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Abstract

In online inverse linear optimization, a learner observes time-varying sets of feasi-
ble actions and an agent’s optimal actions, selected by solving linear optimization
over the feasible actions. The learner sequentially makes predictions of the agent’s
true linear objective function, and their quality is measured by the regret, the cumu-
lative gap between optimal objective values and those achieved by following the
learner’s predictions. A seminal work by Bärmann et al. (2017) obtained a regret
bound of O(

√
T ), where T is the time horizon. Subsequently, the regret bound has

been improved to O(n4 lnT ) by Besbes et al. (2021, 2025) and to O(n lnT ) by
Gollapudi et al. (2021), where n is the dimension of the ambient space of objective
vectors. However, these logarithmic-regret methods are highly inefficient when T is
large, as they need to maintain regions specified by O(T ) constraints, which repre-
sent possible locations of the true objective vector. In this paper, we present the first
logarithmic-regret method whose per-round complexity is independent of T ; indeed,
it achieves the best-known bound of O(n lnT ). Our method is strikingly simple:
it applies the online Newton step (ONS) to appropriate exp-concave loss functions.
Moreover, for the case where the agent’s actions are possibly suboptimal, we estab-
lish a regret bound of O(n lnT +

√
∆Tn lnT ), where ∆T is the cumulative subop-

timality of the agent’s actions. This bound is achieved by using MetaGrad, which
runs ONS with Θ(lnT ) different learning rates in parallel. We also present a lower
bound of Ω(n), showing that the O(n lnT ) bound is tight up to an O(lnT ) factor.

1 Introduction

Optimization problems serve as forward models of various processes and systems, ranging from
human decision-making to natural phenomena. In real-world applications, the true objective function
of such models is rarely known a priori. This motivates the problem of inferring the objective function
from observed optimal solutions, or inverse optimization. Early work in this area emerged from geo-
physics, aiming at estimating subsurface structure from seismic wave data [11, 53]. Subsequently, in-
verse optimization has been extensively studied [2, 13, 14, 28], applied across various domains, such as

*This work was primarily conducted during the period when SS was affiliated with the University of Tokyo
and RIKEN AIP, and HB with Kyoto University and OIST.
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transportation [6], power systems [9], and healthcare [12], and have laid the foundation for various ma-
chine learning methods, including inverse reinforcement learning [44] and contrastive learning [50].

This study focuses on an elementary yet fundamental case where the objective function of forward
optimization is linear. We consider an agent who repeatedly selects an action from a set of feasible
actions by solving forward linear optimization.1 Let n be a positive integer and Rn the ambient space
where forward optimization is defined. For t = 1, . . . , T , given a set Xt ⊆ Rn of feasible actions, the
agent selects an action xt ∈ Xt that maximizes x 7→ ⟨c∗, x⟩ over Xt, where c∗ ∈ Rn is the agent’s
internal objective vector and ⟨·, ·⟩ denotes the standard inner product on Rn. We want to infer c∗
from observations consisting of the feasible sets and the agent’s optimal actions, i.e., {(Xt, xt)}Tt=1.

For this problem, Bärmann et al. [4, 5] have shown that online learning methods are effective for
inferring the agent’s underlying objective vector c∗. Consider a learner who aims to infer c∗. For
t = 1, . . . , T , the learner makes a prediction ĉt of c∗ based on the past observations {(Xi, xi)}t−1

i=1 and
receives (Xt, xt) as feedback. Let x̂t ∈ argmaxx∈Xt

⟨ĉt, x⟩ represent an optimal action induced by
the learner’s tth prediction. The regret of choosing x̂t instead of xt is defined as

∑T
t=1⟨c∗, xt − x̂t⟩.2

Their idea is to regard Rn ∋ c 7→ ⟨c, x̂t − xt⟩ as a cost function and apply online learning methods,
such as the online gradient descent (OGD). Then,

∑T
t=1⟨c∗, xt − x̂t⟩ ≤

∑T
t=1⟨ĉt − c∗, x̂t − xt⟩ =

O(
√
T ) follows from the standard guarantee of online learning methods. As such, online learning

methods with sublinear regret bounds can make the average regret converge to zero as T →∞.

While the regret bound of O(
√
T ) is optimal in general online linear optimization (e.g., Hazan [26,

Section 3.2]), the above online inverse linear optimization has special problem structures that could
allow for better regret bounds; intuitively, feedback (Xt, xt) is more informative about c∗, which
defines the regret, due to the optimality of xt ∈ Xt for c∗. Besbes et al. [7, 8] indeed showed that a log-
arithmic regret bound of O(n4 lnT ) is possible, and Gollapudi et al. [25] further improved the bound
to O(n lnT ).3 While these methods significantly improve the dependence on T in the regret bounds,
their per-round computation cost is prohibitively high when T is large. Specifically, these methods
iteratively update (appropriately inflated) regions that indicate possible locations of the true objective
vector c∗ and set prediction ĉt to the “center” of the regions (the circumcenter in Besbes et al. [7, 8] and
the centroid in Gollapudi et al. [25]). Since those regions are represented by O(T ) constraints, their
per-round complexity grows polynomially in T , at least in a straightforward implementation. Indeed,
Besbes et al. [7, 8] and Gollapudi et al. [25] only claim that their methods run in poly(n, T ) time. This
is in stark contrast to the earlier online-learning approach of Bärmann et al. [4, 5], whose per-round
complexity is independent of T ; however, its O(

√
T )-regret bound is much worse in terms of T . Is it

then possible to design a logarithmic-regret method whose per-round complexity is independent of T ?

1.1 Our contributions

In this paper, we first present an O(n lnT )-regret method whose per-round complexity is independent
of T (Theorem 3.1), answering the above question affirmatively. Table 1 summarizes the comparisons
of our result with prior work. Our method is very simple: we apply the online Newton step (ONS) [27]
to appropriately designed exp-concave loss functions. We believe this simplicity is a strength of our
method, which makes it accessible to a wider audience and easier to implement.

We then address more realistic situations where the agent’s actions can be suboptimal. We establish
a regret bound of O(n lnT +

√
∆Tn lnT ), where ∆T denotes the cumulative suboptimality of the

agent’s actions over T rounds (Theorem 4.1). We also apply this result to the offline setting via the
online-to-batch conversion (Corollary 4.2). This bound is achieved by applying MetaGrad [55, 56],
a universal online learning method that runs ONS with Θ(lnT ) different learning rates in parallel, to
the suboptimality loss [43], a loss function commonly used in inverse optimization. While universal
online learning is originally intended to adapt to unknown types of loss functions, our result shows
that it is useful for adapting to unknown suboptimality levels in online inverse linear optimization. At

1 An “agent” is sometimes called an “expert,” which we do not use to avoid confusion with the expert in
universal online learning (see Section 2.3). Additionally, our results could potentially be extended to nonlinear
settings based on kernel inverse optimization [6, 39], although we focus on the linear setting for simplicity.

2In the online setting, the learner’s goal subtly deviates from inferring c∗ directly. Instead, the learner aims to
make predictions ĉt such that the induced actions x̂t are good for the true objective c∗.

3Gollapudi et al. [25] studied the same problem under the name of contextual recommendation.
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Table 1: Comparisons of the regret bound under optimal feedback and per-round/total complexity.
Here, τsolve is the time for computing x̂t ∈ argmaxx∈Xt

⟨ĉt, x⟩, and τE-proj/τG-proj is the time for
the Euclidean/generalized projection; typically, τE-proj = O(n) and τG-proj = O(n3) (see Section 3
and Appendix A for details). Regarding the regret bound of Bärmann et al. [4, 5], the dependence
on n varies depending on the problem setting, which we discuss in Appendix A (here, set sizes
are regarded as constants). Besbes et al. [7, 8] and Gollapudi et al. [25] only claim that the total
complexity is poly(n, T ). Our inspection in Appendix A estimates the per-round complexity of
Gollapudi et al. [25] as O(τsolve + n5T 3) or higher.

Regret bound Per-round complexity Total complexity

Bärmann et al. [4, 5] O(
√
T ) O(τsolve + τE-proj + n) Per-round× T

Besbes et al. [7, 8] O(n4 lnT ) Not claimed poly(n, T )
Gollapudi et al. [25] O(n lnT ) Not claimed poly(n, T )
This work (Section 3) O(n lnT ) O(τsolve + τG-proj + n2) Per-round× T

a high level, our important contribution lies in uncovering the deeper connection between inverse opti-
mization and online learning, thereby enabling the former to leverage the powerful toolkit of the latter.

Finally, we present a regret lower bound of Ω(n) (Theorem 5.1). Thus, the upper bound of O(n lnT )
achieved by the method of Gollapudi et al. [25] and ours is tight up to an O(lnT ) factor. While the
proof idea is somewhat straightforward, this lower bound clarifies the optimal dependence on n in
the regret bound, thereby resolving a question raised in Besbes et al. [8, Section 7].

1.2 Related work

Classic studies on inverse optimization explored formulations for identifying parameters of forward
optimization from a single observation [2, 29]. Recently, data-driven inverse optimization, which
is intended to infer parameters of forward optimization from multiple noisy (possibly suboptimal)
observations, has drawn significant interest [3, 6, 10, 35, 39, 42, 43, 52, 63]. This body of work has
addressed offline settings with other criteria than the regret, which we formally define in (2). The
suboptimality loss was introduced by Mohajerin Esfahani et al. [43] in this context.

