
Delay-agnostic Asynchronous Coordinate Update Algorithm

Xuyang Wu 1 Changxin Liu 1 Sindri Magnússon 2 Mikael Johansson 1

Abstract
We propose a delay-agnostic asynchronous coor-
dinate update algorithm (DEGAS) for comput-
ing operator fixed points, with applications to
asynchronous optimization. DEGAS includes
novel asynchronous variants of ADMM and block-
coordinate descent as special cases. We prove that
DEGAS converges with both bounded and un-
bounded delays under delay-free parameter condi-
tions. We also validate by theory and experiments
that DEGAS adapts well to the actual delays. The
effectiveness of DEGAS is demonstrated by nu-
merical experiments on classification problems.

1. Introduction
Many popular algorithms in machine learning, optimization,
and game theory can be formulated as fixed point iterations

x(k + 1) = T(x(k)), (1)

where k is the iteration index, x(k) ∈ Rd is the iterate at
iteration k, and T : Rd → Rd is an operator. For example,
the gradient descent method for minimizing a differentiable
function f is on the form (1) with T(x) = x− γ∇f(x) for
some positive step-size parameter γ > 0.

In machine learning applications, the problem dimension
is sometimes so large that evaluating the full operator T in
each iteration is impractical. For these problems, coordinate
update methods (Nesterov, 2012; Wright, 2015) have proven
to be very competitive. These methods split the decision
vector x into multiple blocks, x = (x1, . . . , xm) and only
update one block i in each iteration, i.e. they set

xi(k + 1) = Ti(x(k)), (2)

while xj(k + 1) = xj(k) for all j ̸= i. Here, Ti is the
ith block of T such that T(x) = (T1(x), . . . ,Tm(x)). In

1Division of Decision and Control Systems, EECS, KTH Royal
Institute of Technology, Stockholm, Sweden 2Department of Com-
puter and System Science, Stockholm University, Stockholm, Swe-
den. Correspondence to: Xuyang Wu <xuyangw@kth.se>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

many cases, the cost of computing Ti can be much lower
than that of computing the whole T (Nesterov, 2012).

A natural approach for accelerating coordinate update meth-
ods is to implement them on multiple processors/machines
in a distributed environment. For example, in each iteration
we may let every processor compute Ti for a randomly cho-
sen block i, update all the selected blocks, and then go to
the next iteration (Richtárik & Takáč, 2016). We consider
this to be a synchronous update, since all the processors are
synchronized and the algorithm does not proceed to the next
iteration until all processors finish their work. Due to the
use of multiple processors, synchronous coordinate update
methods can converge significantly faster than the central-
ized coordinate update (2). However, their convergence
speed is bottlenecked by the slowest processor and they are
sensitive to single-node failures. In contrast, asynchronous
coordinate update methods eliminate the need for global
synchronization and can be more efficient and robust.

This paper focuses on asynchronous coordinate updates.
Although these are useful in a wide range of sciences, this
paper only discusses applications in optimization and ML.

1.1. Related work

In the past few decades, there has been a growing interest
in developing parallel and asynchronous machine learn-
ing algorithms. As a part of this effort, a large number
of asynchronous and distributed optimization algorithms
with strong practical performance have been developed, in-
cluding Async-SGD (Recht et al., 2011), Asynchronous
ADMM (Zhang & Kwok, 2014), PIAG (Aytekin et al.,
2016; Sun et al., 2019; Feyzmahdavian & Johansson, 2021),
Async-BCD (Liu et al., 2014; Wu et al., 2022a), DAve-RPG
(Mishchenko et al., 2018), DAve-QN (Soori et al., 2020),
and ADSAGA (Glasgow & Wootters, 2022). Most of these
algorithms are tailored to specific computing architectures
such as master-worker (Li et al., 2013) or shared-memory
(Bertsekas & Tsitsiklis, 1989), while algorithms such as
AsySPA (Zhang & You, 2019), DFAL (Aybat et al., 2015),
and the Asynchronous primal-dual algorithm (Wu et al.,
2017) consider general communication topologies.

Two of the most influential frameworks for asynchronous
coordinate update methods are due to (Bertsekas, 1983) and
(Peng et al., 2016), respectively. In contrast to the related

1

Delay-agnostic Asynchronous Coordinate Update Algorithm

work cited above, which focuses on solving specific classes
of optimization problems, they consider asynchronous coor-
dinate updates for the more general problem of finding fixed
points of operators. Specifically, Bertsekas (1983) proposes
the following asynchronous implementation of (2):

xi(k + 1) = Ti(x̂(k)), (3)

where x̂(k) = (x̂1(k), . . . , x̂n(k)) with each x̂j(k) =
xj(k − τj(k)) for some integer τj(k) ≥ 0. Here, τj(k)
represents the information delay from node j, i.e. the dif-
ference between the current iteration index and the index
of the iterate block used for computing Ti. However, this
framework rarely applies to machine learning problems,
since it is only guaranteed to converge if T is contractive
in a block-maximum norm; see § 2.1.1. Even for gradient
descent iterations on quadratic optimization problems, this
condition only holds if the Hessian is diagonally dominant.

The ARock framwork of Peng et al. (2016) considers the
modified coordinate updates

xi(k + 1) = xi(k) + γ(k)(Ti(x̂(k))− x̂i(k)), (4)

where γ(k) > 0 is the step-size. Unlike (Bertsekas, 1983),
ARock only requires T to be non-expansive and applies to
modern algorithms like BCD (Nesterov, 2012) and ADMM
(Boyd et al., 2011). However, like most asynchronous algo-
rithms that use fixed step-sizes, such as PIAG (Aytekin et al.,
2016) and Async-BCD (Liu et al., 2014), existing conver-
gence results require that delays are uniformly bounded and
rely on step-size restrictions for γ(k) that depend on this
(typically unknown) delay bound. This causes difficulties
in practice: using a large delay bound (to ensure that it is
valid) leads to a small step-size and an unnecessarily slow
convergence. In addition, guarding against the maximum
delay leads to overly conservative results if most delays
are smaller than the maximum delay. Indeed, a number of
recent papers report delay measurements for asynchronous
optimization algorithms that show that real-world delays
tend to be distributed in this way; see, e.g., (Mishchenko
et al., 2022; Wu et al., 2022a; Koloskova et al., 2022) and
our own measurements in Figure 5 in Appendix K. As a
specific example, Mishchenko et al. (2022) implement an
asynchronous SGD on a 40-core CPU and report maximal
and average delays of around 1200 and 40, respectively.

1.2. Contribution

In this paper, we propose an alternative way to perform asyn-
chronous coordinate updates. This approach, which we call
the DElay-aGnostic ASynchronous coordinate update (DE-
GAS) algorithm, adapts the updates (3) to a master-worker
architecture (Li et al., 2013) and samples the update block
uniformly at random. We show that with these modifica-
tions, the new algorithm preserves the advantages of (3) and
(4) and avoids their drawbacks in the sense that

i) Like (3), DEGAS is free from parameters that depend on
the delay. In this way, it avoids ARock’s issues with hard-
to-determine and conservative step-sizes. Moreover, by
characterizing how the convergence of DEGAS is affected
by the distribution of delays in a stochastic delay model, we
show that convergence is faster when small delays are more
likely than large delays. This is in contrast to ARock, whose
convergence rate is dominated by the worst-case (largest)
delay and whose performance does not improve even if the
actual delays are much smaller. This can be observed by
scrutinising the convergence bounds in (Peng et al., 2016)
and is confirmed in our numerical results.

ii) DEGAS converges under the same conditions on T as
ARock, and can therefore be used for parallel and asyn-
chronous implementations of a wide range of modern opti-
mization methods, including BCD and ADMM. We prove
that DEGAS converges under both bounded and unbounded
delays. For bounded delays, we provide an explicit conver-
gence rate and show that the iterates of DEGAS converge
faster than the best-known bound for ARock. To derive this
result, we prove a linear rate for a general class of asyn-
chronous sequences which significantly sharpens a lemma
from (Feyzmahdavian & Johansson, 2021).

We illustrate the superior performance of DEGAS (including
ADMM and BCD) in training of large scale models.

Notation and Preliminaries

We let N be the set of natural numbers, and N0 = N ∪ {0}.
We denote [m] = {1, . . . ,m} for any m ∈ N and define the
proximal operator of a function R : Rd → R ∪ {+∞} as
proxR(x) = argminy∈Rd R(y) + 1

2∥y − x∥2. We call a
differentiable function f : Rd → R L-smooth if ∥∇f(x)−
∇f(y)∥ ≤ L∥x− y∥ ∀x,y ∈ Rd, and µ-strongly convex
if ⟨∇f(x)−∇f(y),x−y⟩ ≥ µ∥x−y∥2 ∀x,y ∈ Rd. We
use Id to denote the identity operator of proper dimension.
For any operator T : Rd → Rd, FixT = {x : x = Tx}
represents its set of fixed-points. We use ∥ · ∥ to represent
the Euclidean norm for vectors and the spectral norm for
matrices. For any vector x = (x1, . . . , xm) ∈ RN and w =
(w1, . . . , wm) ∈ Rm where each xi ∈ Rdi and wi > 0, we
define ∥x∥wb,∞ = maxi∈[m]

∥xi∥i

wi
as the block-maximum

norm, where each ∥ · ∥i can be any vector norm.

2. Algorithm and Main Result
In this section, we present our algorithm for finding opera-
tor fixed points, analyze its convergence, and highlight its
advantages over ARock (Peng et al., 2016).

2.1. Algorithm

We adapt the asynchronous update (3) to the widely-used
master-worker architecture (Li et al., 2013) for distributed

2

Delay-agnostic Asynchronous Coordinate Update Algorithm

Algorithm 1 DEGAS
1: Setup: initial iterate x(0).
2: Initialization: the master sets x = x(0) and broadcasts

x to all workers.
3: while not interrupted by master: each worker w ∈ [n]

asynchronously and continuously do
4: receive x from the master and assign xw = x.
5: sample i ∈ [m] uniformly at random.
6: compute Ti(x

w).
7: send (Ti(x

w), i) to the master.
8: end while
9: while not converged: the master do

10: receive (Ti(x
w), i) from a worker w.

11: update xi ← Ti(x
w).

12: send x to the worker w.
13: end while

learning. Here, a master node stores the current model x
and coordinates the work of n compute nodes. Each worker
w ∈ [n] asynchronously and continuously receives x from
the master, stores it in the local variable xw, computes
Ti(x

w) for some i ∈ [m] drawn uniformly at random, and
returns Ti(x

w) to the master. Once the master receives
Ti(x

w) from some worker w, it updates

xi = Ti(x
w) (5)

and pushes the updated model back to any idle workers. A
detailed implementation is given in Algorithm 1, which we
refer to as the DElay-aGnostic ASynchronous coordinate
update (DEGAS) algorithm.

