurate and
proposes an early-exit inference strategy. Similarly, Jiang et al. (2025) employs a verification model
to decide when to terminate the reasoning process. Other methods intervene more directly during
generation. Li et al. (2025a) inserts a reasoning terminator token early based on attention analysis,
while Qiao et al. (2025) uses a confidence-guided approach to suppress redundant reflection steps.
Another category of methods uses reinforcement learning (RL) to encourage brevity. Hou et al.
(2025) uses RL with a token limit to prune long chains of thought, and Yi et al. (2025) defines a
Sample Optimal Length to guide the model toward more efficient outputs. Zhang et al. (2025b)
introduces a length-regularized RL method, and Li et al. (2025c) trains a model to pre-estimate its
own token budget. Some approaches refine the training data itself; for instance, Lu et al. (2025)
uses a search algorithm to discover shorter, more effective reasoning paths for distillation. Notably,
our work is compatible with these compression and pruning techniques. By adaptively allocating a
thinking budget before the reasoning process begins, Sonata can be combined with these methods
to further optimize the performance-efficiency tradeoff across queries.

Self-Consistency in LLMs. Self-consistency has been proposed as a decoding strategy that im-
proves CoT reasoning by sampling multiple diverse reasoning paths and selecting the answer that
appears most frequently via majority vote (Wang et al., 2023). While effective, this approach incurs
significant computational costs and is primarily applicable to tasks with easily extractable, closed-
form answers. To overcome these limitations, subsequent research has focused on enhancing SC’s
efficiency and applicability. Chen et al. (2023) extends the method to free-form generation tasks by
using the LLM itself to identify the most consistent response among multiple candidates, remov-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1

Level 1

0%

50%

100%

Self-Consistency
0 0.5 1

Mean

Th
ink

ing
 Im

pro
ve

me
nt

Level 2

0%

50%

100%

Self-Consistency
0 0.5 1

Mean

Level 3

0%

50%

100%

Self-Consistency
0 0.5 1

Mean

Level 4

0%

50%

100%

Self-Consistency
0 0.5 1

Mean

Level 5

0%

50%

100%

Self-Consistency
0 0.5 1

Mean

1

Figure 2: Correlation between self-consistency and thinking improvement across five difficulty lev-
els on MATH-500 using Qwen3-8B. Each point denotes an individual query, with self-consistency
computed from N = 32 samples in non-thinking mode (x-axis) and accuracy improvement from
enabling thinking averaged over 3 runs (y-axis).
ing the need for answer extraction. Other works aim to reduce the high sampling cost. Wan et al.
(2025) introduces an early stopping mechanism by evaluating the quality of the intermediate rea-
soning paths, not just the final answers. Wang et al. (2025) propose to first use the LLM to assess a
query’s difficulty, then allocate a proportional sampling number, which saves resources on simpler
problems. In this work, we utilize the insight that self-consistency can serve as a proxy of the need
for extended CoT reasoning, enabling us to allocate the thinking budget adaptively.

Reasoning in Latent Space. Recent studies show that LLMs implicitly perform latent reasoning
within their hidden computations (Yang et al., 2025b; Shalev et al., 2024b; Lindsey et al., 2025; Tack
et al., 2025). This line of research investigates how LLMs process multi-hop queries by maintaining
distributions over potential intermediate answers in hidden states, a mechanism that persists even
without sufficient knowledge for correct answers (Shalev et al., 2024a). Beyond discrete tokens,
recent work trains models to reason directly in continuous latent space by recirculating hidden states
as inputs, enabling efficient patterns like breadth-first search (Hao et al., 2024). This latent reasoning
is controllable by identifying representations of thought patterns (e.g., execution, reflection), targeted
interventions can steer reasoning processes to improve accuracy and efficiency (Chen et al., 2025).
Alternative approaches construct “soft” concept tokens from probability-weighted embeddings to
implicitly explore multiple reasoning trajectories (Zhang et al., 2025c), or enhance pretraining by
integrating continuous concepts extracted via sparse autoencoders into hidden states (Tack et al.,
2025). These findings collectively suggest the underlying connection between reasoning capabilities
and latent representations, motivating our use of hidden states for adaptive thinking.

3 PRELIMINARY
In this section, we provide the foundation for adaptive thinking allocation in LLMs. We first demon-
strate that self-consistency serves as a reliable indicator for when models need extended chain-of-
thought reasoning in Section 3.1. We then show that self-consistency patterns are distinguishable in
the latent space, enabling efficient prediction from hidden representations in Section 3.2.

3.1 SELF-CONSISTENCY INDICATING WHEN TO THINK

Self-consistency has initially emerged as a powerful decoding strategy that enhances CoT reasoning
in large language models by leveraging the intuition that complex reasoning problems often admit
multiple valid reasoning paths leading to the same correct answer (Wang et al., 2023; Chen et al.,
2023). When an LLM generates multiple CoT chains for the same query, the consistency among
their final answers serves as a strong indicator of the model’s confidence and reasoning capability on
that particular query. Inspired by these existing works, we hypothesize that for reasoning models,

low self-consistency indicates the need for extended CoT reasoning.
Formally, we define self-consistency as the ratio of correct samples among multiple repeated sam-
pling. Given a query q and an LLM M, we sample N independent answers {a1, a2, ..., aN} 1.
The self-consistency score is computed as SC(q) = 1

N

∑N
i=1 I[ai = a∗], where I[·] is the indicator

function and a∗ denotes the correct answer2.

To investigate the relationship between self-consistency and the necessity for extended thinking,
we conduct experiments measuring the performance gain from thinking vs. non-thinking modes.

1We used N = 32 for all experiments in our work.
2We employ a verifier to determine correctness rather than relying solely on majority voting, which allows

us to accurately assess self-consistency for calibration.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Q
w
en
3-
8B

(M
AT

H
-5
00
)

Q
w
en
3-
32
B

(M
AT

H
-5
00
)

Q
w
en
3-
8B

(G
PQ

A)

Figure 3: PCA visualization of query hidden representations across different transformer layers,
colored by self-consistency scores, evaluated on both MATH-500 (math reasoning) and GPQA (sci-
entific reasoning) benchmarks. Self-consistency patterns become increasingly distinguishable in
deeper layers, with the last layers (i.e. 36, 64) showing the most pronounced separation. High
self-consistency queries (dark) form tight clusters while low self-consistency queries (light) are
more dispersed, demonstrating that self-consistency signals are learnable from latent representa-
tions across diverse reasoning domains.