The line of work by Bärmann et al. [4, 5], Besbes et al. [7, 8], and Gollapudi et al. [25], mentioned
in Section 1, is the most relevant to our work; we present the detailed comparisons with them in
Appendix A. It is worth mentioning here that Gollapudi et al. [25] obtained an exp(O(n lnn))-regret
bound, in addition to the O(n lnT ) bound in Table 1; therefore, it is possible to achieve a finite
regret bound, although the dependence on n is exponential. Recently, Sakaue et al. [49] obtained a
finite regret bound by assuming a gap between the optimal and suboptimal objective values. Unlike
their work, we do not require such gap assumptions. Online inverse linear optimization can also be
viewed as a variant of stochastic linear bandits [1, 18], where noisy objective values are given as
feedback, instead of optimal actions. Intuitively, the optimal-action feedback is more informative and
allows for the O(n lnT ) regret upper bound, while there is a lower bound of Ω(n

√
T ) in stochastic

linear bandits [18, Theorem 3]. Online-learning approaches to other related settings have also been
studied [20, 30, 59]; see Besbes et al. [8, Section 1.2] for an extensive discussion on the relation to
these studies. Additionally, Chen and Kılınç-Karzan [15] and Sun et al. [51] studied online-learning
methods for related settings with different criteria.

ONS [27] is a well-known online convex optimization (OCO) method that achieves a logarithmic
regret bound for exp-concave loss functions. While ONS requires the prior knowledge of the exp-
concavity, universal online learning methods, including MetaGrad, can automatically adapt to the
unknown curvatures of loss functions, such as the strong convexity and exp-concavity [55, 56, 58,
64]. Our strategy for achieving robustness to suboptimal feedback is to combine the regret bound of
MetaGrad (Proposition 2.6) with the self-bounding technique (see Section 4 for details), which is
widely adopted in the online learning literature [23, 60, 66].

Contextual search [38, 48] is a related problem of inferring the value of ⟨c∗, xt⟩ for an underlying vec-
tor c∗ given context vectors xt. The method of Gollapudi et al. [25] is based on techniques developed
in this context. Robustness to corrupted feedback is also studied in contextual search [36, 46, 47].
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However, note that the problem setting is different from ours. Also, the regret in contextual search is
defined with optimal choices even under corrupted feedback, and the regret bounds scale linearly with
the cumulative corruption level. By contrast, our regret is defined with the agent’s possibly suboptimal
actions and our regret bound grows only at the rate of

√
∆T for the cumulative suboptimality ∆T .

Improving the per-round complexity is crucial. This topic has gathered particular attention in online
portfolio selection [17, 34, 57]. There exists a trade-off between the per-round complexity and regret
bounds among known methods for this problem, and advancing this frontier is recognized as important
research [32, 54, 65]. When it comes to online inverse linear optimization, logarithmic regret bounds
had only been achieved by the somewhat inefficient methods of Besbes et al. [7, 8] and Gollapudi et
al. [25], while the efficient online-learning approach of Bärmann et al. [4, 5] only enjoys the O(

√
T )-

regret bound. This background highlights the significance of our efficient O(n lnT )-regret method,
which realizes the benefits of both approaches that previously existed in a trade-off relationship.

2 Preliminaries

2.1 Problem setting

We consider an online learning setting with two players, a learner and an agent. The agent sequentially
solves linear optimization problems of the following form for t = 1, . . . , T :

maximize ⟨c∗, x⟩ subject to x ∈ Xt, (1)

where c∗ is the agent’s objective vector, which is unknown to the learner. Every feasible set Xt ⊆ Rn

is non-empty and compact, and the agent’s action xt always belongs to Xt. We assume that the agent’s
action is optimal for (1), i.e., xt ∈ argmaxx∈Xt

⟨c∗, x⟩, except in Section 4, where we discuss the
case where xt can be suboptimal. The set, Xt, is not necessarily convex; we only assume access to an
oracle that returns an optimal solution x ∈ argmaxx′∈Xt

⟨c, x′⟩ for any c ∈ Rn. If Xt is a polyhedron,
any solver for linear programs (LPs) of the form (1) can serve as the oracle. Even if (1) is, for example,
an integer LP, we may use empirically efficient solvers, such as Gurobi, to obtain an optimal solution.

The learner sequentially makes a prediction of c∗ for t = 1, . . . , T . Let Θ ⊆ Rn denote a set of linear
objective vectors, from which the learner picks predictions. We assume that Θ is a closed convex
set and that the true objective vector c∗ is contained in Θ. For t = 1, . . . , T , the learner outputs a
prediction ĉt of c∗ based on past observations {(Xi, xi)}t−1

i=1 and then receives (Xt, xt) as feedback
from the agent. Let x̂t ∈ argmaxx∈Xt

⟨ĉt, x⟩ denote an optimal action induced by the learner’s tth
prediction.4 We consider the following two measures of the quality of predictions ĉ1, . . . , ĉT ∈ Θ:

Rc∗

T :=

T∑
t=1

⟨c∗, xt − x̂t⟩ and R̃c∗

T := Rc∗

T +

T∑
t=1

⟨ĉt, x̂t − xt⟩ =
T∑

t=1

⟨ĉt − c∗, x̂t − xt⟩. (2)

Following prior work [7, 8, 25], we call Rc∗

T the regret, which is the cumulative gap between the
optimal objective values and the objective values achieved by following the learner’s predictions.
Note that we have ⟨c∗, xt − x̂t⟩ ≥ 0 as long as xt is optimal for c∗. While the regret is a natural
performance measure, the second one, R̃c∗

T , in (2) is convenient when considering the online-learning
approach [4, 5]. We always have Rc∗

T ≤ R̃c∗

T since the additional term consisting of ⟨ĉt, x̂t − xt⟩
is non-negative due to the optimality of x̂t for ĉt; intuitively, this term quantifies how well ĉt explains
the agent’s choice xt. Our upper bounds in Theorems 3.1 and 4.1 apply to R̃c∗

T , and our lower bound
in Theorem 5.1 applies to Rc∗

T .

Remark 2.1. The problem setting of Besbes et al. [7, 8] involves context functions and initial
knowledge sets, which might make their setting appear more general than ours. However, it is not
difficult to confirm that our methods are applicable to their setting. See Appendix A for details.

2.2 Boundedness assumptions and suboptimality loss

We introduce the following bounds on the sizes of Xt and Θ.

4We may break ties, if any, arbitrarily. Our results remain true as long as x̂t is optimal for ĉt.
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Assumption 2.2. The ℓ2-diameter of Θ is bounded by D > 0, i.e., max{ ∥c− c′∥2 : c, c′ ∈ Θ } ≤ D.
Similarly, the ℓ2-diameter of Xt is bounded by K > 0 for t = 1, . . . , T . Furthermore, there exists
B > 0 satisfying the following condition:

max{ ⟨c− c′, x− x′⟩ : c, c′ ∈ Θ, x, x′ ∈ Xt } ≤ B for t = 1, . . . , T .

Assuming bounds on the diameters is common in the previous studies [4, 5, 7, 8, 25]. We additionally
introduce B > 0 to measure the sizes of Xt and Θ taking their mutual relationship into account. Note
that the choice of B = DK is always valid due to the Cauchy–Schwarz inequality. This quantity is
inspired by a semi-norm of gradients used in Van Erven et al. [56] and enables sharper analysis than
that conducted by simply setting B = DK.

We also define the suboptimality loss for later use.
Definition 2.3. For t = 1, . . . , T , for any action set Xt and the agent’s possibly suboptimal action xt,
the suboptimality loss is defined by ℓt(c) := maxx∈Xt⟨c, x⟩ − ⟨c, xt⟩ for all c ∈ Θ.

That is, ℓt(c) is the suboptimality of xt ∈ Xt for c. Mohajerin Esfahani et al. [43] introduced this as
a loss function that enjoys desirable computational properties in the context of inverse optimization.
Specifically, the suboptimality loss is convex, and there is a convenient expression of a subgradient.
Proposition 2.4 (cf. Bärmann et al. [4, Proposition 3.1]). The suboptimality loss, ℓt : Θ → R, is
convex. Moreover, for any ĉt ∈ Θ and x̂t ∈ argmaxx∈Xt

⟨ĉt, x⟩, it holds that x̂t − xt ∈ ∂ℓt(ĉt).

Confirming these properties is not difficult: the convexity is due to the fact that ℓt is the pointwise max-
imum of linear functions c 7→ ⟨c, x⟩−⟨c, xt⟩, and the subgradient expression is a consequence of Dan-
skin’s theorem [19] (or one can directly prove this as in Bärmann et al. [4, Proposition 3.1]). It is worth
mentioning that, as pointed out by Sakaue et al. [49], R̃c∗

T appears as the linearized upper bound on the
regret with respect to the suboptimality loss, i.e.,

∑T
t=1(ℓt(ĉt)− ℓt(c

∗)) ≤
∑T

t=1⟨ĉt−c∗, gt⟩ = R̃c∗

T ,
where gt = x̂t − xt ∈ ∂ℓt(ĉt). This enables the online-to-batch conversion for the suboptimality
loss, as discussed in Section 4.1. Additionally, we have R̃c∗

T = Rc∗

T +
∑T

t=1 ℓt(ĉt) in (2).

2.3 ONS and MetaGrad

We briefly describe ONS and MetaGrad, based on Hazan [26, Section 4.4] and Van Erven et al. [56], to
aid understanding of our methods. Appendix B shows the details for completeness. Readers who wish
to proceed directly to our results may skip this subsection, taking Propositions 2.5 and 2.6 as given.

For convenience, we first state a specific form of ONS’s O(n lnT ) regret bound, which is later used
in MetaGrad and in our analysis. See Algorithm 1 in Appendix B.1 for the pseudocode of ONS.
Proposition 2.5. LetW ⊆ Rn be a closed convex set whose ℓ2-diameter is at most W > 0. Let
w1, . . . , wT and g1, . . . , gT be vectors in Rn satisfying the following conditions for some G,H > 0:

wt ∈ W, ∥gt∥2 ≤ G, and max{ ⟨w′ − w, gt⟩ : w,w′ ∈ W } ≤ H for t = 1, . . . , T . (3)

Take any η ∈
(
0, 1

5H

]
and define loss functions fη

t : W → R for t = 1, . . . , T as follows:

fη
t (w) := −η⟨wt − w, gt⟩+ η2⟨wt − w, gt⟩2 for any w ∈ W. (4)

Let wη
1 , . . . , w

η
T ∈ W be the outputs of ONS applied to fη

1 , . . . , f
η
T . Then, for any u ∈ W , it holds that

T∑
t=1

(fη
t (w

η
t )− fη

t (u)) = O

(
n ln

(
WGT

Hn

))
.

