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1Computational and Biological Learning Lab, Department of Engineering, University of Cambridge
2Gatsby Computational Neuroscience Unit, UCL
3Center for Cognitive Computation, Department of Cognitive Science, Central European University

ABSTRACT

Gaussian Process Factor Analysis (GPFA) is a powerful latent variable model
for extracting low-dimensional manifolds underlying population neural activities.
However, one limitation of standard GPFA models is that the number of latent fac-
tors needs to be pre-specified or selected through heuristic-based processes, and
that all factors contribute at all times. We propose the infinite GPFA model, a
fully Bayesian non-parametric extension of the classical GPFA by incorporating
an Indian Buffet Process (IBP) prior over the factor loading process, such that it is
possible to infer a potentially infinite set of latent factors, and the identity of those
factors that contribute to neural firings in a compositional manner at each time
point. Learning and inference in the infinite GPFA model is performed through
variational expectation-maximisation, and we additionally propose scalable ex-
tensions based on sparse variational Gaussian Process methods. We empirically
demonstrate that the infinite GPFA model correctly infers dynamically changing
activations of latent factors on a synthetic dataset. By fitting the infinite GPFA
model to population activities of hippocampal place cells during spatial tasks with
alternating random foraging and spatial memory phases, we identify novel non-
trivial and behaviourally meaningful dynamics in the neural encoding process.

1 INTRODUCTION

The dominant view of neural coding is that information is represented in the activities of populations
of neurons, which supports robust computation (Dayan and Abbott, 2005). Trajectories in the high-
dimensional neural space are often constrained to a low-dimensional “neural manifold” (Churchland
et al., 2012; Cunningham and Yu, 2014). Hence, to achieve comprehensive system-level under-
standing of neural mechanisms, it is essential to be exploratory by firstly uncovering the generic
latent factors underlying high-dimensional population activities before committing to a fixed set of
behavioural variables. Advanced unsupervised representation learning methods, such as latent vari-
able modelling (LVM), have been developed and applied for such neural data analysis (Churchland
et al., 2007; Cunningham and Yu, 2014). However, discovering low-dimensional neural manifolds
remains a challenging task, not only due to the high variability in neuronal firing, but also because
neural representations likely reflect the internal states of the animal, which can vary substantially
even while experimentally controlled or observed variables are held constant.

A key limitation of existing LVM methods is the necessity for pre-specifying latent dimensions.
This is usually performed through model-selection approaches (Doya, 2007). In the absence of
prior knowledge of encoded behavioural covariates underlying neural responses, selecting the latent
manifold dimensions based on cross-validation approaches lacks interpretability, and the selection is
often sensitive with respect to the sampling process. Alternative approaches based on regularisation
methods, such as automatic relevance determination (ARD; Wipf and Nagarajan, 2007; Jensen et al.,
2021; Gokcen et al., 2024), require maximum likelihood (ML) learning based on marginalisation
over all training samples. These methods thus select a single set of latent factors that most likely
account for all observations, but not a potentially different set of latent factors for each observation.
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Here we propose a novel, probabilistically principled model that enables simultaneous posterior in-
ference over the number of latent factors and the set of activated latent factors pertinent to each
observation. Specifically, we develop a fully Bayesian nonparametric extension of the Gaussian
Process Factor Analysis (GPFA) model (Yu et al., 2008), a popular latent variable model for extract-
ing latent Gaussian process factors underlying population activities over single trials. The resulting
model, infinite GPFA, incorporates stochastic activation of latent factors in the loading process,
which is modelled by the Indian Buffet Process (IBP) prior (Ghahramani and Griffiths, 2005). The
IBP defines a distribution over binary matrices with a finite number of rows and infinite number of
columns, hence enabling inference over the potentially infinite number of features, as well as track-
ing uncertainty associated with factor activations for each observation. Unlike existing methods that
assume a fixed loading process, the infinite GPFA is able to infer the temporally dyanmic switching
expression of latent factors in each neuron, and this property has important neuroscience impli-
cations. As an example, hippocampal place cells exhibit the “dynamic grouping effect”, whereby
ensemble activities transiently represent spatial locations within different reference frames defined
by proximity to corresponding shock zones (Kelemen and Fenton, 2010). Despite stationarity in
external stimuli, neural spiking frequently exhibits non-trivial temporal structure, potentially due to
differential expression of latent behavioural variables in the population activities given changes in
internal states of the animal (Flavell et al., 2022).

Learning and inference in infinite GPFA is performed with tractable variational expectation-
maximisation (EM). We exploit the sparse variational approach of Titsias (2009), which significantly
improves scalability, making it possible to apply the model to real-world datasets. Through empiri-
cal evaluation on synthetic datasets, we show that the infinite GPFA matches the performance of the
standard GPFA on a dataset with a deterministic generative process, but significantly outperforms
GPFA when variability is introduced to the factor loading process. We apply our model to the popu-
lation activity of hippocampal place cells recorded during spatial navigation, and identify non-trivial
switching dynamics in the neural encoding process, contingent on the engaged task context.

2 BACKGROUND

2.1 GAUSSIAN PROCESS FACTOR ANALYSIS

GPFA extends standard factor analysis models, by replacing Gaussian factors with Gaussian Process
(GP) factors in order to capture non-trivial temporal dependencies in the latent space (Yu et al.,
2008). The generative model of GPFA is defined as following (Figure 1a).

fd(·) ∼ GP
(
md(·), kd(·, ·)

)
, for d = 1, . . . .D ,

h(xn) = C · F(xn) + d , y(xn) ∼ p (y(xn)|ϕ(h(xn)), θ) , for n = 1, . . . , N ,
(1)

where md(·) and kd(·, ·) are the mean and kernel functions for the d-th latent factors, respec-
tively1, C ∈ RM×D is the loading matrix that projects the latent factors to the neural space,
with M being the number of neurons, d ∈ RM is the offset for the linear transformation,
F(xn) = [f1(xn) · · · fD(xn)]

T is the column-stack of all latent factors at input location xn,
ϕ(·) is some (non-linear) link function, and θ represents the set of auxiliary generative parameters.

Beyond the simple case with isotropic Gaussian conditional likelihood and a linear link function,
learning and inference in GPFA is generally intractable, especially in neuroscience applications
where it is common to assume an exponential link function and conditional Poisson likelihood.
Hence, to deal with such intractability, here we describe the generalised procedures for learning
and inference based on variational EM. For scalability purposes, we consider extensions of standard
GPFA models with sparse-variational approximation based on inducing points (Titsias, 2009; Adam
et al., 2016). Inducing points, U, are function evaluations of latent GPs over a selected small number
of locations, and can be interpreted as approximate sufficient statistics of the latent processes. No-
tably, there is a simple linear-Gaussian relationship between U and F. Letting x = [x1, . . . , xN ]
represent a complete set of inputs and fd(x) = [f(x1), . . . , f(xN )] the corresponding values of

1We assume md(·) = 0 unless stated otherwise.
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Figure 1: Graphical demonstration for GPFA and IBP models. Graphical models for generative
processes for standard (a) and infinite (b) GPFA models with sparse variational approximation. c.
Illustration of a weighted Gaussian factor analysis model with stochastic binary latent activations.
By taking the limit D → ∞, we essentially place an IBP prior on the binary latent activations, Z
(Equation 4).

the dth latent process, we have

p(fd(x)|ud) = N
(
Kd

xw(K
d
wz)

−1ud,K
d
xx −Kd

xw(K
d
ww)

−1(Kd
xw)

T
)

(2)

where wd denotes the S inducing locations for the d-th latent process2, and Kd
xw ∈ RN×S =[

kd(xnwds)
]
n,s

.

