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Abstract

In this work, we focus on Byzantine-resilient distributed learning. While consider-
able efforts have been made to develop robust aggregations, the underlying threat
model, especially under non-IID data distributions, remains under-explored. This
imbalance may create a false sense of security about the effectiveness of current
defenses. To address this gap, we revisit and calibrate existing Byzantine attacks to
better reflect the challenges of leaning on heterogeneous data, enabling more realis-
tic stress testing of defenses. Through systematic evaluation on standard benchmark
datasets and using diverse partitioning strategies, we show that data heterogeneity
provides adversaries with a larger leeway for model poisoning. We leverage this
insight to critically evaluate existing defenses. Our findings underscore the need
to assess robustness not only through defense design, but also through carefully
calibrated and realistic threat models

1 Introduction

Distributed Machine Learning [40] has seen rapid adoption across a variety of real-world applications.
As a result, there has been a growing interest in ensuring that ML algorithms are trustworthy.
Threats against ML models span adversarial perturbations [34]], backdoor attacks [32], data and
model poisoning [10} 4] to arbitrary faults and reliability issues. In distributed learning these
threats fall under Byzantine faults [31} 5]]. This adversarial abstraction encompasses a general set of
faulty behaviors exhibited by nodes in a distributed system, including both unintentional errors (e.g.
software bugs, hardware failures) and active malicious behavior [3| 37, [14]. Although the feasibility
of Byzantine attacks in real-world ML systems has been debated, examples show they can arise
both deliberately [9] and inadvertently [39]. To that end, Byzantine-robust aggregation rules replace
simple averaging at the server. These estimators protect model integrity even when some clients
behave maliciously. Under independent and identically distributed (IID) data, defenses have been
both theoretically and empirically proven to guarantee exact robustness [S} 138}, 27, [11} 36} |6, [15]].
In such settings, poisoned updates are easier to detect since updates from clients with similar data
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distributions are comparable [16]], allowing even stealthy strategies [3, 37] to stand out. However,
real-world collaborative learning typically involves non-IID data, wherein participants hold different
data distributions. This complicates the task of detecting and defending against attacks, as updates
naturally vary across participants. Although, numerous works have tackled this challenge, some
rely on a validation data [[7,[8, 28] at the server, which may not always be available. Others mitigate
variance by mixing client updates either based on euclidean distance or randomly [2} [18]; however,
this risks blending benign and malicious updates, potentially worsening performance. Finally, some
works rely on penalties either as a regularization [23}[12] or as a way to downgrade malicious clients
impact on model update. Conversely, DnC [29] uses SVD and dimensionality reduction to filter out
suspected clients while alleviating the curse if dimensionality. Finally, the addition of momentum
helps the defenses safeguard against time-coupled attacks [17]]. In this work, we focus on the threat
model under data heterogeneity. Although this is a realistic setting for collaborative learning, few
attacks are explicitly designed for the non-IID case. For instance, [29] introduces the Min-Max and
Min-Sum attacks, which solve an optimization problem to craft perturbations that allow Byzantine
gradients to blend in with the honest majority while exceeding the distance of the farthest benign
client. This effectively weaponizes heterogeneity to conceal poisoning. Intuitively, the farther the
worst benign client is from the majority, the larger the perturbation an adversary can apply without
detection. Although effective, these attacks require access to the honest clients’ gradients at each
iteration and involve solving an optimization problem, making them impractical in many real-world
settings. The only other attack explicitly designed for the non-IID case is Mimic [18], where the
attacker does not inject poisoned gradients but instead over-represents an honest client, biasing the
model toward that client’s distribution. While this leads to degraded global performance, it is not an
active poisoning strategy. Together, these limitations highlight the need for better-designed attacks in
the Byzantine heterogeneous setting.

In this work, we revisit and adapt existing attacks for non-IID data and show that current evaluations
often underestimate the true strength of the adversary. While prior work such as [30,|19] critiques
evaluation practices, it overlooks state-of-the-art provably robust defenses under data heterogeneity,
such as Bucketing [18]] and NNM [2]. Moreover, these critiques primarily focus on the exclusion of
strong poisoning attacks [29, 3} 37]. Our study reveals a broader issue: evaluations not only exclude
strong Byzantine attacks but also fail to calibrate attack strength appropriately for the challenges
posed by data heterogeneity.

