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Abstract

Deciding on a model structure is a fundamental problem in machine learning. In this paper
we consider the problem of building a data-based model for dynamical systems from a
library of discrete components. In addition to optimizing performance, we consider crash and
inequality constraints that arise from additional requirements, such as real-time capability
and model complexity. We address this task of model structure selection with a focus on
dynamical systems and propose to search over potential model structures efficiently using a
constrained combinatorial Bayesian Optimization (BO) algorithm. We propose expressive
surrogate models suited for combinatorial domains and an acquisition function that can
handle inequality and crash constraints. We provide simulated benchmark problems within
the domain of equation discovery of nonlinear dynamical systems. Our method outperforms
the state-of-the-art in constrained combinatorial optimization of black-box functions and
has a favorable computational overhead compared to other BO methods. As a real-world
application example, we apply our method to optimize the configuration of an electric
vehicle’s digital twin while ensuring its real-time capability for the use in one of the world’s
largest driving simulators.

1 Introduction

Minimizing the discrepancy between the simulated behavior of digital twins and the measured behavior of
the observed system is essential in engineering applications and is commonly known as system identification
(Ljung, 1998) or model learning (Nguyen-Tuong & Peters, 2011). In general, system identification comprises
two interleaved subtasks, structure identification and parameter estimation. The former aims to determine
the structure of model equations, while the latter focuses on finding the model parameters (Tanevski et al.,
2015). While a lot of the machine learning literature focuses on the latter task, we tackle the former.

Structure identification methods explore the space of potential models and select the best-fitting representation
of the dynamical system. On the one hand, structure identification can be approached by symbolic-regression
methods (Bongard & Lipson, 2007; Schmidt & Lipson, 2009; Brunton et al., 2016), which explore the space
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Figure 1: The process of system identification

of possible arithmetical expressions for building mathematical models and often use regularization techniques
to introduce bias towards simpler models (Tanevski et al., 2020). These methods can be very general and
require only the definition of the mathematical operations and functions that can compose the description of
the system’s behavior. On the other hand, knowledge-driven approaches (Bradley et al., 2001) require experts
to encode domain-specific knowledge into model fragments, usually following known relationships, physical
laws, constraints, or structural properties of the observed system. In both approaches, the idea is to break
down the overall model into smaller, more manageable fragments or sub-models. This decomposition allows
for a modular representation of the dynamics and enables the identification of local relationships, which is
important when dealing with complex systems. In addition, both methods provide flexibility in defining the
structure and form of the model fragments, which can be combined, composed, or connected in a way that
reflects the relationships and interactions between the different components of the system.

In Figure 1, we depict an iterative process of system identification. In the structure identification phase,
model components are selected from a model library of predefined parameterized templates that align with the
system’s characteristics. In the next step, regression algorithms are employed to estimate the coefficients or
parameters associated with the selected templates of the model fragments. The final model is then evaluated
using criteria such as goodness-of-fit, model complexity, or predictive performance. This evaluation is used as
feedback to the search algorithms to select better model structures for the next iteration.

In practice, structure identification search algorithms enumerate plausible model structures and select the
model templates that result in the best model evaluation (Tanevski et al., 2020). Due to the discrete nature
of the problem, this task is often approached as a combinatorial optimization problem. The interplay between
components disallows selecting templates independently, and an exhaustive search over all potential model
structures quickly becomes infeasible due to the combinatorial explosion of the search domain. In addition,
evaluating a model structure candidate involves fitting coefficients and simulating dynamical systems, which
can be computationally demanding. This motivates the need for sample-efficient Bayesian optimization (BO)
methods (Garnett, 2023) that are suitable for expensive-to-evaluate black-box objective functions.

Moreover, the ability to handle inequality constraints and evaluation failures during the search for the best
model structure plays an important role in system identification. Inequality constraints can be used to
limit the computational budget available for the model, help mitigate overfitting, and prevent models that
violate physical principles. In addition, the selection of some structures might lead to invalid composition or
numerically unstable simulations (Chakrabarty et al., 2021). Such failures or ‘crashes’ prohibit the assessment
of the model performance (Bachoc et al., 2020).

We address the task of model structure selection as a combinatorial BO problem and propose a method
specifically designed for models that have additional requirements that can be translated into inequality and
crash constraints in the optimization. Our method efficiently searches over potential model structures and is
scalable to many design parameters. The proposed method employs expressive surrogate models suited for
combinatorial spaces and implements an acquisition function that handles inequality and crash constraints.
While our contribution focuses on model discovery for dynamical systems, the proposed method is general
and can be used for a wide variety of machine learning tasks.

We empirically evaluate the method on symbolic benchmark problems for equation discovery of nonlinear
dynamical systems (Brunton et al., 2016; Mangan et al., 2017). We extend these benchmarks to include
inequality constraints in the form of Lasso regularization to combat overfitting, and consider crash constraints
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tackling numerical instabilities and failures. As a real-world application example, we further optimize a
knowledge-driven formulation of a multibody driving simulation model.

Our contributions are as follows:

• We propose a general formulation for model structure selection as part of a constrained combinatorial
optimization problem that considers inequality and crash constraints as a way to handle additional
model requirements during the model search.

• We present CBOSS, a constrained combinatorial Bayesian optimization algorithm that can efficiently
solve the model structure selection problem and is capable of solving combinatorial optimization
problems with up to 1018 combinations. CBOSS employs an efficient-to-compute acquisition function
and combines recently proposed surrogate models for discrete domains.

• We show empirical evidence that the proposed algorithm outperforms state-of-the-art methods on
benchmark problems for equation discovery and further provide a real-world application example
where CBOSS can build a digital twin for a driving simulator from a large library of modules, while
ensuring its real-time capability.

This article continues as follows: in Section 2 we provide a general problem formulation for structure selection.
The related work is discussed in Section 3. The proposed combinatorial BO method is described in Section 4.
In Section 5, we investigate the performance of our method with various system identification problems and
compare to other approaches.

The code for the optimizer and the benchmark problems are publicly available at
https://github.com/lucasrm25/Model-Structure-Selection-CBOSS

2 Problem Statement

We address this structure identification problem as a constrained combinatorial optimization problem. We
require a library of model templates X and a symbolic-regression or knowledge-driven procedure for composing
the selected templates. The selection of model templates is to be parameterized with a vector of categorical
decision variables denoted as x ∈ X , defined over the combinatorial domain X = X1 × X2 × · · · × Xd with
d categorical decision variables with respective cardinalities k1, . . . , kd. We introduce an objective function
f : X 7→ R that maps the decision variables to a real value indicating the model performance. In practice,
this function represents both parameter estimation and model evaluation depicted in Figure 1 and, given
noisy time observations, measures the performance of the model structure specified by x ∈ X . Similarly,
we define M inequality constraints as gj : X → R with j ∈ {1, . . . , M}, and a binary equality constraint
function as h : X → {0, 1}. The inequality constraint can be used, for example, to restrict the computational
budget, the model complexity or as a regularization, while the binary equality constraint is used to indicate
evaluation failures.

We formulate the structure selection problem as the search for the global optimizer x∗ that fulfills:

x∗ = arg min
x∈X

f(x) (1)

s.t. gj(x) ≤ 0 ∀j ∈ {1, . . . , M}
h(x) = 1 .

The functions f , g, and h are all expensive-to-evaluate black-box functions and can only be obtained
simultaneously. The functions f and g are noisy and can only be assessed when the experiment is successful,
i.e.

