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ABSTRACT

Recent advances in large language models (LLMs) test-time computing have in-
troduced the capability to perform intermediate chain-of-thought (CoT) reason-
ing (thinking) before generating answers. While increasing the thinking budget
yields smooth performance improvements at inference time, the relationship be-
tween LLM capability, query complexity, and optimal budget allocation remains
poorly understood for achieving compute-optimal inference. To address this chal-
lenge, we utilize self-consistency, the agreement among multiple reasoning paths,
as a proxy for thinking necessity. We first identify that lower self-consistency
indicates when queries require extended thinking to reach correct answers. Build-
ing on this insight, we introduce Sonata (Self-Consistency-Guided Adapter for
Thinking Allocation), a lightweight approach that adaptively allocates thinking
budgets to optimize the performance-efficiency tradeoff. Sonata includes an
adapter trained offline on a calibration dataset to predict self-consistency directly
from the last layer hidden representations during the query prefilling stage. This
prediction then guides on-the-fly budget allocation before thinking. The adapter
is general, transferable across diverse tasks once trained, and introduces < 1‰
computational overhead during inference. Notably, Sonata is compatible with
existing CoT compression methods, enabling further efficiency gains when man-
aging thinking budgets across queries. Extensive experiments on multiple mod-
els (Qwen3-8B, Qwen3-32B, GPT-OSS-120B, Qwen3-235B-A22B) and bench-
marks (AIME25, GSM8K, MATH500, GPQA, LiveCodeBench) demonstrate that
Sonata achieves 20% to 60% reduction in thinking tokens while maintaining the
same accuracy, or up to 2% improvement in accuracy with the same token cost.

1 INTRODUCTION

Table 1
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Figure 1: Average self-consistency
across various difficulty levels, de-
rived from Qwen3-8B model on
the MATH-500 task.

The ability to perform extended reasoning at inference time
has emerged as a transformative capability for large language
models (LLMs), enabling them to tackle complex problems
through chain-of-thought (CoT) reasoning (Wei et al., 2022;
Kojima et al., 2022). Recent advances in test-time compute
scaling have demonstrated that allowing LLMs to “think” be-
fore answering, generating intermediate CoT reasoning to-
kens, can yield significant performance improvements on chal-
lenging tasks (Snell et al., 2024; Wu et al., 2025a; Yang et al.,
2025a; DeepSeek-AI et al., 2025; Gemini Team et al., 2025).
This thinking capability enables these LLMs to explore di-
verse reasoning paths, reflect on their decisions, refine so-
lutions, and rigorously verify correctness, during inference
time (DeepSeek-AI et al., 2025; OpenAI, 2024).

However, adaptively determining the optimal thinking budget for each query remains a critical chal-
lenge, as excessive thinking wastes computational resources on simple queries and may even hurt
performance (Li et al., 2025c; Hassid et al., 2025; Wu et al., 2025b; Hou et al., 2025), while in-
sufficient thinking leads to errors on complex ones (Snell et al., 2024; Wu et al., 2025a). The core
problem lies in identifying how much thinking a specific query really requires before generating the
response tokens. Existing approaches either rely on superficial proxies like entropy (Xia et al., 2024;
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Zhang et al., 2025a), which fail to capture the intrinsic reasoning difficulty, or require costly online
computation (Han et al., 2025) or sample-specific calibration, limiting their practical applicability.

Can we enable LLMs to adaptively allocate thinking budget given queries, optimizing the thinking
performance-efficiency trade-off at test time? In this work, we utilize self-consistency (Wang et al.,
2023; Chen et al., 2023), i.e. the agreement among multiple reasoning paths when sampling from
the LLM given the same query, as a principled proxy for thinking necessity. As shown in Figure 1,
queries of higher difficulty levels demonstrate lower self-consistency scores. Self-consistency di-
rectly measures the model’s confidence in solving a problem, as queries with high self-consistency
(where multiple reasoning attempts converge to the same answer) typically require minimal think-
ing, while those with low self-consistency benefit from extended CoT reasoning. We further analyze
the hidden representations of various queries in thinking LLMs and observe that they are highly dis-
tinguishable in the latent space. Building on this insight, we introduce Sonata (Self-Consistency-
Guided Adapter for Thinking Allocation), a lightweight approach that first learns to predict self-
consistency directly from query hidden representations in the last layer. During inference, Sonata
adapter takes the query’s last layer hidden representations as input during the prefilling stage and
adaptively allocates thinking budgets before decoding. This adapter, trained offline on a calibra-
tion dataset, introduces < 1‰ computational overhead and is generalizable across tasks without
task-specific fine-tuning. Moreover, Sonata is compatible to LLMs trained with existing CoT
compression techniques (Zhang et al., 2025b; Hou et al., 2025; Lu et al., 2025), enabling further
efficiency gains while maintaining performance.

Our contributions and findings are summarized as follows: (i) Self-consistency as a reasoning indi-
cator: We utilize self-consistency as an effective proxy for evaluating LLMs’ reasoning capabilities,
revealing that prompts exhibiting different self-consistency levels are highly distinguishable in the
latent space; (ii) Adaptive reasoning with Sonata: We introduce Sonata, a lightweight adapter
with negligible cost that adaptively determines both when to conduct reasoning and how much rea-
soning budget to allocate. (iii) Superior performance-efficiency tradeoff: Extensive experiments
across models of various scales (Qwen3-8B, Qwen3-32B, GPT-OSS-120B, Qwen3-235B-A22B)
and tasks of various difficulties (AIME25, GSM8K, MATH500, GPQA, LiveCodeBench) validate
that our approach reduces average token consumption by up to 60% while maintaining task perfor-
mance.

2 RELATED WORKS

Token Efficiency for Thinking LLMs. Recent research has attempted to attack the efficiency
challenge of LLM thinking by reducing the number of tokens spent. One line of work focuses on
post-training. Hassid et al. (2025) observes that shorter reasoning chains are often more accurate and
proposes an early-exit inference strategy. Similarly, Jiang et al. (2025) employs a verification model
to decide when to terminate the reasoning process. Other methods intervene more directly during
generation. Li et al. (2025a) inserts a reasoning terminator token early based on attention analysis,
while Qiao et al. (2025) uses a confidence-guided approach to suppress redundant reflection steps.
Another category of methods uses reinforcement learning (RL) to encourage brevity. Hou et al.
(2025) uses RL with a token limit to prune long chains of thought, and Yi et al. (2025) defines a
Sample Optimal Length to guide the model toward more efficient outputs. Zhang et al. (2025b)
introduces a length-regularized RL method, and Li et al. (2025c) trains a model to pre-estimate its
own token budget. Some approaches refine the training data itself; for instance, Lu et al. (2025)
uses a search algorithm to discover shorter, more effective reasoning paths for distillation. Notably,
our work is compatible with these compression and pruning techniques. By adaptively allocating a
thinking budget before the reasoning process begins, Sonata can be combined with these methods
to further optimize the performance-efficiency tradeoff across queries.