We choose the joint variational form over F and U (Titsias, 2009), q(F,U) =
∏D

d=1 p(fd|ud)q(ud),
with q(ud) = N (µu

d ,S
u
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The corresponding variational free energy objective takes the form,

F [q] =
∑
x

⟨log p(y|ϕ(h))⟩q(h) −
D∑

d=1

KL [q(ud)||p(ud)] ,

Note that q(h) is additively GP-distributed (Equation 1). In general, the expected log conditional
likelihood can only be evaluated approximately (Duncker and Sahani, 2018; Keeley et al., 2020).
However, it is possible to compute the expected log conditional-likelihood under certain assumptions
of conditional likelihood and link function (e.g., Gaussian observation and identity link function,
see Section 3). The KL divergence between the variational approximation and GP prior over the
inducing points can be evaluated analytically. Both variational and generative parameters can be
trained via iterative gradient descent such that the free energy is maximised.

2.2 INDIAN BUFFET PROCESS

Standard LVM methods require a pre-set number of latents, which each influence the observations
at all times. However, the true number of features is often unknown a priori, and the set of active
latent factors may vary across different observations. Classical model selection techniques such as
cross validation and automatic relevance determination cannot identify observation-specific feature
activations. The statistically principled alternative is to perform posterior inference over latent acti-
vations given a prior distribution. Here, we consider the Bayesian nonparametric prior known as the
Indian Buffet Process (IBP; Ghahramani and Griffiths, 2005), which is a distribution over infinite
binary matrices that enables simultaneous posterior inference over the number and identity of latent
features underlying each observation.

2For simplicity, we assume all latent processes share the same set of S inducing locations, w.
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As a motivating example, we consider a Gaussian factor analysis model with stochastic latent acti-
vations (Figure 1c).

fd ∼ N (0, σ2
d) , πd ∼ Beta

( α
D
, 1
)
,Cd ∼ N (0, σ2I) , for d = 1, . . . , D ,

p(Z|π) =
D∏

d=1

πmd

d (1− πd)
N−md , yn = C(Zn ⊙ F) + ϵn , for n = 1, . . . , N .

(3)

where md =
∑N

n=1 1 (znd = 1), and ⊙ represents the Hadamard product.

Given the conjugacy between Beta and Bernoulli distributions, we can tractably marginalise π out.

p(Z) =
D∏

d=1

α
DΓ(md +

α
D )Γ(N −md + 1)

Γ(N + 1 + α
D )

,

Taking the limit D → ∞, the IBP places a prior on [Z], the canonical form of Z that is permutation-
invariant (Ghahramani and Griffiths, 2005).

p([Z]) =
αD exp(−αHN )∏

h∈{0,1}N\0 Dh!

D∏
d=1

(N −md)!(md − 1)!

N !
(4)

where D is the number of non-zero columns in Z,HN =
∑N

n=1
1
n is theN -th harmonic number,md

is the number of one-entries in the d-th column of Z, Dh is the number of occurrences of non-zero
binary column vector h in Z, α is the prior parameter that controls the expected number of features
present in each observation.

A useful alternative interpretation of IBP is based on the stick-breaking construction (Teh et al.,
2007), which defines πd as the product of stick-breaking weights, πd =

∏d
i=1 vd, where vd ∼

Beta(α, 1). The stick-breaking construction is mathematically equivalent to the Beta-Bernoulli ap-
proximation (Equation 3) in the infinite limit, but admits the explicit “sparsity constraint”, i.e., the
probability of employing the d-th latent factor decreases exponentially with d, and α controls the
expected number of latents.

Inference given the IBP prior can be performed with either MCMC or variational methods (Ghahra-
mani and Griffiths, 2005; Doshi et al., 2009). Here we briefly review the mean-field variational
inference approach given the stick-breaking formulation of IBP, outlined in Doshi et al. (2009). As-
suming factorisation across different latent factors and observations, the variational distributions for
the latent variables (and parameters) are defined as following.

q(vd|ad, bd) = Beta(ad, bd), q(Cd|µd,Sd) = N (µd,Sd), for d = 1, . . . , D ,

q(znd|τnd) = Bernoulli(τnd), for d = 1, . . . , D, n = 1, . . . , N ,

where D is some pre-specified upper bound for the number of latent factors. However, given the
sparsity constraint of the IBP prior, the expected number of factors is usually much smaller than
D, and is controlled by α. It is possible to also incorporate a prior over α, facilitating more robust
and accurate inference of the effective latent dimension (see Section 3). Given the conditional
independence within the generative model, the variational free energy objective takes the form3.

F [q] = ⟨log p(π,C,Z,Y)− log q(π)q(C)q(Z)⟩

=

D∑
d=1

⟨log p(πd)⟩+
D∑

d=1

⟨log p(Cd)⟩+
N∑

n=1

D∑
d=1

⟨log p(znd|πd)⟩+
N∑

n=1

⟨log p(yn|Zn,C)⟩+H[q]

Detailed derivations for the variational objective can be found in Section 3 and Supplemental 1.

3Unless necessary, we do not explicitly show the variational distributions the expectation is taken with
respect to for notational simplicity.
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3 INFINITE GPFA

Analogous to the motivation behind the original proposal of IBP, we now propose infinite GPFA,
the fully Bayesian nonparametric extension of standard GPFA that allows simultaneous inference
over the optimal number of latent features and the set of most likely active latent factors underlying
each observation, whilst capturing non-trivial temporal dependencies within expressions of the set
of instantiated latent factors. Specifically, the generative process of infinite GPFA is the following
(Figure 1b; details of all derivations in this section can be found in Supplemental S2):

fd(·) ∼ GP
(
0, kd(·, ·)

)
, for d = 1, . . . , D ,

vd ∼ Beta (α, 1) , πd =

d∏
i=1

vi , Cd ∼ N (0, σ2I) , for d = 1, . . . , D ,

α ∼ Gamma(s1, s2) ,
znd|πd ∼ Bernoulli(πd) , for d = 1, . . . , D, n = 1, . . . , N ,

h(xn) = C · (Z⊙ F(xn)) + d , y(xn) ∼ p(y(xn)|ϕ(h(xn))) , for n = 1, . . . , N ,
(5)

Note that here we leverage the stick-breaking construction of the IBP distribution (Ghahramani
and Griffiths, 2005). Hence, despite setting an upper bound, the model incorporates a sparsity
prior allowing automatic model selection of the most likely number of latents. Moreover, as the
scaling parameter, α, has a significant effect on the growth of the number of factors, we consider the
extended model that integrates over α. To this end, we place a Gamma prior over α.

Here we perform variational learning using the finite mean-field variational approximations,
q(U,π,Z) = q(α)

∏D
d=1 [q(ud)q(vd)q(Cd)

∏
n q(znd)].

q(α|ξ1, ξ2) = Gamma(α|ξ1, ξ2) ,
q(ud|µu

d ,S
u
d) = N (ud|µu

d ,S
u
d) , for d = 1, . . . , D ,

q(vd|ad, bd) = Beta(vd|ad, bd) , q(Cd|µC
d ,S

C
d ) = N (Cd|µC

d ,S
C
d ) , for d = 1, . . . , D ,

q(znd|τnd) = Bernoulli(τnd) , for d = 1, . . . , D, , n = 1, . . . , N ,
(6)

Note that so far we have assumed deterministic d, but we could in principle integrate over d with a
Gaussian prior (see details in Supplemental S2).