For the convenience of further discussion, we index the
iterates by k ∈ N0, which represents the number of updates
by the master, and use i(k) to denote the updated block at
time k. Note that in DEGAS, each xw in (5) is a delayed
iterate and equals to x(k − τ(k)) for some integer τ(k) ∈
[0, k]. We refer to τ(k) as the delay at time k. In this way,
the update at time k ∈ N0 can be equivalently rewritten as

xj(k + 1) =

{
Tj(x(k − τ(k))), j = i(k),

xj(k), otherwise.
(6)

2.1.1. CONNECTION WITH EXISTING WORKS

DEGAS can be viewed as an adaption of the asynchronous
update (3) to the master-worker architecture. They are log-
ically equivalent except for the particular block selection
rule in DEGAS. Existing work on (3) mainly focused on a
setting where the number of blocks and processors (or work-
ers) are identical and each processor updates a certain block.
To guarantee convergence in this setting, it is common to
require that T is contractive in the block-maximum norm
(Bertsekas & Tsitsiklis, 1989), i.e. to satisfy

∥T(x)− T(x⋆)∥wb,∞ < c∥x− x⋆∥wb,∞ (7)

for some c ∈ (0, 1), some x⋆ ∈ FixT and for every x ∈
Rd, where the block-maximum norm ∥ · ∥wb,∞ is defined in
Section 1. The condition (7) is restrictive and only holds for
very specific operators, e.g., (Frommer, 1991), (Bertsekas
& Tsitsiklis, 1989), (Mehyar et al., 2007), (Moallemi &
Van Roy, 2010), and (Hale et al., 2017). Even for the simple
operator T = Id− 1

L∇f where f(x) = 1
2x

TAx + bTx
for a symmetric and positive definite matrix A ∈ Rm×m

and a vector b ∈ Rm and L = ∥A∥2, the condition (7) is
known to hold only when A is diagonally dominant. In the
next subsection we will show that DEGAS, by letting each
processor update a random block in (3), can converge under
a much weaker condition.

The ARock framework (Peng et al., 2016) uses updates that
are rather different. First, while (3) only depends on x̂(k),
the ARock updates (4) are based on both x̂(k) and xi(k). To
guarantee convergence, the maximally allowable step-size
depends on the (usually unknown and large) worst-case de-
lay, and decays quickly with the upper bound on the delays.
This makes the algorithm difficult to tune and unnecessarily
slow in practice. In contrast, DEGAS does not need access
to the upper delay bound for tuning, but converges for all
bounded delays. Moreover, Example 1 in (Feyzmahdavian
et al., 2014) provides a comparison between two delayed
gradient methods, which are special cases of DEGAS and
ARock with one block and one worker, respectively. They
show that for a simple problem, the method specialized from
DEGAS strictly outperforms the one from ARock, which
suggests the superiority of the algorithmic form of DEGAS.
We admit that the ARock framework is more flexible be-
cause it allows for inconsistent read and write while DEGAS
does not. Due to this reason, ARock can be implemented
on both the master-worker and the shared memory system,
while DEGAS can only be implemented in the former where
inconsistent read and write can be practically avoided.

Some existing asynchronous optimization methods can also
converge with step-sizes that do not rely on the worst-case
delay. Their step-sizes can be categorized as 1) delay-free
and fixed; 2) delay-free and diminishing; 3) delay-adaptive.
We are only aware of four other asynchronous algorithms
that converge with delay-free fixed step-sizes: the delayed
proximal gradient method (Feyzmahdavian et al., 2014), the
asynchronous ADMM (Zhang & Kwok, 2014), DAve-RPG
(Mishchenko et al., 2018), and the asynchronous level bun-
dle method (Iutzeler et al., 2020). The first three algorithms
are different from DEGAS and, unfortunately, do not cover
coordinate update methods like BCD and ADMM. Zhang &
Kwok (2014) assume that all workers have the same prob-
ability of sending results to the master in each iteration,
which is less practical. The works (Sra et al., 2016; Wu
et al., 2022a; Cohen et al., 2021; Koloskova et al., 2022)
avoid using the worst-case delay by adapting step-sizes to
the actual delays or the errors caused by actual delays. Here,

3

Delay-agnostic Asynchronous Coordinate Update Algorithm

Wu et al. (2022a) study PIAG and asynchronous BCD, while
the others focus on asynchronous SGD. The works (Agar-
wal & Duchi, 2011; Zhou et al., 2018; Aviv et al., 2021)
show convergence of the asynchronous SGD or its variants,
under delay-free diminishing step-sizes that are effective in
stochastic optimization but may lead to slow convergence
when applied to deterministic optimization problems.

2.2. Convergence analysis

Throughout the paper, we assume that the actual delays are
independent from the sequence of selected blocks.
Assumption 1. The delay sequence {τ(k)}k∈N0 and the
block sequence {i(k)}k∈N0

are independent.

Assumption 1 is common in many papers on asynchronous
optimization, e.g., ARock (Peng et al., 2016), asynchronous
SGD (Recht et al., 2011; Mishchenko et al., 2022), and asyn-
chronous coordinate descent (Liu & Wright, 2015). How-
ever, as highlighted in Leblond et al. (2018), the assumption
may not hold in practice if Ti is more expensive to compute
for some block i than for the others. Possible approaches for
relaxing Assumption 1 include before read labeling (Mania
et al., 2017), after read labeling (Leblond et al., 2018), and
single coordinate consistent ordering (Cheung et al., 2021).

We first consider the case where all delays are bounded.
Assumption 2 (Partial asynchrony). There exists some finite
number τ̄ ∈ N0 such that τ(k) ≤ τ̄ for all k ∈ N0.

We analyze two classes of operators T defined next.
Definition 1 (Averaged operator). The operator T : Rd →
Rd is an α-averaged operator if T = (1− α) Id+αR for
some α ∈ (0, 1) and some non-expansive operator R.
Definition 2 (Pseudo-contractive operator). The operator
T : Rd → Rd is pseudo-contractive with modulus c ∈ (0, 1)
if FixT ̸= ∅ and for any x⋆ ∈ FixT and x ∈ Rd,

∥T(x)− T(x⋆)∥ ≤ c∥x− x⋆∥. (8)

Examples of averaged operators include the proximal oper-
ator proxf of a closed and convex function f , the gradient
descent operator Id−γ∇f , γ ∈ (0, 2/L) of a convex and
L-smooth f , the Douglas-Rachford splitting of two 1/2-
averaged operators, and the forward-backward splitting of
a maximally monotone operator and a cocoercive operator.
These operators may be pseudo-contractive under stronger
conditions (Bauschke et al., 2011).
Theorem 1. Let x⋆ ∈ FixT and {x(k)} be generated by
DEGAS under Assumptions 1–2. If T is averaged, then

min
t≤k

E [∥(Id−T)(x(t))∥] = O(1/k). (9)

If T is pseudo-contractive with modulus c ∈ (0, 1) then

E[∥x(k)− x⋆∥2] ≤ ρka∥x(0)− x⋆∥2 (10)

holds for all k ∈ N0 where ρa = (1− 1−c2

m)
1

1+τ̄/m .

Proof. See Appendix A.

In Theorem 1, the expectation is taken over historical block
selections. The linear rate (10) is derived by using Lemma
9 in Appendix A, which establishes a linear convergence
rate for a class of asynchronous sequences that significantly
sharpens the rate in (Feyzmahdavian & Johansson, 2021).

The rate in Theorem 1 is tight in the sense that it is of
the same order as the best-known rates for the centralized
coordinate update (2). When τ̄ = 0, the rate ρa in (10)
reduces to the typical rate ρc := 1− 1−c2

m of the centralized
coordinate update. Moreover, for any ϵ > 0, to achieve
E[∥x(k)− x⋆∥2] ≤ ϵ, DEGAS requires at most

Ka(ϵ) := (1 + τ̄ /m)Kc(ϵ) (11)

iterations, where Kc(ϵ) = log1/ρc

∥x(0)−x⋆∥2

ϵ is the itera-
tion complexity of the centralized coordinate update method
for achieving the same accuracy.

Remark 1 (Linear speed-up). Suppose that τ̄ is propor-
tional to the number of workers, n. This happens when
workers cyclically return information to the master, and is a
good approximation for many distributed architectures for
small to moderate values of n. Then, by (11),

Ka(ϵ) = (1 + Θ(n)/m)Kc(ϵ). (12)

If the computation time of Ti dominates the per-iteration
cost of DEGAS, then a single iteration of DEGAS takes 1/n
of the time of a centralized coordinate update (2) (Peng
et al., 2016). Combining this observation with (12) reveals
that DEGAS needs

1/n+Θ(1)/m (13)

times that of the centralized coordinate update to achieve a
given accuracy. Note that (13) is approximately inversely
proportional to n when m≫ n. This linear speedup prop-
erty (Peng et al., 2016) is a desirable feature of distributed
optimization/learning algorithms.

Remark 2 (Comparison with ARock). Peng et al. (2016)
establish a linear convergence rate O(ρk) for ARock that is
improved in (Feyzmahdavian & Johansson, 2021) to

ρ = 1− 1− c2

m(1 + 6
(

τ̄
m +

√
τ̄
m

)
)
≥ ρ

1+τ̄/m

1+6

(
τ̄
m

+
√

τ̄
m

)
a . (14)

The inequality in (14) is established in Appendix B. Hence,
to achieve the same accuracy, ARock needs at least
1+6(τ̄/m+

√
τ̄/m)

1+τ̄/m times as many iterations of DEGAS. When
τ̄ = m, this is a factor of roughly 6.5.

4

Delay-agnostic Asynchronous Coordinate Update Algorithm

2.2.1. SELF-ADAPTIVITY TO ACTUAL DELAYS

Since the maximal delay can be very large while most de-
lays are significantly smaller (Mishchenko et al., 2022; Wu
et al., 2022a; Koloskova et al., 2022), the ability to adapt
to the actual delays and not be significantly slowed down
by infrequent occurrences of larger delays is an attractive
algorithm feature. We call this property self-adaptivity of
an asynchronous algorithm to actual delays.

Unlike ARock, whose maximally allowable step-size de-
creases with the maximum delay, DEGAS includes no delay
information in its parameters and intuitively has better self-
adaptivity. However, in Theorem 1, the use of the worst-case
delay in the analysis can give loose convergence rate bounds
and does not indicate any advantage of a system in which the
worst-case delay is rarely attained over one that tends to run
with delays close to the worst-case all the time. To reveal
how the actual delays rather than their upper bound affects
the convergence of DEGAS, we consider delays described
by the following stochastic model:

Assumption 3. The delays {τ(k)}k∈N0
are i.i.d. with prob-

ability distribution P , where

Pr(τ(k) = i) = Pi, ∀i ∈ {0, . . . , τ̄}, (15)

with
∑τ̄

i=0 Pi = 1 and Pi ≥ 0 ∀i ∈ {0, . . . , τ̄}.