Specifically, for each query q in our calibration set, we compute: ❶ the self-consistency score SC(q)
when the model operates without thinking, by enforcing the thinking terminate token </think>
right after starting token <think>, following Yang et al. (2025a); DeepSeek-AI et al. (2025), and ❷
the accuracy improvement ∆think(q) = Accthink(q)− Accnon-think(q), where Accthink and Accnon-think
represent the accuracy with and without chain-of-thought reasoning, respectively. As illustrated in
Figure 2, we observe a strong negative correlation between self-consistency in non-thinking mode
and the performance gains from thinking. Each point is an individual query from our calibration
dataset. Queries with low self-consistency exhibit significant improvements when thinking is en-
abled, while queries with high self-consistency show minimal improvements. The cluster of points
in the lower-left corner represents intrinsically difficult problems where both self-consistency and
thinking improvements are low, indicating queries that remain challenging even with extended rea-
soning. These empirical results validate our hypothesis that self-consistency serves as a principled
indicator for adaptive thinking budget allocation.

3.2 SELF-CONSISTENCY PATTERNS ARE DISTINGUISHABLE IN LATENT SPACE

While self-consistency provides a reliable signal for thinking necessity, computing it requires expen-
sive repeated sampling that defeats the purpose of efficient inference. This raises a critical question:
can we predict self-consistency directly from the model’s internal representations without explicit
sampling? We present two key observations that enable efficient self-consistency prediction.

Observation 1: Self-consistency patterns are highly distinguishable in latent representations.
We analyze the hidden states of queries with varying self-consistency levels by extracting the last
token’s representation from the final transformer layer. Specifically, given a query q with the chat
template, we obtain the hidden state H ∈ Rd from the last position before any decoding begins. We
apply Principal Component Analysis (PCA) to project H onto a two-dimensional space. As shown
in Figure 3, queries naturally cluster according to their self-consistency levels in this projected space.
High self-consistency queries (darker blue) naturally form tight clusters, indicating similar reasoning
patterns, while low self-consistency queries (lighter blue) are more dispersed.

Observation 2: Deeper layers exhibit stronger self-consistency separability. We further inves-
tigate how self-consistency patterns evolve across different transformer layers. Let H(l) denote the
hidden representation at layer l. Figure 3 demonstrates that self-consistency becomes increasingly
distinguishable in deeper layers, with the final layer showing the most pronounced separation. This

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Query

LLM

Thinking

Prefilling

Q1 Q2 Q3

Budget

A1 A2 A3Answer

(a) Consistent Thinking Budget

LLM

Q

A
Sampling

Self-
Consistency

(b) Train Adapter to Predict
Self-Consistency

Hidden
States

Adapter
Training

(c) Adaptive Thinking Budget

LLM

Q1 Q2 Q3

A1 A2 A3

Adapter
Budget

Allocation

Adaptive
Budget

4k 4k 4k
Token
Cost1k 5k 2k

Token
Cost

Calibration
Query

Test-Time
Query

Figure 4: Overview of Sonata. (a) Conventional approaches (Yang et al., 2025a) where all queries
receive the same fixed thinking budget (e.g. 4k tokens each) during thinking, regardless of query
complexity, resulting in suboptimal token allocation. (b) Offline training phase where the MLP
adapter learns to predict self-consistency from last-layer hidden states. For each calibration query
Q, the LLM generates multiple responses, and self-consistency is computed as the accuracy among
all sampled answers A. The adapter is trained to map the last hidden states to these self-consistency
scores. (c) At inference time, Sonata employs the trained adapter to predict self-consistency from
query hidden states during prefilling and adaptively allocates lower thinking budgets to higher self-
consistency queries (e.g. Q1 for 1k), reducing overall token cost while maintaining accuracy.

Algorithm 1 Offline Self-Consistency Adapter Training
Require: Calibration dataset Dcal = {qi}Ki=1, LLMM, sampling size N
Ensure: Trained adapter fθ

1: Initialize S ← ∅
2: for i = 1→ K do
3: Sample Ai ← {aj ∼ PM(·|qi, non-thinking)}Nj=1

4: Compute SCi ← 1
N

∑N
j=1 I[aj = a∗i]

5: Extract hi ← LLML(qi) {Last layer, last token}
6: S ← S ∪ {(hi,SCi)}
7: end for
8: fθ ← Train(S,LMSE) {MSE loss}
9: return fθ

aligns with literature that deeper layers encode more abstract, conceptual, and reasoning-related
knowledge, while shallow layers primarily capture low-level linguistic features (Rogers et al., 2020;
Jin et al., 2025). The strong self-consistency signals in final-layer representations enable our efficient
on-the-fly adapter-based prediction approach, presented in Section 4.

4 METHODOLOGY

In this section, we present the Sonata framework for adaptive thinking budget. We introduce a
lightweight adapter that learns to predict self-consistency from query representations in Section 4.1.
Section 4.2 describes how this adapter enables on-the-fly thinking budget allocation during inference
with negligible computational overhead, achieving optimal performance-efficiency trade-offs.

4.1 TRAINING ADAPTER TO PREDICT SELF-CONSISTENCY

We train a lightweight adapter to predict self-consistency directly from query representations, elim-
inating the need for expensive sampling during inference. Given a calibration dataset Dcal =
{q1, q2, ..., qK}, we first collect self-consistency labels by sampling N answers for each query qk
in non-thinking mode, by enforcing </think> immediately after <think>. The self-consistency
score is computed as SC(qk) = 1

N

∑N
i=1 I[a

(i)
k = a∗k], where a∗k is the ground-truth answer.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Online Adaptive Thinking Decision
Require: Test query q, trained adapter fθ, LLMM, threshold τ0
Ensure: Response r with adaptive thinking

1: Extract h← LLML(q) {Prefilling stage: last layer, last token}
2: Predict ŝ← fθ(h) {Self-consistency prediction}
3: if ŝ > τ0 then
4: r ← Generate(M, q, thinking = False) {Direct answer, no thinking}
5: else
6: r ← Generate(M, q, thinking = True) {Generate with thinking}
7: end if
8: return r

As shown in Figure 4 (b), for each query with the chat template, right before decoding, we extract
the last token’s hidden representation hk from the final transformer layer during prefilling. We then
train a two-layer MLP adapter fθ to map these representations to self-consistency scores, followed
by a sigmoid mapping function. Algorithm 1 formally demonstrates the training procedure. Once
trained offline on the calibration dataset, the Sonata adapter is generalizable across queries of
diverse tasks without additional fine-tuning, introducing negligible computational overhead during
inference as it requires only a single forward pass through the lightweight MLP.

4.2 ON-THE-FLY THINKING BUDGET ALLOCATION WITH ADAPTER

At test time, our trained adapter enables adaptive thinking budget allocation with negligible com-
putational overhead. The adapter is model-specific—trained for each LLM architecture, while task-
agnostic, generalizing across diverse downstream queries without retraining. As illustrated in Fig-
ure 4(c), Sonata dynamically determines both whether to engage thinking and how much budget
to allocate based on the query’s hidden representation.

Specifically, given a test-time query q, we extract its hidden representation h = LLML(q) during
the prefilling stage, just before decoding begins. The adapter then predicts the self-consistency
score ŝ = fθ(h), which serves as our confidence indicator. With this prediction, we determine
whether to think for a given query. We compare ŝ against a predefined threshold τ0

3. If ŝ > τ0, the
model proceeds without thinking (directly generating the answer), as high predicted self-consistency
indicates the query is straightforward. Otherwise, thinking is conducted with the model’s default
thinking process. Algorithm 2 formally presents the online inference procedure.