Next, we describe MetaGrad (see Algorithm 2 in Appendix B.3), which we apply to the following
general OCO problem on a closed convex set,W ⊆ Rn. For t = 1, . . . , T , we select wt ∈ W based
on information obtained up to the end of round t−1; then, we incur ft(wt) and observe a subgradient,
gt ∈ ∂ft(wt), where ft : W → R denotes the tth convex loss function. We assume thatW and gt
for t = 1, . . . , T satisfy the conditions in (3). Our goal is to make the regret with respect to ft, i.e.,∑T

t=1(ft(wt)− ft(u)), as small as possible for any comparator u ∈ W .

MetaGrad maintains η-experts, each of whom is associated with one of Θ(lnT ) different learning
rates η ∈

(
0, 1

5H

]
. Each η-expert applies ONS to loss functions fη

t of the form (4), where wt ∈ W

5



is the tth output of MetaGrad and gt ∈ ∂ft(wt) is given as feedback. In each round t, given the
outputs wη

t of η-experts (which are computed based on information up to round t− 1), MetaGrad
computes wt ∈ W by aggregating them via the exponentially weighted average (EWA).

For any comparator u ∈ W , define R̃u
T :=

∑T
t=1⟨wt − u, gt⟩ and V u

T :=
∑T

t=1⟨wt − u, gt⟩2. Since
all functions ft are convex, the regret with respect to ft, or

∑T
t=1(ft(wt)− ft(u)), is bounded by R̃u

T

from above. Furthermore, from the definition of fη
t , we can decompose R̃u

T as follows:

R̃u
T = −

∑T
t=1 f

η
t (u)

η
+ ηV u

T =
1

η

(
T∑

t=1

(Zero by (4)︷ ︸︸ ︷
fη
t (wt)−fη

t (w
η
t )
)
+

T∑
t=1

(fη
t (w

η
t )− fη

t (u))

)
+ ηV u

T ,

which simultaneously holds for all η > 0. The first summation on the right-hand side, i.e., the regret
of EWA compared to wη

t , is indeed as small as O(ln lnT ), while Proposition 2.5 ensures that the
second summation is O(n lnT ). Thus, the right-hand side is O

(
n lnT

η + ηV u
T

)
. If we knew the

true V u
T value, we could choose η ≃

√
n lnT/V u

T to achieve O
(√

n lnT · V u
T

)
. This might seem

impossible as we do not know any of u, gt, and wt beforehand. However, we can show that at least
one of Θ(lnT ) values of η leads to almost the same regret, eschewing the need for knowing V u

T .
Formally, MetaGrad achieves the following regret bound (cf. Van Erven et al. [56, Corollary 8]).5

Proposition 2.6. LetW ⊆ Rn be given as in Proposition 2.5. Let w1, . . . , wT ∈ W be the outputs of
MetaGrad applied to convex loss functions f1, . . . , fT : W → R. Assume that for every t = 1, . . . , T ,
subgradient gt ∈ ∂ft(wt) satisfies the conditions (3) in Proposition 2.5. Then, it holds that

R̃u
T = O

(√
n ln

(
WGT

Hn

)
· V u

T +Hn ln

(
WGT

Hn

))
.

We outline how this result applies to exp-concave losses. Taking W , G, and H to be constants and
ignoring the additive term of O(n ln(T/n)) for simplicity, we have R̃u

T = O(
√

n lnT · V u
T ). If all ft

are α-exp-concave for some α ≤ 1/(GW ), then ft(wt)− ft(u) ≤ ⟨wt − u, gt⟩ − α
2 ⟨wt − u, gt⟩2

holds (e.g., Hazan [26, Lemma 4.3]). Summing this over t and using Proposition 2.6 yield
T∑

t=1

(ft(wt)− ft(u)) ≤ R̃u
T −

α

2
V u
T = O

(√
n lnT · V u

T − αV u
T

)
≲ O

(
n

α
lnT

)
,

where the last inequality is due to
√
ax − bx ≤ a

4b for any a ≥ 0, b > 0, and x ≥ 0. Remarkably,
MetaGrad achieves the O

(
n
α lnT

)
regret bound without prior knowledge of α, whereas ONS achieves

this regret bound by using the α value. Furthermore, even when some ft are not exp-concave,
MetaGrad still enjoys a regret bound of O(

√
T ln lnT ) [56, Corollary 8]. As such, MetaGrad can

automatically adapt to the unknown curvature of loss functions (at the cost of the negligible ln lnT
factor), which is the key feature of universal online learning methods.

3 An efficient O(n lnT )-regret method based on ONS

This section presents an efficient logarithmic-regret method for online inverse linear optimization.
Our method is remarkably simple: we apply ONS to exp-concave loss functions defined similarly to
the η-experts’ losses (4) used in MetaGrad. The proof is very short given the ONS’s regret bound in
Proposition 2.5. Despite this simplicity, we can achieve the regret bound of O(n lnT ), which matches
the best-known regret upper bound of Gollapudi et al. [25], with far lower per-round complexity.
Theorem 3.1. Assume that for every t = 1, . . . , T , action xt ∈ Xt is optimal for c∗ ∈ Θ. Let
ĉ1, . . . , ĉT ∈ Θ be the outputs of ONS applied to loss functions defined as follows for t = 1, . . . , T :

ℓηt (c) := −η⟨ĉt − c, x̂t − xt⟩+ η2⟨ĉt − c, x̂t − xt⟩2 for all c ∈ Θ, (5)

where x̂t ∈ argmaxx∈Xt
⟨ĉt, x⟩ and we set η = 1

5B .6 Then, for Rc∗

T and R̃c∗

T in (2), it holds that

Rc∗

T ≤ R̃c∗

T = O

(
Bn ln

(
DKT

Bn

))
.

5In Van Erven et al. [56, Corollary 8], the multiplicative factor of H in the second term and the denominators
of Hn in ln are replaced with WG and n, respectively. We modify it to obtain the above bound; see Appendix B.

6This is equivalent to MetaGrad with a single 1
5B

-expert applied to the suboptimality losses, ℓ1, . . . , ℓT .
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Proof. Consider using Proposition 2.5 in the current setting with W = Θ, wη
t = wt = ĉt, gt =

x̂t−xt, u = c∗, W = D, G = K, and H = B. Since the optimality of xt and x̂t for c∗ and ĉt, respec-
tively, ensures ⟨ĉt−c∗, x̂t−xt⟩ ≥ 0, we have ⟨ĉt−c∗, x̂t−xt⟩2 ≤ B⟨ĉt−c∗, x̂t−xt⟩ due to Assump-
tion 2.2. Therefore, R̃c∗

T =
∑T

t=1⟨ĉt−c∗, x̂t−xt⟩ and V c∗

T :=
∑T

t=1⟨ĉt−c∗, x̂t−xt⟩2 satisfy V c∗

T ≤
BR̃c∗

T . By using this and Proposition 2.5 with η = 1
5B , for some constant CONS > 0, it holds that

R̃c∗

T = −
T∑

t=1

ℓηt (c
∗)

η
+ ηV c∗

T ≤
T∑

t=1

Zero by (5)︷ ︸︸ ︷
ℓηt (ĉt)− ℓηt (c

∗)

η
+ ηBR̃c∗

T ≤ 5BCONSn ln

(
DKT

Bn

)
+

R̃c∗

T

5
,

and rearranging the terms yields R̃c∗

T = O
(
Bn ln

(
DKT
Bn

))
.7 This also applies to Rc∗

T ≤ R̃c∗

T .

Time complexity. We discuss the time complexity of the method. Let τsolve be the time for solving
linear optimization to find x̂t and τG-proj the time for the generalized projection onto Θ used in ONS
(see Appendix B.1). In each round t, we compute x̂t ∈ argmaxx∈Xt

⟨ĉt, x⟩ in τsolve time; after that,
the ONS update takes O(n2 + τG-proj) time. Therefore, it runs in O

(
τsolve + n2 + τG-proj

)
time per

round, which is independent of T . If problem (1) is an LP, τsolve equals the time for solving the LP
(cf. Cohen et al. [16] and Jiang et al. [33]). Also, τG-proj is often affordable as Θ is usually specified by
the learner and hence has a simple structure. For example, if Θ is the unit Euclidean ball, the gener-
alized projection can be computed in O(n3) time by singular value decomposition (e.g., Mhammedi
et al. [41, Section 4.1]). We may also use the quasi-Newton-type method for further efficiency [40].

4 Robustness to suboptimal feedback with MetaGrad

In practice, assuming that the agent’s actions are always optimal is unrealistic. This section discusses
how to handle suboptimal feedback effectively. Here, we let xt ∈ Xt denote an arbitrary action
taken by the agent, which the learner observes. Now that xt may have nothing to do with c∗, we
can no longer ensure meaningful bounds on the regret that compares x̂t with optimal actions. For
example, if revealed actions xt remain all zeros for t = 1, . . . , T , we can learn nothing about c∗,
and hence the regret that compares x̂t with optimal actions grows linearly in T in the worst case.
Considering this issue, we highlight that the regret, Rc∗

T =
∑T

t=1⟨c∗, xt − x̂t⟩, used here is defined
with the agent’s possibly suboptimal actions xt, not with those optimal for c∗. Small upper bounds
on this regret ensure that, if the agent’s actions xt are nearly optimal for c∗, so are x̂t. This regret
still satisfies Rc∗

T ≤ R̃c∗

T =
∑T

t=1⟨ĉt − c∗, x̂t − xt⟩ since x̂t is optimal for ĉt. Additionally, recall
that the suboptimality loss, ℓt, in Definition 2.3 can be defined for any action xt ∈ Xt and that
ℓt(c

∗) = maxx∈Xt
⟨c∗, x⟩ − ⟨c∗, xt⟩ ≥ 0 indicates the suboptimality of xt for c∗. Below, we use

∆T :=
∑T

t=1 ℓt(c
∗) to denote the cumulative suboptimality of the agent’s actions xt.