Self-Consistency in LLMs. Self-consistency has been proposed as a decoding strategy that im-
proves CoT reasoning by sampling multiple diverse reasoning paths and selecting the answer that
appears most frequently via majority vote (Wang et al., 2023). While effective, this approach incurs
significant computational costs and is primarily applicable to tasks with easily extractable, closed-
form answers. To overcome these limitations, subsequent research has focused on enhancing SC’s
efficiency and applicability. Chen et al. (2023) extends the method to free-form generation tasks by
using the LLM itself to identify the most consistent response among multiple candidates, remov-
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Figure 2: Correlation between self-consistency and thinking improvement across five difficulty lev-
els on MATH-500 using Qwen3-8B. Each point denotes an individual query, with self-consistency
computed from N = 32 samples in non-thinking mode (x-axis) and accuracy improvement from
enabling thinking averaged over 3 runs (y-axis).
ing the need for answer extraction. Other works aim to reduce the high sampling cost. Wan et al.
(2025) introduces an early stopping mechanism by evaluating the quality of the intermediate rea-
soning paths, not just the final answers. Wang et al. (2025) propose to first use the LLM to assess a
query’s difficulty, then allocate a proportional sampling number, which saves resources on simpler
problems. In this work, we utilize the insight that self-consistency can serve as a proxy of the need
for extended CoT reasoning, enabling us to allocate the thinking budget adaptively.

Reasoning in Latent Space. Recent studies show that LLMs implicitly perform latent reasoning
within their hidden computations (Yang et al., 2025b; Shalev et al., 2024b; Lindsey et al., 2025; Tack
et al., 2025). This line of research investigates how LLMs process multi-hop queries by maintaining
distributions over potential intermediate answers in hidden states, a mechanism that persists even
without sufficient knowledge for correct answers (Shalev et al., 2024a). Beyond discrete tokens,
recent work trains models to reason directly in continuous latent space by recirculating hidden states
as inputs, enabling efficient patterns like breadth-first search (Hao et al., 2024). This latent reasoning
is controllable by identifying representations of thought patterns (e.g., execution, reflection), targeted
interventions can steer reasoning processes to improve accuracy and efficiency (Chen et al., 2025).
Alternative approaches construct “soft” concept tokens from probability-weighted embeddings to
implicitly explore multiple reasoning trajectories (Zhang et al., 2025c), or enhance pretraining by
integrating continuous concepts extracted via sparse autoencoders into hidden states (Tack et al.,
2025). These findings collectively suggest the underlying connection between reasoning capabilities
and latent representations, motivating our use of hidden states for adaptive thinking.

3 PRELIMINARY
In this section, we provide the foundation for adaptive thinking allocation in LLMs. We first demon-
strate that self-consistency serves as a reliable indicator for when models need extended chain-of-
thought reasoning in Section 3.1. We then show that self-consistency patterns are distinguishable in
the latent space, enabling efficient prediction from hidden representations in Section 3.2.

3.1 SELF-CONSISTENCY INDICATING WHEN TO THINK

Self-consistency has initially emerged as a powerful decoding strategy that enhances CoT reasoning
in large language models by leveraging the intuition that complex reasoning problems often admit
multiple valid reasoning paths leading to the same correct answer (Wang et al., 2023; Chen et al.,
2023). When an LLM generates multiple CoT chains for the same query, the consistency among
their final answers serves as a strong indicator of the model’s confidence and reasoning capability on
that particular query. Inspired by these existing works, we hypothesize that for reasoning models,

low self-consistency indicates the need for extended CoT reasoning.
Formally, we define self-consistency as the ratio of correct samples among multiple repeated sam-
pling. Given a query q and an LLM M, we sample N independent answers {a1, a2, ..., aN} 1.
The self-consistency score is computed as SC(q) = 1

N

∑N
i=1 I[ai = a∗], where I[·] is the indicator

function and a∗ denotes the correct answer2.

To investigate the relationship between self-consistency and the necessity for extended thinking,
we conduct experiments measuring the performance gain from thinking vs. non-thinking modes.

1We used N = 32 for all experiments in our work.
2We employ a verifier to determine correctness rather than relying solely on majority voting, which allows

us to accurately assess self-consistency for calibration.

3
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Figure 3: PCA visualization of query hidden representations across different transformer layers,
colored by self-consistency scores, evaluated on both MATH-500 (math reasoning) and GPQA (sci-
entific reasoning) benchmarks. Self-consistency patterns become increasingly distinguishable in
deeper layers, with the last layers (i.e. 36, 64) showing the most pronounced separation. High
self-consistency queries (dark) form tight clusters while low self-consistency queries (light) are
more dispersed, demonstrating that self-consistency signals are learnable from latent representa-
tions across diverse reasoning domains.

Specifically, for each query q in our calibration set, we compute: ❶ the self-consistency score SC(q)
when the model operates without thinking, by enforcing the thinking terminate token </think>
right after starting token <think>, following Yang et al. (2025a); DeepSeek-AI et al. (2025), and ❷
the accuracy improvement ∆think(q) = Accthink(q)− Accnon-think(q), where Accthink and Accnon-think
represent the accuracy with and without chain-of-thought reasoning, respectively. As illustrated in
Figure 2, we observe a strong negative correlation between self-consistency in non-thinking mode
and the performance gains from thinking. Each point is an individual query from our calibration
dataset. Queries with low self-consistency exhibit significant improvements when thinking is en-
abled, while queries with high self-consistency show minimal improvements. The cluster of points
in the lower-left corner represents intrinsically difficult problems where both self-consistency and
thinking improvements are low, indicating queries that remain challenging even with extended rea-
soning. These empirical results validate our hypothesis that self-consistency serves as a principled
indicator for adaptive thinking budget allocation.

3.2 SELF-CONSISTENCY PATTERNS ARE DISTINGUISHABLE IN LATENT SPACE

While self-consistency provides a reliable signal for thinking necessity, computing it requires expen-
sive repeated sampling that defeats the purpose of efficient inference. This raises a critical question:
can we predict self-consistency directly from the model’s internal representations without explicit
sampling? We present two key observations that enable efficient self-consistency prediction.

Observation 1: Self-consistency patterns are highly distinguishable in latent representations.
We analyze the hidden states of queries with varying self-consistency levels by extracting the last
token’s representation from the final transformer layer. Specifically, given a query q with the chat
template, we obtain the hidden state H ∈ Rd from the last position before any decoding begins. We
apply Principal Component Analysis (PCA) to project H onto a two-dimensional space. As shown
in Figure 3, queries naturally cluster according to their self-consistency levels in this projected space.
High self-consistency queries (darker blue) naturally form tight clusters, indicating similar reasoning
patterns, while low self-consistency queries (lighter blue) are more dispersed.