The entire allocation process requires only a single forward pass through the lightweight MLP
adapter, introducing virtually zero latency compared to the LLM’s inference time. Since the adapter
operates on already-computed hidden states from prefilling, no additional LLM forward passes are
needed. This enables Sonata to adaptively decide whether to think based on real-time query com-
plexity, unlike the fixed allocation approach in Figure 4(a), significantly reducing average token
consumption while maintaining performance.

5 EMPIRICAL EVALUATION

In this section, we present comprehensive experiments evaluating Sonata’s effectiveness in adap-
tive thinking budget allocation. In Section 5.1, we present our main experimental results across four
thinking-capable models of varying scales (8B to 235B parameters) on four challenging reasoning
benchmarks, demonstrating its effectiveness and efficiency. Section 5.2 provides detailed ablation
and extended studies examining the impact of different proxy metrics, adapter architectures, thresh-
old configurations, and the computational overhead during inference.

5.1 MAIN RESULTS

Experimental Setup. We evaluate Sonata on five challenging reasoning benchmarks: AIME25,
GSM8K, MATH500, LiveCodeBench, and GPQA, covering mathematical, code generation, and
general reasoning tasks and across diverse difficulties. We conduct experiments on four thinking

3We find that τ0 = 0.3 generally works well, and thus we set it to 0.3 for all experiments in this work.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison results on the AIME25, MATH-500, GSM8K, LiveCodeBench (LCB) and
GPQA across four models with thinking capability. We use temperature = 0.6, top p = 0.95 for
decoding. We report the average performance of three repeated trials for each run. Accuracy (Acc.)
comparable to or higher than the vanilla baseline model are underlined, and the lowest thinking
token counts (#Tokens) among those with underlined accuracy are marked in bold.

AIME25 MATH-500 GSM8K LCB GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 57.8 14421 60.1 7458 74.1 9154

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 49.3 4096 (28%) 57.1 4096 (55%) 64.9 4096 (45%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.1 13496 (93%) 57.6 5913 (79%) 72.7 8364 (91%)

w. Sonata 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 58.2 13054 (90%) 62.0 3590 (48%) 75.3 7535 (82%)

Qwen3-32B 70.0 14971 97.6 3670 94.8 1654 63.8 13729 63.6 5329 78.0 7853

w. Const. Budget 56.7 4096 (27%) 95.8 4096 (112%) 95.3 4096 (248%) 47.0 4096 (30%) 64.1 4096 (77%) 69.8 4096 (52%)
w. Self-Judge 73.3 15625 (104%) 96.2 3107 (85%) 93.1 666 (40%) 59.3 13360 (97%) 54.5 3807 (71%) 75.3 7313 (93%)

w. Sonata 70.0 14890 (100%) 98.0 2583 (70%) 94.4 728 (44%) 63.4 13600 (99%) 63.1 3568 (70%) 77.8 7074 (90%)

GPT-OSS-120B-High 86.7 14390 98.2 2331 85.8 494 - - 75.8 9617 86.6 6708

w. Const. Budget 73.3 4096 (28%) 98.0 4096 (176%) 86.4 4096 (829%) - - 69.2 4096 (43%) 81.7 4096 (61%)
w. Self-Judge 83.3 14045 (98%) 94.4 890 (38%) 87.0 105 (21%) - - 64.1 5894 (61%) 82.2 5234 (78%)

w. Sonata 86.7 13817 (96%) 98.0 1683 (72%) 86.7 385 (78%) - - 70.2 8008 (83%) 85.4 5973 (89%)

Qwen3-235B-A22B 70.0 13831 97.6 4371 94.2 2261 - - 69.2 7049 82.8 6878

w. Const. Budget 43.3 4096 (30%) 94.8 4096 (94%) 95.7 4096 (181%) - - 60.1 4096 (58%) 73.5 4096 (60%)
w. Self-Judge 73.3 13951 (101%) 98.0 4012 (92%) 93.3 1037 (46%) - - 68.2 6658 (94%) 83.2 6415 (93%)

w. Sonata 73.3 13890 (100%) 98.0 2984 (68%) 94.0 998 (44%) - - 70.7 4919 (70%) 84.0 5698 (83%)

models of varying scales: Qwen3-8B, Qwen3-32B, GPT-OSS-120B, and Qwen3-235B-A22B. We
evaluate Qwen3-8B and Qwen3-32B in BF16, GPT-OSS-120B in MXFP4, and Qwen3-235B-A22B
in FP8. For calibration dataset construction, we randomly sample 1000 problems from the Open-
MathReasoning 4 dataset, specifically selecting difficulty level 6 and 7 problems to ensure sufficient
complexity and diversity for training the adapter. During calibration, we use N = 32 samples
per query to compute ground-truth self-consistency scores in non-thinking mode. For all inference
experiments, we employ sampling parameters with top p = 0.95 and temperature = 0.6. For
each evaluation runs, we conduct four repeated trials with random seeds of {233, 234, 235} for
reproducibility. We report pass@1 accuracy for all tasks. All of our experiments are conducted on
NVIDIA B200 GPU servers. We compare Sonatawith two baselines: (1) constant thinking budget
control (Yang et al., 2025a), by predefining the thinking budget and inserting a thinking termination
token when reaching the budget during decoding; and (2) self-judged thinking budget, by first asking
the LLM to decide a thinking budget before decoding the response with or without thinking enabled.

Competitive Efficiency and Accuracy. As shown in Table 1, Sonata demonstrates substan-
tial efficiency improvements across all evaluated models and benchmarks while maintaining or im-
proving accuracy. Several conclusions can be drawn: ❶ Sonata achieves the best efficiency-
performance trade-off on nearly all benchmarks and all models, consistently outperforming both
baselines in terms of token reduction while maintaining comparable or superior accuracy. For in-
stance, on Qwen3-8B, Sonata improves accuracy by 1.4% while reducing tokens by 21% com-
pared to the vanilla model. ❷ The efficiency gains are particularly pronounced on simpler tasks such
as GSM8K and MATH-500 across all models. On GSM8K, Sonata reduces token usage by 55%–
56% for smaller models (Qwen3-8B and Qwen3-32B) while maintaining accuracy, likely because
simpler tasks are more prone to overthinking and wasted tokens, where Sonata provides effective
guidance to mitigate this problem. ❸ Sonata shows greater improvements on weaker models,
such as comparing Qwen3-8B’s 79.6% average accuracy with 21% token savings against Qwen3-
235B-A22B’s 84.0% accuracy with 17% token savings. This suggests that weaker models are more
susceptible to overthinking, and Sonata effectively guides them toward compute-optimal thinking
allocation. ❹ The self-judge baseline shows sometimes decent but inconsistent performance. While
it occasionally maintains accuracy and reduces tokens, especially on larger models (e.g., Qwen3-
235B-A22B achieves competitive performance on AIME25 and MATH-500 with only 1% accuracy
drop on GSM8K and GPQA), it generally underperforms Sonata. This pattern indicates that larger
models potentially possess better self-assessment capabilities for determining thinking necessity on
given queries, though our learned adapter approach remains more reliable overall.

