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Abstract

Large vessel occlusions (LVO) typically lead to severe ischemia of brain parenchyma. Iden-
tifying such LVOs is thus a crucial objective in stroke diagnosis. As shortening the time to
treatment is essential for a good outcome, fast automated detection can be a valuable tool
in clinical routine. This can be achieved using deep learning approaches. In a CTA scan,
an LVO can be detected as an unexpected interruption in the contrast-enhanced vessel
tree. These cerebrovascular trees can be represented as graphs and analyzed using graph
deep learning (GDL) methods. Representing the vasculature as a graph instead of a (very
sparsely populated) Euclidean volume massively reduces the model input dimensionality,
which promotes time and memory efficiency. In this study, we investigate the use of graph
deep learning methods for classifying the presence of a large vessel occlusion compared to
state-of-the-art image-based methods. Furthermore, the influence of vascular attributes
and different graph topologies is investigated. The proposed model achieves performance
comparable to the baseline with an accuracy of 0.95 and an AUC of 0.89. Compared to
the image-based approach, the graph-based approach is ten times faster and requires 80%
less memory.
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1. Introduction

Acute ischemic strokes (AIS) are the second leading cause of death and the leading cause of
physical disability worldwide and have increased over the last decade (Murphy and Werring,
2020). One of the leading causes of an AIS is large vessel occlusions (LVO), accounting for
more than one-third of all AIS cases (Malhotra et al., 2017) and responsible for 90% of
mortality after an AIS. Usually, these occlusions occur in the major arteries around the
Circle of Willis (CoW) in the brain, the internal carotid artery (ICA) and/or the middle
cerebral artery (MCA). Finding LVOs is the critical objective in the diagnostic process and
treatment (Lakomkin et al., 2019). Reperfusion with intravenous thrombolytic medication
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therapy or mechanical thrombectomy improves the probability of a disability-free recovery
following an AIS. However, the time window for reperfusion is limited (Palaniswami and
Yan, 2015; ElTawil and W Mui Keith, 2017); hence a fast diagnosis of LVO-positive patients
is required. Computed Tomography Angiography (CTA) represents one of the essential
modalities to visualize the cerebrovascular tree by injecting a contrast medium, which is
beneficial in identifying LVOs. An automated classification of patients suffering from LVOs
based on a CTA scan would benefit the clinical workflow by shortening the diagnostic time.

In the last decade, many image-based approaches have been proposed for automated
classification of the presence/absence of an LVO in CTA scans. S. A. Amukotuwa et al.
(2019) developed an image processing pipeline for this task by applying a rule-based clas-
sifier. Their approach achieved an area under the receiver operator characteristic curve
(AUC) between 0.86 and 0.94, depending on the patient cohort. Stib et al. (2020) investi-
gated LVO detection on multi-phase CTA, for which they trained 2D-DenseNets. Several
experiments were performed by using combinations of three CTA phases, yielding AUCs
between 0.74 and 0.85. Thamm et al. (2022b) applied 3D-DenseNets on segmented CTA
scans and proposed the randomized recombination of the patient’s hemispheres as a novel
augmentation method to create new synthetic patients. In a 5-fold cross validation, they
achieve an AUC of 0.91.

However, image-based approaches can be computationally expensive, and a more ef-
ficient representation is desirable. Graphs offer an efficient representation for images of
sparse objects, where the pixels of interest are considered nodes, and the edges between
nodes represent the pixel neighborhoods. In some cases, the imaged object itself also ex-
hibits a graph-like structure. For instance, the cerebrovascular system can be considered a
graph as well, with vessel bifurcations (branching points) as nodes and the vessel segments
as edges.

Wolterink et al. (2019) applied graph neural networks for coronary artery segmentation
in cardiac CTA by identifying the spatial location of nodes in a tube-shaped surface mesh.
Ye et al. (2019) categorized strokes using graph attention networks by assigning each node
to a stroke and forming temporal and spatial interactions between adjacent nodes as edges.
Popp et al. (2022) utilized graph neural networks for thrombus detection in non-contrast
head CT (NCCT), arranging multiple candidate regions of interest per patient in a graph
and jointly classifying them.