Observation 2: Deeper layers exhibit stronger self-consistency separability. We further inves-
tigate how self-consistency patterns evolve across different transformer layers. Let H(l) denote the
hidden representation at layer l. Figure 3 demonstrates that self-consistency becomes increasingly
distinguishable in deeper layers, with the final layer showing the most pronounced separation. This
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Figure 4: Overview of Sonata. (a) Conventional approaches (Yang et al., 2025a) where all queries
receive the same fixed thinking budget (e.g. 4k tokens each) during thinking, regardless of query
complexity, resulting in suboptimal token allocation. (b) Offline training phase where the MLP
adapter learns to predict self-consistency from last-layer hidden states. For each calibration query
Q, the LLM generates multiple responses, and self-consistency is computed as the accuracy among
all sampled answers A. The adapter is trained to map the last hidden states to these self-consistency
scores. (c) At inference time, Sonata employs the trained adapter to predict self-consistency from
query hidden states during prefilling and adaptively allocates lower thinking budgets to higher self-
consistency queries (e.g. Q1 for 1k), reducing overall token cost while maintaining accuracy.

Algorithm 1 Offline Self-Consistency Adapter Training
Require: Calibration dataset Dcal = {qi}Ki=1, LLMM, sampling size N
Ensure: Trained adapter fθ

1: Initialize S ← ∅
2: for i = 1→ K do
3: Sample Ai ← {aj ∼ PM(·|qi, non-thinking)}Nj=1

4: Compute SCi ← 1
N

∑N
j=1 I[aj = a∗i ]

5: Extract hi ← LLML(qi) {Last layer, last token}
6: S ← S ∪ {(hi,SCi)}
7: end for
8: fθ ← Train(S,LMSE) {MSE loss}
9: return fθ

aligns with literature that deeper layers encode more abstract, conceptual, and reasoning-related
knowledge, while shallow layers primarily capture low-level linguistic features (Rogers et al., 2020;
Jin et al., 2025). The strong self-consistency signals in final-layer representations enable our efficient
on-the-fly adapter-based prediction approach, presented in Section 4.

4 METHODOLOGY

In this section, we present the Sonata framework for adaptive thinking budget. We introduce a
lightweight adapter that learns to predict self-consistency from query representations in Section 4.1.
Section 4.2 describes how this adapter enables on-the-fly thinking budget allocation during inference
with negligible computational overhead, achieving optimal performance-efficiency trade-offs.

4.1 TRAINING ADAPTER TO PREDICT SELF-CONSISTENCY

We train a lightweight adapter to predict self-consistency directly from query representations, elim-
inating the need for expensive sampling during inference. Given a calibration dataset Dcal =
{q1, q2, ..., qK}, we first collect self-consistency labels by sampling N answers for each query qk
in non-thinking mode, by enforcing </think> immediately after <think>. The self-consistency
score is computed as SC(qk) = 1

N

∑N
i=1 I[a

(i)
k = a∗k], where a∗k is the ground-truth answer.

5
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Algorithm 2 Online Adaptive Thinking Decision
Require: Test query q, trained adapter fθ, LLMM, threshold τ0
Ensure: Response r with adaptive thinking

1: Extract h← LLML(q) {Prefilling stage: last layer, last token}
2: Predict ŝ← fθ(h) {Self-consistency prediction}
3: if ŝ > τ0 then
4: r ← Generate(M, q, thinking = False) {Direct answer, no thinking}
5: else
6: r ← Generate(M, q, thinking = True) {Generate with thinking}
7: end if
8: return r

As shown in Figure 4 (b), for each query with the chat template, right before decoding, we extract
the last token’s hidden representation hk from the final transformer layer during prefilling. We then
train a two-layer MLP adapter fθ to map these representations to self-consistency scores, followed
by a sigmoid mapping function. Algorithm 1 formally demonstrates the training procedure. Once
trained offline on the calibration dataset, the Sonata adapter is generalizable across queries of
diverse tasks without additional fine-tuning, introducing negligible computational overhead during
inference as it requires only a single forward pass through the lightweight MLP.

4.2 ON-THE-FLY THINKING BUDGET ALLOCATION WITH ADAPTER

At test time, our trained adapter enables adaptive thinking budget allocation with negligible com-
putational overhead. The adapter is model-specific—trained for each LLM architecture, while task-
agnostic, generalizing across diverse downstream queries without retraining. As illustrated in Fig-
ure 4(c), Sonata dynamically determines both whether to engage thinking and how much budget
to allocate based on the query’s hidden representation.

Specifically, given a test-time query q, we extract its hidden representation h = LLML(q) during
the prefilling stage, just before decoding begins. The adapter then predicts the self-consistency
score ŝ = fθ(h), which serves as our confidence indicator. With this prediction, we determine
whether to think for a given query. We compare ŝ against a predefined threshold τ0

3. If ŝ > τ0, the
model proceeds without thinking (directly generating the answer), as high predicted self-consistency
indicates the query is straightforward. Otherwise, thinking is conducted with the model’s default
thinking process. Algorithm 2 formally presents the online inference procedure.

The entire allocation process requires only a single forward pass through the lightweight MLP
adapter, introducing virtually zero latency compared to the LLM’s inference time. Since the adapter
operates on already-computed hidden states from prefilling, no additional LLM forward passes are
needed. This enables Sonata to adaptively decide whether to think based on real-time query com-
plexity, unlike the fixed allocation approach in Figure 4(a), significantly reducing average token
consumption while maintaining performance.

5 EMPIRICAL EVALUATION

In this section, we present comprehensive experiments evaluating Sonata’s effectiveness in adap-
tive thinking budget allocation. In Section 5.1, we present our main experimental results across four
thinking-capable models of varying scales (8B to 235B parameters) on four challenging reasoning
benchmarks, demonstrating its effectiveness and efficiency. Section 5.2 provides detailed ablation
and extended studies examining the impact of different proxy metrics, adapter architectures, thresh-
old configurations, and the computational overhead during inference.

5.1 MAIN RESULTS

Experimental Setup. We evaluate Sonata on five challenging reasoning benchmarks: AIME25,
GSM8K, MATH500, LiveCodeBench, and GPQA, covering mathematical, code generation, and
general reasoning tasks and across diverse difficulties. We conduct experiments on four thinking

3We find that τ0 = 0.3 generally works well, and thus we set it to 0.3 for all experiments in this work.
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Table 1: Comparison results on the AIME25, MATH-500, GSM8K, LiveCodeBench (LCB) and
GPQA across four models with thinking capability. We use temperature = 0.6, top p = 0.95 for
decoding. We report the average performance of three repeated trials for each run. Accuracy (Acc.)
comparable to or higher than the vanilla baseline model are underlined, and the lowest thinking
token counts (#Tokens) among those with underlined accuracy are marked in bold.