Generalization Across Tasks. A key strength of Sonata is its ability to generalize beyond
the calibration domain. Despite being trained exclusively on mathematical problems from the
OpenMathReasoning dataset, the adapter demonstrates strong transfer to both the GPQA bench-
mark, which requires general scientific reasoning across physics, chemistry, and biology, and Live-
CodeBench, which evaluates code generation capabilities. As shown in Table 1, Sonata achieves

4https://huggingface.co/datasets/nvidia/OpenMathReasoning

7

https://huggingface.co/datasets/nvidia/OpenMathReasoning

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

particularly impressive results on these out-of-domain tasks. For example, it improves the accuracy
of GPQA by 1.9% for Qwen3-8B while reducing tokens by 52%, the highest accuracy improvement
across all tasks. On LiveCodeBench, Sonata achieves 58.2% pass@1 for Qwen3-8B and 63.4%
for Qwen3-32B, while reducing tokens by up to 10% compared to vanilla models. Interestingly, we
observe that the token savings on GPQA (from 17% to 52% across models) are comparable to those
on mathematical tasks, despite the domain varying. This pattern holds consistently across all model
scales in our evaluation. The consistent performance across domains suggests that self-consistency
patterns capture fundamental aspects of reasoning difficulty that transcend specific subject matters.
This cross-domain generalization validates that the reasoning difficulty indicators learned through
self-consistency reflect general properties of query complexity and model capability rather than
domain-specific characteristics, making Sonata practical for real-world deployment where queries
often span multiple knowledge domains.

5.2 ABLATION AND EXTENDED RESULTS

Table 2: End-to-end inference efficiency comparison. Peak
memory usage and latency are measured on NVIDIA B200
GPUs with batch size 1. Results are evaluated on MATH-
500 and averaged across all queries. Peak memory is tested
via HuggingFace Inference, while latency and throughput
are tested via vLLM. Qwen3-235B-A22B is evaluated on
two B200 GPUs, while other 3 models are evaluated on one.

Model Memory (GB) (↓) Latency (s) (↓) Throughput (tokens/s) (↑)
Base w. Sonata Base w. Sonata Base w. Sonata

Qwen3-8B 17 16 32.1 23.5 153 157
Qwen3-32B 62 61 32.2 21.5 114 120
GPT-OSS-120B 63 62 13.1 9.3 215 245
Qwen3-235B-A22B 238 237 81.0 51.5 54 58

End-to-End Memory and Latency.
Table 2 presents comprehensive
end-to-end efficiency metrics on
the MATH-500 benchmark. The
lightweight adapter introduces neg-
ligible memory overhead, with less
than 1% increase even for the small-
est model. The detailed analysis
can be found in Appendix B. More
significantly, Sonata achieves sub-
stantial latency reductions ranging
from 27% (i.e., Qwen3-8B) to 36%
(i.e., Qwen3-235B-A22B) by eliminating unnecessary thinking tokens. Interestingly, larger models
benefit more from adaptive allocation. Qwen3-235B-A22B shows the greatest latency reduction
(29.5 seconds saved per query), as the cost of generating thinking tokens scales with model size.
Overall, Sonata demonstrates consistent computational cost in terms of memory and latency,
particularly for larger models where thinking token costs more inference time.

Table 1

Budget (Ours) Accuracy (Ours) Budget
(Controlled)

Accuracy (Controlled)

0.0 0.0 0.576182982210275 0.0 0.576182982210275

0.05 608.895931261056 0.594372267022002 1024 0.5924

0.1 2159.50976750063 0.672705600355334 2048 0.6147

0.15 4241.13630600930 0.739372267022002 3072.0 0.6539

0.2 5951.98327570627 0.776442974092709 4096.0 0.6880

0.25 6337.33029862691 0.786038933688668 5120.0 0.7156

0.3 7186.95663630237 0.794372267022002 6144.0 0.7397

0.35 7225.97936357510 0.793109640759375 7168.0 0.7507

0.4 7535.24874235149 0.793109640759375 8192 0.7848

0.45 7624.93813629088 0.794372267022002

Ac
cu

ra
cy

50%

60%

70%

80%

Average Thinking Tokens
0 2000 4000 6000 8000

Sonata
Const. Budget

Saving 50%

Qwen3-8B

60%

70%

80%

90%

Average Thinking Tokens
0 2000 4000 6000 8000

Sonata
Const. Budget

Saving 50%

Qwen3-32B

2

Figure 5: Accuracy-efficiency Pareto frontiers com-
paring Sonata against constant budget baseline on
Qwen3-8B and Qwen3-32B. By adjusting the self-
consistency threshold τ0, Sonata consistently outper-
forms the fixed budget approach, achieving up to 50%
token savings at comparable accuracy levels.

Improved Pareto Frontier. Figure 5
demonstrates that Sonata achieves a su-
perior accuracy-efficiency Pareto frontier
compared to the constant budget base-
line across model scales. By adjusting
the adapter’s self-consistency threshold τ0
from 0 to 1, we enable smooth trade-
offs between accuracy and token con-
sumption. The constant budget approach
forces a uniform thinking allocation across
all queries, resulting in suboptimal perfor-
mance, which either sacrifices accuracy on
complex problems or wastes computation
on simple ones. In contrast, Sonata pro-
vides fine-grained, query-adaptive control.
For Qwen3-8B, Sonata maintains consistently higher accuracy across all token budgets, with ac-
curacy improvements reaching up to 10% at similar computational costs. This superiority becomes
more pronounced with larger models, i.e. Qwen3-32B. This superior Pareto frontier demonstrates
Sonata’s more efficient utilization of thinking tokens.

Different Proxy Metrics. Table 3 compares self-consistency against alternative proxy metrics for
predicting thinking necessity. ❶ LM logits entropy (Fu et al., 2025), computed from the softmax dis-
tribution of the last prompt token, performs poorly across all benchmarks. On AIME25, it achieves
only 23.3% and 33.3% accuracy for Qwen3-8B and Qwen3-32B respectively. This significant ac-
curacy drop reveals that single-token-level uncertainty fails to capture true reasoning difficulty. ❷
Attention entropy (Li et al., 2025b), computed from the attention score in the last layer of the last
prompt token, also shows inadequate performance, with 30.0% and 40.0% accuracy on AIME25.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of different proxy metrics for adaptive thinking allocation on four benchmarks.
We report accuracy (Acc.) and average thinking tokens (#Tokens) across Qwen3-8B and Qwen3-
32B models. Results show that self-consistency (Sonata) substantially outperforms two entropy-
based metrics, i.e. LM logits entropy and Attention entropy, in the accuracy-efficiency tradeoff.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. LM Logits Entropy 23.3 2755 (16%) 93.3 4302 (88%) 93.5 1444 (72%) 55.1 5572 (75%) 66.3 3518 (45%)
w. Attention Entropy 30.0 3124 (18%) 94.0 4185 (85%) 92.8 1389 (70%) 56.3 5891 (79%) 68.3 3647 (47%)
w. Self-Consistency (Sonata) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)