As the next result shows, the convergence rate of Algo-
rithm 1 under such delays can be characterized by

ϕ(ρ) = ρ− ρc −
c2

m
(

τ̄∑
i=0

Piρ
−i − 1).

Theorem 2. Suppose that Assumption 3 holds, τ̄ ≥ 1, and
P0 < 1. Let {x(k)} be generated by DEGAS. If T is pseudo-
contractive with modulus c ∈ (0, 1) then

E[∥x(k)− x⋆∥2] ≤ ρkP∥x(0)− x⋆∥2, ∀k ∈ N0, (16)

where ρP = αPρa + (1− αP)ρc with

αP =
1

1− ϕ(ρa)/ϕ(ρc)
∈ (0, 1). (17)

In (17), ϕ(ρa) ≥ 0 and ϕ(ρc) < 0.

Proof. See Appendix C.

The expectation in Theorem 2 is taken jointly over histor-
ical delays and block selection. A remarkable feature of
Theorem 2 is that it allows to compute an explicit conver-
gence rate bound for any given delay distribution P . The
convergence factor ρP is a convex combination of the corre-
sponding quantities for the synchronous (centralized) and
bounded-delay models, and the mixing parameter αP de-
pends on the delay distribution P . However, from (17), it is

not straightforward to see how qualitative characteristics of
the delay distribution (e.g., the mean or the variance) affect
ϕ(ρc), ϕ(ρa), and αP . As we will show next, such insight
can be developed using the concept of stochastic dominance
(Hadar & Russell, 1969).

Effect of delay under stochastic dominance: Suppose that
P and P ′

are two probability distributions defined by (15).

Definition 3 (Stochastic dominance). We say that P first-
order stochastically dominates P ′ (P ⪰1 P ′) if

i∑
j=0

Pj ≥
i∑

j=0

P ′
j , ∀i ∈ {0, . . . , τ̄},

i.e., P always has a larger cumulative probability than P ′.

The stochastic dominance model compares the proportion
of small delays in two delay distributions, which is different
but has close connections to the mean-variance model:

Proposition 1. Suppose that P ⪰1 P ′. Then, the mean
value of P is smaller than or equal to that of P ′ and if
they share the same mean value, then the variance of P is
smaller than or equal to that of P ′.

Proof. These results are straightforward to derive from
(Hadar & Russell, 1969). For sake of completeness, we
provide an elementary proof in in Appendix D.

The stochastic dominance concept allows us to prove the
following attractive property of DEGAS:

Lemma 3. If P ⪰1 P ′, then ρP≤ ρP′ .

Proof. See Appendix E.

In particular, Lemma 3 demonstrates that an execution envi-
ronment that delivers a larger portion of small delays will
allow for a stronger convergence guarantee for DEGAS.

Demonstration with a simple operator: To demonstrate
the self-adaptivity of DEGAS to actual delays, we consider
the simple operator T(x) = 0.8x and three stochastic delay
models. Note that when the delays are generated by stochas-
tic models, the number of workers does not affect the update
(6) or the convergence of DEGAS in terms of iteration in-
dex. We choose m = 20, τ̄ = 20, and each block xi ∈ R.
The stochastic models are: For any i ∈ [0, τ̄], 1) small:
Pi =

(τ̄+1−i)2∑τ̄+1
j=1 j2

; uniform: Pi =
1

τ̄+1 ; large: Pi =
(i+1)2∑τ̄+1
j=1 j2

.

If the generated value is larger than k, we set τ(k) = k to
ensure τ(k) ∈ [0, k]. We also run ARock with the same
operator for comparison. For ARock (4), we fine tune γ(k)
in its theoretical range (0, 1

2τ̄/
√
m+1

) in (Peng et al., 2016)
and draw blocks to update uniformly at random.

5

Delay-agnostic Asynchronous Coordinate Update Algorithm

Figure 1. Adaptivity of DEGAS and ARock to real delays (small (bound), uniform (bound), and large (bound) are bounds in Theorem 2).

(a) delay distribution (b) DEGAS (c) ARock

We execute 2000 runs of both algorithms, each for 100 iter-
ations, and plot the average result in Figure 1. We also plot
the rate bounds in Theorems 1–2. We can see that DEGAS
converges significantly faster when the proportion of small
delays increases (large→ uniform→ small), demonstrating
an excellent delay adaptivity of DEGAS. Moreover, the con-
vergence bound in Theorem 2 is very tight for the simulated
scenarios and accurately reflects the effect of delays on the
DEGAS iterates. We also observe that Theorem 1, despite
that it only uses the upper delay bound, is relatively tight.
In contrast to DEGAS, no clear difference in the conver-
gence speed of ARock under the three delay patterns can
be observed due to the small step-size caused by the large
τ̄ . In addition, ARock is much slower than DEGAS for all
three delay models. Note that the actual delays reported
in (Mishchenko et al., 2022) have a much higher proportion
of small delays than our small model, suggesting that the
benefits of DEGAS could be even larger in practice.

2.2.2. CONVERGENCE ON UNBOUNDED DELAY

We also study DEGAS under unbounded delays using the
concept of total asynchrony (Bertsekas & Tsitsiklis, 1989).

Assumption 4 (Total asynchrony). The delay sequence
{τ(k)} satisfies limk→+∞ k − τ(k) = +∞.

Assumption 4 is very general and guarantees that old infor-
mation must eventually be purged from the system.

Theorem 4. Suppose that Assumptions 1,4 hold and x⋆ ∈
FixT. Let {x(k)} be generated by DEGAS. If T is aver-
aged, then limk→+∞ inft≤k E [∥(Id−T)(x(t))∥] = 0.

Proof. See Appendix F.

The expectation in Theorem 4 is taken over historical block
selections. Under Assumption 4, it is impractical to derive

explicit convergence rates due to the lack of bounds that
limit how quickly the delays can grow large.

Below, we derive explicit convergence rates for DEGAS
under the following delay model which satisfies Assumption
4 but adds a sublinearly or linearly growing delay bound.

Assumption 5 (Sublinear & linear delay growth bound).
There exist η ∈ (0, 1), β ∈ (0, 1], and γ ≥ 1 such that
τ(k) ≤ ηkβ + γ ∀k ∈ N0.

Theorem 5 (Sublinear convergence). Suppose that Assump-
tion 5 holds. Let {x(k)} be generated by DEGAS. If T is
pseudo-contractive with modulus c ∈ (0, 1), then

E[∥x(k)−x⋆∥2] =

O

((
1− 1−c2

m

)k1−β)
, β ∈ (0, 1),

O(1/k), β = 1.

Proof. See Appendix G.

Like Theorems 1, 4, the expectation in Theorem 5 is taken
over historical block selections. Theorems 1 and 5 display
how delays affect the order of convergence of DEGAS. Such
a relationship is summarized in a more clear way in Table 1.
In brief, delays that are allowed to grow large quicker lead
to slower convergence, which coincides with intuition.

delay bound constant O(kβ), β ∈ (0, 1) O(k)

rate linear O(ρk
1−β

c) O(1/k)

Table 1. Synchrony and convergence rate (ρc = 1− 1−c2

m
).

Wu et al. (2022b) derive similar results as Theorem 5 for
the asynchronous BCD specialized from ARock and prove
that they are optimal in terms of the convergence rate order.
Hannah & Yin (2018) show that ARock converges under

6

Delay-agnostic Asynchronous Coordinate Update Algorithm

certain stochastic and deterministic unbounded delay mod-
els. However, when considering deterministic delay models,
neither of them guarantees the convergence of ARock under
the more general total asynchrony assumption. Moreover,
they both require carefully designed delay-dependent step-
sizes to guarantee convergence, while DEGAS can converge
with delay-free parameters.

3. Applications
By concretizing the operator T in DEGAS, we obtain novel
and efficient asynchronous variants of BCD and ADMM.

3.1. Delay-agnostic asynchronous BCD

BCD (Richtárik & Takáč, 2014) solves the composite opti-
mization problem

minimize
x∈Rd

f(x) +

m∑
i=1

ri(xi), (18)

where f : Rd → R is convex and L-smooth, xi ∈ Rdi

is the ith block of x, i.e., x = (x1, . . . , xm), and each
ri : Rdi → R ∪ {+∞} is closed and convex. At each
iteration k, BCD chooses one block i ∈ [m] and updates

xi(k + 1) = proxγri(xi(k)− γ∇if(x(k))), (19)

while xj(k + 1) = xj(k) for all j ̸= i. Here, γ > 0 is a
step-size and∇if(·) is the partial gradient of f with respect
to xi. This is equivalent to the coordinate update (2) with

Ti(x) = proxγri(xi − γ∇if(x)), ∀i ∈ [m]. (20)

We refer to DEGAS with Ti defined in (20) as delay-
agnostic asynchronous BCD. Compared to the existing asyn-
chronous BCD (Sun et al., 2017; Cheung et al., 2021) that is
specialized from ARock, the delay-agnostic asynchronous
BCD enjoys the same advantages as DEGAS over ARock,
i.e., fast convergence under delay-free parameters.

If the optimal solution set of (18) is non-empty, so is FixT
where T = (T1, . . . ,Tm) with each Ti given by (20), and
every x⋆ ∈ FixT is an optimal solution of problem (18)
(Bauschke et al., 2011). Under proper conditions, T is aver-
aged and pseudo-contractive, which implies convergence of
delay-agnostic asynchronous BCD by the results in § 2.2.

Lemma 6. Suppose that γ ∈ (0, 2/L). The operator T de-
fined in (20) is α-averaged with α = 1

min(1,1/(Lγ))+1/2 ∈
(0, 1). If, in addition, f is µ-strongly convex for some
µ ∈ (0, L], then T is pseudo-contractive with modulus
c =

√
1− 2γµ+ γ2µL.

Proof. The claim follows by Theorem 25.8 in (Bauschke
et al., 2011) and Proposition 5 in (Peng et al., 2016).

Under the uniform random block selection rule and bounded
delays, Sun et al. (2017); Cheung et al. (2021) establish
convergence rates of the same order as Theorem 1 for the
asynchronous BCD specialized from ARock. Neither of
them requires Assumption 1, and Sun et al. (2017) also
consider stochastic and deterministic unbounded delays and
deterministic block selection rules. However, compared to
our delay-agnostic asynchronous BCD, the asynchronous
BCD (Sun et al., 2017; Cheung et al., 2021) inherits the
disadvantages of ARock compared to DEGAS, i.e., delay-
dependent step-sizes and the resulting slow convergence.
Moreover, none of (Sun et al., 2017; Cheung et al., 2021)
provide convergence results under Assumptions 4 or 5.