In this setting, it is not difficult to show that ONS used in Theorem 3.1 enjoys a regret bound that
scales linearly with ∆T . However, the linear dependence on ∆T is not satisfactory, as it results in
a regret bound of O(T ) even for small suboptimality that persists across all rounds. The following
theorem ensures that by applying MetaGrad to the suboptimality losses, we can obtain a regret bound
that scales with

√
∆T .

Theorem 4.1. Let ĉ1, . . . , ĉT ∈ Θ be the outputs of MetaGrad applied to the suboptimality losses,
ℓ1, . . . , ℓT , given in Definition 2.3. Let x̂t ∈ argmaxx∈Xt

⟨ĉt, x⟩ for t = 1, . . . , T . Then, it holds that

Rc∗

T ≤ R̃c∗

T = O

(
Bn ln

(
DKT

Bn

)
+

√
∆TBn ln

(
DKT

Bn

))
.

Proof. Similar to the proof of Theorem 3.1, we apply Proposition 2.6 with W = Θ, wt = ĉt,
gt = x̂t − xt, u = c∗, W = D, G = K, and H = B; in addition, gt = x̂t − xt ∈ ∂ℓt(ĉt) holds due

7We may use any η as long as ηB < 1 holds; η = 1
5B

is for consistency with MetaGrad in Appendix B.
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to Proposition 2.4. Thus, Proposition 2.6 ensures the following bound for some constant CMG > 0:8

R̃c∗

T ≤ CMG

(√
n ln

(
DKT

Bn

)
· V c∗

T +Bn ln

(
DKT

Bn

))
, (6)

where R̃c∗

T =
∑T

t=1⟨ĉt− c∗, x̂t−xt⟩ and V c∗

T =
∑T

t=1⟨ĉt− c∗, x̂t−xt⟩2. In contrast to the case of
Theorem 3.1, ⟨ĉt − c∗, x̂t − xt⟩2 ≤ B⟨ĉt − c∗, x̂t − xt⟩ is not ensured since ⟨ĉt − c∗, x̂t − xt⟩ can
be negative due to the suboptimality of xt. Instead, we will show that the following inequality holds:

⟨ĉt − c∗, x̂t − xt⟩2 ≤ B⟨ĉt − c∗, x̂t − xt⟩+ 2Bℓt(c
∗). (7)

If ⟨ĉt−c∗, x̂t−xt⟩ ≥ 0, (7) is immediate from ⟨ĉt−c∗, x̂t−xt⟩2 ≤ B⟨ĉt−c∗, x̂t−xt⟩ and ℓt(c
∗) ≥ 0.

If ⟨ĉt − c∗, x̂t − xt⟩ < 0, ⟨ĉt − c∗, x̂t − xt⟩2 ≤ B(−⟨ĉt − c∗, x̂t − xt⟩) holds. In addition, we have
ℓt(c

∗) = max
x∈Xt

⟨c∗, x⟩−⟨c∗, xt⟩ ≥ ⟨c∗, x̂t−xt⟩ ≥ ⟨c∗, x̂t−xt⟩−⟨ĉt, x̂t−xt⟩ = −⟨ĉt−c∗, x̂t−xt⟩,

where the second inequality follows from ⟨ĉt, x̂t − xt⟩ ≥ 0. Multiplying both sides by 2 yields
−2⟨ĉt − c∗, x̂t − xt⟩ ≤ 2ℓt(c

∗) ⇐⇒ −⟨ĉt − c∗, x̂t − xt⟩ ≤ ⟨ĉt − c∗, x̂t − xt⟩+ 2ℓt(c
∗).

Thus, (7) holds in any case, and hence V c∗

T ≤ BR̃c∗

T + 2B∆T . Substituting this into (6), we obtain

R̃c∗

T ≤ CMG

(√
Bn ln

(
DKT

Bn

)(
R̃c∗

T + 2∆T

)
+Bn ln

(
DKT

Bn

))
.

We assume R̃c∗

T > 0; otherwise, the trivial bound of R̃c∗

T ≤ 0 holds. By the subadditivity of x 7→
√
x

for x ≥ 0, we have R̃c∗

T ≤
√
aR̃c∗

T + b, where a = C2
MGBn ln

(
DKT
Bn

)
and b =

√
2a∆T + a

CMG
.

Since x ≤
√
ax+b implies x = 4

3x−
x
3 ≤

4
3 (
√
ax+b)− x

3 = − 1
3 (
√
x−2
√
a)2+ 4

3 (a+b) ≤ 4
3 (a+b)

for any a, b, x ≥ 0, we obtain R̃c∗

T ≤ 4
3 (a+ b) = O

(
Bn ln

(
DKT
Bn

)
+
√
∆TBn ln

(
DKT
Bn

))
.

If every xt is optimal, i.e., ∆T = 0, the bound recovers that in Theorem 3.1. Note that MetaGrad
requires no prior knowledge of ∆T ; it automatically achieves the bound that scales with

√
∆T ,

analogous to the original bound in Proposition 2.6 that scales with
√
V u
T . Moreover, a refined version

of MetaGrad [56] enables us to achieve a similar bound without prior knowledge of K, B, or T
(see Appendix B.4). Universal online learning methods shine in such scenarios where adaptivity to
unknown quantities is desired. Another noteworthy point is that the last part of the proof uses the

self-bounding technique [23, 60, 66]. Specifically, we derived R̃c∗

T ≲a+ b from R̃c∗

T ≤
√

aR̃c∗

T + b,

where the latter means that R̃c∗

T is upper bounded by a term of lower order in R̃c∗

T itself, hence
the name self-bounding. We expect that the combination of universal online learning methods and
self-bounding, through relations like V c∗

T ≲ R̃c∗

T +∆T used above, will be a useful technique for
deriving meaningful guarantees in online inverse linear optimization.

Time complexity. The use of MetaGrad comes with a slight increase in time complexity. First,
as with the case of ONS, x̂t ∈ argmaxx∈Xt

⟨ĉt, x⟩ is computed in each round, taking τsolve time.
Then, each η-expert performs the ONS update, taking O(n2 + τG-proj) time. Since MetaGrad main-
tains Θ(lnT ) distinct η values, the total per-round time complexity is O

(
τsolve + (n2 + τG-proj) lnT

)
.

If the O(τG-proj lnT ) factor is a bottleneck, we can use more efficient universal algorithms [41, 61] to
reduce the number of projections from Θ(lnT ) to 1. Moreover, the O(n2) factor can also be reduced
by sketching techniques (see Van Erven et al. [56, Section 5]).

4.1 Online-to-batch conversion

We briefly discuss the implication of Theorem 4.1 in the offline setting, where feedback follows some
underlying distribution. As noted in Section 2.2, the bound in Theorem 4.1 applies to the regret with
respect to the suboptimality loss,

∑T
t=1(ℓt(ĉt)− ℓt(c

∗)), since it is bounded by R̃c∗

T from above.
Therefore, the standard online-to-batch conversion (e.g., Orabona [45, Theorem 3.1]) implies the
following convergence of the average prediction in terms of the suboptimality loss.

8Here, we can simultaneously achieve R̃c∗
T = O(DK

√
T ln lnT ) thanks to MetaGrad’s guarantee [56,

Corollary 8], which can yield a stronger bound when n is huge.
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Corollary 4.2. For any non-empty and compact X ⊆ Rn, x ∈ X , and c ∈ Θ, define the correspond-
ing suboptimality loss as ℓX,x(c) := maxx′∈X⟨c, x′⟩ − ⟨c, x⟩. Let ∆ > 0 and define X∆ as the set
of observations (X,x) with bounded suboptimality, ℓX,x(c

∗) ≤ ∆. Assume that {(Xt, xt)}Tt=1 are
drawn i.i.d. from some distribution on X∆ (hence ∆T ≤ ∆T ). Let ĉ1, . . . , ĉT ∈ Θ be the outputs of
MetaGrad applied to the suboptimality losses ℓt = ℓXt,xt

for t = 1, . . . , T . Then, it holds that

E

[
ℓX,x

(
1

T

T∑
t=1

ĉt

)
− ℓX,x(c

∗)

]
= O

(
Bn

T
ln

(
DKT

Bn

)
+

√
∆Bn

T
ln

(
DKT

Bn

))
.

Bärmann et al. [4, Theorem 3.14] also obtained a similar offline guarantee via the online-to-batch
conversion. Their convergence rate is O

(
1√
T

)
even when ∆ = 0, whereas our Corollary 4.2 offers the

faster rate of O
(
lnT
T

)
if ∆ = 0. It also applies to the case of ∆ > 0, which is important in practice

because stochastic feedback is rarely optimal at all times. We emphasize that if regret bounds scale
linearly with ∆T , the above online-to-batch conversion cannot ensure that the excess suboptimality
loss (the left-hand side) converge to zero as T → 0. This observation lends support to the importance
of the

√
∆T -dependent regret bound we established in Theorem 4.1.

5 Ω(n) lower bound

We construct an instance where any online learner incurs an Ω(n) regret, implying that the O(n lnT )
upper bound is tight up to an O(lnT ) factor. More strongly, the following Theorem 5.1 shows that,
for any B > 0 that gives the tight upper bound in Assumption 2.2, no learner can achieve a regret
smaller than Bn

4 , which means that the Bn factor in our Theorem 3.1 is inevitable.