(y, c, l) =
{

(f(x) + ϵy, g(x) + ϵc, 1) if x is evaluation success
(∅, ∅ 0) if x is evaluation failure (2)

where the noise ϵy ∼ N (0, σ2
y) and ϵc ∼ N (0, diag(σ2

c )) are i.i.d. and normally distributed. All past
observations are collected in a dataset D = {(x(i), y(i), c(i), l(i))}i∈[N ], where N is the number of experiments.
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3 Related Work

In this section, we review some of the existing literature of model structure selection and highlight the
potential of employing combinatorial Bayesian optimization as a promising approach.

Model Structure Selection. Traditional methods for structure selection involve exhaustive search over the
space of potential model structures, such as random search, A* search, and simulated annealing (Bertsimas
& Tsitsiklis, 1993) algorithms. Others employed evolutionary algorithms (Schmidt & Lipson, 2009; Tanevski
et al., 2020) or causal inference (Baumann et al., 2022). However, the main limitation of these methods is
their sample efficiency, as the number of potential model structures grows exponentially with the number of
discrete variables. Generally, these algorithms are not suitable for expensive-to-evaluate system identification.

A popular non-parametric class of models are kernel methods such as Gaussian processes. Here, the problem
of model selection includes the choice of kernels and their composition. These problems have been tackled
by greedy search (Duvenaud et al., 2013), a mixture of random walks and BO (Malkomes et al., 2016), and
MCMC sampling (Gardner et al., 2017).

Mangan et al. (2017) proposed a sparse symbolic-regression structure selection approach using SINDy
(Brunton et al., 2016) as a tool to down-sample parsimonious models from the combinatorially large model
space.Reducing the search space allowed them to brute-force and search for the best model among the
remaining ones. SINDy works by recursively performing linear regression and pruning terms with small
model coefficients up to a certain threshold. Although very efficient, this method, as well as other backward-
elimination algorithms, over-exploits the model space and does not guarantee to find the optimal one
(Guyon & Elisseeff, 2003). In addition, SINDy cannot handle constraint problems and is not applicable to
knowledge-driven problems. Another limitation is that the coefficients are pruned based on the regression
results obtained by fitting a prediction model, which is not always the best strategy if the model is to be
used as a simulation or auto-regressive model. BO methods are more general and allow for arbitrary cost
functions, whereas SINDy decides on the structure based on the least squares cost.

Combinatorial Bayesian Optimization. The two main challenges in combinatorial Bayesian optimization
are the development of (i) better probabilistic regression approaches that can capture the complex interaction
between discrete variables and (ii) acquisition function optimizers that efficiently search the combinatorial
space using the surrogates. While most methods have been defined over a mixed space of continuous and
discrete variables, we focus here on the specific characteristics that are useful for discrete domains. SMAC
(Hutter et al., 2011) leveraged tree-based surrogate models and used random walks to obtain a local optimum
of acquisition function. This method can be applied to mixed input spaces but neglect high-order interaction
between variables. BOCS (Baptista & Poloczek, 2018) encoded categorical variables in a combinatorial one-hot
binary domain and used polynomial features within sparse Bayesian linear regression (Carvalho et al., 2010;
Makalic & Schmidt, 2015) combined with Thompson sampling to express the interaction between variables
and their effect on the objective function. They optimized the acquisition function using simulated annealing
and semi-definite programming. Dadkhahi et al. (2022) extended BOCS and proposed a more compact but
still complete and unique encoding that results in fewer monomials. Hase et al. (2018) and Häse et al. (2021)
combined Bayesian neural networks and density kernel estimation as a surrogate for BO with categorical
variables. Wan et al. (2021) proposed the Casmopolitan algorithm and used a modified Hamming kernel
as part of Gaussian process regression, which defines the correlation between two inputs by their Hamming
distance in the combinatorial graph. To avoid over-exploration due to high-dimensional combinatorial spaces
they adapted the trust region algorithm from TURBO (Eriksson et al., 2019) to explore only locally near the best
location found so far. Further, Oh et al. (2019) proposed COMBO, which used the discrete diffusion kernel built
from the graph Cartesian product of discrete parameters and is able to model high-order interactions between
variables. COMBO was improved by Deshwal et al. (2021) (HyBO) by using the closed-form of the discrete
diffusion kernel proposed by Imre (2002). In order to tackle high-dimensional combinatorial problems Deshwal
et al. (2023) propose an embedding of the high-dimensional discrete search space into a low-dimensional
continuous one using dictionaries.

Constrained Bayesian optimization is an active area of research for continuous domains (Gardner et al.,
2014; Eriksson & Poloczek, 2021; Ungredda & Branke, 2024; Marco et al., 2021) but rarely investigated for
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discrete variables. Daulton et al. (2022) proposed Probabilistic Reparameterization (PR), the first method for
constrained combinatorial BO, which reparameterized the discrete acquisition function optimization problem
by introducing discrete probability distributions defined by continuous parameters. This allowed them to
optimize the AF using gradient-based methods. We also note that other methods, such as Papalexopoulos
et al. (2022), exist for constrained combinatorial optimization but only consider inexpensive and white-box
constraint functions, which is not applicable to our problem.

Our proposed method extends to constrained problems and has a relatively small computational footprint.
Most of the existing methods have a high computational demands and therefore scale poorly with the number
of inputs and data points, since they rely on expensive MCMC methods to infer the posterior distributions. We
focus on reducing the high computational overhead of the state-of-the-art methods by relying on closed-form
models and AF, avoiding expensive approximations.

4 Methods

In the context of structure model selection, Bayesian optimization can be employed to find the optimal
model structure that minimizes a chosen evaluation metric. Bayesian optimization is particularly useful when
the objective function is a expensive-to-evaluate black-box function. Based on past observations, the BO
algorithm constructs a probabilistic surrogate model of the objective and the constraints, typically Gaussian
Processes (GPs) (Rasmussen et al., 2006). The surrogate model is iteratively updated with new evaluations,
allowing for the sequential exploration of the search space. The selection of the next promising evaluation
point is guided by an acquisition function, based on the surrogate model’s predictions and their uncertainty
to balance the exploration-exploitation trade-off.

Simulation &
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Figure 2: The proposed method for model structure selection using combinatorial Bayesian optimization.
Every iteration, the model structure selection algorithm proposes a new model structure x from the model
library. Using measurements, the model’s parameters are estimated and the composed model performance
is evaluated according to objective y = f(x) + ϵy, inequality constraints c = g(x) + ϵc and crash l = h(x)
function evaluations.

We call our method Constrained Combinatorial Bayesian Optimization for model Structure Selection (CBOSS).
In the following subsections, we present a detailed description of this method. We define (i) probabilistic
surrogate models for regression, which will approximate the black-box objective and constraint functions, (ii)
a probabilistic model for classification, which will approximate the black-box binary function for failures and
finally (iii) the acquisition function. An overview of the method is depicted in Figure 2 and in Algorithm 2.

4.1 Probabilistic Surrogate Model for Regression

We consider the setting, where objective function observations are given by y(i) = f(x(i))+ ϵ
(i)
y and we assume

the observation noise ϵ
(i)
y ∼ N (0, σ2

y) to be an i.i.d. Gaussian random variable with unknown variance σ2
y

(cf. Equation 2). After making N observations, the joint distribution of observations is
y | X, σ2

y ∼ N (f(X), σ2
yIN ) , (3)
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where X = [x(i), . . . , x(N)]⊤ ∈ XN , f(X) = [f(x(i)), . . . , f(x(N))]⊤ ∈ RN , y = [y(i), . . . , y(N)] ∈ RN and
IN ∈ RN×N is the identity matrix. We assume the objective and constraints to be conditionally independent
given X and use the same setup for each j-th dimension of constraint function evaluations c

(i)
j = gj(x(i))+ ϵ

(i)
cj .

Similarly, cj | X, σ2
c ∼ N (gj(X), σ2

c IN ).