3.2. Delay-agnostic asynchronous ADMM

Consider the consensus optimization problem:

minimize
z∈Rd

m∑
i=1

Fi(z), (21)

where each Fi is convex and closed. Problem (21) in-
cludes many popular problems, including empirical risk
minimization (Boyd et al., 2011). Letting z = (z1, . . . , zm),
F (z) =

∑m
i=1 Fi(zi), and C = {z : z1 = . . . = zm},

problem (21) can be rewritten as

minimize
z∈Rmd

F (z) + IC(z), (22)

where IC is the indicator function of C. One popular way of
solving (22) is to use the update (1) with T defined by the
Douglas-Rachford splitting of ∂IC and ∂F , i.e.,

T = Id+λ(proxγF ◦(2 proxγIC
− Id)− proxγIC

), (23)

where λ ∈ (0, 2). If the optimal solution set of (22) is non-
empty, so is FixT and, for any x⋆ ∈ FixT, proxγIC

(x⋆)
is an optimal solution of problem (22) (Bauschke et al.,
2011). We refer to DEGAS with T in (23) as delay-agnostic
asynchronous ADMM because its synchronous counterpart
with λ = 1 is equivalent to ADMM (see Appendix H).

The delay-agnostic asynchronous ADMM can be imple-
mented as in Algorithm 1 where Ti(x

w) is evaluated via

zi =
1

m

m∑
i=1

xw
i , (24)

Ti(x
w) = xw

i + λ(proxγFi
(2zi − xw

i)− zi). (25)

Below we show that T in (23) is an averaged operator under
proper conditions. By the results in § 2.2, this implies that
the delay-agnostic asynchronous ADMM converges under
both bounded and unbounded delays.

Lemma 7. The operator T in (23) is λ/2-averaged.

7

Delay-agnostic Asynchronous Coordinate Update Algorithm

Proof. See Appendix I.

For some special examples of Fi’s, e.g., each Fi is the
indicator function of a subspace and λ = 1, the operator T
in (23) becomes pseudo-contractive (Bauschke et al., 2014).
In such cases, the delay-agnostic asynchronous ADMM can
achieve linear convergence for bounded delays by Theorems
1–2, and sublinear convergence for unbounded delays by
Theorem 5 in Appendix G. Similarly, delay-adaptivity is
ensured by Theorem 2.

Remark 3. A closely related asynchronous ADMM algo-
rithm is developed in (Zhang & Kwok, 2014). It performs
updates according to (24)–(25) with λ = 1, but assumes
that the number of workers is identical to the number of
blocks, and requires that each zi is updated by worker i.
To guarantee convergence, they assume that in every iter-
ation all the workers have an equal probability to return
their local variable to the master, which rarely holds in
practice. Moreover, they only prove O(1/k) convergence in
terms of the running-average 1

k

∑k−1
t=0 z(t) when the delays

are bounded and have no convergence guarantee for the
last iterate z(k). However, we prove convergence of the
last iterate for bounded (Theorem 1) and unbounded delays
(Theorem 4). Such rates can be improved as discussed below
Lemma 7 when the operator is pseudo-contractive.

3.2.1. EXTENSION TO A MORE GENERAL PROBLEM

We extend the delay-agnostic asynchronous ADMM to solve

minimize
z∈Z

f(z) + r(z), (26)

where z = (z1, . . . , zm) with each zi ∈ Rdi ,Z ⊆ R
∑m

i=1 di

is a convex and closed set endowed with a simple pro-
jection operator, f is convex and L-smooth, and r(z) =∑m

i=1 ri(zi) with each ri being a convex, closed, but pos-
sibly non-smooth function. Some examples of Z include:
i) When Z = R

∑m
i=1 di , (26) reduces to problem (18); ii)

When Z = {z : z1 = z2 = . . . = zm}, the problem (26)
becomes consensus optimization, slightly more general than
(22) since the objective function is allowed to have a non-
separable smooth component; iii) When Z = {z : Az ≤ b}
or Z = {z : Az = b} for a matrix A and a vector b, it
becomes a resource allocation problem (Lin et al., 2015).

To exploit the composite structure of the objective function,
we replace proxγF in (23) by

T′ = θ proxγr ◦(Id−γ∇f) + (1− θ) Id, (27)

where γ ∈ (0, 2/L) and θ = min(1,1/(Lγ))+1/2
2 . We average

the proximal gradient operator with Id to make T′ a 1/2-
averaged operator, which will be used in our convergence
analysis (see Lemma 8 below). We also replace C in (23) by

Z . Then, the new operator takes the form

T = Id+λ(T′ ◦(2 proxγIZ
− Id)− proxγIZ

) (28)

for λ ∈ (0, 2), which can be simplified to

T =proxγr ◦(Id−γ∇f) ◦ (2 proxγIZ
− Id)

+
2

3
(Id−proxγIZ

)
(29)

when γ = 1/L and λ = 4/3. If the optimal solution set
of (26) is non-empty, so is FixT with T in (28) and for
any x⋆ ∈ FixT, proxγIZ

(x⋆) is an optimal solution of
problem (26) (Bauschke et al., 2011).

We refer to DEGAS with T in (28) as extended delay-
agnostic asynchronous ADMM, whose asynchronous im-
plementation follows Algorithm 1 with Ti(x

w) in Step 6
being evaluated via

zi = [proxγIZ
(xw)]i, (30)

yi = 2zi − xw
i , (31)

Ti(x
w) = λθ proxγri(yi − γ∇if(yi))

+ (1− (1− θ)λ)xw
i − λ(1− 2(1− θ))zi. (32)

Lemma 8. The operator T′ in (27) is 1/2-averaged and T
in (28) is λ/2-averaged.

Proof. See Appendix J.

With Lemma 8, convergence of the extended asynchronous
ADMM for bounded and unbounded delays can be recov-
ered from Theorems 1 and 4 in a straightforward manner.

4. Experiments
We evaluate the practical performance of DEGAS on Lasso
and regularized logistic regression problems on the CI-
FAR100 dataset (Krizhevsky et al., 2009).

Let ai be the feature of the ith sample, bi be the correspond-
ing label, and N be the number of samples. Then our test
problems are on the form

minimize
x∈Rd

1

N

N∑
i=1

ℓi(x) + λ1∥x∥1, (33)

where ℓi(x) =
1
2∥aix− bi∥2 in Lasso and ℓi(x) = log(1 +

e−bi(a
T
i x))+ λ2

2 ∥x∥
2 in regularized logistic regression. We

use λ1 = 10−3 and λ2 = 10−4. The proposed DEGAS
algorithm is compared with ARock and its synchronous
counterpart. In these methods, we choose the operator T
as (20) with γ = 1/L in BCD and (29) in the extended
ADMM. We set m = 20 and implement all the methods
on a 10-core machine (1 master and 9 workers) using the

8

Delay-agnostic Asynchronous Coordinate Update Algorithm

Figure 2. Convergence for Lasso

0 1000 2000 3000 4000

of Ti computed

4.8

5.0

5.2

5.4

5.6

ob
je

ct
iv

e
va

lu
e

BCD (ARock)

BCD (Sync)

BCD (DEGAS)

ADMM (ARock)

ADMM (Sync)

ADMM (DEGAS)

(a) theoretical parameters

0 1000 2000 3000 4000

of Ti computed

4.8

5.0

5.2

5.4

5.6

ob
je

ct
iv

e
va

lu
e

BCD (ARock)

BCD (Sync)

BCD (DEGAS)

ADMM (ARock)

ADMM (Sync)

ADMM (DEGAS)

(b) hand-tuned parameters

Figure 3. Convergence for Logistic regression

0 1000 2000 3000

of Ti computed

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
va

lu
e BCD (ARock)

BCD (Sync)

BCD (DEGAS)

ADMM (ARock)

ADMM (Sync)

ADMM (DEGAS)

(a) theoretical parameters

0 1000 2000 3000

of Ti computed

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
va

lu
e

BCD (ARock)

BCD (Sync)

BCD (DEGAS)

ADMM (ARock)

ADMM (Sync)

ADMM (DEGAS)

(b) hand-tuned parameters

message-passing framework MPI4py (Dalcı́n et al., 2008).
Note that we do not assume any delay model and that all
delays are generated by real interactions between the master
and workers. We consider both theoretical and hand-tuned
parameters. In the former setting, we fine-tune the step-size
of ARock within its theoretical range in (Feyzmahdavian &
Johansson, 2021) which is broader than that in (Peng et al.,
2016) in the settings of this experiment, while the other
two methods have no parameters to tune. In the hand-tune
step-size setting, we run all the methods for finding the fixed
point of Id+λ(T− Id), λ > 0 and tune λ.

We plot the convergence in terms of the number of computed
Ti in Figures 2–3, from which we make the following obser-
vations: 1) For both theoretical and hand-tuned step-sizes,
DEGAS is much faster than ARock in all tested scenarios.
Hence, not only is it easier to tune, but it also converges
faster; 2) the synchronous method outperforms DEGAS in
terms of the number of Ti’s computed. However, as asyn-
chronous methods can complete more computations within
a fixed time interval compared to synchronous methods,
DEGAS may converge faster in terms of wall-clock time,
cf. the discussion in Appendix L. We also observe that DE-

GAS and the synchronous methods can converge with much
larger hand-tuned step-sizes than ARock. We plot the delay
distribution generated by the experiments in Appendix K.

5. Conclusion
We have proposed a delay-agnostic asynchronous coordinate
update method (DEGAS) to find fixed-points of operators,
a problem with broad applications in algebra, optimiza-
tion, and game theory. Compared to ARock, which only
converges under a delay-dependent parameter condition,
the parameters of DEGAS can be determined without any
knowledge of the delays. Moreover, DEGAS adapts well
to the actual delays in the system and converges signifi-
cantly faster than ARock using both theoretically justified
and hand-tuned step-sizes in our numerical experiments.

Acknowledgements
This work was supported by WASP and the Swedish Re-
search Council (Vetenskapsrådet) under grants 2019-05319
and 2020-03607. We thank the anonymous reviewers for
their detailed and valuable feedback.

9

Delay-agnostic Asynchronous Coordinate Update Algorithm

References
Agarwal, A. and Duchi, J. C. Distributed delayed stochastic

optimization. Advances in neural information processing
systems, 24, 2011.

Aviv, R. Z., Hakimi, I., Schuster, A., and Levy, K. Y. Asyn-
chronous distributed learning : Adapting to gradient de-
lays without prior knowledge. In Proceedings of the 38th
International Conference on Machine Learning, volume
139, pp. 436–445, 2021.

Aybat, N., Wang, Z., and Iyengar, G. An asynchronous dis-
tributed proximal gradient method for composite convex
optimization. In International Conference on Machine
Learning, pp. 2454–2462. PMLR, 2015.

Aytekin, A., Feyzmahdavian, H. R., and Johansson, M.
Analysis and implementation of an asynchronous op-
timization algorithm for the parameter server. arXiv
preprint arXiv:1610.05507, 2016.

Bauschke, H. H., Combettes, P. L., et al. Convex analysis
and monotone operator theory in Hilbert spaces, volume
408. Springer, 2011.

Bauschke, H. H., Bello Cruz, J., Nghia, T. T., Phan, H. M.,
and Wang, X. The rate of linear convergence of the
douglas–rachford algorithm for subspaces is the cosine
of the friedrichs angle. Journal of Approximation Theory,
185:63–79, 2014.