Qwen3-32B 70.0 14971 97.6 3670 94.8 1654 63.6 5329 81.5 6406

w. LM Logits Entropy 33.3 2488 (17%) 94.2 3215 (88%) 92.9 1075 (65%) 57.6 4329 (81%) 69.5 2777 (43%)
w. Attention Entropy 40.0 2915 (19%) 95.0 3088 (84%) 93.2 1188 (72%) 58.6 4542 (85%) 71.7 2933 (46%)
w. Self-Consistency (Sonata) 70.0 14890 (100%) 98.0 2583 (70%) 94.4 728 (44%) 63.1 3568 (70%) 81.4 5442 (85%)

Both entropy-based methods exhibit a critical flaw that they both underallocate thinking budget to
complex problems, i.e. AIME25, where extended reasoning is actually essential. ❸ Self-consistency
(Sonata) demonstrates substantially superior accuracy and efficiency by directly measuring the
model’s ability to consistently solve the problem across multiple attempts, capturing the inherent
reasoning difficulty rather than surface-level LM uncertainty. For example, a query might have high
entropy of the single next token due to multiple valid phrasings but still be easily solvable, whereas
low self-consistency reliably indicates fundamental reasoning challenges. This validates the effec-
tiveness of our self-consistency as the query’s reasoning difficulty proxy.

Table 4: Comparison of different adapter architectures for self-consistency prediction. We evaluate
linear projection, 2-layer MLP (Sonata), and 3-layer MLP across Qwen3-8B and Qwen3-32B
models. The 2-layer MLP achieves superior tradeoff between accuracy and efficiency.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Linear 56.7 15895 (94%) 96.8 3871 (79%) 94.1 917 (46%) 59.6 3804 (51%) 76.8 6122 (78%)
w. 3-Layer MLP 63.0 16321 (96%) 97.2 3759 (77%) 95.4 913 (46%) 61.6 3582 (49%) 79.3 6144 (78%)
w. 2-Layer MLP (Sonata) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)

Qwen3-32B 70.0 14971 97.6 3670 94.8 1654 63.6 5329 81.5 6406

w. Linear 63.3 14272 (95%) 96.8 2908 (79%) 93.6 761 (46%) 61.1 3747 (70%) 78.7 5422 (85%)
w. 3-Layer MLP 69.7 14935 (100%) 97.8 2642 (72%) 94.3 712 (36%) 63.6 3659 (69%) 81.4 5487 (86%)
w. 2-Layer MLP(Sonata) 70.0 14890 (100%) 98.0 2583 (70%) 94.4 728 (44%) 63.1 3568 (70%) 81.4 5442 (85%)

Different Adapter Design. Table 4 evaluates various adapter architectures for self-consistency
prediction. We compare the performance between a simple linear projector vs. our 2-layer MLP
in Sonata vs. a 3-layer MLP. Experimental results demonstrate the superiority of our MLP for
learning self-consistency from the query last-layer representations. Specifically, our 2-layer MLP
consistently achieves 79.6% average accuracy on Qwen3-8B and 81.4% on Qwen3-32B, while the
linear projector achieves approximately 3% lower despite similar token usage. Moreover, adding a
third layer (i.e. the 3-layer MLP) provides diminishing returns, with nearly same accuracy and effi-
ciency compared to our 2-layer MLP. This finding aligns with our observation that self-consistency
clusters are well-separated in the latent space, as shown in Section 3.2, suggesting that a lightweight
non-linear adapter is sufficient to learn the decision boundaries, while the linear projector struggles
to capture non-linear relationships between hidden states and self-consistency patterns.

Calibration Set Size. To further test the robustness of Sonata under resource-constrained sce-
narios, we evaluate the adapter with reduced calibration datasets of 100 and 200 samples, compared
to the original 1000 samples in Table 1. Table 5 presents results on Qwen3-8B across all bench-
marks. Remarkably, Sonata maintains consistent performance even with only 100 calibration
samples, achieving 79.0% average accuracy while reducing tokens by 17%, compared to 79.6% ac-
curacy and 21% token reduction with 1000 samples. The adapter with 200 samples nearly matches
the full calibration performance. These results demonstrate that Sonata is robust to calibration set
size and can be effectively deployed in low-resource scenarios.

Table 5: Ablation study on calibration dataset size. Results on Qwen3-8B across all benchmarks
with 1000, 200, and 100 calibration samples. Token percentages are relative to the vanilla model.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 57.1 4096 (55%) 68.8 4096 (52%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)

w. Sonata (1k samples) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata (200 samples) 60.0 16990 (100%) 97.0 3750 (77%) 95.4 865 (43%) 61.3 3483 (47%) 78.4 6272 (80%)
w. Sonata (100 samples) 63.3 17005 (100%) 96.8 3883 (79%) 95.0 1005 (50%) 60.9 3994 (54%) 79.0 6472 (83%)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Integration with Existing Methods. A key advantage of Sonata is its compatibility with exist-
ing CoT optimization techniques. To validate this, we integrate Sonata with REFRAIN (Sun et al.,
2025), a representative early-stopping method for CoT reasoning. Specifically, we first apply our
Sonata adapter to decide whether to enable thinking; if thinking is enabled, REFRAIN is then ap-
plied during the generation phase to determine when to terminate reasoning early. Table 6 presents
results on Qwen3-8B across all benchmarks. The combined approach achieves 78.7% average ac-
curacy while reducing token usage to 64% of the vanilla model, representing an additional 15%
token reduction compared to Sonata alone (79% token usage) with minimal accuracy drop. These
results demonstrate that Sonata serves as an effective outer “when to think” controller that natu-
rally composes with existing efficient reasoning methods, enabling further efficiency gains through
orthogonal optimization.
Table 6: Integration of Sonata with REFRAIN early-stopping method. Results on Qwen3-8B
across all benchmarks. Token percentages are relative to the vanilla model.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 57.1 4096 (55%) 68.8 4096 (52%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)

w. Sonata 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata + REFRAIN 60.0 12840 (76%) 97.6 3309 (68%) 95.0 845 (42%) 61.8 2958 (40%) 78.7 4988 (64%)