Given the conditional independence in the generative process, the free energy objective takes the
following expression.

F [q] =

N∑
n=1

⟨log p(yn|Fn,Zn)⟩ − KL [q(α)||p(α)]−
D∑

d=1

KL [q(ud)||p(ud)]

−
D∑

d=1

KL [q(vd)||p(vd)]−
∑
n,d

⟨KL [q(znd)||p(znd)]⟩q(v) .
(7)

Most terms in the variational free energy admit analytical expressions apart from the expected con-
ditional log-likelihood and the cross-entropy term for the stick-breaking weights, v. Due to the in-
troduction of the binary factor activation matrix, Z, q(h) no longer follows a Gaussian distribution,
hence previous approximation approaches based on Gaussian quadrature do not apply (Duncker and
Sahani, 2018). Instead, we leverage Taylor expansion for approximating the expected conditional
log-likelihood, which offers an effective tradeoff between computational efficiency and approxima-
tion accuracy4. Specifically, consider exponential link function and Poisson likelihood, we have the
following approximation for the expected log-likelihood term.

⟨log p((yn|Fn,Zn))⟩ ≈
M∑

m=1

ynm⟨hnm⟩ −
(
exp⟨hnm⟩+ 1

2
Var[hnm] exp⟨hnm⟩

)
− log ynm!

4It is possible to evaluate the expected log-likelihood analytically under the special case of Gaussian condi-
tional likelihood with identity link function, see details in Supplemental S2
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where we have replaced ⟨exphnm⟩ with its second-order Taylor expansion (see Supplemental S2.2
for details). The variational expectation of h can be easily computed due to linearity, and given the
mean-field assumption, the corresponding variance can also be analytically computed using the law
of total variance (see expression and derivation details in Supplemental S2.2).

The cross entropy term in evaluating the expected KL-divergence with respect to Z is as following.

⟨log p(znd|v)⟩ =
d∑

i=1

znd

(
d∑

i=1

⟨log vi⟩
)

+ (1− znd)

〈
log

(
1−

d∏
i=1

vi

)〉
, (8)

The second term cannot be evaluated analytically. However, we could replace the expected log-
product term with a second-level variational lower bound leveraging Jensen’s inequality (see Sup-
plemental S1 and Doshi et al. (2009) for detailed derivations).

The infinite GPFA model is learned via variational EM, iteratively updating the variational parame-
ters (Equation 6), and the generative model parameters (i.e., C, d and α), via gradient-based updates
that maximise the free energy objective. In practice, we employ a standard automatic differenti-
ation library for computing the gradients during training (Paszke et al., 2019). It is also possible
to incorporate the IBP prior under the finite Beta-Bernoulli approximation (Equation 3), we leave
further details in Supplemental S2. We note that due to the fact that we are leveraging variational
optimsiation instead of MCMC methods for inference, we cannot effectively infer infinite number
of latents, but this lead to minimal impact in practice, see further discussion in Supplemental S2.4.

4 RELATED WORKS

Discovering low-dimensional neural manifolds underlying high-dimensional population activities
is important for understanding neural computations. There exists various extensions of GP-based
descriptive models, such as GPFA and Gaussian Process latent variable model (GPLVM), including
incorporation of pointwise non-linearity (Duncker and Sahani, 2018; Keeley et al., 2020; Zhao and
Park, 2017; Wu et al., 2017), full non-linearity based on neural networks (Ashman et al., 2020; Yu
et al., 2022), flexible non-Poisson spike count distributions (Liu and Lengyel, 2021), etc. However,
existing methods require model selection techniques for choosing the appropriate latent dimensions,
which is largely heuristic and prone to stochasticity arising from cross validation. One notable
exception is an extension of GPFA with ARD prior, the Bayesian GPFA (bGPFA; Jensen et al.,
2021; Gokcen et al., 2024), which performs automatic pruning of latent dimensions via ML learning.
However, an important shortcoming of posterior inference with ARD prior is that the most likely
set of latent factors selected is based on marignalisation over all observations, hence overlooking
potential variability in latent activations across observations. From the scalability perspective, the
bGPFA model leverages the circulant approximation for variational GP approximation over all input
locations. Such approximation leads to additional error and elevated computational complexity
(Figure 2c, 2e) comparing to the sparse variational approximation used in the infinite GPFA model.

Since its introduction, the IBP prior has been tightly associated with factor analysis models (Ghahra-
mani and Griffiths, 2005), and has been extended to behaviour modeling (Görür et al., 2006), binary
matrix factorisation (Meeds et al., 2006), network link prediction (Battiston et al., 2020), etc. The
infinite factorial hidden Markov model (HMM) is a prominent extension that incorporates the IBP
prior into generative models with explicit temporal dependency structure (Gael et al., 2008). How-
ever, the HMM still admits first-order Markovian and linear latent transitions, whereas incorporating
GP latents allows simultaneous modeling of all timesteps, in a non-linear and smoothed manner.

The switching linear dynamical system (SLDS) is a popular class of models for parsing behavioural
and neural dynamics into simpler alternating states (Linderman et al., 2017). However, the SLDS
assumes categorical switching of latent context variables, whereas the infinite GPFA admits a com-
positional representation of task context, which is simultaneously more computationally efficient
and improves interpretability of latent processes (due to the sparsity constraint given the IBP prior).
Moreover, in an SLDS, context switching induces changes only in the latent dynamics, hence requir-
ing a non-negligible number of timesteps (depending on the spectral radius of the latent transition
operator) for the reflection of context changes in the observation space. In contrast, the compo-
sitional nature of factor loading process in the infinite GPFA model allows immediate differential
expression of latent processes (that are consistently fitted over all timesteps) into neural activities.
Therefore, the infinite GPFA model is more suitable for studying spontaneous neural dynamics in
tasks with rapid context-switching structure (Kelemen and Fenton, 2010; Jezek et al., 2011).
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Figure 2: Empirical valuation of infinite svGPFA on synthetic dataset. a. Generative process
for synthetic data, following the standard GPFA generative model with sinusoidal latent processes
(f1(x) = sin3(x) and f2(x) = cos(3x)) and (optional) binary masking, Z. The latents are linearly
projected to the neural space, and passed through an exponential link function to generate firing
rates, which are then used to generate spikes following time-inhomogeneous Poisson process. b.
Variational free energy objective during training for different models. c. R2 score between posterior
means over latent processes and ground-truth latents (top), and loaded latents (f̃ , bottom), for all
models, on data given both generative processes (with (bottom) and without encoding variability). d.
Log-log plot of predicted and ground-truth firing rates for svGPFA (left) and infinite svGPFA (right).
Different color represents different neurons. e. Comparison of reconstruction of ground-truth latent
processes (solid lines) based on best linear-fit given posterior means of latent GPs (dashed lines). f.
Validating sparseness in inferred latent representations a posteriori based on encoding-uniqueness
metrics (Equation 9). g. Graphical illustration of definition of the uniqueness measures. h. Runtime
comparison (average wall-clock time of each EM iteration during training). All evaluations are
performed based on averaging over 10 random seeds where applicable.

5 RESULTS

5.1 EMPIRICAL EVALUATION ON SYNTHETIC DATA

We consider a synthetic dataset consists of population spiking generated from two sinusoidal latent
processes, following the standard GPFA generative process with exponential link function and Pois-
son likelihood (Equation 1). To study the effects of variable neural encodings within a single trial,
we optionally apply a multiplicative binary mask to the latent processes before projecting them to
the neural space (Equation 5). We generate synthetic data for 100 neurons over 10 trials, each lasting
10 seconds in duration, for both cases with and without encoding variability. The data generative
process is illustrated in Figure 2a. In the latter scenario, we hand-design the binary mask such that
there are continuous periods when one or both processes are actively encoded into the neural space.