Bertsekas, D. P. Distributed asynchronous computation of
fixed points. Mathematical Programming, 27(1):107–120,
1983.

Bertsekas, D. P. and Tsitsiklis, J. N. Parallel and distributed
computation: numerical methods. Prentice-Hall, Inc.,
1989.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends® in Machine learning, 3(1):1–122, 2011.

Cheung, Y. K., Cole, R., and Tao, Y. Fully asynchronous
stochastic coordinate descent: a tight lower bound on
the parallelism achieving linear speedup. Mathematical
Programming, 190:615–677, 2021.

Cohen, A., Daniely, A., Drori, Y., Koren, T., and Schain,
M. Asynchronous stochastic optimization robust to arbi-
trary delays. Advances in Neural Information Processing
Systems, 34:9024–9035, 2021.

Dalcı́n, L., Paz, R., Storti, M., and D’Elı́a, J. Mpi for
python: Performance improvements and mpi-2 exten-
sions. Journal of Parallel and Distributed Computing, 68
(5):655–662, 2008.

Feyzmahdavian, H. R. and Johansson, M. Asyn-
chronous iterations in optimization: New sequence re-
sults and sharper algorithmic guarantees. arXiv preprint
arXiv:2109.04522, 2021.

Feyzmahdavian, H. R., Aytekin, A., and Johansson, M. A de-
layed proximal gradient method with linear convergence
rate. In 2014 IEEE International Workshop on Machine
Learning for Signal Processing (MLSP), pp. 1–6. IEEE,
2014.

Frommer, A. Generalized nonlinear diagonal dominance
and applications to asynchronous iterative methods. Jour-
nal of Computational and Applied Mathematics, 38(1):
105–124, 1991.

Glasgow, M. R. and Wootters, M. Asynchronous distributed
optimization with stochastic delays. In International
Conference on Artificial Intelligence and Statistics, pp.
9247–9279, 2022.

Hadar, J. and Russell, W. R. Rules for ordering uncertain
prospects. The American economic review, 59(1):25–34,
1969.

Hale, M. T., Nedić, A., and Egerstedt, M. Asynchronous
multiagent primal-dual optimization. IEEE Transactions
on Automatic Control, 62(9):4421–4435, 2017.

Hannah, R. and Yin, W. On unbounded delays in asyn-
chronous parallel fixed-point algorithms. Journal of Sci-
entific Computing, 76(1):299–326, 2018.

Iutzeler, F., Malick, J., and de Oliveira, W. Asynchronous
level bundle methods. Mathematical Programming, 184
(1):319–348, 2020.

Koloskova, A., Stich, S. U., and Jaggi, M. Sharper conver-
gence guarantees for asynchronous sgd for distributed and
federated learning. In Advances in Neural Information
Processing Systems, 2022.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Leblond, R., Pedregosa, F., and Lacoste-Julien, S. Improved
asynchronous parallel optimization analysis for stochas-
tic incremental methods. Journal of Machine Learning
Research, 2018.

Li, M., Zhou, L., Yang, Z., Li, A., Xia, F., Andersen, D. G.,
and Smola, A. Parameter server for distributed machine
learning. In Big Learning NIPS Workshop, volume 6, pp.
2, 2013.

Lian, X., Zhang, W., Zhang, C., and Liu, J. Asynchronous
decentralized parallel stochastic gradient descent. In In-
ternational Conference on Machine Learning, pp. 3043–
3052. PMLR, 2018.

10

Delay-agnostic Asynchronous Coordinate Update Algorithm

Lin, T., Ma, S., and Zhang, S. On the global linear conver-
gence of the ADMM with multiblock variables. SIAM
Journal on Optimization, 25(3):1478–1497, 2015.

Liu, J. and Wright, S. J. Asynchronous stochastic coordinate
descent: Parallelism and convergence properties. SIAM
Journal on Optimization, 25(1):351–376, 2015.

Liu, J., Wright, S., Ré, C., Bittorf, V., and Sridhar, S. An
asynchronous parallel stochastic coordinate descent algo-
rithm. In International Conference on Machine Learning,
pp. 469–477. PMLR, 2014.

Luo, Q., He, J., Zhuo, Y., and Qian, X. Prague: High-
performance heterogeneity-aware asynchronous decen-
tralized training. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 401–
416, 2020.

Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchan-
dran, K., and Jordan, M. I. Perturbed iterate analysis for
asynchronous stochastic optimization. SIAM Journal on
Optimization, 27(4):2202–2229, 2017.

Mehyar, M., Spanos, D., Pongsajapan, J., Low, S. H., and
Murray, R. M. Asynchronous distributed averaging on
communication networks. IEEE/ACM Transactions On
Networking, 15(3):512–520, 2007.

Mishchenko, K., Iutzeler, F., Malick, J., and Amini, M.-R. A
delay-tolerant proximal-gradient algorithm for distributed
learning. In International Conference on Machine Learn-
ing, pp. 3587–3595. PMLR, 2018.

Mishchenko, K., Bach, F., Even, M., and Woodworth, B.
Asynchronous SGD beats minibatch SGD under arbitrary
delays. In Advances in Neural Information Processing
Systems, 2022.

Moallemi, C. C. and Van Roy, B. Convergence of min-
sum message-passing for convex optimization. IEEE
Transactions on Information Theory, 56(4):2041–2050,
2010.

Nesterov, Y. Efficiency of coordinate descent methods on
huge-scale optimization problems. SIAM Journal on
Optimization, 22(2):341–362, 2012.

Peng, Z., Xu, Y., Yan, M., and Yin, W. ARock: an algo-
rithmic framework for asynchronous parallel coordinate
updates. SIAM Journal on Scientific Computing, 38(5):
A2851–A2879, 2016.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A lock-
free approach to parallelizing stochastic gradient descent.
Advances in Neural Information Processing Systems, 24:
693–701, 2011.

Richtárik, P. and Takáč, M. Iteration complexity of random-
ized block-coordinate descent methods for minimizing a
composite function. Mathematical Programming, 144(1):
1–38, 2014.

Richtárik, P. and Takáč, M. Distributed coordinate descent
method for learning with big data. The Journal of Ma-
chine Learning Research, 17(1):2657–2681, 2016.

Soori, S., Mishchenko, K., Mokhtari, A., Dehnavi, M. M.,
and Gurbuzbalaban, M. DAve-QN: A distributed aver-
aged quasi-newton method with local superlinear con-
vergence rate. In International Conference on Artificial
Intelligence and Statistics, pp. 1965–1976. PMLR, 2020.

Sra, S., Yu, A. W., Li, M., and Smola, A. Adadelay: Delay
adaptive distributed stochastic optimization. In Artificial
Intelligence and Statistics, pp. 957–965. PMLR, 2016.

Sun, T., Hannah, R., and Yin, W. Asynchronous coordinate
descent under more realistic assumption. In Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, pp. 6183–6191, 2017.

Sun, T., Sun, Y., Li, D., and Liao, Q. General proximal
incremental aggregated gradient algorithms: Better and
novel results under general scheme. Advances in Neural
Information Processing Systems, 32:996–1006, 2019.

Wright, S. J. Coordinate descent algorithms. Mathematical
Programming, 151(1):3–34, 2015.

Wu, T., Yuan, K., Ling, Q., Yin, W., and Sayed, A. H.
Decentralized consensus optimization with asynchrony
and delays. IEEE Transactions on Signal and Information
Processing over Networks, 4(2):293–307, 2017.

Wu, X., Magnússon, S., Feyzmahdavian, H. R., and Jo-
hansson, M. Delay-adaptive step-sizes for asynchronous
learning. In International Conference on Machine Learn-
ing, pp. 24093–24113. PMLR, 2022a.

Wu, X., Magnússon, S., Feyzmahdavian, H. R., and Jo-
hansson, M. Optimal convergence rates of totally asyn-
chronous optimization. In 2022 IEEE 61st Conference
on Decision and Control (CDC), pp. 6484–6490. IEEE,
2022b.

Zhang, J. and You, K. Asyspa: An exact asynchronous
algorithm for convex optimization over digraphs. IEEE
Transactions on Automatic Control, 65(6):2494–2509,
2019.

Zhang, R. and Kwok, J. Asynchronous distributed ADMM
for consensus optimization. In International Conference
on Machine Learning, pp. 1701–1709. PMLR, 2014.

11

Delay-agnostic Asynchronous Coordinate Update Algorithm

Zhou, Z., Mertikopoulos, P., Bambos, N., Glynn, P., Ye,
Y., Li, L.-J., and Fei-Fei, L. Distributed asynchronous
optimization with unbounded delays: How slow can you
go? In International Conference on Machine Learning,
pp. 5970–5979. PMLR, 2018.

12

Delay-agnostic Asynchronous Coordinate Update Algorithm

A. Proof of Theorem 1
At each iteration k ∈ N0, each i ∈ [m] has equal probability to be selected as i(k). Then by (6),

E[∥x(k + 1)− x⋆∥2]

=

m∑
i=1

1

m

∥Ti(x(k − τ(k)))− x⋆
i ∥2 +

∑
j ̸=i

∥xj(k)− x⋆
j∥2


=
1

m
∥T(x(k − τ(k)))− x⋆∥2 +

(
1− 1

m

)
∥x(k)− x⋆∥2,

(34)

where x⋆
i ∈ Rdi is the ith block of x⋆ and the expectation is taken over the block i(k). Taking (34) at hand, we are ready to

prove the results for both averaged and pseudo-contractive operator T.

A.1. Proof for averaged T

For all k ∈ N0, let

V (k) = E[∥x(k)− x⋆∥2],

W (k) =
1− α

mα
E[∥(Id−T)(x(k))∥2],

where the expectations are taken over the historical updated blocks {i(t)}t≤k. For all t ∈ N0, define

A(t) = [t(τ̄ + 1), (t+ 1)(τ̄ + 1)),

a(t) = arg maxk∈A(t) V (k).

The proof includes three steps. Step 1 establishes the relationship between {V (k)} and {W (k)}:

V (k + 1) ≤ max
max(0,k−τ̄)≤ℓ≤k

V (ℓ)−W (k − τ(k)), ∀k ∈ N0. (35)

Based on (35), step 2 proves

V (a(t)) ≤ V (a(t− 1))−W (a(t)− 1− τ(a(t)− 1)), ∀t ∈ N, (36)

which is then used to derive (9) in step 3.

Step 1: The proof uses Proposition 4.25 in (Bauschke et al., 2011): Denote the average parameter of T as α ∈ (0, 1). Then,
for any x,y ∈ Rd,

∥T(x)− T(y)∥2 ≤ ∥x− y∥2 − 1− α

α
∥(Id−T)(x)− (Id−T)(y)∥2. (37)

Substituting x = x(k − τ(k)) and y = x⋆ into (37) and using T(x⋆) = x⋆, we have

∥T(x(k − τ(k)))− x⋆∥2

≤∥x(k − τ(k))− x⋆∥2 − 1− α

α
∥(Id−T)(x(k − τ(k)))∥2.