To address this, we revisit the threat model in Byzantine machine learning. Since we are interested in
robustness under data heterogeneity and its impact on the performance of Byzantine defenses: (1) We
experiment with Byzantine attacks originally designed for the IID case, tuning their hyperparameters,
particularly those controlling perturbation strength, for the non-IID setting. We find that attacks
such as ALIE [3]] and IPM [37]] can cause significantly more damage than previously reported when
properly adapted to non-IID data. (2) Specifically, we demonstrate that data heterogeneity allows
stronger perturbations to remain undetected, leading to degraded model performance. Moreover, the
higher the degree of heterogeneity, the greater the perturbation an adversary can exploit without being
flagged. Our findings highlight a critical but often overlooked insight: robustness depends not only
on sophisticated defenses, but also on realistic threat models and evaluation protocols.

2 Evaluation

Our goal is to investigate how well robust defenses withstand poisoning attacks under increasing
levels of data heterogeneity, rather than by simply increasing the number of adversaries. While prior
work typically stresses defenses by raising the proportion of Byzantine clients, this may be unrealistic
in practice. As highlighted in [30, 35], real-world federated learning deployments often involve
a small fraction of compromised clients. Instead, we stress-test defenses by leveraging a system
property that is both uncontrollable and often overlooked: data heterogeneity.

We argue that more attention should be given to the severity of heterogeneity that may naturally arise
in realistic settings, and that this should be explicitly reflected in robustness evaluations. From the
attacker’s perspective, greater heterogeneity enables stronger perturbations to remain undetected.
To investigate this, we vary the strength parameters z (for ALIE) and e (for IPM) under a fixed
adversarial budget. Specifically, we evaluate each defense under ALIE and IPM attacks with a
fixed number of Byzantine clients, b = 5 out of n = 25, while varying both the attack strength
(z,e €0,0.5,2.5,5,8,10) and the heterogeneity level (3 € 0.1,0.3,0.5). Notably, prior evaluations



often use default attack strengths calibrated for stealth in IID settings, typically € = 0.1 for IPM and
z ranging from 0.25 to 2.5 for ALIE. In contrast, our study explores how much more damaging these
attacks can become when properly adapted to heterogeneous data.

Top-1 Test Accuracy We evaluate all models using Top-1 test accuracy. Reported values are the
mean of three independent runs with distinct random seeds. Test accuracy is the standard metric
in Byzantine-robust learning because it directly measures a defense’s ability to preserve predictive
performance under training-time poisoning. Since experiments are performed on widely used
benchmark datasets with well-established baselines, any substantial drop in accuracy unambiguously
signals that the defense has failed.

Datasets & Data Splits We use three standard benchmark datasets in distributed learning: FMNIST
(with LeNet-5 [22]), SVHN [26], and CIFAR-10 [20] (with AlexNet [21]]). To simulate non-IID
data, we skew the label distribution across clients using Latent Dirichlet Sampling, which draws
client-specific label distributions from a Dirichlet distribution Dir (/). The concentration parameter
B controls the degree of heterogeneity: smaller values of 3 produce more imbalanced, heterogeneous
data splits [24} 33 [2].
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Figure 1: Maximum achieved T'op— 1 Test Accuracy for all studied aggregations on varying FMNIST
non-IID splits. under § = 20% Byzantine performing for varying degrees of attack strength z and €
for ALIE (Row 1) and IPM (Row 2) respectively

Table 1: Max (%) Top-1 Test Accuracy (mean+std) across 7' = 6000 for SVHN trained with 5
different defenses (averaged for 3 runs). We experiment with multiple levels of heterogeneity 3. We
have a proportion of malicious attackers § = 17%. Each block, (i.e., for a dateset under a level of
heterogeneity (3), we bold the attacks for which the defense achieves the worst accuracy (i.e., the
most potent attack)

RFA (buck) CMLS CCLIP trMean(NNM) DnC

ALIE (z =8) 26.34+12.22 25.66+8.58 29.97 £9.11 20.09+0.71 87.55+0.33
IPM (e =2.5) 6243 +£28.73 84.32+0.63 83.81+1.45 83.41+0.80 86.93+0.36

SVHN (5 = 0.5) MinMax 81.80£1.61 81.56+271 63.54+1657 81.82+090 86.38+1.21
MinSum 84.50+2.15 8355+0.76 8554+0.54 84.23+0.40 86.78 +0.71

SF 86.33£0.32 7848 +8.00 87.25+0.35 82.78 £0.61  85.60 £ 0.97

ALIE (z =8) 26.15+9.20 20.34+1.06 27.30 +8.07 19.59+0.00 87.82+0.59

SVHN (3 = 0.3) IPM (e =2.5) 7858+126 8029+0.06 80.38+2.19 16.29 +4.66  84.26 +0.91

MinMax 82.62+0.52 79.19+£0.26 50.76+29.41 79.59+1.16 82.46 +1.47
MinSum 83.78+£0.46 79.60+0.66 86.49 +0.47 8226+0.75  83.81+1.60
SF 84.06+1.20 80.15+0.66 86.28+0.09 39431459 84.49+0.30




Table 2: Top-1 Test Accuracy (%) (meanztstd averaged for 3 runs) of different defenses trained for
T = 8000 under various combinations of 3 on CIFAR10 for b = 3 Byzantine clients out of n = 17.