Theorem 5.1. Let n be a positive integer and Θ =
[
− 1√

n
,+ 1√

n

]n
. For any T ≥ n, B > 0, and

the learner’s outputs ĉ1, . . . , ĉT ∈ Θ, there exist c∗ ∈ Θ and X1, . . . , XT ⊆ Rn such that

max
t=1,...,T

max{ ⟨c− c′, x− x′⟩ : c, c′ ∈ Θ, x, x′ ∈ Xt } = B and E
[
Rc∗

T

]
≥ Bn

4

hold, where Rc∗

T =
∑T

t=1⟨c∗, xt − x̂t⟩, xt ∈ argmaxx∈Xt
⟨c∗, x⟩, x̂t ∈ argmaxx∈Xt

⟨ĉt, x⟩, and
the expectation is taken over the learner’s possible randomness.

Proof. We focus on the first n rounds and show that any learner must incur Bn
4 in these rounds; in the

remaining rounds, we may use any instance since the optimality of xt for c∗ ensures ⟨c∗, xt− x̂t⟩ ≥ 0.
For t = 1, . . . , n, let Xt =

{
x ∈ Rn : −B

4

√
n ≤ x(t) ≤ B

4

√
n, x(i) = 0 for i ̸= t

}
, where x(i)

denotes the ith element of x. That is, Xt is the line segment on the tth axis from −B
4

√
n to B

4

√
n.

Then, max{ ⟨c− c′, x− x′⟩ : c, c′ ∈ Θ, x, x′ ∈ Xt } = B holds for each t = 1, . . . , n. Let c∗ ∈ Θ
be a random vector such that each entry is − 1√

n
or 1√

n
with probability 1

2 , which is drawn indepen-
dently of any other randomness. Then, the optimal action, xt ∈ Xt, which is zero everywhere except
that its tth coordinate equals c∗(t)

|c∗(t)| ·
B
4

√
n, achieves ⟨c∗, xt⟩ = B

4 . Note that the learner’s tth predic-
tion ĉt is independent of c∗(t) since it depends only on past observations, {(Xi, xi)}t−1

i=1 , which have
no information about c∗(t). Thus, x̂t ∈ argmaxx∈Xt

⟨ĉt, x⟩ is also independent of c∗(t), and hence

E[⟨c∗, xt − x̂t⟩] = E[⟨c∗, xt⟩]− E[⟨c∗, x̂t⟩] =
B

4
− 1

2

(
− 1√

n
+

1√
n

)
x̂t(t) =

B

4
,

where the expectation is taken over the randomness of c∗. This implies that any deterministic learner
incurs Bn

4 in the first n rounds in expectation. Thanks to Yao’s minimax principle [62], we can
conclude that for any randomized learner, there exists c∗ ∈ Θ such that E

[
Rc∗

T

]
≥ Bn

4 holds.

In the above proof, we restricted X1, . . . , XT to line segments so that each xt ∈ argmaxx∈Xt
⟨c∗, x⟩

reveals nothing about c∗(t+1), . . . , c∗(n). Whether a similar lower bound holds when all Xt are full-
dimensional remains an open question. Another side note is that the Ω(n) lower bound does not contra-
dict the O(

√
T ) upper bound of Bärmann et al. [4]. Their OGD-based method indeed achieves a regret

bound of O(DK
√
T ), where D and K are upper bounds on the ℓ2-diameters of Θ and Xt, respec-

tively. In the above proof, T ≥ n, D ≥ 1, and K ≥ B
2

√
n hold, implying that their regret upper bound

is DK
√
T ≳ Bn. Hence, the Ω(n)-lower bound and their O(DK

√
T )-upper bound are compatible.
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6 Conclusion and discussion

We have presented an efficient ONS-based method that achieves an O(n lnT )-regret bound for online
inverse linear optimization. Then, we have extended the method to deal with suboptimal feedback
based on MetaGrad, achieving an O(n lnT +

√
∆Tn lnT )-regret bound, where ∆T is the cumulative

suboptimality of the agent’s actions. Finally, we have presented a lower bound of Ω(n), which shows
that the O(n lnT ) upper bound is tight up to an O(lnT ) factor. Regarding limitations, our work
is restricted to the case where the agent’s optimization problem is linear, as mentioned in Footnote 1;
how to deal with non-linearity is an important direction for future work. In online portfolio selection,
ONS is efficient but inferior to the universal portfolio algorithm regarding the dependence on the
gradient norm [57]. Exploring possible similar relationships in online inverse linear optimization is
left for future work. Last but not least, closing the O(lnT ) gap between the upper and lower bounds
is an important open problem. Interestingly, if all Xt are line segments as in Section 5 and the learner
can observe Xt in the beginning of round t, the algorithm of Gollapudi et al. [25, Theorem 5.2]
offers a regret upper bound of O(n5 log2 n), which is finite and polynomial in n. We also provide
an additional discussion on a finite regret bound for the case of n = 2 in Appendix C.
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Justification: See Abstract, Section 1, and Section 1.1.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: See Section 2.2 for assumptions, Sections 3 and 4 for the computational
complexity, Section 5 for limitations regarding the lower bound, and Section 6 for additional
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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and how they scale with dataset size.
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address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: See Section 2.2 for assumptions. All theorems are followed by proofs.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix D provides a detailed description of our preliminary experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code and its readme file are available at https://github.com/ssakaue/
online-inverse-linear-optimization-code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 2 reports the results with the mean and standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Detailed comparisons with previous results

Below we compare our results with Bärmann et al. [4, 5], Besbes et al. [7, 8], and Gollapudi et al. [25].

Bärmann et al. [4, 5] used R̃c∗

T as the performance measure, as with our Theorems 3.1 and 4.1, and
provided two specific methods. The first one, based on the multiplicative weights update (MWU), is
tailored for the case where Θ is the probability simplex, i.e., Θ = {c ∈ Rn | c ≥ 0, ∥c∥1 = 1}. The
authors assumed a bound of K∞ > 0 on the ℓ∞-diameters of Xt and obtained a regret bound of
O(K∞

√
T lnn). The second one is based on the online gradient descent (OGD) and applies to general

convex sets Θ. The authors assumed that the ℓ2-diameters of Θ and Xt are bounded by D > 0 and
K > 0, respectively, and obtained a regret bound of O(DK

√
T ). In the first case, our Theorem 3.1

with B = K∞, D =
√
2, and K ≤ 2

√
nK∞ offers a bound of O(K∞n ln(T/

√
n)); in the second

case, we obtain a bound of O(DKn ln(T/n)) by setting B = DK. In both cases, our bounds
improve the dependence on T from

√
T to lnT , while scaled up by a factor of n, up to logarithmic

terms. Regarding the computation time, their MWU and OGD methods run in O(τsolve + τE-proj + n)
time per round, where τE-proj is the time for the Euclidean projection onto Θ, hence faster than our
method. Also, suboptimal feedback is discussed in Bärmann et al. [4, Sections 3.1]. However, their
bound does not achieve the logarithmic dependence on T even when ∆T = 0, unlike our Theorem 4.1.

Besbes et al. [7, 8] used Rc∗

T as the performance measure, which is upper bounded by R̃c∗

T . They
assumed that c∗ lies in the unit Euclidean sphere and that the ℓ2-diameters of Xt are at most one.
Under these conditions, they obtained the first logarithmic regret bound of O(n4 lnT ). By applying
Theorem 3.1 to this case, we obtain a bound of O(n ln(T/n)), which is better than their bound by
a factor of n3. As discussed in Section 1, their method relies on the idea of narrowing down regions
represented with O(T ) constraints, and hence it seems inefficient for large T ; indeed Besbes et al. [8,
Theorem 4] only claims that the total time complexity is polynomial in n and T . Considering this,
our ONS-based method is arguably much faster while achieving the better regret bound.

On the problem setting of Besbes et al. [7, 8]. As mentioned in Remark 2.1, the problem setting
of Besbes et al. [7, 8] is seemingly different from ours. In their setting, in each round t, the learner
first observes (Xt, ft), where ft : Xt → Rn is called a context function. Then, the learner chooses
x̂t ∈ Xt and receives an optimal action xt ∈ argmaxx∈Xt

⟨c∗, ft(x)⟩ as feedback. It is assumed
that the learner can solve maxx∈Xt

⟨c, ft(x)⟩ for any c ∈ Rn and that all ft are 1-Lipschitz, i.e.,
∥ft(x) − ft(x

′)∥2 ≤ ∥x − x′∥2 for all x, x′ ∈ Xt. We note that our methods work in this setting,
while the presence of ft might make their setting appear more general. Specifically, we redefine Xt as
the image of ft, i.e., { ft(x) : x ∈ Xt }. Then, their assumption ensures that we can find ft(x̂t) ∈ Xt

that maximizes Xt ∋ ξ 7→ ⟨ĉt, ξ⟩, and the ℓ2-diameter of the newly defined Xt is bounded by 1 due to
the 1-Lipschitzness of ft. Therefore, by defining gt = ft(x̂t)−ft(xt) and applying it in Theorems 3.1
and 4.1, we recover the bounds therein on

∑T
t=1⟨ĉt − c∗, ft(x̂t)− ft(xt)⟩, with D, K, and B being

constants. The bounds also apply to the regret,
∑T

t=1⟨c∗, ft(xt)− ft(x̂t)⟩, used in Besbes et al. [7,
8]. Additionally, Besbes et al. [7, 8] consider a (possibly non-convex) initial knowledge set C0 ⊆ Rn

that contains c∗. We note, however, that they do not care about whether predictions ĉt lie in C0 or
not since the regret, their performance measure, does not explicitly involve ĉt. Indeed, predictions
ĉt that appear in their method are chosen from ellipsoidal cones that properly contain C0 in general.
Therefore, our methods carried out on a convex set Θ ⊇ C0 work similarly in their setting.