We now present a surrogate model for the expensive function f as a Gaussian process prior over f

f | σ2
y ∼ GP (m, k) , (4)

where the mean function m : X → R and the kernel k : X × X → R are the crucial ingredients in GP
regression since they define the kind of structure that will be captured by the regression model. These
components are to be defined in the following subsections.

The posterior predictive distribution of a function value f(X ′) at test points X ′ is given analytically
(Rasmussen et al., 2006)

f(X ′) | X ′, y, X, σ2
y ∼ N (µ̄f , Σ̄f ) (5)

with
µ̄f = m(X ′) + K(X ′, X)(K(X, X) + IN σ2

y)−1(y −m(X))

Σ̄f = K(X ′, X ′)−K(X ′, X)(K(X, X) + IN σ2
y)−1K(X, X ′)

,

where m(X)i = m(Xi) and K(X, X ′)i,j = k(Xi, X ′
j).

One of the limitations of Gaussian process regression is the light tails of the predictive distribution, which are
not robust to outliers (Duvenaud, 2014) and might not capture well enough the discrepancy of the surrogate
model (Baptista & Poloczek, 2018). To allow for better robustness and characterization of the uncertainty in
the prediction while still allowing for a closed-form posterior, we provide a formulation of surrogate regressors
with hierarchical priors. A hierarchical Bayesian model is a model in which the prior distribution of some of
the model parameters depends on other parameters, which are also assigned a prior. We place the following
hierarchical GP prior over f

f | σ2
y ∼ GP

(
m, σ2

y k
)

(6)
σ2

y ∼ Γ−1(ν, σ2
m) , (7)

which leads to p(f(X), σ2
y) being an inverse-gamma-normal distribution. To ease the derivations and the

hyperparameter tuning, we use a more intuitive inverse-gamma parameterization, whose shape is a = ν/2
and scale b = σ2

m ν/2 (Taboga, 2017). This parameterization directly reflects the mean and the variance of
this distribution since E[1/σ2

y] = 1/σ2
m and Var[1/σ2

y] = 2/(νσ4
m). Therefore 1/σ2

m can be interpreted as the
best guess of the regression precision, while ν expresses the degree of confidence about the precision. We
follow Chen et al. (2023) and place hyperprior distributions over ν ∼ Γ(ζν , ξν) and σ2

m ∼ Γ(ζσ2
m

, ξσ2
m

).

The predictive prior distribution at X can be calculated analytically by

f(X) | X ∼
∫

p(f(X) | σ2
y, X) p(σ2

y) dσ2
y = T (ν, m(X), σ2

m K(X, X)) , (8)

where T (ν, µ, Σ) is the multivariate t-distribution, with degrees of freedom ν, mean µ and scale matrix Σ.

Furthermore, the predictive posterior distribution at test points X ′ is also given in closed-form by

f(X ′) | X ′, y, X ∼
∫

p(f(X ′) | X ′, y, X, σ2
y) p(σ2

y | y, X) dσ2
y = T (ν̄f , µ̄f , Σ̄f ) (9)

with ν̄f = ν + N

µ̄f = m(X ′) + K(X ′, X ′) (K(X, X) + I)−1 (y −m(X))

Σ̄f = σ̄2
m

(
K(X ′, X ′)−K(X ′, X) (K(X, X) + I)−1

K(X, X ′)
)

σ̄2
m =

(
ν σ2

m + (y −m(X))⊤ (K(X, X) + I)−1 (y −m(X))
)

/
(
ν + N

)
,
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(a) Gaussian Process Regression (b) T-Process Regression

Figure 3: Graph model of two probabilistic regression models. The array θk refers to the kernel function k
hyperparameters.

which defines the so-called t-Process (T P) regression framework (Shah et al., 2013; Tracey & Wolpert,
2018). Interestingly, one can show that as N goes to infinity, the T P prior and posterior tends to the GP
distributions. Moreover, the equations above show that the parameters ν, σ2

m defined in the inverse-Gamma
distribution of the prediction uncertainty σ2

y directly impose how heavy-tailed the predictive distribution will
be. The probabilistic graph models for both GP and T P are provided in Figure 3.

4.1.1 Kernel Design

Kernels play a crucial role in GP and T P regression because they define the assumptions and properties of
the underlying probabilistic model. The kernel defines correlations between candidates and is required for
accurate and meaningful predictions. Notably, common kernels found in the literature for continuous spaces
rely on a natural order of candidates, which is not given in categorical spaces. To address this limitation,
many kernels specialized for categorical spaces have been recently proposed in the literature (Imre, 2002;
Wan et al., 2021; Deshwal et al., 2021; Oh et al., 2019; Baptista & Poloczek, 2018; Dadkhahi et al., 2022).

In particular, the automatic relevance determination (ARD) discrete diffusion kernel became recently popular
and is the discrete analog to the diffusion kernel over continuous spaces, aka the radial basis function (RBF)
(Imre, 2002; Deshwal et al., 2021). This kernel defines diffusion over the entire discrete space represented by
a combinatorial graph, where two nodes are connected if two configurations differ in exactly one variable. It
is given by

kdiff(x, x′) =
d∏

i=1

(
1− e−kiβi

1 + (ki − 1)e−kiβi

)δ(xi,x′
i)

, (10)

where ki is the cardinality of the i-th categorical input variable, δ(xi, xj) is equal zero if xi is equal xj and
equal one otherwise, and βi are hyperparameters that control the importance of the i-th discrete variable.
Intuitively, this kernel is well suited for globally capturing interactions between configurations. However,
one of the main limitations is that it captures similarity based on exact matches and does not consider the
degree of dissimilarity between categories, which may lead to a loss of information when trying to model
relationships or interactions between categorical variables.

Alternatively, Baptista & Poloczek (2018) proposed a polynomial kernel that was used in a Bayesian linear
regression scheme. They observed that a universal surrogate model for a binary discrete input domain
X̄ = {0, 1}d̄ is given by f(x) =

∑
S∈2X̄ αS

∏
i∈S x̄i, where 2X̄ is the power set of the domain, αS is the

coefficient vector, and x̄ ∈ X̄ is the one-hot encoding of the categorical input x. In fact, this model describes
all the possible configurations and becomes quickly impractical due to the exponential number of monomials.
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The idea presented is to truncate monomials up to a certain degree

f(x) = α0 +
∑

j

αjx̄j +
∑
i,j>i

αijx̄ix̄j +
∑

i,j>i,k>j

αijkx̄ix̄jx̄k + . . . , (11)

which can be naturally modeled as a kernel

kpoly(x, x′) = σ2
α

1 +
d̄∑
i

x̄i x̄′
i +

d̄∑
i,j>i

x̄ix̄j x̄′
ix̄

′
j +

d̄∑
i,j>i,k>j

x̄ix̄jx̄k x̄′
ix̄

′
jx̄′

k + · · ·

 , (12)

where σ2
α is the hyperparameter related to the prior variance of the coefficients. Notably, this kernel is more

complex than the discrete diffusion kernel, especially when considering higher polynomial degrees, since it
can capture higher-order interactions between categories. However, as the degree increases, the number of
parameters becomes prohibitively high. By design, it also suffers from the combinatorial explosion of the
discrete domain. Note also that this kernel distinguishes not only the degree of dissimilarity between different
categories but the interaction between them.

In this paper, we propose to combine the strength of multiple kernels (Duvenaud, 2014) in the following way

kpolydiff(x, x′) = λ (kpoly(x, x′) · kdiff(x, x′)) + (1− λ) (kpoly(x, x′) + kdiff(x, x′)) (13)

where λ ∼ Beta(αλ, βλ) ∈ [0, 1] is a hyper-parameter that controls whether the kernels should be added or
multiplied together. The idea is to combine the global approximation properties of the discrete diffusion
kernel with the high-order interaction and non-stationary properties of polynomial kernels. In the appendix
Section A.4, we provide an ablation study of different kernels applied to our benchmark problems.