AIME25 MATH-500 GSM8K LCB GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 57.8 14421 60.1 7458 74.1 9154

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 49.3 4096 (28%) 57.1 4096 (55%) 64.9 4096 (45%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.1 13496 (93%) 57.6 5913 (79%) 72.7 8364 (91%)

w. Sonata 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 58.2 13054 (90%) 62.0 3590 (48%) 75.3 7535 (82%)

Qwen3-32B 70.0 14971 97.6 3670 94.8 1654 63.8 13729 63.6 5329 78.0 7853

w. Const. Budget 56.7 4096 (27%) 95.8 4096 (112%) 95.3 4096 (248%) 47.0 4096 (30%) 64.1 4096 (77%) 69.8 4096 (52%)
w. Self-Judge 73.3 15625 (104%) 96.2 3107 (85%) 93.1 666 (40%) 59.3 13360 (97%) 54.5 3807 (71%) 75.3 7313 (93%)

w. Sonata 70.0 14890 (100%) 98.0 2583 (70%) 94.4 728 (44%) 63.4 13600 (99%) 63.1 3568 (70%) 77.8 7074 (90%)

GPT-OSS-120B-High 86.7 14390 98.2 2331 85.8 494 - - 75.8 9617 86.6 6708

w. Const. Budget 73.3 4096 (28%) 98.0 4096 (176%) 86.4 4096 (829%) - - 69.2 4096 (43%) 81.7 4096 (61%)
w. Self-Judge 83.3 14045 (98%) 94.4 890 (38%) 87.0 105 (21%) - - 64.1 5894 (61%) 82.2 5234 (78%)

w. Sonata 86.7 13817 (96%) 98.0 1683 (72%) 86.7 385 (78%) - - 70.2 8008 (83%) 85.4 5973 (89%)

Qwen3-235B-A22B 70.0 13831 97.6 4371 94.2 2261 - - 69.2 7049 82.8 6878

w. Const. Budget 43.3 4096 (30%) 94.8 4096 (94%) 95.7 4096 (181%) - - 60.1 4096 (58%) 73.5 4096 (60%)
w. Self-Judge 73.3 13951 (101%) 98.0 4012 (92%) 93.3 1037 (46%) - - 68.2 6658 (94%) 83.2 6415 (93%)

w. Sonata 73.3 13890 (100%) 98.0 2984 (68%) 94.0 998 (44%) - - 70.7 4919 (70%) 84.0 5698 (83%)

models of varying scales: Qwen3-8B, Qwen3-32B, GPT-OSS-120B, and Qwen3-235B-A22B. We
evaluate Qwen3-8B and Qwen3-32B in BF16, GPT-OSS-120B in MXFP4, and Qwen3-235B-A22B
in FP8. For calibration dataset construction, we randomly sample 1000 problems from the Open-
MathReasoning 4 dataset, specifically selecting difficulty level 6 and 7 problems to ensure sufficient
complexity and diversity for training the adapter. During calibration, we use N = 32 samples
per query to compute ground-truth self-consistency scores in non-thinking mode. For all inference
experiments, we employ sampling parameters with top p = 0.95 and temperature = 0.6. For
each evaluation runs, we conduct four repeated trials with random seeds of {233, 234, 235} for
reproducibility. We report pass@1 accuracy for all tasks. All of our experiments are conducted on
NVIDIA B200 GPU servers. We compare Sonatawith two baselines: (1) constant thinking budget
control (Yang et al., 2025a), by predefining the thinking budget and inserting a thinking termination
token when reaching the budget during decoding; and (2) self-judged thinking budget, by first asking
the LLM to decide a thinking budget before decoding the response with or without thinking enabled.

Competitive Efficiency and Accuracy. As shown in Table 1, Sonata demonstrates substan-
tial efficiency improvements across all evaluated models and benchmarks while maintaining or im-
proving accuracy. Several conclusions can be drawn: ❶ Sonata achieves the best efficiency-
performance trade-off on nearly all benchmarks and all models, consistently outperforming both
baselines in terms of token reduction while maintaining comparable or superior accuracy. For in-
stance, on Qwen3-8B, Sonata improves accuracy by 1.4% while reducing tokens by 21% com-
pared to the vanilla model. ❷ The efficiency gains are particularly pronounced on simpler tasks such
as GSM8K and MATH-500 across all models. On GSM8K, Sonata reduces token usage by 55%–
56% for smaller models (Qwen3-8B and Qwen3-32B) while maintaining accuracy, likely because
simpler tasks are more prone to overthinking and wasted tokens, where Sonata provides effective
guidance to mitigate this problem. ❸ Sonata shows greater improvements on weaker models,
such as comparing Qwen3-8B’s 79.6% average accuracy with 21% token savings against Qwen3-
235B-A22B’s 84.0% accuracy with 17% token savings. This suggests that weaker models are more
susceptible to overthinking, and Sonata effectively guides them toward compute-optimal thinking
allocation. ❹ The self-judge baseline shows sometimes decent but inconsistent performance. While
it occasionally maintains accuracy and reduces tokens, especially on larger models (e.g., Qwen3-
235B-A22B achieves competitive performance on AIME25 and MATH-500 with only 1% accuracy
drop on GSM8K and GPQA), it generally underperforms Sonata. This pattern indicates that larger
models potentially possess better self-assessment capabilities for determining thinking necessity on
given queries, though our learned adapter approach remains more reliable overall.

Generalization Across Tasks. A key strength of Sonata is its ability to generalize beyond
the calibration domain. Despite being trained exclusively on mathematical problems from the
OpenMathReasoning dataset, the adapter demonstrates strong transfer to both the GPQA bench-
mark, which requires general scientific reasoning across physics, chemistry, and biology, and Live-
CodeBench, which evaluates code generation capabilities. As shown in Table 1, Sonata achieves

4https://huggingface.co/datasets/nvidia/OpenMathReasoning
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particularly impressive results on these out-of-domain tasks. For example, it improves the accuracy
of GPQA by 1.9% for Qwen3-8B while reducing tokens by 52%, the highest accuracy improvement
across all tasks. On LiveCodeBench, Sonata achieves 58.2% pass@1 for Qwen3-8B and 63.4%
for Qwen3-32B, while reducing tokens by up to 10% compared to vanilla models. Interestingly, we
observe that the token savings on GPQA (from 17% to 52% across models) are comparable to those
on mathematical tasks, despite the domain varying. This pattern holds consistently across all model
scales in our evaluation. The consistent performance across domains suggests that self-consistency
patterns capture fundamental aspects of reasoning difficulty that transcend specific subject matters.
This cross-domain generalization validates that the reasoning difficulty indicators learned through
self-consistency reflect general properties of query complexity and model capability rather than
domain-specific characteristics, making Sonata practical for real-world deployment where queries
often span multiple knowledge domains.