(38)

Substituting (38) into (34) and taking expectation on both sides of the resulting equation yields

V (k + 1) ≤V (k − τ(k))

m
+

(
1− 1

m

)
V (k)−W (k − τ(k))

≤ max
max(0,k−τ(k))≤ℓ≤k

V (ℓ)−W (k − τ(k)).
(39)

By (39) and τ(k) ≤ τ̄ assumed in Assumption 2, we have (35).

13

Delay-agnostic Asynchronous Coordinate Update Algorithm

Step 2: We first show by induction that for any k ∈ N0 satisfying k + 1 ∈ A(t) or equivalently, k ∈ [t(τ̄ + 1) − 1, (t +
1)(τ̄ + 1)− 1),

max
max(0,k−τ̄)≤ℓ≤k

V (ℓ) ≤ max
ℓ∈A(t−1)

V (ℓ). (40)

When k = t(τ̄ +1)−1, since [max(0, k− τ̄), k] = A(t−1), the equation (40) holds. Suppose that (40) holds at k = k′−1
for some k′ satisfying k′ + 1 ∈ A(t). Then, by letting k = k′ − 1 in both (35) and (40), we have

V (k′)
(35)
≤ max

max(0,k′−1−τ̄)≤ℓ≤k′−1
V (ℓ)−W (k′ − 1− τ(k′ − 1))

≤ max
max(0,k′−1−τ̄)≤ℓ≤k′−1

V (ℓ)

(40)
≤ max

ℓ∈A(t−1)
V (ℓ).

This, together with (40) at k = k′ − 1, yields (40) at k = k′. Following this induction procedure we obtain (40) for all k
satisfying k + 1 ∈ A(t). Then, by letting k = a(t)− 1 in both (35) and (40), we have

V (a(t))
(35)
≤ max

max(0,a(t)−1−τ̄)≤ℓ≤a(t)−1
V (ℓ)−W (a(t)− 1− τ(a(t)− 1))

(40)
≤ max

ℓ∈A(t−1)
V (ℓ)−W (a(t)− 1− τ(a(t)− 1))

=V (a(t− 1))−W (a(t)− 1− τ(a(t)− 1)),

i.e., (36) holds.

Step 3: For any t′ ∈ N, by adding (36) from t = 1 to t = t′, we have

t′∑
t=1

W (a(t)− 1− τ(a(t)− 1)) ≤ V (a(0))− V (a(t′))

≤ V (a(0))

= V (0),

(41)

where V (a(0)) = V (0) can be easily derived from (35). For any k ∈ N0, let t′(k) = ⌊k/(τ̄ + 1)⌋ − 1. Then, for all
t ∈ [t′(k)],

a(t)− 1− τ(a(t)− 1) ≤ a(t)

≤ a(t′(k))

≤ (t′(k) + 1)(τ̄ + 1)

≤ k,

(42)

which, together with (41), yields

min
1≤ℓ≤k

W (ℓ)
(42)
≤ min

1≤t≤t′(k)
W (a(t)− 1− τ(a(t)− 1))

≤ 1

t′(k)

t′(k)∑
t=1

W (a(t)− 1− τ(a(t)− 1))

(41)
≤ V (0)

t′(k)
.

Moreover, t′(k) ≥ k/(τ̄ + 1)− 2. Then, we have

min
1≤ℓ≤k

W (ℓ) ≤ V (0)

k/(τ̄ + 1)− 2

= O(1/k),

i.e., (9) holds.

14

Delay-agnostic Asynchronous Coordinate Update Algorithm

A.2. Proof for pseudo-contractive T

By the pseudo-contractivity of T,

∥T(x(k − τ(k)))− x⋆∥2 ≤ c2∥x(k − τ(k))− x⋆∥2,

substituting which into (34) and taking expectation on both sides of the resulting equation ensures

V (k + 1) ≤ c2

m
V (k − τ(k)) +

(
1− 1

m

)
V (k). (43)

To proceed, we establish a sequence result in the following lemma.
Lemma 9. Suppose that the following holds for a non-negative sequence {V (k)} and two positive constants p, q ∈ (0, 1)
satisfying p+ q < 1:

V (k + 1) ≤ pV (k) + q max
max(0,k−τ̄)≤ℓ≤k

V (ℓ). (44)

Then,
V (k) ≤ ρkV (0), ∀k ∈ N0, (45)

where
ρ = (p+ q)

1
1+(1−p)τ̄ . (46)

Proof. We prove (45) by induction. Clearly, (45) holds for k = 0. Suppose that (45) holds for all k ∈ [0, k′] for some
k′ ∈ N0. Then, by (44),

V (k′ + 1) ≤ (pρk
′
+ qρk

′−τ̄)V (0).

Hence, to show (45) at k = k′ + 1, it suffices to prove pρk
′
+ qρk

′−τ̄ ≤ ρk
′+1, which is equivalent to

p+ qρ−τ̄ ≤ ρ. (47)

Therefore, if (47) holds, so does (45) at k = k′ + 1. Following this induction procedure, we will have that (45) holds for all
k ∈ N0.

Next, we prove (47), which includes three steps. Step 1 shows the equivalence between (47) and(
p+ q

ρ

) 1
1−p

≥ q

ρ− p
. (48)

Step 2 proves the following inequality: For any α ∈ [p+ q, 1],(
p+ q

α

) 1
1−p

≥ q

α− p
. (49)

Step 3 combines the first two steps and derives (47).

Step 1: The equation (47) is equivalent to
ρτ̄ ≥ q

ρ− p
. (50)

By (46),

ρτ̄ = (p+ q)
τ̄

1+(1−p)τ̄

= (p+ q)
(1−p)τ̄

1+(1−p)τ̄
· 1
1−p

= (p+ q)(1−
1

1+(1−p)τ̄)·
1

1−p

=
(
(p+ q)(1−

1
1+(1−p)τ̄)

) 1
1−p

=

(
p+ q

(p+ q)
1

1+(1−p)τ̄

) 1
1−p

(46)
=

(
p+ q

ρ

) 1
1−p

.

15

Delay-agnostic Asynchronous Coordinate Update Algorithm

Therefore, (50) is equivalent to (48), which, together with the equivalence between (47) and (50), yields the equivalence
between (47) and (48).

Step 2: By Bernoulli’s inequality, for any a ∈ (0, 1], b ≥ 1,

ab = (1− (1− a))b

≥ 1− (1− a)b.
(51)

Letting a = p+q
α and b = 1

1−p , we have

(
p+ q

α

) 1
1−p

≥ 1− 1− (p+ q)/α

1− p
.

Therefore, (49) holds if

1− 1− (p+ q)/α

1− p
≥ q

α− p
, (52)

which is equivalent to h(α) := pα2 − (1 + p+ q)pα+ p(p+ q) ≤ 0. Note that

h(p+ q) = 0, h(1) = 0.

Let γ = 1−α
1−p−q which satisfies γ ∈ [0, 1] due to α ∈ [p+ q, 1]. By the convexity of h(α), we have

h(α) = h(γ(p+ q) + (1− γ))

≤ γh(p+ q) + (1− γ)h(1)

= 0,

which further indicates (52) and (49).

Step 3: By (49) with α = ρ, we obtain (48). Then, by the equivalence between (47) and (49), the equation (47) holds, which
concludes the proof.

Since τ(k) ≤ τ̄ , (43) yields (44) with p = 1− 1
m and q = c2

m . Then by Lemma 9, we obtain (10). This completes the proof.

Remark on Lemma 9: The linear rate (10) in Lemma 9 significantly improves the existing rate in (Feyzmahdavian
& Johansson, 2021) in the sense of tightness. Specifically, (Feyzmahdavian & Johansson, 2021) proves that for any
non-negative sequence {V (k)} satisfying (44), (45) holds with

ρ = (p+ q)
1

τ̄+1 . (53)

To distinguish ρ in (46) and (53), we denote the former as ρ1 and the latter as ρ2. Since p+ q ∈ (0, 1) and 1
1+(1−p)τ̄ ≥

1
1+τ̄ ,

it always holds that ρ1 ≤ ρ2. The difference between ρ1 and ρ2 becomes clear when we look at their resulting iteration
complexities, where a smaller iteration complexity indicates a tighter convergence rate bound. To guarantee V (k) ≤ ϵ for
some ϵ > 0, (45) with ρ = ρ1 and ρ = ρ2 requires

K1(ϵ) =
(1 + (1− p)τ̄) ln V (0)

ϵ

ln 1
p+q

,

K2(ϵ) =
(1 + τ̄) ln V (0)

ϵ

ln 1
p+q

,

respectively. Here, we can see that
K1(ϵ)

K2(ϵ)
=

1 + (1− p)τ̄

1 + τ̄
,

16

Delay-agnostic Asynchronous Coordinate Update Algorithm

Figure 4. Tightness of rate bounds in Lemma 9 (ρ = ρ1) and (Feyzmahdavian & Johansson, 2021) (ρ = ρ2).

which can be very small when p is close to 1 and τ̄ is large. For example, for equation (43) which yields (44) with p = 1− 1
m ,

if we let τ̄ = m = 20, then
K1(ϵ)

K2(ϵ)
=

1 + τ̄ /m

1 + τ̄
=

2

21
,

indicating that the rate (45) yield by ρ = ρ1 is much tighter than that yield by ρ = ρ2.

We also visualize the tightness of the two bounds by considering the convergence of a concrete sequence {V (k)}: V (0) = 1.
At each k ∈ N0, (43) holds with equality, where m = τ̄ = 20, c = 0.8, and τ(k) = min(k, τ̄). For this example, (44) holds
with p = 1− 1

m = 0.95 and q = c2/m = 0.032.

The convergence of {V (k)} and its theoretical two bounds are displayed in Figure A.2. By A.2 we can see that the rate bound
in Lemma 9 is close to the practical convergence of {V (k)} and is much tighter than the rate bound in (Feyzmahdavian &
Johansson, 2021).

B. Proof of (14) in Remark 2
The proof mainly uses Bernoulli’s inequality: For any a ∈ (0, 1) and b ∈ (0, 1],

ab ≤ 1− b(1− a). (54)

Letting a = 1− 1−c2

m = ρ
1+τ̄/m
a and b = 1

1+6
(

τ̄
m+
√

τ̄
m

) in (54), we have (14).

C. Proof of Theorem 2
We use the following lemma to prove the result.

Lemma 10. Suppose that the following holds for a non-negative sequence {V (k)} and some non-negative constants
σi ∈ [0, 1), 0 ≤ i ≤ τ̄ satisfying σ0 <

∑τ̄
i=0 σi < 1:

V (k + 1) ≤
τ̄∑

i=0

σiV (k − i). (55)

Then,
V (k) ≤ ρkV (0), ∀k ∈ N0, (56)

17

Delay-agnostic Asynchronous Coordinate Update Algorithm

where
ρ = α′b+ (1− α′)a. (57)

Here, a =
∑τ̄

i=0 σi, b can be any scalar in [b′, 1] where b′ = a
1

1+(1−σ0)τ̄ , and

α′ =
1

1 +
b−

∑τ̄
i=0 σib−i∑τ̄

i=0 σia−i−a

∈ [0, 1].