4.1.2 Hyperprior-parameter estimation

To optimize the hyperparameters, we resort to empirical Bayes, as suggested by Chen et al. (2023), to
avoid expensive MCMC samplings. This is possible because both GP and T P regression methods have
tractable marginal likelihoods. We achieve this by maximizing the marginal a-posteriori (MMAP) for the
prior hyperparameters

θ∗ = arg max
θ

p(y |X, θ)
∏

i

p(θi) , (14)

where the marginal likelihood p(y|X, θ) = T (ν, m(X), σ2
mK(X, X) + σ2

mIN ) and the hyperprior distribution
p(θi) is assumed conditionally independent and is specifically designed for each hyperparameter θi. Hyperpa-
rameters without defined hyperpriors are treated as non-informative and are set to the uninformative prior
p(θi) ∝ 1. Note that we train all model hyperparameters in the model, which for the example of the T P
model with kpolydiff kernel consists of θ = {ν, σ2

m, σα, β, λ}.

4.2 Probabilistic Surrogate Model for Classification

When searching for possible structures of dynamical systems, it is to be expected that simulating the dynamical
system might fail due to numerical instabilities. Unfortunately, it is usually not possible to delimit the regions
that lead to instabilities a-priori. We model the set of feasible candidates as black-box functions and learn the
failure regions from data using a probabilistic GP classifier. In this way, the Bayesian optimization algorithm
can learn to avoid these regions while searching for the optimum. We use respectively the following prior and
likelihood functions

h ∼ GP(m(x), k(x, x′)) (15)

l | h(X) ∼
∏

i

Bernoulli(li; S(h(Xi))) , (16)

where S is the sigmoid function, and l are previous failure observations.
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We approximate the intractable Bernoulli posterior distribution p(h(X∗) | X∗, l, X) with Laplacian approxi-
mation, which is simple to implement and can approximate the posterior distribution in closed-form. We use
the same kernel as in Equation 13. We implement the alternating optimization procedure from Rasmussen
et al. (2006) for finding the posterior mode of the Laplacian approximation (Newton-Raphson combined with
Strong-Wolfe linear search) and the model hyperparameters (L-BFGS).

4.3 Acquisition Function

The goal of the acquisition function (AF) is to guide the search for the optimal solution in an optimization
problem addressing the tension between exploitation and exploration. For the constrained problem, the AF
needs to balance the potential utility of a candidate and the probability of feasibility and success. The next
candidate model x(t) to be evaluated at iteration t is the one that maximizes the acquisition function α for
the current model:

x(t) = arg max
x′∈X

α(x′) . (17)

The AF needs to be optimized in every BO iteration. Generally, this optimization problem is the main
computational bottleneck in BO which is why we look for an acquisition function that is cheap to evaluate
and given in closed-form. In this work, we combine recent ideas in the field of Bayesian optimization and
propose a new acquisition function called Failure-Robust Constrained Hierarchical Expected Improvement
(FRCHEI), defined as follows

α(x′) = FRCHEI(x′) = Psucc(x′)βsucc n/N · Pfeas(x′)βfeas n/N ·HEI(x′) , (18)

where

Psucc(x′) = p(h(x′) = 1 | x′, l, X) (19)

Pfeas(x′) =
m∏
j

p(gj(x′) ≤ 0 | x′, cj , X) (20)

HEI(x′) = Ef(x′)∼p(f(x′)|x′,y,X)
[
max{0, y+ − f(x′)}

]
. (21)

The idea of this AF is twofold. First, we consider the hierarchical expected improvement (HEI) (similar to
Chen et al. (2023)). The HEI uses the objective function probabilistic surrogate p(f(x′)|x′, y, X) to quantify
the potential improvement in the objective value over the current best feasible solution found so far y+ ∈ y.
Samples with lower predicted mean values and higher uncertainties are more likely to be explored as they
offer the potential for a better solution. HEI modifies the traditional EI by replacing the GP surrogate by
T P regression, which improves the robustness against outliers while preserving the closed-form solution of
the AF, which is given by

HEI(x′) = σ̄f

[
τ+ΦT

(
τ+; ν̄f , 0, 1

)︸ ︷︷ ︸
exploitation

+ ν̄f + (τ+)2

ν̄f − 1 T (τ+; ν̄f , 0, 1)︸ ︷︷ ︸
exploration

]
, (22)

where τ+ = (y+ − µ̄f )/σ̄f , and ϕT is the CDF and T is the PDF of the t-distribution, respectively. The
parameters ν̄f , µ̄f , σ̄f are the posterior degrees of freedom, mean and standard deviation from the posterior
t-distribution at x′. The derivation of Equation 22 is given in the appendix Section A.1.

Second, we avoid unfeasible regions by multiplying HEI with the probability of feasibility Pfeas, similar to
Gardner et al. (2014) and avoid instability regions by multiplying the HEI with the probability of success
Psucc, as proposed in Chakrabarty et al. (2021). Following Hvarfner et al. (2022), we scale these probabilities
with βfeas n/N and βsucc n/N , where n is the current iteration number, N is the maximum number of
iterations and βfeas, βsucc are hyperparameters. The idea is to relax the constraints at the beginning of the
optimization when we do not have much knowledge about these black-box functions. As the optimization
progresses, we increasingly trust these surrogate models. Note that even though unfeasible models are never

9



Published in Transactions on Machine Learning Research (03/2024)

−2 −1 0 1 2
x

−2

0

2

Objective

f y p(f | y) HEI

−2 −1 0 1 2
x

−1

0

1

Inequality Constraint

g c p(g | c) Pfeas = p(g ≤ 0)

−2 −1 0 1 2
x

0.0

0.5

1.0

Equality Constraint

h l Psucc = p(h = 1 | l)

−2 −1 0 1 2
x

0.0

0.5

1.0

Acquisition Function

FRCHEI = Psucc · Pfeas ·HEI x∗

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Figure 4: Illustration of the FRCHEI acquisition function for a one-dimensional continuous space example. The
true unknown functions are depicted as dashed lines, the observations as crosses and the surrogate predictive
posteriors mean and confidence region as purple lines and areas, respectively. Note that no observations could
be assessed for the objective and constraint functions in failure regions {x : h(x) = 0}. The next candidate
point x∗ is obtained by searching for the maximum of the FRCHEI function. Clearly, the surrogate for the
constraint functions g and h push down regions of the expected improvement HEI which are likely to be
unfeasible or fail. Without these two surrogates, the next candidate would be sampled on an unfeasible and
failure-prone region, where the HEI is maximized. Note that the search space for the experiments we consider
is discrete and high-dimensional, which can not be well displayed. For illustration purposes, we employed the
same method but replaced the combinatorial kernels with a squared exponential.

considered the best experiment, they are still useful to improve the predictive posterior distributions (Gardner
et al., 2014). An illustration of this acquisition function for a one-dimensional continuous problem example
can be seen in Figure 4.

Note that as ν̄f →∞ in Equation 22, HEI converges to EI

EI(x′) = σ̄f

[
τ+ΦN

(
τ+; ν̄f , 0, 1

)
+N (τ+; ν̄f , 0, 1)

]
, (23)

which is expected since t-distributions converge to Gaussian distributions as the degrees of freedom parameter
ν →∞. When using EI instead of HEI in Equation 18 we call the acquisition function FRCEI.

4.3.1 Acquisition Function Optimization

Since the input space is fully discrete, optimization of the AF can not be done directly using gradient-based
methods. Instead, we use simulated annealing (Bertsimas & Tsitsiklis, 1993), which is a standard and
performant method for unconstrained optimization over discrete spaces. We use the same simulated annealing
approach presented in Dadkhahi et al. (2022), since it is simple, computationally efficient, and can optimize
over categorical variables. For completeness, we present the algorithm again in Algorithm 1.