5.2 ABLATION AND EXTENDED RESULTS

Table 2: End-to-end inference efficiency comparison. Peak
memory usage and latency are measured on NVIDIA B200
GPUs with batch size 1. Results are evaluated on MATH-
500 and averaged across all queries. Peak memory is tested
via HuggingFace Inference, while latency and throughput
are tested via vLLM. Qwen3-235B-A22B is evaluated on
two B200 GPUs, while other 3 models are evaluated on one.

Model Memory (GB) (↓) Latency (s) (↓) Throughput (tokens/s) (↑)
Base w. Sonata Base w. Sonata Base w. Sonata

Qwen3-8B 17 16 32.1 23.5 153 157
Qwen3-32B 62 61 32.2 21.5 114 120
GPT-OSS-120B 63 62 13.1 9.3 215 245
Qwen3-235B-A22B 238 237 81.0 51.5 54 58

End-to-End Memory and Latency.
Table 2 presents comprehensive
end-to-end efficiency metrics on
the MATH-500 benchmark. The
lightweight adapter introduces neg-
ligible memory overhead, with less
than 1% increase even for the small-
est model. The detailed analysis
can be found in Appendix B. More
significantly, Sonata achieves sub-
stantial latency reductions ranging
from 27% (i.e., Qwen3-8B) to 36%
(i.e., Qwen3-235B-A22B) by eliminating unnecessary thinking tokens. Interestingly, larger models
benefit more from adaptive allocation. Qwen3-235B-A22B shows the greatest latency reduction
(29.5 seconds saved per query), as the cost of generating thinking tokens scales with model size.
Overall, Sonata demonstrates consistent computational cost in terms of memory and latency,
particularly for larger models where thinking token costs more inference time.

Table 1

Budget (Ours) Accuracy (Ours) Budget 
(Controlled)

Accuracy (Controlled)

0.0 0.0 0.576182982210275 0.0 0.576182982210275

0.05 608.895931261056 0.594372267022002 1024 0.5924

0.1 2159.50976750063 0.672705600355334 2048 0.6147

0.15 4241.13630600930 0.739372267022002 3072.0 0.6539

0.2 5951.98327570627 0.776442974092709 4096.0 0.6880

0.25 6337.33029862691 0.786038933688668 5120.0 0.7156

0.3 7186.95663630237 0.794372267022002 6144.0 0.7397

0.35 7225.97936357510 0.793109640759375 7168.0 0.7507

0.4 7535.24874235149 0.793109640759375 8192 0.7848

0.45 7624.93813629088 0.794372267022002
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Figure 5: Accuracy-efficiency Pareto frontiers com-
paring Sonata against constant budget baseline on
Qwen3-8B and Qwen3-32B. By adjusting the self-
consistency threshold τ0, Sonata consistently outper-
forms the fixed budget approach, achieving up to 50%
token savings at comparable accuracy levels.

Improved Pareto Frontier. Figure 5
demonstrates that Sonata achieves a su-
perior accuracy-efficiency Pareto frontier
compared to the constant budget base-
line across model scales. By adjusting
the adapter’s self-consistency threshold τ0
from 0 to 1, we enable smooth trade-
offs between accuracy and token con-
sumption. The constant budget approach
forces a uniform thinking allocation across
all queries, resulting in suboptimal perfor-
mance, which either sacrifices accuracy on
complex problems or wastes computation
on simple ones. In contrast, Sonata pro-
vides fine-grained, query-adaptive control.
For Qwen3-8B, Sonata maintains consistently higher accuracy across all token budgets, with ac-
curacy improvements reaching up to 10% at similar computational costs. This superiority becomes
more pronounced with larger models, i.e. Qwen3-32B. This superior Pareto frontier demonstrates
Sonata’s more efficient utilization of thinking tokens.

Different Proxy Metrics. Table 3 compares self-consistency against alternative proxy metrics for
predicting thinking necessity. ❶ LM logits entropy (Fu et al., 2025), computed from the softmax dis-
tribution of the last prompt token, performs poorly across all benchmarks. On AIME25, it achieves
only 23.3% and 33.3% accuracy for Qwen3-8B and Qwen3-32B respectively. This significant ac-
curacy drop reveals that single-token-level uncertainty fails to capture true reasoning difficulty. ❷
Attention entropy (Li et al., 2025b), computed from the attention score in the last layer of the last
prompt token, also shows inadequate performance, with 30.0% and 40.0% accuracy on AIME25.
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Table 3: Comparison of different proxy metrics for adaptive thinking allocation on four benchmarks.
We report accuracy (Acc.) and average thinking tokens (#Tokens) across Qwen3-8B and Qwen3-
32B models. Results show that self-consistency (Sonata) substantially outperforms two entropy-
based metrics, i.e. LM logits entropy and Attention entropy, in the accuracy-efficiency tradeoff.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. LM Logits Entropy 23.3 2755 (16%) 93.3 4302 (88%) 93.5 1444 (72%) 55.1 5572 (75%) 66.3 3518 (45%)
w. Attention Entropy 30.0 3124 (18%) 94.0 4185 (85%) 92.8 1389 (70%) 56.3 5891 (79%) 68.3 3647 (47%)
w. Self-Consistency (Sonata) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)

Qwen3-32B 70.0 14971 97.6 3670 94.8 1654 63.6 5329 81.5 6406

w. LM Logits Entropy 33.3 2488 (17%) 94.2 3215 (88%) 92.9 1075 (65%) 57.6 4329 (81%) 69.5 2777 (43%)
w. Attention Entropy 40.0 2915 (19%) 95.0 3088 (84%) 93.2 1188 (72%) 58.6 4542 (85%) 71.7 2933 (46%)
w. Self-Consistency (Sonata) 70.0 14890 (100%) 98.0 2583 (70%) 94.4 728 (44%) 63.1 3568 (70%) 81.4 5442 (85%)

Both entropy-based methods exhibit a critical flaw that they both underallocate thinking budget to
complex problems, i.e. AIME25, where extended reasoning is actually essential. ❸ Self-consistency
(Sonata) demonstrates substantially superior accuracy and efficiency by directly measuring the
model’s ability to consistently solve the problem across multiple attempts, capturing the inherent
reasoning difficulty rather than surface-level LM uncertainty. For example, a query might have high
entropy of the single next token due to multiple valid phrasings but still be easily solvable, whereas
low self-consistency reliably indicates fundamental reasoning challenges. This validates the effec-
tiveness of our self-consistency as the query’s reasoning difficulty proxy.