This paper aims to investigate the benefits of graph deep learning (GDL) compared to
conventional image-based deep learning methods in classifying the presence/absence of an
LVO in cerebrovascular trees treated as graphs. We hypothesize that by using graphs, it is
possible to achieve comparable performance more efficiently due to the reduction in input
dimensionality. Classification is performed by applying GDL to vascular tree structures
represented as graphs after a preceding segmentation in CTA data. Node features are used
to describe several vascular properties. A task-specific augmentation technique, namely
recombination of hemispheres from different cerebrovascular trees as proposed by Thamm
et al. (2022b), is adapted to the graph-based approach to increase the number of training
samples.
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2. Method

2.1. Data

In total, 171 CTA scans of the head region with a cohort of AIS patients were available.
Of these, 20 had to be excluded due to insufficient image quality preventing a proper seg-
mentation of the vessels and/or registration of the head. Of the remaining 151 scans,
57% were LVO positive with an occlusion either in the MCA or the ICA region. In order
to compute the graph of each vessel tree, the vasculature is first segmented using Virtu-
alDSA++ (Thamm et al., 2020, 2022a) followed by skeletonization that determines both
the vessel centerlines, resulting in a graph representation of the vasculature, and the vessel
radii. The overall data is limited to the quality of the segmentation. However, the baseline
method is based on the same segmentation approach. Hence, a fair comparison between
both approaches is possible.

2.2. Graph Construction

L

Raw CTA input Segmentation model Output Graph

Figure 1: Pipeline for generating graph data using CTA scan as an input, where the graph’s
nodes are bifurcations in the vessel tree.

For each CTA data set, a graph G = (V,€) is generated following the pipeline shown
in Figure 1. Each graph G consist of a set of bifurcations as nodes v; € V and set of
undirected edges ¢;; € £, describing the vessel skeleton between two bifurcations v; and v;.
Furthermore, each node v; has a 3-dimensional feature vector containing vascular attributes
about the radius (Figure 2(a)), geodesic distance to a root node on the Circle of Willis
(CoW) (Figure 2(b)) and the sagittal position (Figure 2(c)).

For obtaining the node features, a landmark on the communicans anterior artery on
the CoW is defined using the approach by Ghesu et al. (2017). Then a node on the CoW,
referred to as the root node, is sought using the shortest Euclidean distance between nodes
and the landmark. First, the average vessel radius at each bifurcation is obtained through
the skeletonization process of the vascular structure by (Selle et al., 2002). Second, the
geodesic distance to CoW is calculated by the shortest geodesic path between all nodes and
the root node. Third, we compute each node’s sagittal position (x coordinate) sorting each
node to its belonging hemisphere by re-referencing the positions around the root node. The
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Figure 2: Heatmaps illustrating the features at each node. (a) Radius of each vessel at the
corresponding node. (b) Distance of each node to the root node at the CoW. (c)
Sagittal position of each node.

case-level labels are one-hot encoded 3-vectors for the three classes, LVO negative, LVO left
and LVO right.

2.3. Augmentation

We apply two augmentation techniques. One operates on feature-level, the other on graph-
level. For the feature-level augmentation, we jitter the value of our features by applying
uniformly distributed noise with a variance of o = 10%.
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Figure 3: An example of the recombination process, with (+/— denoting LVO-pos/LVO-
neg cases respectively). Three patients color-coded (red, grey and violet) are
split at the root node sagittally, then recombining two hemispheres from different
patients creating three new artificial patients with three different classes.