RFA (buck) CMLS CCLIP  trMean(NNM)

ALIE (- —8) 2326+ 1.39 2171+ 281 17.89 +5.64 21.93 + 1.49

B IPM (c = 2.5) 3930 £ 035 4420+ 1.16 5095+ 153 5220 + 022
CIFARIO(B=03) =\ Max 3799+ 134 4296+ 0.68 37.81 £ 095 49.60 + 0.87
MinSum 4600 £ 050 4336 +089 53331041 52.67 & 0.50

SF 5276 £ 103 4412+ 043 6358 +047 51.58 +2.03

ALIE (z — 8) 2129 £ 2.15 19.01 + 047 24.07 + 143  18.90 + 6.39

B IPM (e = 2.5) 4380+ 139 50534018 S51.01+090 5655+ 0.74

CIFARIO (B =05) ™ \riMax 4426+ 069 48.92 £ 236 3533 +228  53.84 + 0.07
MinSum 5157 & 1.14 49.05+£030 5558 +089 59.78 & 1.36

SF 5337 £ 042 5007 £224 64.62+1.04 2393 +9.05

Failure Under Strong Perturbations. The results presented in Figure[T]illustrate that current SOTA
non-IID Byzantine defenses struggle under strong adversarial perturbations across heterogeneity
levels. For the FMNIST dataset under ALIE attack (row 1 of figure [I) all defenses experience
significant accuracy drops that grow as the perturbation increases, signaling that although the attack
is getting aggressive the defenses are unable to filter out the poisoned updates. For MNIST however,
DnC is capable of withstanding the poisoning maintaining accuracy comparable to the honest setting
where no attacker is present and trtMean(NNM) becomes effective recovering its original accuracy
once the strength of the attack surpasses a threshold z = 5 especially under mild non-IID data

(8 € {0.3,0.5}).

Under IPM attack (Row 2 of figure [T)) the same trend appears. Mainly, all defenses experience
accuracy drops as the strength of the attack augments and as heterogeneity grows, however the
decline in performance is not as aggressive as ALIE and most defenses accuracy plateaus once
e > 2.5 at the exception of trMean(NNM) that always recovers its accuracy especially as the
perturbation grows and heterogeneity drops. That is, as the attacker is becoming aggressive NNM
succeeds at filtering out all poisoned updates. For the rest of the defenses, accuracy remains low as
perturbations grow, that can be attributed to the way these defenses operate: RFA(Buck) randomly
mixes gradients in the pre-processing phase, leading to contamination of honest gradients with highly
poisoned updates making it harder to recover. The CMLS variant on the other hand may fail to
recover because of its inclusion strategy. The LS defense include all submissions in the update with
a penalty. Consequently, due to the large perturbations introduced by the attackers in this case the
model becomes compromised as penalties may fail to contain the poisoned vectors.

Defense Recommendation Singular-value decomposition
(SVD) coupled with dimensionality-reduction techniques, as used
in DnC [29]], has demonstrated strong empirical robustness across 25,
datasets and threat models. Yet Fig. [2] shows that DnC is also
the slowest defense we evaluated, taking roughly 3 s per round at £

Defenses Runtime Comparison
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d = 500k and n = 25 , compared with 0.2's for Buck (RFA with ~ £.o %i:i:i:
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coordinates cuts the full-SVD cost of O(d?), it however does Buck cmis onc
not fully eliminate the overhead. Future work should explore

lightweight, scalable spectral defenses that preserve robustness
without prohibitive runtime. These results also highlight a broader
limitation: similarity and distance-based aggregation strategies
can fail under data heterogeneity, where honest updates naturally
diverge.

Figure 2: Runtime Comparison
of the studied defenses with n =
25 and d = 500k.

Comparing Attacks We compare state of the art Byzantine attacks MinMax, MinSum that solve an
optimization problem to find the optimal perturbation and SF [1]], to ALIE with (z = 8) and IPM with
(e = 2.5) the recovered optimal perturbations from our ablation studies. We test the studied defenses
on SVHN table [1]and CIFAR10 table [2| under Dirichlet non-IID splits 8 € {0.3,0.5}. Across all
settings, calibrated ALIE and IPM consistently degrade test accuracy more effectively than other



attacks. In particular, the highest Top-1 accuracy achieved under these calibrated attacks does not
exceed 24%, highlighting their potency when tuned for heterogeneity.