Gollapudi et al. [25] studied essentially the same problem as online inverse linear optimization under
the name of contextual recommendation (where they and Besbes et al. [7, 8] appear to have been
unaware of each other’s work). As with Besbes et al. [7, 8], Gollapudi et al. [25] assumed that c∗ and
X1, . . . , XT lie in the unit Euclidean ball, denoted by Bn. Similar to Besbes et al. [7, 8], their method
maintains the region Kt, which is the intersection of hyperplanes

{
c ∈ Rd : ⟨c− ĉs, xs − x̂s⟩ ≥ 0

}
for s = 1, . . . , t− 1, and sets ĉt to the centroid of Kt +

1
T B

n, where + is the Minkowski sum. As
regards the regret analysis, their key idea is to use the approximate Grünbaum theorem: whenever the
learner incurs ⟨c∗, xt − x̂t⟩ ≥ 1

T , Vol
(
Kt +

1
T B

n
)

decreases by a constant factor, where Vol denotes
the volume. Consequently, Vol

(
K1 +

1
T B

n
)
/Vol

(
KT + 1

T B
n
)
≲ Tn implies the regret bound of

Rc∗

T =
∑

t⟨c∗, xt − x̂t⟩ = O(n lnT ). As such, the per-round complexity of their method also
inherently depends on T , and Gollapudi et al. [25, Section 1.2] only claims the total time complexity
of poly(n, T ). In this setting, our ONS-based method achieves a regret bound of O(n ln(T/n)) and
is arguably more efficient since the per-round complexity is independent of T .
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Algorithm 1 Online Newton Step

1: Set γ = 1
2 min

{
1
β , α

}
, ε = n

W 2γ2 , A0 = εIn, and w1 ∈ W .
2: for t = 1, . . . , T :
3: Play wt and observe qt.
4: At ← At−1 +∇qt(wt)∇qt(wt)

⊤.

5: wt+1 ← argmin

{∥∥∥wt − 1
γA

−1
t ∇qt(wt)− w

∥∥∥2
At

: w ∈ W
}

. ▷ Generalized projection.

Estimating the per-round complexity of Gollapudi et al. [25]. As described above, the method
of Gollapudi et al. [25] requires x̂t for each t, and hence the per-round complexity involves τsolve, the
time to solve maxx∈Xt

⟨ĉt, x⟩. Aside from this, its per-round complexity is dominated by the cost for
computing the centroid of Kt+

1
T B

n, where Kt is represented by O(T ) hyperplanes. It is known that
the problem of exactly computing the centroid is #P-hard in general, but we can approximate it via
sampling with a membership oracle of Kt +

1
T B

n. To the best of our knowledge, computing a point
that is ε-close to the centroid takes O(n4/ε2) membership queries, up to logarithmic factors [21, The-
orem 5.7], and it is natural to set ε = 1/T to make the approximation error negligible. Thus, it takes
O(n4T 2) membership queries. Regarding the complexity of the membership oracle, naively checking
whether a given point satisfies all the O(T ) linear constraints of Kt takes O(nT ) time. Handling
the Minkowski sum with 1

T B would complicates the procedure, though it can be done in poly(n, T )
time by using, for example, Frank–Wolfe-type algorithms [22, 24, 31, 37]. For now, O(nT ) would
be a reasonable (optimistic) estimate of the complexity of the membership oracle. Consequently, the
total per-round complexity of their method is estimated to be O

(
τsolve + n5T 3

)
(or higher).

B Details of ONS and MetaGrad

We present the details of ONS and MetaGrad. The main purpose of this section is to provide simple
descriptions and analyses of those algorithms, thereby assisting readers who are not familiar with
them. As in Appendix B.4, we can also derive a regret bound of MetaGrad that yields a similar result
to Theorem 4.1 directly from the results of Van Erven et al. [56].

First, we discuss the regret bound of ONS used by η-experts in MetaGrad, proving Proposition 2.5.
Then, we establish the regret bound of MetaGrad in Proposition 2.6.

B.1 Regret bound of ONS

Let In ∈ Rn×n denote the identity matrix. For any A,B ∈ Rn×n, A ⪰ B means that A − B

is positive semidefinite. For positive semidefinite A ∈ Rn×n, let ∥x∥A =
√
x⊤Ax for x ∈ Rn.

Let W ⊆ Rn be a closed convex set. A function q : W → R is α-exp-concave for some α > 0
if W ∋ w 7→ e−αq(w) is concave. For twice differentiable q, this is equivalent to ∇2q(w) ⪰
α∇q(w)∇q(w)⊤. The following regret bound of ONS mostly comes from the standard analysis [26,
Section 4.4], and hence readers familiar with it can skip the subsequent proof. The only modification
lies in the use of β instead of Wλ (defined below), where β ≤Wλ always holds and hence slightly
tighter. This leads to the multiplicative factor of B, rather than DK, in Theorems 3.1 and 4.1.

Proposition B.1. LetW ⊆ Rn be a closed convex set with the ℓ2-diameter of at most W > 0. Assume
that q1, . . . , qT : W → R are twice differentiable and α-exp-concave for some α > 0. Additionally,
assume that there exist β, λ > 0 such that maxw∈W

∣∣∇qt(wt)
⊤(w − wt)

∣∣ ≤ β and ∥∇qt(wt)∥2 ≤ λ
hold. Let w1, . . . , wT ∈ W be the outputs of ONS (Algorithm 1). Then, for any u ∈ W , it holds that

T∑
t=1

(qt(wt)− qt(u)) ≤
n

2γ

(
ln

(
W 2γ2λ2T

n
+ 1

)
+ 1

)
,

where γ = 1
2 min

{
1
β , α

}
is the parameter used in ONS.
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Proof. We first give a useful inequality that follows from the α-exp-concavity. By the same analysis
as the proof of Hazan [26, Lemma 4.3], for γ ≤ α

2 , we have

qt(wt)− qt(u) ≤
1

2γ
ln
(
1− 2γ∇qt(wt)

⊤(u− wt)
)
.

Note that we also have
∣∣2γ∇qt(wt)

⊤(u− wt)
∣∣ ≤ 2γβ ≤ 1. Since ln(1 − x) ≤ −x − x2/4 holds

for x ≥ −1, applying this with x = 2γ∇qt(wt)
⊤(u− wt) yields

qt(wt)− qt(u) ≤ ∇qt(wt)
⊤(wt − u)− γ

2
(wt − u)⊤∇qt(wt)∇qt(wt)

⊤(wt − u). (8)

We turn to the iterates of ONS. Since wt+1 is the projection of wt − 1
γA

−1
t ∇qt(wt) ontoW with

respect to the norm ∥·∥At
, we have ∥wt+1 − u∥2At

≤
∥∥∥wt − 1

γA
−1
t ∇qt(wt)− u

∥∥∥2
At

for u ∈ W due

to the Pythagorean theorem, hence

(wt+1 − u)⊤At(wt+1 − u)

≤
(
wt −

1

γ
A−1

t ∇qt(wt)− u

)⊤

At

(
wt −

1

γ
A−1

t ∇qt(wt)− u

)
= (wt − u)

⊤
At(wt − u)− 2

γ
∇qt(wt)

⊤(wt − u) +
1

γ2
∇qt(wt)

⊤A−1
t ∇qt(wt).

Rearranging the terms, we obtain

∇qt(wt)
⊤(wt − u)

≤ 1

2γ
∇qt(wt)

⊤A−1
t ∇qt(wt) +

γ

2
(wt − u)⊤At(wt − u)− γ

2
(wt+1 − u)

⊤
At(wt+1 − u).

From At = At−1+∇qt(wt)∇qt(wt)
⊤, summing over t and ignoring γ

2 (wT+1 − u)
⊤
AT (wT+1 − u)

≥ 0, we obtain
T∑

t=1

∇qt(wt)
⊤(wt − u)

≤ 1

2γ

T∑
t=1

∇qt(wt)
⊤A−1

t ∇qt(wt) +
γ

2
(w1 − u)⊤A1(w1 − u)

+
γ

2

T∑
t=2

(wt − u)⊤(At −At−1)(wt − u)

=
1

2γ

T∑
t=1

∇qt(wt)
⊤A−1

t ∇qt(wt) +
γ

2
(w1 − u)⊤(A1 −∇q1(w1)∇q1(w1)

⊤)(w1 − u)

+
γ

2

T∑
t=1

(wt − u)⊤∇qt(wt)∇qt(wt)
⊤(wt − u).

Since we have A1 −∇q1(w1)∇q1(w1)
⊤ = A0 = εIn and ε = n

W 2γ2 , the above inequality implies

T∑
t=1

∇qt(wt)
⊤(wt − u)− γ

2

T∑
t=1

(wt − u)⊤∇qt(wt)∇qt(wt)
⊤(wt − u)

≤ 1

2γ

T∑
t=1

∇qt(wt)
⊤A−1

t ∇qt(wt) +
γ

2
(w1 − u)⊤A0(w1 − u)

≤ 1

2γ

T∑
t=1

∇qt(wt)
⊤A−1

t ∇qt(wt) +
γε

2
∥w1 − u∥22

≤ 1

2γ

T∑
t=1

∇qt(wt)
⊤A−1

t ∇qt(wt) +
n

2γ
.