Under both generative processes, we fit standard and infinite svGPFA to corresponding population
spiking (all hyperparameters are identical for the two models where applicable; values are reported
in Supplemental S3). We additionally include the bGPFA model for baseline comparison (Jensen
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et al., 2021). All methods converge quickly under either data generative process (Figure 2b). How-
ever, it can be clearly observed that the standard svGPFA converges to a suboptimal free energy
value when non-trivial binary masking is introduced, whereas the infinite svGPFA reaches a level
similar to that achieved with constant latent contributions5. Despite reaching similar asymptotic
free energy objective, we note the practical concern that the bGPFA training is significantly less
stable than the infinite GPFA. Upon training completion, to validate the fidelity of fitted latents,
we evaluate and compare the R2 score between the posterior means over the latent processes and
the ground-truth latents (Figure 2c, top panel). For the baseline case with trivial binary masks, we
observe that all three models perform comparably well, reaching almost perfect discovery of latent
processes driving the generation of neural activities. When stochastic factor loading is introduced
to the data generative process, we observe that inferred latents of infinite svGPFA predicts ground-
truth latents significantly more accurately than those of standard svGPFA (one-sided student-t test,
p = 0.0028) and bGPFA (p = 2.17 × 10−16). Qualitative inspection of the fitted latents suggests
that the bGPFA directly encodes the loaded latents (f̃d(t) = zdt fd(t); Figure 2e), which we hypothe-
sise that this is largely due to the circulant approximation of the full covariance matrix over all input
locations (instead of linear smoothing given inducing points). We hence evaluate and compare the
R2 score between the fitted latents (τndµdn for infinite svGPFA, where µdn is the mean of the vari-
ational distribution over fd(·) at xn) and f̃ , and observe that the fitting between the bGPFA latents
and f̃ deteriorates quickly as the latent dimension increases, whilst incurring significantly greater
computational complexity (Figure 2h). Comparing to the standard svGPFA model, the decline in
model fitting is exacerbated in the neural space: infinite svGPFA predicts the log-firing rates (or
equivalently, h(t)) significantly more accurately than standard svGPFA when non-trivial masking is
present (Figure 2d). The mean squared error of predicted log-rates is 0.40 ± 0.87, which is again
significantly higher than infinite svGPFA (0.0043 ± 0.025). The absence of explicit mechanisms
accounting for such variability in standard GPFA leads to failure in learning the correct generative
process due to errors induced by periods when at least one of the factors is not activated, such that
erroneous gradients is applied to model parameters due to unexpectedly high prediction errors.

The infinite GPFA model is expected to effectively leverage the sparsity constraints induced by the
IBP prior and correctly infer the ground-truth number and identity of latent variables. In order to
validate this, we set the number of latent processes in the model, D, to be greater than the number
of ground-truth latents, Dgt, and probe the degree of sparseness within the inferred latent processes.
Specifically, we devise the following encoding-uniqueness metrics for quantitative evaluation.

uinf→gt(d) = 1−
H(R′

:,d)

logDgt
, ugt→inf(d) = 1−

1
Dgt

∑Dgt
i=1 H(R′

i,:d)

log d
, where

R′
:,d =

[
R2(µf

d ,f1)∑Dgt
i=1 R2(µf

d ,fi)
· · · R2(µf

d ,fDgt )∑Dgt
i=1 R2(µf

D,fi)

]
, R′

i,:d =

[
R2(µf

1 ,fi)∑d
j=1 R2(µf

j ,fi)
· · · R2(µf

d ,fi)∑d
j=1 R2(µf

j ,fi)

]
(9)

where H(·) denotes the entropy operator and R2(µf
d , fi) is the R2 score between the posterior mean

vector of the d-th latent and the i-th ground-truth latent. Intuitively, it is expected that latent pro-
cesses that are most actively loaded into the neural space should encode most information about
the underlying processes, and the inferred latents should be encoding only one of the ground-truth
latents due to the sparsity constraint induced by the IBP prior. Hence, having sorted the inferred
latents based on their averaged posterior responsibilities (Figure 2f, bottom), uinf→gt(d) quantifies
how the d-th inferred posterior mean uniquely represent one of the ground-truth latent processes
(Figure 2g, blue enclosure), and ugt→inf(d) measures how effectively the top d latent processes are
representing all ground-truth latents (Figure 2g, green enclosure). Hence, if the model has suc-
cessfully inferred sparse latent structure with high interpretability, we would expect to observe high
uniqueness metric values for latents that are more frequently activated. We indeed observe the ex-
pected pattern empirically (Figure 2f, middle and top), indicating incorporating the IBP prior helps
with identifying the correct set of interpretable latent processes. To further corroborate our claim,
we train infinite svGPFA models with the same number of latent processes as the data generative
process, and show that posterior responsibilities of latent processes align well with the ground-truth
activation of corresponding latents (Figure S1e).

5See ablation studies for characterising the effects of latent dimensions and expected sparsity level in Sup-
plemental S3.3.
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Figure 3: Probing temporally compositional neural manifolds underlying hippocampal place
cell population activities during spatial navigation with alternating behavioural phases. a. Il-
lustration of behavioural task (Pfeiffer and Foster, 2013). Rats navigate in a 2m× 2m box, with 36
feeding wells uniformly arranged in the box. Animals alternate between searching for reward in a
random well (foraging phase), and navigate back to a deterministic home well (homing phase). b.
Variational free energy comparison (in log-space) of standard and infinite svGPFA, and bGPFA. c.
We perform CCA between posterior means over latent processes and selected behavioural variables
for the infinite svGPFA model and baseline models. We show comparison of three principal canon-
ical correlations for the two models (dots represent different random seeds). d. Temporal trace of
posterior responsibilities associated with selected latent processes, with binary behavioural phase
(0 and 1 indicate foraging and homing phases, respectively), and normalised speed at the top. e.
Spatial-tuning of posterior means for different masked latents magnitude (f̃d(x) = τd(x)|µf

d(x)|).
Red star indicates the home well location. f. Mean square errors of firing rate prediction given infi-
nite GPFA versus given only spatial location. Inset: boxplots of MSE distributions. All evaluations
are based on 10 random seeds where applicable.

5.2 TEMPORALLY COMPOSITIONAL NEURAL MANIFOLDS UNDERLYING POPULATION FIRING
OF HIPPOCAMPAL PLACE CELLS DURING SPATIAL MEMORY TASKS

Having verified that infinite GPFA correctly infers interpretable latent factors and corresponding ac-
tivations for each observation, we now probe the existence of variability in neural encoding and po-
tential behavioural implications in real neural data. We apply our model to simultaneously recorded
population activities of 204 place cells from rat hippocampal CA1, whilst the rat is performing a spa-
tial memory task (Pfeiffer and Foster, 2013). Within each trial, given 36 uniformly arranged feeding
wells within a 2m × 2m open-field arena (Figure 3a), rats learn to alternate between foraging for
food in an unknown and random location (foraging phase), and returning to a fixed home location
(homing phase). Transitions to the next phase or trial is automatic upon consumption of the reward.