Table 4: Comparison of different adapter architectures for self-consistency prediction. We evaluate
linear projection, 2-layer MLP (Sonata), and 3-layer MLP across Qwen3-8B and Qwen3-32B
models. The 2-layer MLP achieves superior tradeoff between accuracy and efficiency.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Linear 56.7 15895 (94%) 96.8 3871 (79%) 94.1 917 (46%) 59.6 3804 (51%) 76.8 6122 (78%)
w. 3-Layer MLP 63.0 16321 (96%) 97.2 3759 (77%) 95.4 913 (46%) 61.6 3582 (49%) 79.3 6144 (78%)
w. 2-Layer MLP (Sonata) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)

Qwen3-32B 70.0 14971 97.6 3670 94.8 1654 63.6 5329 81.5 6406

w. Linear 63.3 14272 (95%) 96.8 2908 (79%) 93.6 761 (46%) 61.1 3747 (70%) 78.7 5422 (85%)
w. 3-Layer MLP 69.7 14935 (100%) 97.8 2642 (72%) 94.3 712 (36%) 63.6 3659 (69%) 81.4 5487 (86%)
w. 2-Layer MLP(Sonata) 70.0 14890 (100%) 98.0 2583 (70%) 94.4 728 (44%) 63.1 3568 (70%) 81.4 5442 (85%)

Different Adapter Design. Table 4 evaluates various adapter architectures for self-consistency
prediction. We compare the performance between a simple linear projector vs. our 2-layer MLP
in Sonata vs. a 3-layer MLP. Experimental results demonstrate the superiority of our MLP for
learning self-consistency from the query last-layer representations. Specifically, our 2-layer MLP
consistently achieves 79.6% average accuracy on Qwen3-8B and 81.4% on Qwen3-32B, while the
linear projector achieves approximately 3% lower despite similar token usage. Moreover, adding a
third layer (i.e. the 3-layer MLP) provides diminishing returns, with nearly same accuracy and effi-
ciency compared to our 2-layer MLP. This finding aligns with our observation that self-consistency
clusters are well-separated in the latent space, as shown in Section 3.2, suggesting that a lightweight
non-linear adapter is sufficient to learn the decision boundaries, while the linear projector struggles
to capture non-linear relationships between hidden states and self-consistency patterns.

Calibration Set Size. To further test the robustness of Sonata under resource-constrained sce-
narios, we evaluate the adapter with reduced calibration datasets of 100 and 200 samples, compared
to the original 1000 samples in Table 1. Table 5 presents results on Qwen3-8B across all bench-
marks. Remarkably, Sonata maintains consistent performance even with only 100 calibration
samples, achieving 79.0% average accuracy while reducing tokens by 17%, compared to 79.6% ac-
curacy and 21% token reduction with 1000 samples. The adapter with 200 samples nearly matches
the full calibration performance. These results demonstrate that Sonata is robust to calibration set
size and can be effectively deployed in low-resource scenarios.

Table 5: Ablation study on calibration dataset size. Results on Qwen3-8B across all benchmarks
with 1000, 200, and 100 calibration samples. Token percentages are relative to the vanilla model.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 57.1 4096 (55%) 68.8 4096 (52%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)

w. Sonata (1k samples) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata (200 samples) 60.0 16990 (100%) 97.0 3750 (77%) 95.4 865 (43%) 61.3 3483 (47%) 78.4 6272 (80%)
w. Sonata (100 samples) 63.3 17005 (100%) 96.8 3883 (79%) 95.0 1005 (50%) 60.9 3994 (54%) 79.0 6472 (83%)
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Integration with Existing Methods. A key advantage of Sonata is its compatibility with exist-
ing CoT optimization techniques. To validate this, we integrate Sonata with REFRAIN (Sun et al.,
2025), a representative early-stopping method for CoT reasoning. Specifically, we first apply our
Sonata adapter to decide whether to enable thinking; if thinking is enabled, REFRAIN is then ap-
plied during the generation phase to determine when to terminate reasoning early. Table 6 presents
results on Qwen3-8B across all benchmarks. The combined approach achieves 78.7% average ac-
curacy while reducing token usage to 64% of the vanilla model, representing an additional 15%
token reduction compared to Sonata alone (79% token usage) with minimal accuracy drop. These
results demonstrate that Sonata serves as an effective outer “when to think” controller that natu-
rally composes with existing efficient reasoning methods, enabling further efficiency gains through
orthogonal optimization.
Table 6: Integration of Sonata with REFRAIN early-stopping method. Results on Qwen3-8B
across all benchmarks. Token percentages are relative to the vanilla model.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 57.1 4096 (55%) 68.8 4096 (52%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)

w. Sonata 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata + REFRAIN 60.0 12840 (76%) 97.6 3309 (68%) 95.0 845 (42%) 61.8 2958 (40%) 78.7 4988 (64%)

Multi-position and Multi-layer Aggregation. To investigate whether aggregating information
from multiple positions or layers could improve adapter performance, we evaluate two variants: (1)
concatenating hidden states from the last token across the last 4 layers, and (2) concatenating hidden
states from the last 4 tokens at the final layer. Table 7 presents results on Qwen3-8B across all
benchmarks. The original Sonata design using only the last token from the last layer achieves the
best overall performance with 79.6% average accuracy and 79% token usage. In contrast, the last-4-
layers variant achieves 78.4% accuracy with 78% token usage, while the last-4-tokens variant shows
significantly degraded performance at 71.1% accuracy. These results validate our design choice
motivated by Figure 3, which demonstrates that self-consistency patterns are most distinguishable
in the final layer. Incorporating information from multiple positions or layers appears to introduce
noise rather than a beneficial signal.
Table 7: Ablation study on multi-position and multi-layer aggregation. Results on Qwen3-8B across
all benchmarks. Token percentages are relative to the vanilla model.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 57.1 4096 (55%) 68.8 4096 (52%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)

w. Sonata (last layer, last token) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata (last 4 layers, last token) 63.3 16449 (97%) 95.8 3740 (76%) 94.7 996 (50%) 59.8 3302 (44%) 78.4 6122 (78%)
w. Sonata (last layer, last 4 tokens) 46.7 9549 (56%) 88.2 2948 (60%) 91.3 523 (26%) 58.2 2840 (38%) 71.1 3965 (51%)