4.4 Algorithm

We present our final algorithm for black-box constrained combinatorial optimization in Algorithm 2. The
algorithm requires an initial dataset D(1) = {(x(i), y(i), c(i), l(i))}N

i=1, which can be obtained by evaluating
the model structure at N randomly sampled initial points x(i). It has been shown in recent studies (Wan
et al., 2021; Deshwal et al., 2021; Müller et al., 2021; Daulton et al., 2022) that local exploitation is beneficial,
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especially for high-dimensional discrete spaces. When maximizing the AF, in line 8, we make use of this idea
and set the initial starting point for the SA optimization method as the best feasible sample evaluated so far.
In addition we rerun the AF optimization twice to increase the chance of finding better candidates.

Algorithm 1 Simulated annealing for categorical variables
1: function SA(objective function f , categorical domain X , starting point x(0), annealing scheduler s(t))
2: for t = 1 to N do
3: i ∼ unif(d)
4: x(t) ← x(t−1)

5: x
(t)
i ∼ Softmax ({−f(xi = w, x−i)/s(t)}w∈Xi

)
6: return x(t)

Algorithm 2 Bayesian Optimization for Model Structure Selection
1: function CBOSS-FRCHEI(initial dataset D(1))
2: for t = 1 to N do
3: Train surrogates:
4: θf ← MMAP(D(t)) (Equation 14)
5: θg ← MMAP(D(t)) (Equation 14)
6: θl ← LaplaceMode-MMAP(D(t)) (Section 4.2)
7: Optimize acquisition function:
8: x← arg maxx∈X FRCHEI(x, θf , θg, θl,D(t)) (Algorithm 1 with Equation 18)
9: y, c, l← EvaluateModelStructure(x)

10: Update data D(t+1) = D(t) ∪ {(x, y, c, l)}
11: return lowest feasible evaluation x∗ = arg minx {y : (x, y, c, l) ∈ D, ci(x) ≤ 0, l(x) = 1}
12:
13: function EvaluateModelStructure(x)
14: Estimate model parameters, simulate and evaluate performance (f, g, h).
15: if Failure then
16: return {∅,∅, l = 0}
17: else
18: return {y, c, l = 1}

5 Experiments and Results

In this section, we evaluate the empirical performance of CBOSS on a set of constrained equation discovery
problems for nonlinear dynamical systems as well as a knowledge-driven configuration of a driving simulator.
On the benchmark examples, we compare against two simple baselines, random sampling (RS) and simulated
annealing (SA). We also compare against the state-of-the-art in constrained combinatorial optimization
probabilistic reparameterization (PR) (Daulton et al., 2022). In our experiments, we find:

1. On the equation discovery problems, CBOSS is either competitive with or outperforms the other
methods consistently. It always yields good equations independent of the random seed.

2. After 500 evaluations, CBOSS is approximately 10× faster than PR in terms of wall clock time,
highlighting the reduced computational overhead due to the closed-form inference and AF.

3. Both constrained BO methods CBOSS and PR perform especially well when finding feasible solutions
is more difficult.

4. CBOSS is able to tune a complex driving simulator with approximately 1014 possible configurations
towards a driver’s preference with the constraint that the simulation must be real-time capable.

While other methods such as BOCS, Casmopolitan, COMBO, and HyBO would be interesting for this investigation
their very high computational demands make them unsuitable for the the type and size of problems we
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consider here. In addition, the implementations provided by the authors of these methods do not support
constraints of any kind.

5.1 Equation Discovery for Nonlinear Dynamical Systems

In this section, we investigate system identification for the set of low-dimensional nonlinear dynamical systems
shown in Figure 5. We use some of the benchmark problems and a similar learning setup from Brunton et al.
(2016); Mangan et al. (2017). We investigate a range of dynamical systems: a simple nonlinear damped
oscillator, a disease transmission model (SEIR), the chaotic Lorenz Oscillator, and the mean-field model for
the cylinder wake in reduced coordinates. More details about these dynamical systems can be found in the
appendix section A.3.

Nonlinear Damped Osc.
ẋ = −αx3 + βy3

ẏ = −βx3 − αy3

SEIR
Ṡ = µ − µS − β SI

Ė = −(µ + α)E + β SI

İ = α E − (µ + γ)I

Cylinder Wake
ẋ = µ x − ω y + A xz

ẏ = ω x + µ y + A yz

ż = −λ z + λ x2 + λ y2

Lorenz Oscillator
ẋ = −σ x + σy

ẏ = ρ x − 1 y − 1 xz

ż = −β z + 1 xy

Figure 5: Equation discovery benchmark problems

Let z(t) =
[
z

(t)
1 · · · z

(t)
d

]
∈ Rd and Z =

[
z(1) · · · z(N)]⊤ ∈ RN×d be the matrix of N noisy time

measurements of all d states, which are available for learning the system. By differentiating the state
measurements, we obtain noisy estimates of the state derivatives over time ż(t) = fode(z(t)) + ϵ, with
ϵ ∼ N (0, σ2

sn). We seek to find the structure of the governing nonlinear differential equation fode, which
yields the best simulation model.

A common practice in regression problems is to assume that each dimension of fode can be represented
by a linear combination of features Θ(Z) ∈ RN×nf , weighted by the coefficient vector Ξ ∈ Rnf ×d. These
nf features compose a large library of possible nonlinear candidate functions that can represent the real
system. For the benchmark problems at hand, we consider that each ODE dimension can be represented by
polynomial terms up to degree p, which is indeed true for all the problems. In vector form equation 24 can
be solved for the model coefficients Ξ, using a least squares estimator. | |

ż1 · · · żd

| |
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(1)
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(1)
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(1)
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. . .
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1 · · · z

(N)
d (z

(N)
1 )2 z

(N)
1 z

(N)
2 · · · (z

(N)
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︸ ︷︷ ︸

Θ(Z)

·

 | |
ξ1 · · · ξd

| |


︸ ︷︷ ︸

Ξ

+ϵ (24)

Considering a large feature library enhances the flexibility and possibly the accuracy of the model up to the
point that the error between the predictive and measured gradients Ż −Θ(Z) Ξ approaches zero. However,
especially in the presence of noise, complex models have the potential to overfit the data leading to a
deterioration of the simulation performance and even instabilities. To address this issue, we want to consider
a large feature library but use structure selection to search efficiently and globally for the optimal subset
of terms that construct parsimonious models, i.e., the least number of terms that significantly reduce the
simulation error (Brunton et al., 2016).
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Note that the number of monomials is equal to nt = d nf = d
∑p

i=0
(

d+i−1
i

)
, and the total number of possible

model structure combinations is given by nm = 2nt , which grows exponentially with the number of monomials,
which further grows factorially with the number of dimensions and the polynomial degree. An overview of
the search space dimension for the benchmark problems is given in Table 1. Notably, the number of models
is in the order of quintillions.