(9)
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The first term in the right-hand side is bounded as follows due to the celebrated elliptical potential
lemma (e.g., Hazan [26, proof of Theorem 4.5]):

T∑
t=1

∇qt(wt)
⊤A−1

t ∇qt(wt) ≤ ln
detAT

detA0
≤ n ln

(
Tλ2

ε
+ 1

)
= n ln

(
W 2γ2λ2T

n
+ 1

)
, (10)

where we used detA0 = εn and detAT = det
(∑T

t=1∇qt(wt)∇qt(wt)
⊤ + εIn

)
≤
(
Tλ2 + ε

)n
,

which follows from the fact that eigenvalues of
∑T

t=1∇qt(wt)∇qt(wt)
⊤ are at most Tλ2. Combining

(8), (9), and (10), we obtain

T∑
t=1

(qt(wt)− qt(u)) ≤
T∑

t=1

∇qt(wt)
⊤(wt − u)− γ

2

T∑
t=1

(wt − u)⊤∇qt(wt)∇qt(wt)
⊤(wt − u)

≤ n

2γ

(
ln

(
W 2γ2λ2T

n
+ 1

)
+ 1

)
as desired.

B.2 Regret bound of η-expert

We now establish the regret bound of ONS in Proposition 2.5, which is used by η-experts in MetaGrad.
Let η ∈

(
0, 1

5H

]
and consider applying ONS to the following loss functions, which are defined in (4):

fη
t (w) = −η⟨wt − w, gt⟩+ η2⟨wt − w, gt⟩2 for t = 1, . . . , T .

As in Proposition 2.5, the ℓ2-diameter ofW is at most W > 0, and the following conditions hold:

wt ∈ W, ∥gt∥2 ≤ G, and max
w,w′∈W

⟨w − w′, gt⟩ ≤ H for t = 1, . . . , T .

From ∇fη
t (w) = η

(
1− 2ηg⊤t (wt − w)

)
gt and ∇2fη

t (w) = 2η2gtg
⊤
t , we have

∇fη
t (w)∇f

η
t (w)

⊤ = η2
(
1− 2ηg⊤t (wt − w)

)2
gtg

⊤
t

⪯ η2(1 + 2ηH)2gtg
⊤
t =

(1 + 2ηH)2

2
∇2fη

t (w) for all w ∈ W,

max
w∈W

∣∣∇fη
t (w

η
t )

⊤(w − wη
t )
∣∣ = max

w∈W

∣∣∣ηg⊤t (w − wη
t )− 2η2

(
g⊤t (w

η
t − wt)

)2∣∣∣
≤ ηH + 2η2H2,

∥∇fη
t (w)∥2 =

∥∥η(1− 2ηg⊤t (wt − w)
)
gt
∥∥
2
≤ η(1 + 2ηH)G.

Therefore, fη
t satisfies the conditions in Proposition B.1 with α = 2

(1+2ηH)2 , β = ηH + 2η2H2, and
λ = η(1 + 2ηH)G. Since 1

α = 1
2 + 2ηH + 2η2H2 ≥ β holds, we have γ = 1

2 min
{

1
β , α

}
= α

2 .
Thus, for any η ∈

(
0, 1

5H

]
, we have γ ∈

[
25
49 , 1

)
⊆
[
1
2 , 1
]

and γλ = ηG
1+2ηH ≤

G
7H . Consequently,

Proposition B.1 implies that for any u ∈ W , the regret of the η-expert’s ONS is bounded as follows:

T∑
t=1

(fη
t (w

η
t )− fη

t (u)) ≤ n

(
ln

(
W 2G2T

49nH2
+ 1

)
+ 1

)
= O

(
n ln

(
WGT

Hn

))
. (11)

B.3 Regret bound of MetaGrad

We turn to MetaGrad applied to convex loss functions f1, . . . , fT : W → R. We here use wt ∈ W
and gt ∈ ∂ft(wt) to denote the tth output of MetaGrad and a subgradient of ft at wt, respectively,
for t = 1, . . . , T . We assume that these satisfy the conditions in (3), as stated in Proposition 2.6.

Algorithm 2 describes the procedure of MetaGrad. Define ηi =
2−i

5H for i = 0, 1, . . . ,
⌈
1
2 log2 T

⌉
,

called grid points, and let G ⊆
(
0, 1

5H

]
denote the set of all grid points. For each η ∈ G, η-expert

runs ONS with loss functions fη
1 , . . . , f

η
T to compute wη

1 , . . . , w
η
T . In each round t, we obtain wt by
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Algorithm 2 MetaGrad

1: pηi

1 ← C
(i+1)(i+2) for all ηi ∈ G =

{
2−i

5H : i = 0, 1, . . . ,
⌈
1
2 log2 T

⌉}
.

2: for t = 1, . . . , T :
3: Fetch wη

t from η-experts for all η ∈ G.

4: Play wt =
∑

η∈G ηpη
t w

η
t∑

η∈G ηpη
t

.

5: Observe gt ∈ ∂ft(wt) and send (wt, gt) to η-experts for all η ∈ G.
6: pηt+1 ← pηt exp(−f

η
t (w

η
t ))/Zt for all η ∈ G, where Zt =

∑
η∈G pηt exp(−f

η
t (w

η
t )).

aggregating the η-experts’ outputs wη
t based on the exponentially weighted average method (EWA).

We set the prior as pηi

1 = C
(i+1)(i+2) for all ηi ∈ G, where C = 1 + 1

1+⌈ 1
2 log2 T⌉ . Then, it is known

that for every η ∈ G, the regret of EWA relative to the η-expert’s choice wη
t is bounded as follows:

T∑
t=1

(fη
t (wt)− fη

t (w
η
t )) ≤ ln

1

pη1
≤ ln

((⌈
1

2
log2 T

⌉
+ 1

)(⌈
1

2
log2 T

⌉
+ 2

))
≤ 2 ln

(
1

2
log2 T + 3

)
,

(12)

where we used C ≥ 1 in the second inequality. We here omit the proof as it is completely the same
as that of Van Erven and Koolen [55, Lemma 4] (see also Wang et al. [58, Lemma 1]).

We are ready to prove Proposition 2.6. Let V u
T =

∑T
t=1⟨wt − u, gt⟩2. By using fη

t (wt) = 0, (11),
and (12), it holds that

T∑
t=1

⟨wt − u, gt⟩ = −
∑T

t=1 f
η
t (u)

η
+ ηV u

T

=
1

η

(
T∑

t=1

(fη
t (wt)− fη

t (w
η
t ))︸ ︷︷ ︸

Regret of EWA w.r.t. wη
t

+

T∑
t=1

(fη
t (w

η
t )− fη

t (u))︸ ︷︷ ︸
Regret of η-expert w.r.t. u

)
+ ηV u

T

≤ 1

η

(
2 ln

(
1

2
log2 T + 3

)
+ n

(
ln

(
W 2G2T

49nH2
+ 1

)
+ 1

))
+ ηV u

T

for all η ∈ G. For brevity, let

A = 2 ln

(
1

2
log2 T + 3

)
+ n

(
ln

(
W 2G2T

49nH2
+ 1

)
+ 1

)
≥ 1.

If we knew V u
T , we could set η to η∗ :=

√
A
V u
T
≥ 1

5H
√
T

to minimize the above regret bound, A
η +ηV u

T .
Actually, we can do almost the same without knowing V u

T thanks to the fact that the regret bound holds
for all η ∈ G. If η∗ ≤ 1

5H , by construction we have a grid point η ∈ G such that η∗ ∈
[
η
2 , η
]
, hence

T∑
t=1

⟨wt − u, gt⟩ ≤ ηV u
T +

A

η
≤ 2η∗V u

T +
A

η∗
≤ 3
√

AV u
T .

Otherwise, η∗ =
√

A
V u
T
≥ 1

5H holds, which implies V u
T ≤ 25H2A. Thus, for η0 = 1

5H ∈ G, we have

T∑
t=1

⟨wt − u, gt⟩ ≤ η0V
u
T +

A

η0
≤ 10HA.

Therefore, in any case, we have
T∑

t=1

⟨wt − u, gt⟩ ≤ 3
√
AV u

T + 10HA = O

(√
n ln

(
WGT

Hn

)
· V u

T +Hn ln

(
WGT

Hn

))
,

obtaining the regret bound in Proposition 2.6.
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Algorithm 3 O(1)-Regret Algorithm for n = 2.

1: Set C1 to S1.
2: for t = 1, . . . , T :
3: Draw ĉt uniformly at random from Ct.
4: Observe (Xt, xt).
5: Ct+1 ← Ct ∩Nt. ▷ Nt is the normal cone.

Ct

Nt

Ct+1

c∗

Figure 1: Illustration of c∗, Ct, Nt, and Ct+1.

B.4 Lipschitz adaptivity and anytime guarantee

Recent studies [41, 56] have shown that MetaGrad can be further made Lipschitz adaptive and
agnostic to the number of rounds. Specifically, MetaGrad given in Van Erven et al. [56, Algorithms 1
and 2] works without knowing G, H , or T in advance, while using (a guess of) W . By expanding the
proofs of Van Erven et al. [56, Theorem 7 and Corollary 8], we can confirm that the refined version
of MetaGrad enjoys the following regret bound:

T∑
t=1

⟨wt − u, gt⟩ = O

(√
n ln

(
WGT

n

)
· V u

T +Hn ln

(
WGT

n

))
.

By using this in the proof of Theorem 4.1, we obtain

T∑
t=1

⟨c∗, xt − x̂t⟩ ≤
T∑

t=1

⟨ĉt − c∗, x̂t − xt⟩ = O

(
Bn ln

(
DKT

n

)
+

√
∆TBn ln

(
DKT

n

))
,

and the algorithm does not require knowing K, B, T , or ∆T in advance.

C On removing the lnT factor: the case of n = 2

This section provides an additional discussion on closing the lnT gap in the upper and lower bounds
on the regret. Specifically, focusing on the case of n = 2, we provide a simple algorithm that achieves
a regret bound of O(1) in expectation, removing the lnT factor. We also observe that extending the
algorithm to general n ≥ 2 might be challenging. Note that Gollapudi et al. [25, Theorem 4.1] has
already established a regret bound of exp(O(n lnn)) as mentioned in Section 1.2, which implies
an O(1)-regret bound for n = 2. The purpose of this section is simply to stimulate discussions on
closing the lnT gap by presenting another simple analysis. Below, let Bn and Sn−1 denote the unit
Euclidean ball and sphere in Rn, respectively, for any integer n > 1.