We adopt the recombination method by Thamm et al. (2022b) for the graph-level aug-
mentation. To this end, we generate new artificial data (Figure 3) by splitting the brain
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along the mid-plane into the two hemispheres, honoring the quasi-symmetrical property of
the human brain and, therefore, the cerebral vasculature. Adapting this concept to graph
structures, the graph is split during the generation process at the root node with a variance
of 0 = 2mm around the sagittal axis. Each hemisphere graph is then labeled regarding
the presence of an LVO along with the side of each hemisphere. During the recombination
process, the overall label y/; ; is decided based on the labels of both hemisphere graphs

Yi, Yj:
Yi ify; 70 A y; =0,
ylij =< n.a ify;=y; #0, (1)
Yj else.

Optionally, one hemisphere can be mirrored around the midpoint in the sagittal axis,
in our case x = 90mm, of the nodes’ positions depending on the label and side of each
hemisphere, where the mirroring is described as

/g, =904 (90 —xpy,) if 2y, # root node Vay, € hemisphere 7. (2)

In total, 81k recombinations are possible using the 151 patients. During training, new
artificial patients can be drawn randomly with a uniform distribution of the labels to ensure
the class balance, where each combination appears once in one epoch.

2.4. Architectures

We utilize GraphSAGE by Hamilton et al. (2017) as the graph convolutional layer of choice
in the proposed graph networks. The first variant applies a node-level MaxPool layer after
randomly clustering the nodes using the greedy clustering algorithm by Fagginger Auer
and Bisseling (2012). The second approach relies on the ASAPooling layer by Ranjan et al.
(2019). The last variant utilizes both pooling approaches by first applying the MaxPool
followed by the ASAPooling layer later on in the network. All three architectures share the
same basic structure (Figure 4).

The basic structure consists of two blocks of three GraphSAGE layers in combination
with the ReLU activation function. Inspired by Corso et al. (2020), each block employs three
different aggregation methods sequentially (max, sum, mean), introducing non-linearity in
the message passing. The suggested combination was based on an empirical evaluation
of different network combinations. However, other possible network topologies were only
outperformed by slight margins.

The output of each layer is normalized, generalizing the node representation between
graphs. The network starts with a width of 1024, capturing as much information as possible
throughout each graph, then decreasing by half after each graph convolutional layer. Then,
a vector representation is returned by a graph readout network consisting of a dropout layer
followed by a global max pooling operation, which returns a batch-wise graph-level output
by the channel-wise maximum across the node dimension. Finally, the representation vector
is fed into the output prediction layer, consisting of a linear layer with three nodes at the
end for the three classes.
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Figure 4: The basic structure of the proposed GNN consisting of two GraphSAGE blocks
to update nodes representation followed by a dropout and global maxpool layer
acting as a readout layer and a FC layer as a prediction network. Each block is
composed out of three stacked GraphSAGE layers using thee different aggregation
method in the sequence max, sum, mean.

2.5. Experiments

In this study, we use Adam by (Diederik P. Kingma and Jimmy Ba, 2015) with a learning
rate of 107° and a weight decay of 10~* alongside the BCE-loss function implemented in
Pytorch (Paszke et al., 2019) with Python 3.8. We apply a batch size of 32 to compute
a stable loss robustly. We utilize both augmentation techniques mentioned in section 2.3
separately and in combination with each method. For the recombination, we randomly
draw a total of 20 x 32 patients from each training fold during each epoch. To evaluate
our models and the impact of the recombination method, we apply a 5-fold micro-average
cross-validation using a 3-1-1 split for training, validation and testing. Validation/testing
is done on original, not recombined data. Additionally, early stopping is utilized with a
patience of 120 epochs monitoring the validation loss.

As a baseline for comparison, we consider the approach by Thamm et al. (2022b) that
utilizes 3D-DenseNets while also applying similar augmentation methods. They proposed
two approaches utilizing the segmentations of the cerebrovascular system as a surrogate
to the CTA scan and the recombination method to classify the existence of LVOs. In the
first approach, H-Stack, the hemispheres are concatenated channel-wise. In the IM-Stack
approach, the hemispheres are cropped to regions covering the ICA and MCA branches,
respectively, left and right, to integrate more prior knowledge. Additional labels for the
respective ICA and MCA sub-volumes are used to train 3D-DenseNets for the LVO classi-
fication task.
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Table 1: Overview of all best performing models for augmentation the AUC of the respective
class-wise prediction for the presence/absence of an LVO, and the accuracy for
the affected side on LVO-pos. cases. The abbreviation “REC” stands for the
recombination method, “D” for the deformation and “M” for mirroring.