Table 1: Equation discovery benchmark problems

Dynamical System d p nt nm

Nonlinear Damped Oscillator 2 5 42 4.4e+12
SEIR 3 3 60 1.2e+18
Cylinder Wake 3 3 60 1.2e+18
Lorenz Oscillator 3 3 60 1.2e+18

We define the optimization problem in the same form as Equation 1 as follows

x∗ = arg min
x∈X

f(x) = log10
1
N

N∑
t

∥z(t)
sim(x)− z(t)∥1 + λ log2

∑
x (25)

s.t. g(x) =
d∑
i

∥ξi(x)∥1 − δ ≤ 0 (26)

h(x) = 1 (27)
Żsim = Θ(Zsim) · Ξ(x) , (28)

where x ∈ {0, 1}nt are the nt = d nf binary decision variables that select which of the nf features or
columns of Θ(Z) will be present in the model for each of the d dimensions. λ is a hyperparameter, δ is a
constraint threshold, and zsim(x) is the auto-regressive simulation trajectory of the system. The coefficients
Ξ(x) =

[
ξ1 . . . ξd

]
∈ Rnf ×d of the selected system are estimated by solving the least squares problem for

each subset of ξi, selected by x. The first right-hand-side term of Equation 25 quantifies the mean absolute
error between the measurements and the simulated system. The second term is a parsimony-based criterion
that rewards models with fewer monomials. The inequality in Equation 26 describes the Lasso constraint and
is used to restrict the model complexity. If the simulation is unstable, then h(x) = 0. The final identified
simulation model is given by Equation 28.

We run our method CBOSS, as in Algorithm 2, with batch size equal two to reduce the computation time. We
investigate CBOSS with the two implementations of our acquisition function: FRCHEI and FRCEI. For RS we
pick a configuration uniformly at random, and SA is the same as shown in Algorithm 1, with the difference
that we set the objective function to infinity if the constraint is violated or the simulation is unstable. PR is
used with the recommended settings for discrete binary optimization and batch size equal one. We provide
the same randomly sampled 50 evaluations and let the optimizers run for additional 450 model evaluations.
We execute each method 10 times and report mean performance and standard error.

Figure 6 shows the best feasible objective function found after a number of evaluations. The proposed
methods CBOSS-FRCHEI and CBOSS-FRCEI outperform in terms of both performance and efficiency. After 500
evaluations, our methods achieve comparable or better results in a mere 3-5 hours, while PR takes around
30-42 hours. The RS and SA methods have a negligible computation time, and a simulation takes around 4
seconds. Note that our method runs with a batch size of two, meaning that we choose two candidates in each
iteration, which halves the computational overhead. In appendix Section A.4 we show that a batch size of
two is a good compromise between computation time and performance. For the SEIR and cylinder wake
systems, SA never improves from the initial feasible solution. This is because the algorithm changes only one
variable at a time, which seems to lead to either constraint violations or crashes. This highlights the need for
global search methods that can escape from bad initial configurations. Both SA and PR do not perform well
for the Lorenz chaotic oscillator and are stuck in local minima, where the states converge fast to a stationary
point around the oscillation center (cf. Figure 7a and Figure 7b).
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Figure 6: Best feasible objective function evaluation, wall-time per evaluation, and frequency of feasible
solutions over the number of iterations for different optimization methods applied to the equation discovery
problem.

In Figure 6 we show the frequency of feasible points evaluated by all methods. Our proposed AF (Equation 18)
encourages early exploration and, as the classifier and constraint functions are learned, evaluates more feasible
points and finds better solutions. The frequency of infeasible evaluations of the baselines further motivates
the benefits of constraint BO. If the search space contains many infeasible points the surrogate model can
learn these regions and concentrate its search on feasible regions. This leads to better overall solutions.
CBOSS-FRCEI yields comparable but slightly more robust results then CBOSS-FRCHEI.

Figures 7a and 7b show how our method consistently outperforms others in optimizing models across multiple
runs and benchmark problems, with low variance - crucial for expensive one-time optimization tasks. Even
the pure exploratory policy underperforms. A balanced method like CBOSS strikes the right trade-off between
exploration and exploitation, effectively navigating model structures and avoiding local minima.

The appendix Section A.4 provides ablation studies with further insights and analysis of the proposed method.
We investigate the performance of CBOSS when not accounting for failures in the AF. We also consider the
effect of using different kernels and show that the proposed combination of popular kernels outperforms
others for these benchmark problems. Finally, we inspect the effect of varying the batch size.

5.2 Real-time Multibody Dynamics Model Optimization

In this experiment, we aim to optimize a digital twin configuration of an electric vehicle for a driving simulator,
which is crucial for developing driving dynamics and advanced driver assistance systems. Driving simulators
minimize the need for prototypes and shorten development cycles by enabling early testing of car development
under various realistic conditions before road testing has even started (BMW AG, 2020). Achieving realistic
driving dynamics in simulators requires hardware capable of replicating the dynamic range and real-time
motion cueing, along with precise digital-twin vehicle models. Companies have invested significantly in
cutting-edge simulators to meet these needs, making the design of accurate simulation models a pivotal
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RS SA PR CBOSS-FRCEI CBOSS-FRCHEI

(a) Best models among 10 optimization runs.

RS SA PR CBOSS-FRCEI CBOSS-FRCHEI

(b) Worst models among 10 optimization runs.

Figure 7: Comparison between measurements (orange) depicted without noise and simulated trajectories of
the best feasible model after optimization (blue).
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element in virtual vehicle development. Figure 8 shows the high-fidelity simulator at the BMW AG driving
simulation site.

Figure 8: High-fidelity driving simulator with 9 degrees of freedom, motion area of nearly 400 square meters
and a peak electrical power required up to 6.5 MW. Source BMW AG (2020).

The digital twin is a multibody dynamics model, which consist of multiple entities (bodies, joints, force and
control elements, etc.) (Featherstone, 2014). Every entity has multiple possible implementations, and the
goal is to choose a suitable one from a library while retaining the overall model real-time capability. For
different use-cases of the driving simulator, different implementations are necessary. This requires the digital
twin to be adapted on a regular basis. We aim to automate this process using our proposed BO method.
For example, a damper can be implemented as a simple lookup table or as a differential equation. While a
complex damper model improves simulation accuracy on a bumpy road, a simple lookup table is sufficient
for longitudinal dynamics maneuvers. In summary, the major challenge in system identification for the
driving simulator boils down to selecting the appropriate templates for each entity in order to optimize model
simulation accuracy while simultaneously constraining the computational complexity to enable real-time
simulations. However, this task is not straightforward. Model designers face an overwhelming number of
potential configurations arising from the combinatorial explosion when selecting templates. Moreover, adding
complexity to one component doesn’t always enhance model accuracy or proportionally increase overall the
computational complexity.

We investigate automatic template selection for knowledge-driven structure selection with our proposed com-
binatorial BO method CBOSS. We model the vehicle using the Simpack1 simulation software and parameterize
the model with 46 categorical variables that alter the template of different components. The vehicle for one
of the configurations is depicted in Figure 9a. All the template coefficients were identified in a preliminary
phase, so there is no need for a parameter estimator. The discrete design space X is defined as follows:

• 5 binary variables switch between rigid and flexible formulation of bodies.
• 6 categorical variables switch the number of modes used in the model-order-reduction of various

flexible bodies.
• 2 binary variables switch the tire contact model approach.
• 4 binary variables switch between rigid (joint) and compliant (force element) motor mounts, suspension

rods and stabilizer bushings.
• 29 binary variables switching the complexity of lookup tables (linear and nonlinear) representing the

stiffness of various compliant bushing elements.

The structure identification as a constrained combinatorial optimization problem is defined as

x∗ = arg min
x∈X

f(x) (29)

s.t. g(x) = RTImax(x)− 1 ≤ 0
h(x) = 1 ,

where the function f(x) : X → R defines the model performance. In our experiment, the objective function
reflects the preference of expert drivers for one model over another. The real-time-index (RTI), is defined as

1https://www.3ds.com/products/simulia/simpack
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the ratio of the time required to advance one time step in the simulation divided by the simulation time step
size. Real-time models must have an RTI below 1 in 99% after the first 2 seconds of ‘warming-up’. Simulation
failures arise from certain input combinations that result in numerical instabilities or in an invalid model, for
instance, when it induces kinematic loops that can not be handled by an ODE solver.