C.1 An O(1)-regret method for n = 2

We focus on the case of n = 2 and present an algorithm that achieves a regret bound of O(1) in
expectation. We assume that all xt ∈ Xt are optimal for c∗ for t = 1, . . . , T . For simplicity, we
additionally assume that all Xt are contained in 1

2B
2 and that c∗ lies in S1. For any non-zero vectors

c, c′ ∈ Rn, let θ(c, c′) denote the angle between the two vectors. The following lemma from Besbes
et al. [8], which holds for general n ≥ 2, is useful in the subsequent analysis.

Lemma C.1 (Besbes et al. [8, Lemma 1]). Let c∗, ĉt ∈ Sn−1, Xt ⊆ 1
2B

n, xt ∈ argmaxx∈Xt
⟨c∗, x⟩,

and x̂t ∈ argmaxx∈Xt
⟨ĉt, x⟩. If θ(c∗, ĉt) < π/2, it holds that ⟨c∗, xt − x̂t⟩ ≤ sin θ(c∗, ĉt).

Our algorithm, given in Algorithm 3, is a randomized variant of the one investigated by Besbes
et al. [7, 8]. The procedure is intuitive: we maintain a set Ct ⊆ S1 that contains c∗, from which we
draw ĉt uniformly at random, and update Ct by excluding the area that is ensured not to contain c∗

based on the tth feedback (Xt, xt). Formally, the last step takes the intersection of Ct and the normal
coneNt = { c ∈ Rn : ⟨c, xt − x⟩ ≥ 0,∀x ∈ Xt } of Xt at xt, which is a convex cone containing c∗.
Therefore, every Ct is a connected arc on S1 and is non-empty due to c∗ ∈ Ct (see Figure 1).

Theorem C.2. For the above setting of n = 2, Algorithm 3 achieves E
[
Rc∗

T

]
≤ 2π.
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c∗

ĉt

Ct
ε

Figure 2: An example of Ct on S2. The darker area, A(Ct), becomes arbitrarily small as ε→ 0, while
θ(c∗, ĉt) does not.

Proof. For any connected arc C ⊆ S1, let A(C) ∈ [0, 2π] denote its central angle, which equals its
length. Fix Ct. If ĉt ∈ Ct ∩ int(Nt), where int(·) denotes the interior, x̂t = xt is the unique optimal
solution for ĉt, hence ⟨c∗, xt − x̂t⟩ = 0. Taking the expectation about the randomness of ĉt, we have

E[⟨c∗, xt − x̂t⟩] = Pr[ĉt ∈ Ct \ int(Nt)]E[ ⟨c∗, xt − x̂t⟩ | ĉt ∈ Ct \ int(Nt) ]

=
A(Ct \ Nt)

A(Ct)
E[ ⟨c∗, xt − x̂t⟩ | ĉt ∈ Ct \ int(Nt) ],

where we used Pr[ĉt ∈ Ct \ int(Nt)] = Pr[ĉt ∈ Ct \ Nt] = A(Ct \ Nt)/A(Ct) (since the boundary
of Nt has zero measure). If A(Ct) ≥ π/2, from ⟨c∗, xt − x̂t⟩ ≤ ∥c∗∥2∥xt − x̂t∥2 ≤ 1, we have

E[⟨c∗, xt − x̂t⟩] ≤
2

π
A(Ct \ Nt) ≤ A(Ct \ Nt).

If A(Ct) < π/2, Lemma C.1 and ĉt, c
∗ ∈ Ct imply ⟨c∗, xt − x̂t⟩ ≤ sin θ(c∗, ĉt) ≤ sinA(Ct). Thus,

by using 1
x sinx ≤ 1 (x ∈ R), we obtain

E[⟨c∗, xt − x̂t⟩] ≤
A(Ct \ Nt)

A(Ct)
sinA(Ct) ≤ A(Ct \ Nt).

Therefore, we have E[⟨c∗, xt − x̂t⟩] ≤ A(Ct \ Nt) in any case. Consequently, we obtain

E
[
Rc∗

T

]
=

T∑
t=1

E[⟨c∗, xt − x̂t⟩] ≤
T∑

t=1

A(Ct \ Nt) ≤ 2π,

where the last inequality is due to Ct+1 = Ct ∩ Nt, which implies Cs ⊆ Ct and Cs ∩ (Ct \ Nt) = ∅
for any s > t, and hence no double counting occurs in the above summation.

C.2 Discussion on higher-dimensional cases

Algorithm 3 might appear applicable to general n ≥ 2 by replacing S1 with Sn−1 and defining A(Ct)
as the area of Ct ⊆ Sn−1. However, this idea faces a challenge in bounding the regret when extending
the above proof to general n ≥ 2.9

As suggested in the proof of Theorem C.2, bounding E[⟨c∗, xt−x̂t⟩] is trickier when A(Ct) is small
(cf. the case of A(Ct) < π/2). Luckily, when n = 2, we can bound it thanks to Lemma C.1 and
sin θ(c∗, ĉt) ≤ sinA(Ct), where the latter roughly means the angle, θ(c∗, ĉt), is bounded by the
area, A(Ct), from above. Importantly, when n = 2, both the central angle and the area of an arc are
identified with the length of the arc, which is the key to establishing sin θ(c∗, ĉt) ≤ sinA(Ct). This
is no longer true for n ≥ 3. As in Figure 2, the area, A(Ct), can be arbitrarily small even if the angle

9We note that a hardness result given in Besbes et al. [8, Theorem 2] is different from what we encounter
here. They showed that their greedy circumcenter policy fails to achieve a sublinear regret, which stems from the
shape of the initial knowledge set and the behavior of the greedy rule for selecting ĉt; this differs from the issue
discussed above.
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within there, or the maximum θ(c∗, ĉt) for c∗, ĉt ∈ Ct, is large.10 This is why the proof for the case
of n = 2 does not directly extend to higher dimensions. We leave closing the O(lnT ) gap for n ≥ 3
as an important open problem for future research.

D Numerical experiments

We conducted numerical experiments to complement our theoretical results. Experiments were
conducted on Google Colab equipped with an Intel® Xeon® CPU @ 2.20GHz, 12 GB RAM, running
Ubuntu 22.04.4 LTS with Python 3.12.11. The code is available at https://github.com/ssakaue/
online-inverse-linear-optimization-code.

We use a setup based on the hard instance considered in our lower bound analysis (Section 5). Let c∗
be a random vector with ∥c∗∥2 = 1. The learner’s prediction set Θ is the n-dimensional Euclidean
unit ball. At each round t, we sample an endpoint v uniformly at random from the unit sphere in Rn,
and set Xt = {−v,+v}. We report results for T = 10,000 rounds in dimensions n = 2, 20, and 200.
To mitigate randomness, we repeat each experiment 10 times independently and report mean and
standard deviation.

Compared methods. We compare the following three methods:

• ONS: our proposed method based on ONS,
• OGD: the OGD-based method of Bärmann et al. [4],
• CP: a cutting-plane style method inspired by Gollapudi et al. [25].

For CP, computing the centroid of the feasible region is #P-hard. Therefore, we adopt a randomized
heuristic: we pre-sample n × 104 candidate points from the unit ball, eliminate those violating
accumulated cuts, and approximate the centroid by averaging the remaining points.

Results. Table 2 summarizes the cumulative regret and runtime over T = 10,000 rounds (mean ±
standard deviation across 10 trials).

Table 2: Experimental results over T = 10,000 rounds (mean ± standard deviation across 10
independent runs).

(a) Cumulative Regret

Method n = 2 n = 20 n = 200

ONS 7.81± 2.52 31.55± 0.43 46.19± 0.88
OGD 8.46± 4.07 33.80± 0.50 67.41± 1.36
CP 2.77± 0.68 829.91± 287.00 515.50± 43.75

(b) Cumulative Runtime (s)

Method n = 2 n = 20 n = 200

ONS 0.648± 0.115 0.705± 0.086 9.073± 0.727
OGD 0.150± 0.024 0.150± 0.017 0.233± 0.019
CP 4.670± 3.205 5.700± 1.748 71.252± 12.152

When the dimension is small (n = 2), CP achieves the lowest cumulative regret. However, its
cumulative regret deteriorates significantly for n = 20 and n = 200. This degradation stems from the
limited number of pre-sampled candidate points: in principle, about Tn samples would be required
for an accurate approximation, which is infeasible even for moderate n. Moreover, although the
above randomized centroid approximation substantially reduces computation by averaging over the

10A similar issue, though leading to different challenges, is noted in Besbes et al. [8, Section 4.4], where their
method encounters ill-conditioned (or elongated) ellipsoids. They addressed this by appropriately determining
when to update the ellipsoidal cone. The lnT factor arises as a result of balancing being ill-conditioned with the
instantaneous regret.
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surviving candidates, it remains less scalable than OGD and ONS. These results highlight practical
limitations of CP in moderate to high-dimensional settings.

In contrast, ONS consistently achieves low regret values across all dimensions while remaining
computationally feasible. It outperforms OGD in terms of the regret and scales reasonably well with
increasing n. Note that our ONS implementation uses a straightforward projection subroutine that
repeatedly solves similar linear systems—an overhead that could be reduced by more sophisticated
implementation techniques. Further speedups could also be achieved via quasi-Newton-type updates
or sketching-based techniques, as discussed in Sections 3 and 4.

Taken together, these findings affirm that ONS provides a strong and scalable alternative to existing
methods in online inverse linear optimization, especially when CP is computationally infeasible and
OGD’s regret performance is unsatisfactory.
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