We fit infinite svGPFA to one recording session lasting 2187 seconds, binning spike trains into
spike counts within each 30 ms time window. We instantiate maximally 10 latent processes in
the model (see empirical comparison of models with varying maximum number of latent factors in
Supplemental Figure S2(a)), with 100 inducing points with fixed, equally spaced inducing locations,
for each latent factor. Additionally, we fit standard GPFA and bGPFA to the same dataset for baseline
comparisons, using the same hyperparameter setting. Through direct inspection of the free energy
comparison, we observe the infinite svGPFA yields greater convergence value than standard svGPFA
and bGPFA given the same amount of training, suggesting stronger model fitting (Figure 3b).

To validate the fidelity of learned latent factors, we perform canonical correlation analysis (CCA)
between posterior means of latent factors and the experimentally verified behavioural correlates of
CA1 place cells, including 2-dimensional allocentric spatial location, speed, and head direction of
the animal (O’keefe and Nadel, 1978; Geisler et al., 2007; Ormond and O’Keefe, 2022). Similar
to our observation from the evaluations on synthetic dataset (Figure 2c), we found that inferred la-
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tents from the infinite svGPFA model provide significantly more faithful explanation for relevant
behvaioural covariates than those from standard svGPFA and bGPFA, indicated by the high canon-
ical correlations over the first three principal directions (Figure 3c; additional dimensions yield
minimal explained variance of shared covariance given the selected set of behavioural variables,
see Supplemental Figure S2(c)). The effective latent dimensions a posteriori is approximately 6
(given qualitative inspection of mean posterior responsibility, see Supplemental Figure S2c), coher-
ent with the number of non-trivial principal components within population spiking (Supplemental
Figure S2e), and the dimension of latent manifold underlying CA1 place cells population firing
reported in previous studies (Nieh et al., 2021; Yu et al., 2022).

We examine activation probabilities for each latent factor at each timestep. Despite stationarity in
the marginal distribution of behavioural variables, we observe high temporal variability in posterior
responsibilities for all latent processes (Figure 3d), indicating the dynamically compositional nature
of low-dimensional neural manifolds underlying population neuronal spikings. By separating the
continuous recording into alternating homing and foraging phases, we identify latent processes ex-
hibiting selective activations in accordance with different behavioural phases. Specifically, f0(x) is
activated exclusively during the late periods of both homing and foraging phases, and when the speed
is close to 0 (see top row of Figure 3d). We cross-check with the spatial tuning of corresponding la-
tent factors, computed as the time-average absolute activities of f̃d(x) = τd(x)|µf

d(x)| as a function
of spatial location of the rat (Figure 3e). Notably, we observe that f̃0(x) is almost exclusively se-
lective for the home-well location. The fact that f0(x) is not only activated upon reaching the home
well, but also over the later periods of foraging phase suggests the elevated expression of target lo-
cation information of the proceeding trial upon reaching the end of the current trial. Such predictive
reactivation of goal location information corresponds to goal-oriented hippocampal replay, which is
uncovered here in a purely data-driven manner (Diba and Buzsáki, 2007; Pfeiffer and Foster, 2013;
Singer et al., 2013). We additionally examine the spatial tuning for other latent processes, and dis-
cover that inferred latents exhibits strong spatial selectivity to environmental boundaries and salient
landmarks (e.g., home location). Such observation is coherent with the existing theory of spatial
coding with hippocampal place cells that leverages combined information of extended cues in given
allocentric directions, specifically with respect to the bounding walls (O’Keefe and Burgess, 1996).

Despite the discrepancy in spatial tuning between the latents and place cells, the inferred latents
nevertheless represent the spatial location of the animal with high accuracy (Figure S2f). This hence
suggests the possibility that the infinite GPFA discovers faithful and generic neural encodings un-
derlying place cells, beyond being merely spatially modulated. We confirm our hypothesis through
comparing the neuron-specific mean-squared error (MSE) in firing rate prediction given the infinite
GPFA model, and the spatial location (based on neuron-specific spatial ratemaps; Figure 3f). Our
finding coheres with the well known fact that hippocampal neurons exhibit conjunctive selectivity
to multiple behavioural variables (O’keefe and Nadel, 1978; Hardcastle et al., 2017).

6 DISCUSSION

We introduce the infinite GPFA, a fully Bayesian nonparametric generalisation of the standard GPFA
model. Incorporating the IBP prior over latent activations enables simultaneous inference over both
the number of latent factors and the time-varying activation probabilities of factors. Despite having
the intrinsic inconsistency that leads to over-estimation of the number of latent factors (Diaconis
and Freedman, 1986; Ghahramani and Griffiths, 2005), we provide extensive empirical evaluations
on both synthetic and real neural datasets to demonstrate that the infinite GPFA model is capable
of performing accurate automatic model selection and learning of sparse and interpretable latent
factors. More importantly, we show that utilities of the infinite GPFA model under the context of
exploratory investigations of neural data, which we have identified non-trivial coding mechanisms
of hippocampal neurons from a purely data-analytical perspective. Here we have suggested a new
angle for interpreting neural computations, such that temporal variability within population neuronal
activities is attributed to the stochastic loading of latent information, mediated by internal states of
the animal (Flavell et al., 2022). Such interpretation could facilitate fundamental understanding
of existing experimental data that exhibits changes in neural firings over brief temporal intervals
upon context switching, which cannot be explained by existing models that only capture context-
dependent dynamics (Kelemen and Fenton, 2010; Jezek et al., 2011; Linderman et al., 2017).
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K. Diba and G. Buzsáki. Forward and reverse hippocampal place-cell sequences during ripples.
Nature neuroscience, 10(10):1241–1242, 2007.

F. Doshi, K. Miller, J. Van Gael, and Y. W. Teh. Variational inference for the indian buffet process.
In Artificial Intelligence and Statistics, pages 137–144. PMLR, 2009.

K. Doya. Bayesian brain: Probabilistic approaches to neural coding. MIT press, 2007.

L. Duncker and M. Sahani. Temporal alignment and latent gaussian process factor inference in
population spike trains. Advances in neural information processing systems, 31, 2018.

M. D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of
the american statistical association, 90(430):577–588, 1995.

S. W. Flavell, N. Gogolla, M. Lovett-Barron, and M. Zelikowsky. The emergence and influence of
internal states. Neuron, 110(16):2545–2570, 2022.

J. Gael, Y. Teh, and Z. Ghahramani. The infinite factorial hidden markov model. Advances in Neural
Information Processing Systems, 21, 2008.

C. Geisler, D. Robbe, M. Zugaro, A. Sirota, and G. Buzsáki. Hippocampal place cell assemblies are
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SUPPLEMENTARY INFORMATION FOR SWITCHING
INFINITE GPFA
S1 MATHEMATICAL DETAILS OF POSTERIOR INFERENCE WITH INDIA

BUFFET PROCESS UNDER THE STICK-BREAKING FORMULATION

Here we briefly review posterior inference under the IBP prior with truncated stick-breaking formu-
lation (Doshi et al., 2009). Specifically, we assume the factor analysis generative process, but under
the stick-breaking construction 3.

fd ∼ N (0, σ2
d), for d = 1, . . . ,∞ ,

Cd ∼ N (0, ν2dI), for d = 1, . . . ,∞ ,

vd ∼ Beta(α, 1), for d = 1, . . . , D ,

πd =

d∏
i=1

vi , for d = 1, . . . , D ,

p(Z|π) =
D∏

d=1

πmd

d (1− πd)
N−md ,

yn = C(Zn ⊙ F) + ϵn , for n = 1, . . . , N .