Model AUC ACC
H Stack 0.73 091
H-Stack + D 0.82 0.86

H-Stack, Thamm et al. (2022b) H-Stack + REC 0.87 093

H-Stack + REC + D  0.89 0.92

IM Stack 0.84 0.92
IM-Stack + D 0.86 0.96
IM-Stack + REC 0.88 0.94
IM-Stack + REC +D 0.91 0.96

IM-Stack, Thamm et al. (2022b)

original 0.68 0.76

original + jitter 0.71  0.76

MaxPool REC 0.85  0.90
REC + jitter 0.83 0.91

original 0.83 0.64

. original + jitter 0.77  0.80
ASAPooling REC 0.85  0.90
REC + jitter 0.82 0.95

original 0.64 0.82

. original + jitter 0.72  0.89
MaxPool/ASAPooling REC 0.87  0.89
REC + jitter 0.89  0.90

To evaluate the models’ efficiency, we measure the time and GPU memory consumption
per epoch for training and testing. For the measurement, we apply a batch size of 6 and
the number of patients/epoch of 180, similar to the baseline. Therefore, both approaches
process the same amount of patients in each epoch, ensuring a fair comparison.

3. Results

Table. 1 shows the AUC values achieved for the the class LVO-neg (no LVO) against LVO-
pos (sum of LVO-left and LVO-right). The column ACC denotes the side accuracy by
measuring the accuracy of taking the argmax of the left or right class prediction on the
LVO-pos cases, thus evaluating the model’s tendency between the two hemispheres.

The results show that the overall performance of the three proposed graph networks is
boosted when the recombination method is introduced. When both augmentation methods
are applied, each graph network achieves its best performance, where the Max/ASAPooling



KassaMm THAMM RiIST TAUBMANN MAIER

model delivers the best AUC of 0.89, which is similar to H-Stack by Thamm et al. (2022b),
and the ASAPoolng approach the best ACC of 0.95, outperforming the H-Stack model.
Notably, only one graph network, the ASAPooling approach, performs well without any
augmentation when predicting the presence/absence of an LVO, and the Max/ASAPooling
approach performs well regarding the accuracy of the affected side. However, the IM-stack
approach has the best overall performance when applying the subvolume recombination
method.

Efficiency-wise, the proposed GDL models (~ 1.4M parameters) complete a training
epoch in 2 seconds using 1 GB of memory and testing/inference in 1.5 seconds allocating
0.8 GB of memory. On the other hand, the IM-Stack (~ 6M parameters) approach com-
pletes in 22/5 seconds consuming 7.4/2.9GB of memory. Furthermore, utilizing a similar
number of parameters to our models, the IM-Stack finishes in 16/4 seconds consuming
5.5/2.4G B of memory.

4. Conclusion

We investigated the use of GDL methods for classifying the presence of an LVO in a cerebral
vessel tree. The proposed graph networks achieve comparable performance to a state-
of-the-art image-based method Thamm et al. (2022b). While the GDL models do not
outperform this baseline, they train up to ten times faster while allocating only a fifth of
the memory. This demonstrates that representing cerebrovascular vasculature as graphs
dramatically reduces the amount of redundant model input data while maintaining crucial
structural information. We also adapted a previously described method for augmentation
by recombination of single-hemisphere vessel trees to the proposed graph-based models and
could show that it substantially benefits the learning process.
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Appendix A. Detailed results
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Figure 5: Heatmaps showing the performance regarding (a) AUC and (b) ACC of all pro-
posed models using different combinations of features and augmentation methods
with the following legend; R: radius, D: distance, S: side, OG: original data, J:
jittering, REC: recombination.
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