Multi-position and Multi-layer Aggregation. To investigate whether aggregating information
from multiple positions or layers could improve adapter performance, we evaluate two variants: (1)
concatenating hidden states from the last token across the last 4 layers, and (2) concatenating hidden
states from the last 4 tokens at the final layer. Table 7 presents results on Qwen3-8B across all
benchmarks. The original Sonata design using only the last token from the last layer achieves the
best overall performance with 79.6% average accuracy and 79% token usage. In contrast, the last-4-
layers variant achieves 78.4% accuracy with 78% token usage, while the last-4-tokens variant shows
significantly degraded performance at 71.1% accuracy. These results validate our design choice
motivated by Figure 3, which demonstrates that self-consistency patterns are most distinguishable
in the final layer. Incorporating information from multiple positions or layers appears to introduce
noise rather than a beneficial signal.
Table 7: Ablation study on multi-position and multi-layer aggregation. Results on Qwen3-8B across
all benchmarks. Token percentages are relative to the vanilla model.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 57.1 4096 (55%) 68.8 4096 (52%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)

w. Sonata (last layer, last token) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata (last 4 layers, last token) 63.3 16449 (97%) 95.8 3740 (76%) 94.7 996 (50%) 59.8 3302 (44%) 78.4 6122 (78%)
w. Sonata (last layer, last 4 tokens) 46.7 9549 (56%) 88.2 2948 (60%) 91.3 523 (26%) 58.2 2840 (38%) 71.1 3965 (51%)

6 CONCLUSION

In this work, we investigate the adaptive allocation of thinking budgets in large language mod-
els (LLMs), revealing that self-consistency serves as a principled proxy for determining when
and how much long chain-of-thought (CoT) reasoning is needed. By analyzing the relationship
between self-consistency and thinking necessity, we show that queries with low self-consistency
benefit significantly from extended reasoning, while high self-consistency queries require mini-
mal or no thinking. This insight is further validated by our observation that self-consistency pat-
terns are highly distinguishable within the latent space, enabling efficient prediction without ex-
pensive sampling. Leveraging these findings, we propose Sonata, a lightweight, offline-trained
adapter that predicts self-consistency directly from query hidden representations during the prefilling
stage. Sonata dynamically allocates thinking budgets on-the-fly, introducing negligible computa-
tional overhead (< 1‰) while being generalizable across diverse tasks without task-specific fine-
tuning. Experimental results across multiple models (Qwen3-8B, Qwen3-32B, GPT-OSS-120B,
Qwen3-235B-A22B) and challenging benchmarks (AIME25, GSM8K, MATH500, GPQA, Live-
CodeBench) demonstrate that Sonata achieves up to 60% reduction in thinking tokens while main-
taining or improving accuracy by up to 2%. Importantly, Sonata is compatible with existing CoT
compression techniques, enabling further efficiency gains when combined with these methods. Our
approach offers a practical and interpretable solution for optimizing test-time compute in reasoning
models, paving the way for more efficient deployment of thinking LLMs at scale.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the computational efficiency of large language models during in-
ference, which we believe contributes positively to making AI systems more accessible and envi-
ronmentally sustainable by reducing computational resource requirements. Our research does not
involve human subjects, and all experiments use publicly available benchmarks (AIME25, MATH-
500, GSM8K, GPQA, LiveCodeBench) that contain no sensitive personal information. The adaptive
thinking allocation mechanism we propose does not introduce discriminatory biases and treats all
queries based solely on their intrinsic reasoning complexity. We have no conflicts of interest to de-
clare, and this work was conducted without external funding that could influence our findings. We
believe our research adheres to the ICLR Code of Ethics and poses no foreseeable risks to individuals
or society.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details through-
out the paper and supplementary materials. The core algorithms for our adapter training and infer-
ence are detailed in Algorithms 1 and 2. All experiments use publicly available models from the
Qwen3 family and GPT-OSS, with model identifiers and access instructions provided in Section 5.
Our calibration dataset construction process, using 1000 problems from the OpenMathReasoning
dataset, is described in Section 5. Exact hyperparameters including sampling parameters, number
of samples for self-consistency computation, and threshold settings are specified throughout Sec-
tion 5. The adapter architecture (two-layer MLP) and training procedure are detailed in Section 4.
All experiments were conducted on NVIDIA B200 GPUs with reproducibility ensured through fixed
random seeds {233, 234, 235}. Evaluation metrics and benchmark details are provided in Section 5,
with results averaged over three trials for statistical reliability.

REFERENCES

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free, 2025.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
model generation, 2023. URL https://arxiv.org/abs/2311.17311.

DeepSeek-AI, Daya Guo, et al. Deepseek-r1: Incentivizing reasoning capability in llms via rein-
forcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Gemini Team, Rohan Anil, et al. Gemini: A family of highly capable multimodal models, 2025.
URL https://arxiv.org/abs/2312.11805.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning, 2025. URL https://arxiv.org/abs/2412.18547.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024.

Michael Hassid, Gabriel Synnaeve, Yossi Adi, and Roy Schwartz. Don’t overthink it. preferring
shorter thinking chains for improved llm reasoning. arXiv preprint arXiv:2505.17813v1, 2025.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2504.01296.

Guochao Jiang, Guofeng Quan, Zepeng Ding, Ziqin Luo, Dixuan Wang, and Zheng Hu. Flashthink:
An early exit method for efficient reasoning. arXiv preprint arXiv:2505.13949, 2025.

11

https://arxiv.org/abs/2311.17311
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2412.18547
https://arxiv.org/abs/2504.01296

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan
Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, and Yongfeng Zhang. Ex-
ploring concept depth: How large language models acquire knowledge and concept at different
layers?, 2025. URL https://arxiv.org/abs/2404.07066.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems,
35:22199–22213, 2022.

Gengyang Li, Yifeng Gao, Yuming Li, and Yunfang Wu. Thinkless: A training-free inference-
efficient method for reducing reasoning redundancy. arXiv preprint arXiv:2505.15684, 2025a.

Yinghao Li, Rushi Qiang, Lama Moukheiber, and Chao Zhang. Language model uncertainty quan-
tification with attention chain. arXiv preprint arXiv:2503.19168, 2025b.

Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, and Zhifang Sui. Selfbudgeter: Adaptive token
allocation for efficient llm reasoning. arXiv preprint arXiv:2505.11274v2, 2025c.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html.

Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Retro-
search: Exploring untaken paths for deeper and efficient reasoning, 2025. URL https://
arxiv.org/abs/2504.04383.

OpenAI. Learning to reason with llms. OpenAI Blog, 2024. URL https://openai.com/o1/.

Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Fandong Meng, Jie Zhou, Ju Ren,
and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step efficient reasoning.
arXiv preprint arXiv:2505.04881, 2025.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about
how bert works, 2020. URL https://arxiv.org/abs/2002.12327.

Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel reasoning
processes in multi-hop reasoning, 2024a.

Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel reasoning
processes in multi-hop reasoning, 2024b. URL https://arxiv.org/abs/2406.13858.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Renliang Sun, Wei Cheng, Dawei Li, Haifeng Chen, and Wei Wang. Stop when enough: Adap-
tive early-stopping for chain-of-thought reasoning, 2025. URL https://arxiv.org/abs/
2510.10103.

Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao, Yuan-
dong Tian, Jason Weston, and Xian Li. Llm pretraining with continuous concepts, 2025. URL
https://arxiv.org/abs/2502.08524.

Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Reasoning aware self-consistency: Leveraging
reasoning paths for efficient llm sampling, 2025. URL https://arxiv.org/abs/2408.
17017.

12

https://arxiv.org/abs/2404.07066
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/2504.04383
https://arxiv.org/abs/2504.04383
https://openai.com/o1/
https://arxiv.org/abs/2002.12327
https://arxiv.org/abs/2406.13858
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2510.10103
https://arxiv.org/abs/2510.10103
https://arxiv.org/abs/2502.08524
https://arxiv.org/abs/2408.17017
https://arxiv.org/abs/2408.17017

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan, Yueqi Zhang, Chuyi Tan, Boyuan Pan, Yao
Hu, and Kan Li. Make every penny count: Difficulty-adaptive self-consistency for cost-efficient
reasoning, 2025. URL https://arxiv.org/abs/2408.13457.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models,
2025a. URL https://arxiv.org/abs/2408.00724.

Yunfang Wu, Gengyang Li, Yifeng Gao, and Yuming Li. ThinkLess: A training-free inference-
efficient method for reducing reasoning redundancy. arXiv preprint arXiv:2505.15684v2, 2025b.

Heming Xia, Zhe Ge, Yijun Shen, Deng Cai, and Tarek Abdelzaher. Unlocking efficiency in large
language model inference: A comprehensive survey of speculative decoding. arXiv preprint
arXiv:2401.07851, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning?, 2025b. URL https://arxiv.org/abs/
2402.16837.

Jingyang Yi, Jiazheng Wang, and Sida Li. Shorterbetter: Guiding reasoning models to find optimal
inference length for efficient reasoning. arXiv preprint arXiv:2504.21370, 2025.

Tunyu Zhang, Haizhou Shi, Yibin Wang, Hengyi Wang, Xiaoxiao He, Zhuowei Li, Haoxian Chen,
Ligong Han, Kai Xu, Huan Zhang, Dimitris Metaxas, and Hao Wang. Token-level uncertainty
estimation for large language model reasoning, 2025a. URL https://arxiv.org/abs/
2505.11737.

Xuechen Zhang, Zijian Huang, Chenshun Ni, Ziyang Xiong, Jiasi Chen, and Samet Oymak. Making
small language models efficient reasoners: Intervention, supervision, reinforcement, 2025b. URL
https://arxiv.org/abs/2505.07961.

Zhen Zhang, Xuehai He, Weixiang Yan, Shuohang Wang, Yelong Shen, Ao Shen, Chenyang Zhao,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous
concept space, 2025c.

13

https://arxiv.org/abs/2408.13457
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2402.16837
https://arxiv.org/abs/2402.16837
https://arxiv.org/abs/2505.11737
https://arxiv.org/abs/2505.11737
https://arxiv.org/abs/2505.07961

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

To improve readability, we utilized Anthropic’s Claude Opus 4.1 exclusively as a language polishing
tool. We use it for grammar correction, proofreading, and stylistic refinement. It did not contribute
to the generation of any scientific content or ideas, and its usage is consistent with standard practices
for scientific writing.

B TECHNICAL DETAILS

B.1 ADAPTER ARCHITECTURE DETAILS

Our adapter employs a 2-layer MLP architecture designed to map high-dimensional hidden repre-
sentations to self-consistency predictions. This architecture uses only 64 hidden units to minimize
inference overhead.

Pseudocode. We show some pseudocode to demonstrate the implementation of our proposed
Sonata adapter in JAX style.

def mlp_predictor(params, x):
"""Two-layer MLP for self-consistency prediction.

Args:
params: {’w1’: (d, 64), ’b1’: (64,),

’w2’: (64, 1), ’b2’: (1,)}
x: Hidden states of shape (d,)

Returns:
Self-consistency prediction in [0, 1]

"""
First layer with GELU
h = gelu(x @ params[’w1’] + params[’b1’])
h = dropout(h, rate=0.1) if training else h

Output layer with sigmoid
y = sigmoid(h @ params[’w2’] + params[’b2’])

return y

Training Details. The adapter is trained using MSE loss between predicted and ground-truth self-
consistency scores. We employ Xavier uniform initialization for weights and zero initialization for
biases to ensure stable training. Training uses AdamW optimizer with learning rate 10−5 and weight
decay 10−5. We train with batch size 16 and employ a linear learning rate scheduler that decays from
10−5 to 10−6 over the training period. Gradient clipping is applied to ensure stable training. The
total number of its parameters is (d × 64) + 64 + (64 × 1) + 1, which for Qwen3-8B (d = 4096)
consumes around 262K parameters, negligible compared to the 8B parameters of the base LLM.
This results in less than 0.1% additional FLOPs compared to a single transformer layer forward
pass, validating our claim of negligible computational overhead.

B.2 SELF-JUDGE

The self-judge baseline asks LLM to assess its own need for extended CoT reasoning before generat-
ing a response. This method involves prompting the model to make a binary decision about whether
to engage its thinking capability.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Specifically, for each query QUESTION, we first prompt the model with:

Analyze the following question and determine if it requires
very long step-by-step thinking for you to solve correctly:

Question: {QUESTION}

Does this question require very long, complex thinking?
Answer with only ’YES’ or ’NO’.

Based on the model’s response, we proceed as follows: ❶ If the model responds “YES”, we enable
thinking mode by allowing the model to generate chain-of-thought tokens between <think> and
</think> tags before producing the final answer. ❷ If the model responds “NO”, we enforce
immediate termination of thinking by inserting </think> directly after <think>, forcing the
model to generate the answer without intermediate reasoning steps.

Notably, this baseline requires an additional forward pass for the self-assessment, incurring approx-
imately 100-200 tokens of prefilling overhead per query for the judgment prompt and response.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXTENDED SONATA WITH THINKING GAIN PREDICTION

We evaluate an extended version of Sonata that predicts both self-consistency and thinking gain
together. We train two separate adapters: one for self-consistency prediction (as in the original
Sonata) and another for thinking gain prediction. Specifically, the extended adapters only enable
thinking if predicted self-consistency < 0.3 and predicted thinking gain > 0.1; otherwise, proceed
without thinking.

Table 8 presents results on Qwen3-8B across all benchmarks. The extended Sonata achieves
79.3% average accuracy with 80% token usage, nearly identical to the original Sonata (79.6%
accuracy, 79% token usage). This negligible difference validates our observation that intrinsically
difficult queries are rare in practice and have minimal impact on overall performance. The original
binary self-consistency-based approach is therefore sufficient for practical deployment.

Table 8: Comparison of original Sonata with extended version that predicts both self-consistency
and thinking gain. Results on Qwen3-8B across all benchmarks.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Sonata (self-consistency) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata (self-consistency + thinking gain) 63.3 16985 (100%) 97.2 3650 (74%) 95.0 905 (45%) 61.7 3483 (47%) 79.3 6256 (80%)

C.2 FINE-GRAINED SELF-JUDGE BASELINE

To ensure a fair comparison with self-judge baselines, we evaluate a fine-grained 5-level difficulty
rating prompt in addition to the binary version presented in the main paper. Specifically, the model
first predicts a difficulty score S ∈ {1, 2, 3, 4, 5}, then allocates a thinking budget of (S− 1)× 2048
tokens, where S = 1 corresponds to no thinking.