(S.1)

We place mean-field variational distributions on the latent variables, v, C, Z.
q(vd|ad, bd) = Beta(ad, bd), ∀d ,
q(Cd|µd,Sd) = N (µd,Sd), ∀d ,
q(znd|τnd) = Bernoulli(τnd), ∀n, d ,

(S.2)

We restate the free energy objective below.
F [q] = ⟨log p(π,C,Z,Y)− log q(π)q(C)q(Z)⟩

=

D∑
d=1

⟨log p(vd)⟩+
D∑

d=1

⟨log p(Cd)⟩+
N∑

n=1

D∑
d=1

⟨log p(znd|vd)⟩+
N∑

n=1

⟨log p(yn|Zn,C)⟩+H[q]

(S.3)

The key difficulty in evaluating the free energy lies in the computation of the expected log-density of
the prior distribution over Z. Conditioning on the stick-breaking weights, the expected log-density
of znd given v is as following.

log p(znd|v) =
d∑

i=1

znd

(
d∑

i=1

log vi

)
+ (1− znd) log

(
1−

d∏
i=1

vi

)
, (S.4)

The first term in the above equation is simple to compute given the Beta variational distribution
on v. However, the second term involves the expectation of log

(
1−∏d

i=1 vi

)
, which does not

admit closed-form expression. To this end, we employ a second-level variational approximation, by
leveraging the Jensen’s inequality.

Eq(v)

[
log

(
1−

d∏
i=1

vd

)]
= Eq(v)

[
log

(
d∑

l=1

qd(l)
(1− vl)

∏l−1
m=1 vm

qd(l)

)]

≥ Eq(v)qd(l)

[
log(1− vl) +

l−1∑
m=1

log(vm)− log qd(l)

]

= Eqd(l)

[
ψ(bl) +

l−1∑
m=1

ψ(al)−
l∑

m=1

ψ(am + bm)

]
+H[qd(l)] ,

(S.5)
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where qd(l) is a categorical distribution, such that qd(l) = qdl for all d and l. Note that in the above
derivations, we leverage the fact that 1 −∏d

i=1 vi =
∑d

l=1(1 − vl)
∏l−1

m=1 vm on the first line, and
Jensen’s inequality on the second line.

The lower bound shown in Equation S.5 holds for arbitrary qd, for all d. We then take the variational
derivative of Equation S.5 with respect to qd(l), we could derive the optimal q∗d(l) that maximises
the lower bound.

q∗dl ∝ exp

(
ψ(bl) +

l−1∑
m=1

ψ(al)−
l∑

m=1

ψ(am + bm)

)
, (S.6)

Note that we need to normalise the above equation such that q∗d(l) is well-defined.

Substituting Equation S.5 into the computation of the log-conditional prior over Z, we can now
optimise the resulting lower bound of the variational free energy objective (Equation S.3).

S2 VARIANTS OF INFINITE GPFA

S2.1 VARIATIONAL EXPECTATION-MAXIMISATION FOR INFINITE GPFA WITH GAUSSIAN
CONDITIONAL LIKELIHOOD UNDER FINITE BETA-BERNOULLI APPROXIMATION

In the main paper, we exclusively work with the IBP prior under the stick-breaking construction. It
is also possible to instantiate the IBP prior under the finite Beta-Bernoulli approximation. With a
slight abuse of notations, we term the resulting GPFA model that incorporating the IBP under this
construction the “finite GPFA” model. The corresponding generative model is shown as following.

fd(·) ∼ GP
(
0, kd(·, ·)

)
, for d = 1, . . . , D , (S.7a)

α ∼ Gamma(s1, s2) , (S.7b)
πd ∼ Beta(α/D, 1) , for d = 1, . . . , D , (S.7c)
znd|πd ∼ Bernoulli(πd) , for d = 1, . . . , D, n = 1, . . . , N , (S.7d)

Cd ∼ N (0, ν2dI) , for d = 1, . . . , D , (S.7e)
h(xn) = C · (Zn ⊙ F(xn)) + d , for n = 1, . . . , N , (S.7f)
y(xn) ∼ p(y(xn)|ϕ(h(xn))), for n = 1, . . . , N , (S.7g)

Below we show different variants of the generative process presented in Equation S.7.

S2.1.1 DETERMINISTIC LOADING MATRIX AND α PARAMETERS

We start with the simplest case by assuming deterministic C ∈ RM×D and α ∈ R (i.e., remov-
ing Equations S.7e and S.7b from Equation S.7). Below we show the complete derivation of the
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corresponding variational free energy.
F [q]

=

N∑
n=1

⟨log p((yn|Fn,Zn))⟩ −
D∑

d=1

KL [q(ud)||p(ud)]−
D∑

d=1

KL [q(πd)||p(πd)]−
N∑

n=1

D∑
d=1

⟨KL [q(znd)||p(znd)]⟩q(πd)

= − 1

2σ2

N∑
n=1

M∑
m=1

[(
ynm −

(
D∑

d=1

Cmdτndµ
f
nd + dm

))2

+

D∑
d=1

C2
md

(
τ2nd(s

f
nd)

2 + ((µf
nd)

2 + (sfnd)
2)τnd(1− τnd)

)]

− 1

2

D∑
d=1

(
log

|Kd
ww|

|Su
d |

−N + tr
[
(Kd

ww)
−1Su

d

]
+ (µu

d)
T (Kd

ww)
−1µu

d

)

−
D∑

d=1

(
log

Γ(ad + bd)Γ(
α
D )

Γ( α
D + 1)Γ(ad)Γ(bd)

+ (ad −
α

D
)(ψ(ad)− ψ(ad + bd)) + (bd − 1)(ψ(bd)− ψ(ad + bd))

)

−
N∑

n=1

D∑
d=1

[τnd log τnd + (1− τnd) log(1− τnd)]

+

N∑
n=1

D∑
d=1

[τnd(ψ(ad)− ψ(ad + bd)) + (1− τnd)(ψ(bd)− ψ(ad + bd))]

(S.8)

where ψ(·) is the digamma function. For computing the expected conditional log-likelihood, we
have leveraged the law of total variance identity.

Var [XY ] = (E [X])2Var [Y ] + Var [X] (E [Y ])2 + Var [X]Var [Y ] , (S.9)

S2.1.2 INCORPORATING PRIOR BELIEF OVER LOADING MATRIX C

We then extend the above model by assuming stochastic loading matrix, C, and infer its value given
posterior inference. We place Gaussian priors on each row of C, (Equation S.7e), and assume the
corresponding variational distributions are also Gaussian.

q(Cd) = N (Cd|µC
d ,S

C
d ) , for d = 1, . . . , D , (S.10)

Due to mean-field assumption, this lead to minimal changes to the free energy objective (c.f. Equa-
tion S.8). For the quadratic term in the expected log density, we could readily replace Cmd with
E[Cmd] = (µC

d )m. The variance component need a bit more workaround, requiring the law of total
variance (Equation S.9).
Var [CmdZndfnd] = E [Var [CmdZndfnd] |Znd, fnd] + Var [E [CmdZndfnd] |Znd, fnd]

= (sCdm)2
(
τnd

(
(µf

nd)
2 + (sfnd)

2
))

+ (µC
md)

2
(
τnd(s

f
nd)

2 + τnd(1− τnd)(µ
f
nd)

2
)

(S.11)

where we have overloaded notations to denote (sCdm)2 =
(
SC
d

)
mm

. Moreover, there is an additional
KL divergence term between the variational and prior distributions over C, which can be evaluated
analytically given the Gaussian parametric assumption.