In addition, a−
∑τ̄

i=0 σia
−i < 0 and b−

∑τ̄
i=0 σib

−i ≥ 0.

Proof. Define h(s) = s−
∑τ̄

i=0 σis
−i. Then,

α′ =
1

1− h(b)/h(a)
. (58)

We first show that h(a) < 0 and h(b) ≥ 0. Since σ0 <
∑τ̄

i=0 σi and a ∈ (0, 1), we have
∑τ̄

i=1 σi > 0 and
∑τ̄

i=1 σi(1−
a−i) < 0. Therefore,

h(a) = a−
τ̄∑

i=0

σia
−i

=

τ̄∑
i=0

σi −
τ̄∑

i=0

σia
−i

=

τ̄∑
i=0

σi(1− a−i)

=

τ̄∑
i=1

σi(1− a−i)

< 0.

Moreover, by b′ ∈ (0, 1),

h(b′) = b′ −
τ̄∑

i=0

σib
′−i

= b′ − σ0 −
τ̄∑

i=1

σib
′−i

≥ b′ − σ0 −
τ̄∑

i=1

σib
′−τ̄

= b′ − σ0 − (a− σ0)b
′−τ̄ .

(59)

In addition, note that (50) holds for ρ in (46). Then by letting p = σ0 and q = a− σ0 in (50), we have

b′−τ̄ ≤ b′ − σ0

a− σ0
,

substituting which into (59) gives h(b′) ≥ 0. In addition, b ≥ b′ and h(s) is an increasing function when s > 0. Then we
have h(b) ≥ h(b′) ≥ 0.

Next, we prove (56) by induction. Clearly, (56) holds for k = 0. Suppose that (56) holds for all k ∈ [0, k′ − 1] for some
k′ ∈ N. Then, by (55),

V (k′) ≤
τ̄∑

i=0

σiρ
k′−i−1V (0).

18

Delay-agnostic Asynchronous Coordinate Update Algorithm

To prove (56) with k = k′, it suffices to show
τ̄∑

i=0

σiρ
k′−i−1 ≤ ρk

′
,

or equivalently,
τ̄∑

i=0

σiρ
−i ≤ ρ, (60)

which is equivalent to h(ρ) ≥ 0. By h(a) < 0, h(b) ≥ 0, and (58), we have α′ ∈ (0, 1]. Then, since h is concave on the
non-negative domain, we have

h(ρ) = h(α′b+ (1− α′)a)

≥ α′h(b) + (1− α′)h(a)

= 0,

which further yields (60) and also (56) with k = k′. Following the induction procedure, we obtain (56) for all k ∈ N0.

Taking expectation on both sides of (43) with respect to the delay τ(k) and using Assumption 3, we have

E[V (k + 1)] ≤
(
c2P0

m
+ 1− 1

m

)
V (k) +

τ̄∑
i=1

c2Pi

m
V (k − i).

Now we use Lemma 10 to derive the convergence of E[V (k)]. Specifically, in Lemma 10 we let σ0 = 1 − 1
m + c2P0

m ,

σi =
c2Pi

m for all i ̸= 0, and b = ρa, so that a = ρc and b′ = ρ

1

1+
(1−c2P0)τ̄

m
c ≤ ρ

1
1+τ̄/m
c = ρa. Then by Lemma 10, we obtain

(16). Also by Lemma 10,
ϕ(ρc) < 0, ϕ(ρa) ≥ 0. (61)

D. Proof of Proposition 1
For simplicity, we use MEAN(·) and VAR(·) to denote the mean value and variance of probability distributions, respectively.

Letting n = τ̄ + 1, xi = i− 1, ϕ(x) = x, αi = Pi−1, and βi = P ′
i−1 in Theorem 1 in (Hadar & Russell, 1969), we have

MEAN(P) =
τ̄∑

j=0

jPj

≤
τ̄∑

j=0

jP ′
j

= MEAN(P ′),

i.e., P yields smaller average delay.

If, in addition, MEAN(P) = MEAN(P ′). Then by letting n = τ̄ + 1, xi = i− 1, ϕ(x) = x2, αi = Pi−1, and βi = P ′
i−1

in Theorem 1 in (Hadar & Russell, 1969), we have
τ̄∑

j=0

j2Pj ≤
τ̄∑

j=0

j2P ′
j . (62)

In addition, MEAN(P) = MEAN(P ′), which, together with (62), yields

VAR(P) =
τ̄∑

j=0

j2Pj − (MEAN(P))2

≤
τ̄∑

j=0

j2P ′
j − (MEAN(P ′))2

= VAR(P ′),

19

Delay-agnostic Asynchronous Coordinate Update Algorithm

i.e., P yields smaller variance.

E. Proof of Lemma 3
When the delay distribution is specialized to P and P ′, the function ϕ defined in Theorem 2 becomes

Distribution P : ϕ(ρ) := ρ− ρc −
c2

m
(

τ̄∑
i=0

Piρ
−i − 1),

Distribution P ′ : ϕ′(ρ) := ρ− ρc −
c2

m
(

τ̄∑
i=0

P ′
iρ

−i − 1).

To prove the result, we first show that if P ⪰1 P ′, then for any ρ ∈ (0, 1),

ϕ(ρ) ≥ ϕ′(ρ). (63)

By the definitions of ϕ(ρ) and ϕ′(ρ), (63) holds if

τ̄∑
i=0

Piρ
−i ≤

τ̄∑
i=0

P ′
iρ

−i. (64)

Letting n = τ̄ + 1, xi = i− 1, ϕ(x) = ρ−x, αi = Pi−1, and βi = P ′
i−1 in Theorem 1 in (Hadar & Russell, 1969), we have

that if P ⪰1 P ′, then (64) holds, which further guarantees (63).

By (63) and (61), we have

ϕ(ρa)
(63)
≥ ϕ′(ρa)

(61)
≥ 0,

ϕ′(ρc)
(63)
≤ ϕ(ρc)

(61)
< 0,

which implies
−ϕ(ρa)/ϕ(ρc) ≥ −ϕ′(ρa)/ϕ

′(ρc).

Then by (17), αP ≤ αP′ . Moreover, ρa ≥ ρc, ρP = αPρa + (1 − αP)ρc, and ρP′ = αP′ρa + (1 − αP′)ρc. Therefore,
ρP≤ ρP′. Completes the proof.

F. Proof of Theorem 4
We first define all the notations that will be used in the proof. We define the index sequence {I(t)}t∈N0

as: I(0) = 0 and
for each t ∈ N,

I(t) = min{k′ : k − τ(k) ≥ I(t− 1) for all k ≥ k′}+ 1, (65)

and let
a(t) := arg maxk∈[I(t),I(t+1)) V (k)

Moreover, we use the same definitions of V (k) and W (k) as in Appendix A:

V (k) = E[∥x(k)− x⋆∥2],

W (k) =
1− α

mα
E[∥(Id−T)(x(k))∥2].

To understand the sequence I(t), note that for each t ∈ N, by the definition in (65),

k − 1− τ(k − 1) ≥ I(t− 1), ∀k ≥ I(t). (66)

Hence, {I(t)} defines the following Markov property for the update (6): For each t ∈ N, all the iterates x(k), k ≥ I(t) are
determined by x(k), k ∈ [I(t− 1), I(t)) and do not rely on earlier iterates. Under Assumption 4, the sequence {I(t)} is
well defined because given I(t), there always exists k′ such that k − τ(k) ≥ I(t) for all k ≥ k′.

20

Delay-agnostic Asynchronous Coordinate Update Algorithm

The remaining proof includes three steps. Step 1 derives that for any t ∈ N and k ∈ [I(t), I(t+ 1)),

V (k) ≤ max
ℓ∈[I(t−1),I(t))

V (ℓ). (67)

Base on step 1, step 2 proves

V (a(t)) ≤ V (a(t− 1))−W (a(t)− 1− τ(a(t)− 1)), (68)

which is further used in step 3 to show the result.

Step 1: By (39),

V (k + 1) ≤ max
k−τ(k)≤t≤k

V (t)−W (k − τ(k)). (69)

With (69), one can prove (67) by induction. To this end, note from (66) that k − 1 − τ(k − 1) ≥ I(t − 1) for any
k ∈ [I(t), I(t + 1)). Then, by (69) with k = I(t) − 1, the equation (67) holds naturally for k = I(t). Suppose that
(67) holds for all k ∈ [I(t), k′] for some k′ ∈ [I(t), I(t + 1) − 1). Then, by (66) we have k′ − τ(k′) ∈ [I(t − 1), k′],
which, together with (69) at k = k′, yields (67) at k = k′ + 1. Following this induction procedure we derived (67) for all
k ∈ [I(t), I(t+ 1)).

Step 2: By (66),

a(t)− 1− τ(a(t)− 1) ∈ [I(t− 1), I(t+ 1)),

a(t)− 1 ∈ [I(t− 1), I(t+ 1))

and therefore
[a(t)− 1− τ(a(t)− 1), a(t)− 1] ⊆ [I(t− 1), I(t+ 1)).

Substituting the above equation into (69) at k = a(t)− 1 gives

V (a(t)) ≤ max
ℓ∈[I(t−1),I(t+1))

V (ℓ)−W (a(t)− 1− τ(a(t)− 1)). (70)

In addition, by maximizing the left-hand side of (67) over k ∈ [I(t− 1), I(t+ 1)), we have

max
ℓ∈[I(t−1),I(t+1))

V (ℓ) ≤ max
ℓ∈[I(t−1),I(t))

V (ℓ) (71)

and therefore,

max
ℓ∈[I(t−1),I(t+1))

V (ℓ) = max
ℓ∈[I(t−1),I(t))

V (ℓ)

= V (a(t− 1)).
(72)

Substituting (72) into (70), we have (68).

Step 3: Adding (68) from t = 1 to t = +∞ gives

∞∑
t=1

W (a(t)− 1− τ(a(t)− 1)) ≤ V (a(0)) = V (0),

where V (a(0)) = V (0) can be easily derived from (35). Therefore, limt→+∞ W (a(t) − 1 − τ(a(t) − 1)) = 0, which
completes the proof.

G. Proof of Theorem 5
We use the same definitions of V (k), W (k), and I(t) as in Appendix F and let q = 1− 1−c2

m . We first show that for any
t ∈ N0 and k ∈ [I(t), I(t+ 1)),

V (k) ≤ qtV (0). (73)

21

Delay-agnostic Asynchronous Coordinate Update Algorithm

Subsequently, we prove that for any k ∈ [I(t), I(t+ 1)),

t ≥

{
Θ(k1−β), β ∈ (0, 1),

Θ(ln k) β = 1.
(74)

Combining the above two equations yields the result.