Table 9 presents results on Qwen3-8B across all benchmarks. The 5-level self-judge achieves 76.3%
average accuracy with 94% token usage, underperforming both the binary self-judge (76.6% accu-
racy, 90% token usage) and Sonata (79.6% accuracy, 79% token usage). The degraded perfor-
mance suggests that fine-grained budget allocation without training or adaptation can be challenging
for models to execute reliably.

C.3 FINE-GRAINED THINKING CONTROL

As an early attempt to explore whether more granular thinking budget allocation could improve per-
formance with our method, we extend Sonata from binary control to 4-level control with thresh-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Comparison of binary and 5-level fine-grained self-judge baselines. Results on Qwen3-8B
across all benchmarks.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Self-Judge (binary) 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)
w. Self-Judge (5-level) 60.0 16990 (100%) 94.6 4323 (88%) 94.3 2350 (118%) 56.1 5857 (79%) 76.3 7380 (94%)

w. Sonata 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)

olds {0.3, 0.5, 0.7, 0.9} corresponding to thinking modes: {non-thinking (0 tokens), low thinking
(< 1024 tokens), medium thinking (< 4096 tokens), high thinking (unlimited tokens)}.
Table 10 presents results on Qwen3-8B across all benchmarks. The 4-level Sonata achieves 78.4%
average accuracy with 75% token usage, slightly underperforming the binary version (79.6% accu-
racy, 79% token usage). The degraded performance suggests that fine-grained control introduces
brittleness due to complex threshold combinations that are difficult to tune manually. Future work
could explore data-driven or training-based methods to automatically optimize thresholds for fine-
grained thinking control, though our results validate the simplicity and effectiveness of the binary
design for practical deployment.

Table 10: Comparison of binary and 4-level fine-grained thinking control. Results on Qwen3-8B
across all benchmarks.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 57.1 4096 (55%) 68.8 4096 (52%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)

w. Sonata (binary) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata (4-level) 63.3 16449 (97%) 96.2 3258 (66%) 95.4 853 (43%) 58.8 2983 (40%) 78.4 5886 (75%)

C.4 EXAMPLES AROUND DECISION THRESHOLD τ0 = 0.3

We empirically determined τ0 = 0.3 as our decision threshold by evaluating values in
{0.1, 0.3, 0.5}. We found that τ0 = 0.1 resulted in significant performance degradation, while
τ0 = 0.5 led to excessive token consumption. The threshold τ0 = 0.3 represents an optimal balance
between accuracy and efficiency. To further illustrate the effectiveness of this threshold, we provide
two examples from MATH-500 on Qwen3-8B with their predicted self-consistency scores:

Example 1 (adapter score = 0.25, below threshold): “Let p(x) be a polynomial of degree 5 such that
p(n) = n

n2−1 for n = 2, 3, 4, . . . , 7. Find p(8).”

Example 2 (adapter score = 0.42, above threshold): “The proper divisors of 12 are 1, 2, 3, 4 and 6.
A proper divisor of an integer N is a positive divisor of N that is less than N . What is the sum of
the proper divisors of the sum of the proper divisors of 284?”

Both examples are labeled as difficulty level 5 (hardest) in MATH-500. However, Example 1 re-
quires abstract algebraic reasoning and polynomial-construction techniques typically requiring com-
petition mathematics experience, while Example 2 primarily involves arithmetic and divisor fluency
with more straightforward reasoning.

Empirically, over 3 trials per example, Qwen3-8B achieves pass@3 = 0 without thinking and pass@3
= 1 with thinking on Example 1, while achieving pass@3 = 1 for both modes on Example 2. Our
Sonata policy with τ0 = 0.3 correctly answers both examples while avoiding unnecessary thinking
cost on Example 2 and preserving necessary thinking for Example 1.

C.5 MODEL OUTPUTS BEFORE AND AFTER APPLYING SONATA

To clarify potential misunderstandings, Sonata does not change the model’s reasoning dynamics
or content. It only shifts between thinking mode (with intermediate reasoning) and non-thinking
mode (without intermediate reasoning). We further provide a concrete example from MATH-500:

Input Query: “How many positive whole-number divisors does 196 have?”

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Output Before Applying Sonata (with thinking enabled, abbreviated for space):

<think>
Okay, so I need to figure out how many positive whole-number divisors 196 has. Hmm,
divisors... right. Let me recall. Divisors are numbers that divide another number without
leaving a remainder. [... extensive reasoning process omitted ...] Therefore, the final answer
is: \boxed{9}. I hope it is correct.
</think>

To determine how many positive whole-number divisors the number 196 has, we can
use the **prime factorization method** combined with a well-known divisor-counting
formula. [... detailed explanation ...] Therefore, the final answer is: \boxed{9}. I hope it is
correct.

Output After Applying Sonata (thinking disabled, direct answer):

<think>

</think>

To find how many **positive whole-number divisors** the number **196** has, we
follow these steps: [... direct solution without intermediate reasoning ...] Therefore, the
number of positive whole-number divisors of 196 is: \boxed{9}. Therefore, the final answer
is: \boxed{9}. I hope it is correct.

Both outputs produce the correct answer, but Sonata eliminates the unnecessary thinking tokens
for this straightforward arithmetic problem, resulting in significant computing savings.

D DISCUSSION

Future Directions. While our current work focuses on deciding whether to think before any rea-
soning tokens are generated, an interesting extension would be to dynamically adjust reasoning
length during ongoing long-form reasoning based on self-consistency signals. This would require
(1) a richer controller that can operate across larger hidden spaces beyond our current single-hidden-
state MLP, and (2) a potentially more complex training setup, either through substantial addi-
tional offline data with early-stopped reasoning traces to supervise fine-grained stopping policies,
or through online reinforcement learning that directly optimizes early-stopping controllers under to-
ken budget-performance trade-offs. Both directions represent promising avenues for future research
in adaptive test-time compute allocation.

17

	Introduction
	Related Works
	Preliminary
	Self-Consistency Indicating When to Think
	Self-Consistency Patterns are Distinguishable in Latent Space

	Methodology
	Training Adapter to Predict Self-Consistency
	On-the-Fly Thinking Budget Allocation with Adapter

	Empirical Evaluation
	Main Results
	Ablation and Extended Results

	Conclusion
	The Use of Large Language Models (LLMs)
	Technical Details
	Adapter Architecture Details
	Self-Judge

	Additional Experimental Results
	Extended Sonata with Thinking Gain Prediction
	Fine-Grained Self-Judge Baseline
	Fine-Grained Thinking Control
	Examples around Decision Threshold 0=0.3
	Model Outputs Before and After Applying Sonata

	Discussion