We provide the evaluation of 30 initial random samples for the optimizer, with a total evaluation budget of
300 evaluations and run the optimization twice. Figure 9b shows the simulation results for the problem at
hand. It can be seen that the proposed method finds good real-time capable configurations. Figure 9c depicts
the RTI signal for the first 10 seconds of simulation for the best feasible model found during optimization
among the two runs. We leave the detailed objective and subjective evaluation of the optimized simulation
model for future work.

(a) 3D view of the multibody dy-
namical model representing the ve-
hicle.
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(b) Progress of the 2 optimization runs
for the best feasible solution over num-
ber of model evaluations.
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(c) RTI measurement of the final best
vehicle found during optimization.

Figure 9: Optimization results for the multibody dynamics problem with the CBOSS-FRCHEI optimizer.

6 Conclusion and Outlook

In this paper, we tackle structure identification in dynamical systems under constraints and potential failures.
We introduce constraints to manage computational resources and prevent overfitting. Our approach utilizes
combinatorial Bayesian optimization to search for optimal model structures efficiently. We present CBOSS, a
combinatorial Bayesian optimization algorithm that effectively manages constraints and failures with low
computational overhead.

We encode the choice of the structure of the dynamical system using binary and categorical decision variables.
Our method handles these discrete inputs by employing kernels specific for discrete inputs. We combine
recent ideas in kernel design and show that the proposed kernel outperforms state-of-the-art kernels. Our
method handles the black-box constraint and failure functions by learning them with Bayesian regression
and classification methods and therefore learns to avoid these regions during search. Finally, we focus on
scalability up to a large number of discrete decision variables and make design choices that favour the run
time. Our surrogate models and acquisition function are evaluated in closed-form. This allows our method to
optimize problems with up to 1018 possible combinations.

We provide benchmark problems in the field of symbolic-regression that provide evidence that our method
outperforms other methods for system identification of a variety of nonlinear dynamical systems, such as
disease models, oscillators and chaotic systems. In addition, we provide a complex real-world application
example of knowledge-driven system identification where the choice of templates of a multibody dynamical
system of an electric vehicle are optimized for accuracy, real-time capabilities and numerical robustness.
As the proposed method is not specific to the presented applications, it is in principle applicable to other
constrained combinatorial problems. Investigating its potential and performance on problems, such as network
structure optimization (Du et al., 2022), wait-and-judge scenario optimization (Campi & Garatti, 2018), and
neural structure optimization with pure categorical variables are interesting topics for future research.
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Other promising future research directions are improved surrogate models that capture higher-order interac-
tions of variables or leverage the structure of dynamical systems. In addition, there is often a lot of additional
prior knowledge about the problem at hand that can be incorporated. For example, expert beliefs (Hvarfner
et al., 2022) or qualitative knowledge about the interaction of terms which can be modeled as graphs.
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A Appendix

A.1 Constrained Hierarchical Expected Improvement

In this section, we provide the remaining ingredients to derive the closed-form expression for the acquisition
function used: the failure-robust constrained hierarchical expected improvement (FRCHEI) as defined in
Equations 18-22.

Let the hierarchical predictive posterior for the objective and for each i-th constraint function at a test
point x′ be defined as f̃(x′) = f(x′) | x′, y, X ∼ T (ν̄f , µ̄f , σ̄2

f ) and g̃i(x′) = gi(x′) | x′, y, X ∼ T (ν̄gi
, µ̄gi

, σ̄2
ci

)
respectively. The definition of the constrained hierarchical improvement function is inspired by Gardner et al.
(2014) and is defined as

CHI(x′) = ∆(x′) max{0, y+ − f̃(x′)} , (30)

where y+ is the lowest feasible objective function observed so far and ∆(x′) ∼ Bernoulli(γ(x′)) ∈ {0, 1} is
the feasibility indicator function with parameter

Pfeas(x′) := γ(x′) (31)
= E [∆(x′)] (32)
= p(g̃1(x′) ≤ 0, . . . , g̃m(x′) ≤ 0) (33)

=
m∏

i=1
p(g̃i(x′) ≤ 0) (34)

=
m∏

i=1

∫ 0

−∞
p(gi(x′) | x′, y, X) dgi(x′) (35)

=
m∏

i=1
ΦT (0; ν̄gi

, µgi
, σ2

ci
) . (36)

Note that from Equation 33 to Equation 34 we assumed the simplest case, where are constraints are
conditionally independent given x′. In addition, Equation 35 is a simple product of univariate cumulative
density of the t-distribution ΦT evaluated at 0, which can be calculated analytically for any x′.

The constrained hierarchical expected improvement is obtained by taking the expectation of Equation 30:

CHEI(x′) = E [CHI(x′)] (37)
= E [∆(x′)] E

[
max{0, y+ − f̃(x′)

]
(38)

= Pfeas(x′) HEI(x′) , (39)

where Pfeas(x′) is defined as in Equation 31 and HEI can be obtained with the help of the reparameterization
trick (Tracey & Wolpert, 2018) with τ ∼ T (ν̄f , 0, 1) and τ+ = (y+ − µ̄y)/σ̄y:

HEI(x′) = Ef(x′)∼p(f(x′)|x′,y,X)
[
max{0, y+ − f(x′)

]
(40)

=
∫ y+

−∞
(y+ − f(x′)) T (f(x′) ; ν̄f , µ̄f , σ̄2

f ) df(x′) (41)

=
∫ τ+

−∞
(y+ − µ̄f − σ̄f τ) T (τ ; ν̄f , µ̄f , σ̄2

f ) dτ (42)

= (y+ − µ̄f ) ΦT

(
τ+; µ̄f , 0, 1

)
− σ̄f

∫ τ+

−∞
τ T (τ ; ν̄f , µ̄f , σ̄2

f ) dτ (43)

= σ̄f τ+ ΦT

(
τ+; ν̄f , 0, 1

)
+ σ̄f

(
ν̄f

ν̄f − 1

) (
1 + τ+2

ν̄f

)
T (τ+ ; ν̄f , 0, 1) (44)

= σ̄f

[
τ+ ΦT

(
τ+; ν̄f , 0, 1

)
+ ν̄f + τ+2

ν̄f − 1 T (τ+ ; ν̄f , 0, 1)
]

. (45)
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The other minor modifications to turn CHEI into FRCHEI are defined in Section 4.3.

A.2 Hyperparameters

For each optimizer, we use the same hyperparameters across all experiments. These hyperparameters have
been hand-tuned to reasonable values so structure selection works well for a wide variety of problems. Table 2
shows the hyperparameters used for the optimizers investigated in this work. For the SA algorithm, we use
the same temperature scheduler as the one used for AF optimization in CBOSS. The PR method has been used
with the default parameter values suggested by Daulton et al. (2022). We set the number of MC samples to
256 as it provides a good tradeoff between performance and wall time. We follow their recommendation and
disable trust region over the Boolean variables.

Table 2: Optimizer hyperparameters used for all experiments. The upper-script (0) denotes the initial value
used for hyperparameter optimization. In CBOSS, we use the same regression hyperparameters to learn the
objective and inequality constraint functions.