6 CONCLUSION

In this work, we investigate the adaptive allocation of thinking budgets in large language mod-
els (LLMs), revealing that self-consistency serves as a principled proxy for determining when
and how much long chain-of-thought (CoT) reasoning is needed. By analyzing the relationship
between self-consistency and thinking necessity, we show that queries with low self-consistency
benefit significantly from extended reasoning, while high self-consistency queries require mini-
mal or no thinking. This insight is further validated by our observation that self-consistency pat-
terns are highly distinguishable within the latent space, enabling efficient prediction without ex-
pensive sampling. Leveraging these findings, we propose Sonata, a lightweight, offline-trained
adapter that predicts self-consistency directly from query hidden representations during the prefilling
stage. Sonata dynamically allocates thinking budgets on-the-fly, introducing negligible computa-
tional overhead (< 1‰) while being generalizable across diverse tasks without task-specific fine-
tuning. Experimental results across multiple models (Qwen3-8B, Qwen3-32B, GPT-OSS-120B,
Qwen3-235B-A22B) and challenging benchmarks (AIME25, GSM8K, MATH500, GPQA, Live-
CodeBench) demonstrate that Sonata achieves up to 60% reduction in thinking tokens while main-
taining or improving accuracy by up to 2%. Importantly, Sonata is compatible with existing CoT
compression techniques, enabling further efficiency gains when combined with these methods. Our
approach offers a practical and interpretable solution for optimizing test-time compute in reasoning
models, paving the way for more efficient deployment of thinking LLMs at scale.
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ETHICS STATEMENT

This work focuses on improving the computational efficiency of large language models during in-
ference, which we believe contributes positively to making AI systems more accessible and envi-
ronmentally sustainable by reducing computational resource requirements. Our research does not
involve human subjects, and all experiments use publicly available benchmarks (AIME25, MATH-
500, GSM8K, GPQA, LiveCodeBench) that contain no sensitive personal information. The adaptive
thinking allocation mechanism we propose does not introduce discriminatory biases and treats all
queries based solely on their intrinsic reasoning complexity. We have no conflicts of interest to de-
clare, and this work was conducted without external funding that could influence our findings. We
believe our research adheres to the ICLR Code of Ethics and poses no foreseeable risks to individuals
or society.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details through-
out the paper and supplementary materials. The core algorithms for our adapter training and infer-
ence are detailed in Algorithms 1 and 2. All experiments use publicly available models from the
Qwen3 family and GPT-OSS, with model identifiers and access instructions provided in Section 5.
Our calibration dataset construction process, using 1000 problems from the OpenMathReasoning
dataset, is described in Section 5. Exact hyperparameters including sampling parameters, number
of samples for self-consistency computation, and threshold settings are specified throughout Sec-
tion 5. The adapter architecture (two-layer MLP) and training procedure are detailed in Section 4.
All experiments were conducted on NVIDIA B200 GPUs with reproducibility ensured through fixed
random seeds {233, 234, 235}. Evaluation metrics and benchmark details are provided in Section 5,
with results averaged over three trials for statistical reliability.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

To improve readability, we utilized Anthropic’s Claude Opus 4.1 exclusively as a language polishing
tool. We use it for grammar correction, proofreading, and stylistic refinement. It did not contribute
to the generation of any scientific content or ideas, and its usage is consistent with standard practices
for scientific writing.

B TECHNICAL DETAILS

B.1 ADAPTER ARCHITECTURE DETAILS

Our adapter employs a 2-layer MLP architecture designed to map high-dimensional hidden repre-
sentations to self-consistency predictions. This architecture uses only 64 hidden units to minimize
inference overhead.

Pseudocode. We show some pseudocode to demonstrate the implementation of our proposed
Sonata adapter in JAX style.

def mlp_predictor(params, x):
"""Two-layer MLP for self-consistency prediction.

Args:
params: {’w1’: (d, 64), ’b1’: (64,),

’w2’: (64, 1), ’b2’: (1,)}
x: Hidden states of shape (d,)

Returns:
Self-consistency prediction in [0, 1]

"""
# First layer with GELU
h = gelu(x @ params[’w1’] + params[’b1’])
h = dropout(h, rate=0.1) if training else h

# Output layer with sigmoid
y = sigmoid(h @ params[’w2’] + params[’b2’])

return y

Training Details. The adapter is trained using MSE loss between predicted and ground-truth self-
consistency scores. We employ Xavier uniform initialization for weights and zero initialization for
biases to ensure stable training. Training uses AdamW optimizer with learning rate 10−5 and weight
decay 10−5. We train with batch size 16 and employ a linear learning rate scheduler that decays from
10−5 to 10−6 over the training period. Gradient clipping is applied to ensure stable training. The
total number of its parameters is (d × 64) + 64 + (64 × 1) + 1, which for Qwen3-8B (d = 4096)
consumes around 262K parameters, negligible compared to the 8B parameters of the base LLM.
This results in less than 0.1% additional FLOPs compared to a single transformer layer forward
pass, validating our claim of negligible computational overhead.

B.2 SELF-JUDGE

The self-judge baseline asks LLM to assess its own need for extended CoT reasoning before generat-
ing a response. This method involves prompting the model to make a binary decision about whether
to engage its thinking capability.
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Specifically, for each query QUESTION, we first prompt the model with:

Analyze the following question and determine if it requires
very long step-by-step thinking for you to solve correctly:

Question: {QUESTION}

Does this question require very long, complex thinking?
Answer with only ’YES’ or ’NO’.

Based on the model’s response, we proceed as follows: ❶ If the model responds “YES”, we enable
thinking mode by allowing the model to generate chain-of-thought tokens between <think> and
</think> tags before producing the final answer. ❷ If the model responds “NO”, we enforce
immediate termination of thinking by inserting </think> directly after <think>, forcing the
model to generate the answer without intermediate reasoning steps.

Notably, this baseline requires an additional forward pass for the self-assessment, incurring approx-
imately 100-200 tokens of prefilling overhead per query for the judgment prompt and response.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXTENDED SONATA WITH THINKING GAIN PREDICTION

We evaluate an extended version of Sonata that predicts both self-consistency and thinking gain
together. We train two separate adapters: one for self-consistency prediction (as in the original
Sonata) and another for thinking gain prediction. Specifically, the extended adapters only enable
thinking if predicted self-consistency < 0.3 and predicted thinking gain > 0.1; otherwise, proceed
without thinking.

Table 8 presents results on Qwen3-8B across all benchmarks. The extended Sonata achieves
79.3% average accuracy with 80% token usage, nearly identical to the original Sonata (79.6%
accuracy, 79% token usage). This negligible difference validates our observation that intrinsically
difficult queries are rare in practice and have minimal impact on overall performance. The original
binary self-consistency-based approach is therefore sufficient for practical deployment.

Table 8: Comparison of original Sonata with extended version that predicts both self-consistency
and thinking gain. Results on Qwen3-8B across all benchmarks.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Sonata (self-consistency) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata (self-consistency + thinking gain) 63.3 16985 (100%) 97.2 3650 (74%) 95.0 905 (45%) 61.7 3483 (47%) 79.3 6256 (80%)

C.2 FINE-GRAINED SELF-JUDGE BASELINE

To ensure a fair comparison with self-judge baselines, we evaluate a fine-grained 5-level difficulty
rating prompt in addition to the binary version presented in the main paper. Specifically, the model
first predicts a difficulty score S ∈ {1, 2, 3, 4, 5}, then allocates a thinking budget of (S− 1)× 2048
tokens, where S = 1 corresponds to no thinking.