Proof of (73): Fix k ∈ [I(t)− 1, I(t+1)− 1). We have by (66) that k− τ(k) ∈ [I(t− 1), I(t+1)− 1). Moreover, since
any pseudo-contractive operator is also averaged, (71) holds, so that

V (k) ≤ max
ℓ∈[I(t−1),I(t))

V (ℓ),

V (k − τ(k)) ≤ max
ℓ∈[I(t−1),I(t))

V (ℓ),

which, together with (43), yields
V (k + 1) ≤ q max

ℓ∈[I(t−1),I(t))
V (ℓ).

Maximizing the left-hand side of the above equation over k ∈ [I(t)− 1, I(t+ 1)− 1), we obtain

max
ℓ∈[I(t),I(t+1))

V (ℓ) ≤ q max
ℓ∈[I(t−1),I(t))

V (ℓ)

≤ qt max
ℓ∈[I(0),I(1))

V (ℓ)

= qtV (0),

where the last step uses V (k) ≤ V (0) ∀k ∈ N0 derived from (69). Therefore, (73) holds.

Proof of (74): We prove (74) by showing that for any k ∈ [I(t), I(t+ 1)),

t ≥

{
1
a (k + γ + 1)1−β − γ − 1, β ∈ (0, 1),
ln(η(k+1)/(γ+1))

ln(1/(1−η)) β = 1,
(75)

where a = η(1− η)−β + γ + 1. We consider two cases of β separately.

Case 1: β ∈ (0, 1). By the definition of {I(t)} in (65), for each t ∈ N0,

I(t+ 1)− 2− τ(I(t+ 1)− 2) ≤ I(t)− 1. (76)

Moreover, by Assumption 5,

τ(I(t+ 1)− 2) ≤ η(I(t+ 1)− 2)β + γ

≤ η(I(t+ 1)− 2) + γ,

which, together with (76), yields

I(t+ 1)− 2 ≤ I(t) + γ − 1

1− η
. (77)

Then,

τ(I(t+ 1)− 2) ≤ η(I(t+ 1)− 2)β + γ

≤ η

(
I(t) + γ − 1

1− η

)β

+ γ.

Substituting the above equation into (76) ensures

I(t+ 1) ≤ I(t) + η

(
I(t) + γ − 1

1− η

)β

+ γ + 1

≤I(t) + (η(1− η)−β + γ + 1)(I(t) + γ)β

=I(t) + a(I(t) + γ)β ,

(78)

22

Delay-agnostic Asynchronous Coordinate Update Algorithm

where the second step uses γ + 1 ≤ (γ + 1)γβ ≤ (γ + 1)(I(t) + γ)βderived from γ ≥ 1. Based on (78), by induction we
will show

I(t) ≤ (a(t+ γ))
1

1−β − γ, ∀t ∈ N0. (79)

When t = 0, (79) holds because γ ≥ 1, a ≥ 1, and β ∈ (0, 1). Suppose (79) holds for some t ∈ N0. Then, by (78) and (79)
we have

I(t+ 1) ≤ (a(t+ γ))
1

1−β − γ + a(a(t+ γ))
β

1−β

= (a(t+ γ))
β

1−β (a(t+ γ + 1))− γ

≤ (a(t+ γ + 1))
1

1−β − γ,

(80)

i.e., (79) holds for t + 1. Following the induction procedure we have that (79) holds for all t ∈ N0. Then, for any
k ∈ [I(t), I(t+ 1)), we have

k ≤ I(t+ 1)− 1 ≤ (a(t+ γ + 1))
1

1−β − γ − 1,

which further implies (75) with β ∈ (0, 1).

Case 2: β = 1. Adding γ+1
η to both sides of (77) ensures

I(t+ 1) +
γ + 1

η
− 2 ≤

I(t) + γ+1
η − 2

1− η
,

which further yields

I(t+ 1) +
γ + 1

η
− 2 ≤ (1− η)−(t+1)(I(0) + γ + 1

η
− 2)

= (
γ + 1

η
− 2)(1− η)−(t+1)

≤ γ + 1

η
(1− η)−(t+1).

Then, for any k ∈ [I(t), I(t+ 1)),

k ≤ I(t+ 1)− 1 ≤ γ + 1

η
(1− η)−(t+1) − 1,

which further gives (75) with β = 1. This completes the proof.

H. Equivalence to ADMM
Running (24)–(25) with λ = 1 synchronously and indexing the iterate by k ∈ N0 ensures

z(k) =
1

m

m∑
i=1

xi(k), (81)

yi(k + 1) = proxγFi
(2z(k)− xi(k)), ∀i ∈ [m], (82)

xi(k + 1) = xi(k) + yi(k + 1)− z(k), ∀i ∈ [m], (83)

where zi in (24) is indexed by z(k). ADMM for solving problem (21) takes the following form (Zhang & Kwok, 2014):

ŷi(k + 1) = proxFi/η(ẑ(k)− x̂i(k)/η), ∀i ∈ [m], (84)

ẑ(k + 1) =
1

m

m∑
i=1

(ŷi(k + 1) + x̂i(k)/η), (85)

x̂i(k + 1) = x̂i(k) + η(ŷi(k + 1)− ẑ(k + 1)), ∀i ∈ [m]. (86)

It can be verified that if xi(k), yi(k), zi(k) update according to (81)–(83). Then, by letting η = 1/γ, x̂i(k) = η(xi(k)−
z(k)), ŷi(k) = yi(k), and ẑ(k) = z(k), the updates of x̂i(k), ŷi(k), ẑ(k) follow (84)–(86). One important step of the
verification is 1

m

∑m
i=1 x̂i(k) =

η
m

∑m
i=1(xi(k)− z(k)) = 0, which yields ẑ(k + 1) = 1

m

∑m
i=1 ŷi(k + 1).

23

Delay-agnostic Asynchronous Coordinate Update Algorithm

I. Proof of Lemma 7
By Proposition 12.27 in (Bauschke et al., 2011), both proxγF and proxγIC

are 1/2-averaged (equivalent to firm non-
expansiveness in Proposition 12.27 in (Bauschke et al., 2011)). Then, using Proposition 4.21 in (Bauschke et al., 2011), the
operator T′ = proxγF ◦(2 proxγIC

− Id) − proxIC
+Id is 1/2-averaged. Hence, T′ = R

2 + Id
2 for some non-expansive

operator R, so that
T = (1− λ) Id+λT′ = (1− λ/2) Id+(λ/2)R.

Therefore, T is λ/2-averaged.

J. Proof of Lemma 8
By the proof of Theorem 25.8 in (Bauschke et al., 2011), the proximal gradient operator proxγr ◦(Id−γ∇f) is 1/(2θ)-
averaged where θ = min{1,L/γ}+1/2

2 . Therefore, there exists a non-expansive operator R satisfying proxγr ◦(Id−γ∇f) =
R/(2θ) + (1− 1/(2θ)) Id, so that

T′ = θ proxγr ◦(Id−γ∇f) + (1− θ) Id

= R/2 + Id /2.

Therefore, T′ is 1/2-averaged.

Since T′ and proxγIZ
are 1/2-averaged, by using Proposition 4.21 in (Bauschke et al., 2011), the operator

T′ ◦(2 proxγIZ
− Id) − proxIZ

+Id is 1/2-averaged. Then, T′ ◦(2 proxγIZ
− Id) − proxIZ

+Id = R
2 + Id

2 for some
non-expansive operator R, so that

T = (1− λ) Id+λ(T′ ◦(2 proxγIZ
− Id)− proxIZ

+Id)

= (1− λ/2) Id+(λ/2)R.

Therefore, T is λ/2-averaged.

K. Delay distribution
To validate the phenomenon that most delays may be much smaller than the maximum delay, we plot the delay distribution
generated by the experiments (theoretical parameter) in Section 4. Specifically, for both Lasso (Figure 2) and Logistic
regression (Figure 3), we plot the delay distribution generated by all four asynchronous algorithms.

Observe from Figure 5 that most delays are much smaller than the maximum delay. For example, in Figure 5 (a) BCD
(ARock), the maximum delay is 14 and over 86% delays are smaller than or equal to 9, and in Figure 5 (b) ADMM (ARock),
the maximum delay is 28 while over 97% delays are smaller than or equal to 11.

L. Comparison in terms of running time
We conducted a comparison between DEGAS, ARock, and their common synchronous algorithms based on their running
time. We consider two scenarios: no straggler and with straggler. In the first setting, we use the same experiment setting as
in Section 4, where each worker is a core in a 10-core machine and all the workers are homogeneous. In the second setting,
we choose one worker as the straggler and let it sleep for twice its local computation time at each iteration. The ”sleep”
scheme for setting a straggler is standard in the literature (Lian et al., 2018; Luo et al., 2020). However, existing works
usually choose a random straggler at each iteration, while we consider the more practical setting where the straggler is fixed.
We use the theoretical step-size setting in Section 4.

The experiment results are presented in Figures 6–7. Observe from Figures 6–7 that DEGAS is slower than the synchronous
methods if there is no straggler, and is faster in the case of including straggler. This phenomenon is reasonable. First,
without a straggler, the numbers of Ti computed by the synchronous and asynchronous methods are very close according to
our observation, while the performance of asynchronous methods is degraded by the information delay. Second, when a
straggler is present, the average per-iteration time consumption of the synchronous methods significantly increases, while
that of the asynchronous methods only increases slightly.

24

Delay-agnostic Asynchronous Coordinate Update Algorithm

Figure 5. Delay distribution (x-axis represents delay)

(a) Lasso

(b) Logistic

Figure 6. Convergence for solving Lasso: no straggler v.s. with straggler

0 10 20 30

time (s)

4.8

5.0

5.2

5.4

5.6

ob
je

ct
iv

e
va

lu
e

BCD (ARock)

BCD (Sync)

BCD (DEGAS)

ADMM (ARock)

ADMM (Sync)

ADMM (DEGAS)

(a) no straggler

0 10 20 30

time (s)

4.8

5.0

5.2

5.4

5.6

ob
je

ct
iv

e
va

lu
e

BCD (ARock)

BCD (Sync)

BCD (DEGAS)

ADMM (ARock)

ADMM (Sync)

ADMM (DEGAS)

(b) with straggler

Figure 7. Convergence for solving Logistic regression: no straggler v.s. with straggler

0 5 10 15

time (s)

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
va

lu
e

BCD (ARock)

BCD (Sync)

BCD (DEGAS)

ADMM (ARock)

ADMM (Sync)

ADMM (DEGAS)

(a) no straggler

0 5 10 15

time (s)

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
va

lu
e

BCD (ARock)

BCD (Sync)

BCD (DEGAS)

ADMM (ARock)

ADMM (Sync)

ADMM (DEGAS)

(b) with straggler

25