3 Conclusion

In this work, we revisited the evaluation of Byzantine-robust defenses under data heterogeneity
and revealed that existing practices systematically underestimate adversarial strength. By adapting
classical IID-based attacks such as ALIE and IPM to the non-IID setting, we showed that state-of-the-
art defenses can suffer substantial accuracy degradation once perturbations are properly calibrated to
heterogeneity. These findings emphasize that robustness in distributed learning depends not only on
sophisticated defenses, but also on realistic threat models and evaluation protocols that reflect the
challenges of real-world deployments.

Looking ahead, advancing Byzantine-robust machine learning will require principled defenses that
scale to large federated systems while withstanding calibrated, heterogeneous adversaries. Equally
important will be the development of standardized benchmarks and threat models to foster reliable,
reproducible evaluation practices in robust learning.
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A Ethics considerations

This paper provides a re-evaluation of Byzantine robustness in distributed machine learning systems,
uncovering how attacks can be optimized to exploit data heterogeneity, resulting in significant degra-
dation of model accuracy. While detailing these vulnerabilities could potentially inform malicious
actors, our primary objective is to highlight the limitations of current evaluation methodologies,
which may offer a false sense of security.

By exposing these weaknesses, we aim to motivate the development of stronger defenses and ensure
models are safeguarded against worst-case scenarios. In keeping with ethical research practices, it is
crucial to balance the open dissemination of findings with the responsibility to prevent misuse.

While our work primarily focuses on identifying vulnerabilities, we underscore the importance of
concurrently developing and implementing effective defense mechanisms to mitigate these risks.

By fostering transparent discussions about these issues, we contribute to the advancement of secure
and resilient distributed learning systems, aligning with the broader goal of promoting ethical practices
in machine learning research.

B Byzantine Attacks

In this section, we go over state of the art Byzantine attacks. We mainly consider those that are shown
to incur significant damage to the accuracy achieved by distributed learning algorithms. We exclude
simpler attacks namely Label Flipping (LF) [5], Gaussian Noise [25] and adaptive attacks that rely on
knowledge about the aggregation [14] used by the server as they both acquire additional knowledge
and are only powerful against a handful of defenses they are tailored for.

Byzantine attacks typically involve the manipulations of gradient vectors, rather than submitting
random noise. This strategy allows adversaries to blend in with honest clients while still disrupting
training dynamics. Let k € RT, n € R, v € R and § a legitimate gradient vector either computed or
intercepted by malicious clients. Most Byzantine attacks fall into one of the following categories:

» Magnitude of the gradient: This is a class of attacks that aims to poison the model by
tampering with the magnitude of the gradient update, either by shifting or scaling the
gradient. Attack vectors from this class can be written in the form kg + nv.

* Direction of the Descent (Sign Inversion): Malicious clients invert the sign of their
gradients (often sending —x¢§) to push the global update in the opposite direction. A simple
yet disruptive attack causing the model to move away from the true descent direction.

* Defense Manipulation: These attacks take advantage of the learning setting and the way
standard aggregations operate. In particular, the goal is to circumvent defenses [[14, [18]].



Table 3: Summary of prominent Byzantine attacks used in distributed learning. Each attack is
characterized by its knowledge assumptions (e.g., omniscient vs. non-omniscient), whether it is
aware of the aggregation rule, the form of its attack vector, whether collusion between adversaries
is required, and its manipulation strategy (e.g., direction of the update, magnitude of the update, or
targeted (tailored)). This classification highlights key differences in how attacks operate and the
assumptions they make, which is essential for evaluating their practical applicability under various
threat models.

Attack Knowledge Attack Vector Collusion Manipulation Strategy
Non-omniscient

ALIE [3] Aggregation-agnostic g, = gg — 203 v Magnitude
Non-omniscient

IPM [37] Aggregation-agnostic g, = _ITEﬂ > e VL (01) v Direction
Non-omniscient

SF [1] Aggregation-agnostic g, = —VL,(6;) X Direction
Non/Omniscient

Min-Max [29] (Aggregation-aware) gy = Gy + YV? v Magnitude
Non/Omniscient

Min-Sum [29] (Aggregation-aware) gy = Gpof +7YV? v Magnitude
Omniscient

Mimic [18] Aggregator-agnostic g, = V.L;«(6;) v Defense-targeted
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