Table 9 presents results on Qwen3-8B across all benchmarks. The 5-level self-judge achieves 76.3%
average accuracy with 94% token usage, underperforming both the binary self-judge (76.6% accu-
racy, 90% token usage) and Sonata (79.6% accuracy, 79% token usage). The degraded perfor-
mance suggests that fine-grained budget allocation without training or adaptation can be challenging
for models to execute reliably.

C.3 FINE-GRAINED THINKING CONTROL

As an early attempt to explore whether more granular thinking budget allocation could improve per-
formance with our method, we extend Sonata from binary control to 4-level control with thresh-
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Table 9: Comparison of binary and 5-level fine-grained self-judge baselines. Results on Qwen3-8B
across all benchmarks.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Self-Judge (binary) 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)
w. Self-Judge (5-level) 60.0 16990 (100%) 94.6 4323 (88%) 94.3 2350 (118%) 56.1 5857 (79%) 76.3 7380 (94%)

w. Sonata 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)

olds {0.3, 0.5, 0.7, 0.9} corresponding to thinking modes: {non-thinking (0 tokens), low thinking
(< 1024 tokens), medium thinking (< 4096 tokens), high thinking (unlimited tokens)}.
Table 10 presents results on Qwen3-8B across all benchmarks. The 4-level Sonata achieves 78.4%
average accuracy with 75% token usage, slightly underperforming the binary version (79.6% accu-
racy, 79% token usage). The degraded performance suggests that fine-grained control introduces
brittleness due to complex threshold combinations that are difficult to tune manually. Future work
could explore data-driven or training-based methods to automatically optimize thresholds for fine-
grained thinking control, though our results validate the simplicity and effectiveness of the binary
design for practical deployment.

Table 10: Comparison of binary and 4-level fine-grained thinking control. Results on Qwen3-8B
across all benchmarks.

AIME25 MATH-500 GSM8K GPQA Average
Methods Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓) Acc. (↑) #Tokens (↓)
Qwen3-8B 60.0 16995 97.6 4900 95.2 1994 60.1 7458 78.2 7837

w. Const. Budget 30.0 4096 (24%) 93.2 4096 (84%) 95.0 4096 (205%) 57.1 4096 (55%) 68.8 4096 (52%)
w. Self-Judge 60.0 17019 (100%) 96.0 4315 (88%) 92.7 1076 (54%) 57.6 5913 (79%) 76.6 7080 (90%)

w. Sonata (binary) 63.3 16449 (97%) 97.4 3694 (75%) 95.6 890 (45%) 62.0 3590 (48%) 79.6 6156 (79%)
w. Sonata (4-level) 63.3 16449 (97%) 96.2 3258 (66%) 95.4 853 (43%) 58.8 2983 (40%) 78.4 5886 (75%)

C.4 EXAMPLES AROUND DECISION THRESHOLD τ0 = 0.3

We empirically determined τ0 = 0.3 as our decision threshold by evaluating values in
{0.1, 0.3, 0.5}. We found that τ0 = 0.1 resulted in significant performance degradation, while
τ0 = 0.5 led to excessive token consumption. The threshold τ0 = 0.3 represents an optimal balance
between accuracy and efficiency. To further illustrate the effectiveness of this threshold, we provide
two examples from MATH-500 on Qwen3-8B with their predicted self-consistency scores:

Example 1 (adapter score = 0.25, below threshold): “Let p(x) be a polynomial of degree 5 such that
p(n) = n

n2−1 for n = 2, 3, 4, . . . , 7. Find p(8).”

Example 2 (adapter score = 0.42, above threshold): “The proper divisors of 12 are 1, 2, 3, 4 and 6.
A proper divisor of an integer N is a positive divisor of N that is less than N . What is the sum of
the proper divisors of the sum of the proper divisors of 284?”

Both examples are labeled as difficulty level 5 (hardest) in MATH-500. However, Example 1 re-
quires abstract algebraic reasoning and polynomial-construction techniques typically requiring com-
petition mathematics experience, while Example 2 primarily involves arithmetic and divisor fluency
with more straightforward reasoning.

Empirically, over 3 trials per example, Qwen3-8B achieves pass@3 = 0 without thinking and pass@3
= 1 with thinking on Example 1, while achieving pass@3 = 1 for both modes on Example 2. Our
Sonata policy with τ0 = 0.3 correctly answers both examples while avoiding unnecessary thinking
cost on Example 2 and preserving necessary thinking for Example 1.

C.5 MODEL OUTPUTS BEFORE AND AFTER APPLYING SONATA

To clarify potential misunderstandings, Sonata does not change the model’s reasoning dynamics
or content. It only shifts between thinking mode (with intermediate reasoning) and non-thinking
mode (without intermediate reasoning). We further provide a concrete example from MATH-500:

Input Query: “How many positive whole-number divisors does 196 have?”
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Output Before Applying Sonata (with thinking enabled, abbreviated for space):

<think>
Okay, so I need to figure out how many positive whole-number divisors 196 has. Hmm,
divisors... right. Let me recall. Divisors are numbers that divide another number without
leaving a remainder. [... extensive reasoning process omitted ...] Therefore, the final answer
is: \boxed{9}. I hope it is correct.
</think>

To determine how many positive whole-number divisors the number 196 has, we can
use the **prime factorization method** combined with a well-known divisor-counting
formula. [... detailed explanation ...] Therefore, the final answer is: \boxed{9}. I hope it is
correct.

Output After Applying Sonata (thinking disabled, direct answer):

<think>

</think>

To find how many **positive whole-number divisors** the number **196** has, we
follow these steps: [... direct solution without intermediate reasoning ...] Therefore, the
number of positive whole-number divisors of 196 is: \boxed{9}. Therefore, the final answer
is: \boxed{9}. I hope it is correct.

Both outputs produce the correct answer, but Sonata eliminates the unnecessary thinking tokens
for this straightforward arithmetic problem, resulting in significant computing savings.

D DISCUSSION

Future Directions. While our current work focuses on deciding whether to think before any rea-
soning tokens are generated, an interesting extension would be to dynamically adjust reasoning
length during ongoing long-form reasoning based on self-consistency signals. This would require
(1) a richer controller that can operate across larger hidden spaces beyond our current single-hidden-
state MLP, and (2) a potentially more complex training setup, either through substantial addi-
tional offline data with early-stopped reasoning traces to supervise fine-grained stopping policies,
or through online reinforcement learning that directly optimizes early-stopping controllers under to-
ken budget-performance trade-offs. Both directions represent promising avenues for future research
in adaptive test-time compute allocation.
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