KL [q(C)||p(C)] =
D∑

d=1

KL
[
q(Cd)||p(Cd)

]
=

1

2

D∑
d=1

[
M log ν2d − log |SC

d | −M +
1

ν2d
(Tr(SC

d ) + (µC
d )

TµC
d )

]
(S.12)

Note that so far we have assumed deterministic d, but we can also make it stochastic and place
Gaussian priors on it. Comparing with the canonical free energy formulation (Equation S.8), this
would lead to the inclusion of an additional KL divergence term between the variational Gaussian
approximation and Gaussian prior on d, and replace dm with E[dm], the m− component of mean
parameter of the variational distribution over d. The variance component is left unchanged.

16



Published as a conference paper at ICLR 2025

S2.1.3 INCORPORATING PRIOR BELIEF OVER α

The scaling parameter of the IBP prior, α, controls the expected number of latent features. Hence,
to extend the flexibility of the model, it is preferable to include prior beliefs over α such that it is
possible to integrate out α, and simultaneously allow posterior inference over α (Escobar and West,
1995; Blei and Jordan, 2004).

Given the non-negative nature of α, we place a Gamma distribution over α, as well as assume a
Gamma variational approximation.

q(α|ξ1, ξ2) = Gamma(α|ξ1, ξ2) , (S.13)

Assuming stochastic α would require replacing terms involving α with corresponding expectations
with respect to q(α|ξ1, ξ2). In the free energy objective, the only terms involve α is KL [q(π)||q(π)],
we show the updated expression as follows.

KL [q(π)||p(π)] =
D∑

d=1

(
Γ(ad + bd)

Γ(ad)Γ(bd)
− ⟨logα⟩+ logD+

(
ad −

⟨α⟩
D

)
((ψ(ad)− ψ(ad + bd)) + (bd − 1)(ψ(bd)− ψ(ad + bd)))

)
(S.14)

Given Equation S.13, we have the following analytical expression for the expectations with respect
to α.

⟨logα⟩q(α) = ψ(ξ1)− log ξ2, ⟨α⟩q(α) =
ξ1
ξ2
, (S.15)

Additionally, we need to include a KL divergence term between variational and prior distributions
over α, which can also be analytically computed.

KL[q(α|ξ1, ξ2)||p(α|s1, s2)] = −
(
(ξ1 − s1)ψ(ξ1)− log Γ(ξ1) + log Γ(s1) + s1 log

ξ2
s2

+ ξ1

(
s2
ξ2

− 1

))
(S.16)

S2.2 APPROXIMATION OF EXPECTED POISSON LOG-CONDITIONAL DENSITY WITH
EXPONENTIAL LINK FUNCTION

In the main paper, we predominantly leverage the Poisson conditional likelihood and exponential
link function. However, the expected conditional likelihood under such parametric assumption given
the IBP-distributed binary mask in the loading process does not admit closed-form expression. We
hence leverage second-order Taylor approximation for evaluating the variational expectation of the
exponential of log-rate under the generative process.

⟨log p((yn|Fn,Zn))⟩ =
M∑

m=1

ynm⟨hnm⟩ − ⟨exphnm⟩ − log ynm!

≈
M∑

m=1

ynm⟨hnm⟩ −
(
exp⟨hnm⟩+ 1

2
Var[hnm] exp⟨hnm⟩

)
− log ynm!

(S.17)

where we have the expectation and variance of h with respect to the variational distribution as
following.

⟨hnm⟩ = Cm · (τn ⊙ µf
n) + dm ,

Var[hnm] = C⊙2
m ·

(
τ 2
n ⊙ (sfn)

2 + ((µf
n)

⊙2 + (sfn)
⊙2)⊙ τn ⊙ (1− τn)

) (S.18)

where µf
n and (sfn)

2 are the mean and diagonal-variance of F(xn), respectively, and ⊙2 represents
the elementwise square operation (see Equation S.11).
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S2.3 APPROXIMATION OF EXPECTED GAUSSIAN LOG-CONDITIONAL DENSITY

In the main paper, we show how to leverage second-order Taylor expansion for approximating the
expected log-conditional density for Poisson likelihood and exponential link function. Such ap-
proximation is sufficiently general, and we can increase the order of approximation at the cost of
increasing computational complexity. However, here we show a special case for Gaussian like-
lihood (with deterministic diagonal covariance matrix) and identity link function where we could
analytically evaluate such expectation.

⟨log p((yn|Fn,Zn))⟩ = − 1

2σ2

M∑
m=1

⟨(ynm − hnm)2⟩ = − 1

2σ2

M∑
m=1

(
(ynm − ⟨hnm⟩)2 + Var[hnm]

)
,

(S.19)

The expectation and variance of h with respect to the variational distribution can be computed fol-
lowing Equation S.18.

S2.4 FURTHER NOTE ON THE “INFINITE-NESS” IN INFINITE GPFA

Despite what the name suggests, the infinite GPFA model currently does not support instantiation
of an effectively infinite number of latent factors. This is due to the fact that we are leveraging
variational inference for fitting model, which requires placing a finite upper bound on the number
of factors for tractable inference. However, this leads to minimal negative impacts in practice since
the intrinsic dimensions of neural manifolds are generally low. Importantly, we wish to emphasise
that the main benefit of incorporating the IBP prior is that the Bayesian nonparametric induces the
additional flexibility for including new factors only if necessary, and enables temporally varying
compositional expression of instantiated factors.

S3 FURTHER DETAILS ON EMPIRICAL EVALUATION

Python implementation of the infinite GPFA model can be access through this repo: https://
github.com/changmin-yu/infinite_gpfa.

S3.1 HYPERPARAMETER SETTINGS

All models are trained with Adam optimiser (Kingma and Ba, 2014), with learning rate 0.01. For
the main experimental evaluations, we train all models over 2000 epochs. The Bayesian GPFA
implementation is based on the official Github repository6. All evaluations are based on averaging
over 10 random seeds where applicable.

Synthetic Data. We instantiate both the standard GPFA and infinite GPFA models with stochastic
C, where ν2d = 0.1, the infinite GPFA model further places a Gamma prior on α, with s1 = 1.0
and s2 = 1.0 (Equation S.13). We set the number of inducing points to be 30 for the main eval-
uations, and the corresponding inducing locations are randomly initialised and treated as learnable
parameters. For all models, we use the squared exponential (SE) kernels, with trainable scale and
lengthscale parameters.

kd(x, x′) = s2d exp

(
−||x− x′||

τ2d

)
, (S.20)

The initial scale and lengthscale parameters are s0d = 1.0 and τ0d = 0.005 (in time domain) for all
models. For all implemented models, we set the latent dimensions, D, to be 10.

Neural Data. We preprocess the spiking train data into spike counts, with 30ms time window.
The instantaneous firing rates for each neuron are computed via dividing the spike counts by the
time window size, followed by Gaussian smoothing. The loading matrix, C, is assumed to be de-
terministic, hence is treated as model parameter and is learned through the variational M-step. The

6https://github.com/tachukao/mgplvm-pytorch
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Figure S1: Further empirical evaluations of infinite svGPFA on the synthetic dataset. a. Com-
parison of R2 score between posterior mean of latent processes and ground-truth latents for all
three models (standard svGPFA (blue), infinite svGPFA (orange) and finite svGPFA (green)). b.
Free energy comparison between the three models. c. Log-log plot of predicted firing rates against
ground-truth firing rates for fitted finite svGPFA model. d. Mean responsibility comparison between
finite and infinite svGPFA. e. Temporal trace of posterior responsibility for a latent process and the
ground-truth activation for the corresponding latent (up to permutation). f. Area Under Curve (AUC)
for binary classification of latent activation given posterior responsibilities.

concentration parameters, α, is again assumed to be stochastic, with Gamma prior and parameters
s1 = 1.0, s2 = 1.0. For all models, the number of inducing points are 100, and corresponding
inducing locations are fixed as equally spaced location along the input (time) domain. We use the
SE kernels for the latent GPs with trainable scale and lengthscale parameters. For all implemented
models, we set the latent dimensions, D, to be 20.

Starting and end times for foraging and homing phases are provided as part of the data collected by
the experimenter (Pfeiffer and Foster, 2013).

S3.2 FURTHER EMPIRICAL EVALUATION ON SYNTHETIC DATA

In addition to the standard and infinite svGPFA with stick-breaking formulation, we also implement
and evaluate the finite svGPFA model (under the finite Beta-Bernoulli approximation of the IBP
prior) on the same synthetic data in the main paper (Figure 2a).

From Figure S1a, we observe that the finite svGPFA model yields stronger performance than the
standard svGPFA model, in terms of the R2 score of the linear fitting between the posterior mean of
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Figure S2: Further empirical evaluations for fitting infinite svGPFA to the neural data. a. First
three canonical correlations between the posterior mean of the latent processes and the selected be-
havioural variables, for standard svGPFA, and infinite svGPFA with varying numbers of maximally
allowed number of latent factors. b. Correlation heatmap between canonical correlates of inferred
latents and relevant behavioural variables. c. Mean posterior responsibilities (sorted). (d). Canoni-
cal correlations between posterior mean of the latents and the set of selected behavioural variables,
over the first 5 principal directions. e. Explained variance ratios over the top 20 principal directions
underlying the population spiking data.

the latent processes and the ground-truth latents. We do observe a slight performance drop compar-
ing to the infinite svGPFA, but such drop is insignificant (p = 0.094). Similarly, by inspecting the
free energy comparison and the log-log plot between the ground-truth firing rates and the predicted
firing rates given the finite svGPFA model, we observe that the finite svGPFA leads to similar model
fitting performance (Figure S1b, S1c).

The finite svGPFA, due to the finite Beta-Bernoulli formulation, all factor probabilities πd follows
the same Beta distribution (πd ∼ Beta

(
α
D , 1

)
). Hence, unlike the stick-breaking construction, we

do not expect the finite svGPFA to instantiate explicit sparseness constraints, hence does not have
the capability to perform automatic model selection for the number of latent factors. Indeed, by
inspecting the mean posterior responsibilities associated with the latent factors, we observe that the
finite svGPFA essentially instantiates all latent processes for (differentially) representing ground-
truth latents, whereas the infinite svGPFA effectively leverages the top factors instead of attributing
the explanatory power to all latent processes (Figure S1d).

To corroborate our analysis in Figure 2, we train infinite svGPFA models with the same number of
latent factors as the data generative process. After fitting, we compare temporal traces of posterior
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Figure S3: Ablation Studies on Infinite GPFA on Synthetic Data. a-c. Temporal trace of free
energy during training for standard and infinite svGPFA models, under conditions with and without
encoding variability, for varying latent dimensions. d. Number of training epochs to reach conver-
gence (d) as a function of latent dimensions. e-f. Difference (in percentage) between converged free
energy objective values between standard and infinite svGPFA, for varying latent dimensions (e),
and varying expected sparsity level in the loading process (f).

responsibilities of inferred latents and corresponding ground-truth activations (up to permutation).
We observe that the posterior responsibilities are well-aligned with the actual activations, suggest-
ing the model has correctly identified the dynamic loading of latent factors onto the neural space
(Figure S1e, S1f).

S3.3 ABLATION STUDIES OF INFINITE GPFA ON SYNTHETIC DATA

In the main paper, we have verified that the infinite GPFA outperforms standard GPFA model when
there exists non-trivial multiplicative binary masking in the loading process (Figure 2). However,
there exists a potential limitation given observations from empirical evaluations: the infinite GPFA
models take significantly more training epochs than the standard GPFA models to reach convergence
(Figure 2b, 3b). Practical application of the proposed model would become prohibitive if such lag-
ging in convergence scales positively with the latent dimension. We validate this by comparing the
temporal trace of the training objective between standard and infinite GPFA models, whilst varying
the number of latent processes (Figure S3a-c). Specifically, the (maximally) 8 latent processes are
as following.

f1(x) = sin3(x) , f2(x) = cos(3x) , f3(x) = sin(3x) , f4(x) = cos3(x) ,

f5(x) = sin(x) cos(2x) , f6(x) = sin(2x) cos(x) ,

f7(x) = sin2(2x) cos(x) , f8(x) = cos2(2x) sin(x) ,

(S.21)

We quantify the amount of training to reach convergence by computing the number of training epoch
to reach 95% of the asymptotic free energy value. Quantitatively, we indeed observe that the infinite
GPFA takes more training epochs to reach convergence (Figure S3d). However, under the trivial-
masking condition, the amount of training for the infinite GPFA model to reach convergence does not
increase with the number of latent processes. Additionally, under the condition where there is non-
trivial binary masking, despite there exists a positive correlation between the amount of training to
reach convergence and the number of latent processes, the magnitude of the positive correlation for
the infinite GPFA model is lower than the standard GPFA model. Importantly, as the number of latent

21



Published as a conference paper at ICLR 2025

processes increases, the gap in the converged free energy objective (under the condition where there
is non-trivial binary masking) is significantly greater for the standard GPFA model (Figure S3e)7.
Collectively, the convergence rate should not be a bottleneck in practical application of the infinite
GPFA model, and the significant performance difference as the latent dimension increases yields the
infinite GPFA model as the more favourable option empirically.

We additionally verify the effect of expected sparsity in the binary mask. We define the sparsity as
the expected number of 1 (active) entries in the binary mask. Cohering with our expectation, the
performance difference between the standard and infinite GPFA (F

inf-svGPFA−F svGPFA

|F svGPFA| ·100) decreases as
the expected sparsity in the mask increases (Figure S3f).

S3.4 FURTHER EMPIRICAL EVALUATION ON NEURAL DATA

Given trained infinite svGPFA model on the neural data, we choose the effective latent dimension
through inspecting the temporal mean of posterior responsibilities associated with the inferred latent
processes (Figure S2c). By choosing the threshold of 0.05, we identify 6 non-trivially activated
latent processes, which is indeed coherent with results reported in literature (Nieh et al., 2021; Yu
et al., 2022). To further corroborate the discovery, we perform standard cross validation model
selection for selecting the optimal number of latent variables. We use the CCA correlations as the
evaluation metrics, we observe that model performance saturates when D reaches 6 (Figure S2a).
Moreover, through directly performing PCA on the population spiking, we observe that the majority
of the variance is explained by its first 6-7 principal components (Figure S2e). These observations
provide additional empirical validity for the correctness of the optimally inferred number of latents
given the IBP prior.

In Section 5.2 of the main text, given the selected set of behavioural variables, we focus our analysis
on the first three canonical correlates (Figure 3c). This decision can be justified by the empirical
observation that there are only three dominant dimensions explaining the covariance between the
latent processes and the selected behavioural variables (Figure S2d).

7We quantify the gap as the percentage of decrease in free energy at convergence given existence of trivial
and non-trivial binary masking, Fnon-trivial−F trivial

|F trivial| · 100
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