Alg. Hyperparameter Reference Values
CBOSS T P regression : σ2

m hyperprior Equation 7 σ2
m ∼ Γ(2, 15), σ

2 (0)
m = 0.15

CBOSS T P regression : ν hyperprior Equation 7 ν ∼ Γ(2, 0.5), ν(0) = 2.5
CBOSS GP regression : σ2

y hyperprior Equation 3 σ2 ∼ Γ(2, 15), σ2 (0) = 0.15
CBOSS kernel : discrete diffusion Equation 10 β

(0)
i = 1 for i=1 . . . d

CBOSS kernel : polynomial+diffusion Equation 13 λ ∼ Beta(1.5, 1.5), λ(0) = 0.5
CBOSS AF exponents Equation 18 βfeas = 20, βsucc = 5
CBOSS AF optimizer : SA scheduler Algorithm 1 s(t) = 0.5 · 0.95t

CBOSS AF optimizer : SA max. iterations Algorithm 1 N = 100
CBOSS AF optimizer : SA reruns Algorithm 2 4
SA SA scheduler Algorithm 1 s(t) = 0.5 · 0.99t

PR MC samples Daulton et al. (2022) 256

In Figure 10 we show the hyperpriors and initial values used in CBOSS. For all the other hyperparameters, we
use uninformative hyperpriors. Given E[1/σ2

y] = 1/σ2
m and Var[1/σ2

y] = 2/(νσ4
m), we interpret 1/σ2

m as the
estimated regression precision and ν as the confidence in this precision. We thus select Gamma hyperpriors
for σ2

m and ν with positive support. Before training, we normalize the target outputs to a mean of zero and
a standard deviation of one, and set a Gamma hyperprior for σ2

m with a mode at 0.2, indicating 20% of
the data variance, while assigning a low likelihood for σ2

m exceeding half the variance. We assign a distinct
Gamma hyperprior to ν to reflect plausible values for normalized data. For the λ variable in Equation 13,
which balances kernel multiplication and summation, we choose a Beta distribution with a mode at 0.5 and a
broad density range. These hyperpriors represent our beliefs about the latent variables’ true values and guide
the optimizer in learning these hyperparameters from the data, as detailed in Equation 14.
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Figure 10: Informative hyperpriors used in CBOSS.
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Figure 11 shows the modified probability of feasibility and success, as seen in Equation 18. It can be
seen that the exponents β n/N relax the constraints at the beginning of the optimization when there is no
much knowledge about the inequality and equality black-box functions. As the optimization progresses, we
increasingly trust these surrogate models and increase the impact of the probability of feasibility in the AF.

Figure 12 shows the simulated annealing scheduler s(t) used in Algorithm 1 as a function of the number
of iterations. In this paper, we use the exponential decay scheduler s(t) = T0 dt, where T0 is the initial
temperature, d is the temperature decay and n is the iteration number. We calculate d such that the
temperature decays from T0 = 0.5 to the final temperature of Te = 0.005 at the final iteration.
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Figure 11: Modified probability of feasibility and success Pmod =
P β n/N as a function of the probability of feasibility P=Pfeas or success
P=Psucc, the current iteration n and total number of iterations N .
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Figure 12: SA scheduler with ini-
tial temperature T0=0.5 and de-
cay d = 0.99.

A.3 Experiment Details

Table 3 provide the experiment details required to reproduce each benchmark problem in Section 5.1. The
parameters θode refer to the differential equations for each benchmark problem, as depicted in Figure 5. The
available noisy measurements for parameter estimation and model evaluation consists of a single simulation
run, starting at an initial state x(t0 = 0), simulated with a fixed simulation time step size ∆t up to the stop
time tf . The state observations are corrupted equally for each dimension with a zero-mean Gaussian noise
with standard deviation σsn. All measurements have been filtered using the Total Variation Regularized
Denoising technique (Chartrand, 2011; Van Breugel et al., 2022) with the same regularization parameter
Tγ = 0.01 and number of iterations Ti = 10.

Table 3: Benchmark problem parameters

Dynamical System θode x(t0) ∆t tf σsn

Nonlinear Damped Osc. α=0.1, β=1.75, γ=1/2 [2, 0] 0.01 35 0.1
SEIR µ=1e−5, α=1/5, β=1.75, γ=1/2 [0.9995, 4e−4, 1e−4] 0.1 150 0.01
Cylinder Wake ω=1, µ=0.1, A=− 1, λ=1. [0.001, 0, 0.1] 0.1 100 0.01
Lorenz Oscillator σ=10, ρ=28, β=8./3 [10, 10, 10] 0.01 20 1

All the benchmark problems have been simulated with a fixed-step RK45 solver, where the 5th stage has
been used to detect numerical instabilities, which stops the simulation and reports the failure to the main
program. We provide a self-implementation of this solver that performs simulations in parallel and is useful
to speed up computation when many simulations are executed with the same integration time steps but with
different model parameters.

The benchmark experiments ran on Intel Xeon Platinum 8160 Processors “SkyLake” at 2.1 GHz, on 4 isolated
physical cores. The optimization and the simulations of the multibody dynamical problem were performed on
a 2x Intel Xeon Gold 6256 3.6Hz computer, running a RedHawk Linux RTOS (by Concurrent Real-Time).
The first 12 cores were dedicated to the optimizer, while the remaining 12 cores of the second CPU socket
were shielded and dedicated to simulations.
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A.4 Ablation Studies

In this section, we provide ablation studies that reinforce the design choices made for the proposed algorithm.

Figure 13 shows simulation trajectories for the best feasible and stable models found over the progress of
the optimization for the CBOSS-FRCHEI method. It can be seen that the CBOSS-FRCHEI algorithm quickly
improves the model simulation performance. The second image from left to right shows the simulated
trajectory of the best model found after 163 model structure evaluations, which is already very close to the
measurement trajectory. This illustrates well the efficiency of the proposed method in terms of the number of
evaluations needed for system identification.

Figure 13: Comparison between measurements (orange) depicted without noise and simulated trajectories
(blue) for the best feasible model found in the course of optimization for the Cylinder Wake problem and
CBOSS-FRCHEI. From the left to the right are depicted the models at iteration 8, 163, 200 and 436, respectively.

In Figure 14, we compare CBOSS-FRCHEI to CBOSS-FRCEI and CBOSS-CHEI, two variants of the proposed
method. The first is similar to CBOSS-FRCHEI but uses a GP instead of a hierarchical T P prior for the
regression surrogates. The second does not account for failures in the AF. It can be seen that FRCHEI
outperforms CHEI for all benchmarks, which agrees with Chakrabarty et al. (2021) and is an indication that
learning failure regions improves the optimizer. As expected, CBOSS-FRCHEI has a higher success rate than
CBOSS-CHEI for all benchmark problems. Evaluating failures is a waste of resources because no value for
the cost function is obtained, and the candidate configuration is never considered the best experiment. In
addition, this data point does not contribute to training the surrogates due to the missing target value.
For this reason, the optimizer might get stuck into failure regions, where the objective function surrogate
considers there is a substantial expected improvement.

It can be further seen in Figure 14 that FRCEI provides similar performance and sometimes slightly outperforms
FRCHEI. The idea behind hierarchical priors is to be able to better describe the model discrepancy towards
outliers while preserving the closed-form solution of the acquisition function. One side effect of this approach
is the inflation of the predictive posterior uncertainty that might lead to over-exploration of the design space,
which is critical for Bayesian optimization in high-dimensional discrete problems. Nevertheless, we still offer
a T P regression formulation in our framework since it it does not increase the implementation complexity
and computation time, and may work better for other problems.

Moreover, we investigate the effect of varying the batch size in Figure 15. We choose the batch size equal 2,
since it provides a good trade-off between optimization performance and wall time. Throughout this paper,
all the other experiments with CBOSS have been conducted with batch size equal 2. It is also important to
note that we do not employ more involving batch evaluation strategies, such as Kriging believer strategy
(Ginsbourger et al., 2010), which can potentially increase even more the performance at the cost of increasing
the wall time.

Finally, in Figure 16, we compare the performance of the proposed method with different kernels. Evidently,
combining the degree 2 polynomial kernel with the discrete diffusion kernel as in Equation 13 provides the
best results. Note that the wall time for the polynomial kernel scales almost linearly with the number of
samples but is expensive due to the number of multiplications that arise due to the large number of features
resulting from the second-order polynomial combination of inputs. The discrete diffusion kernel results in a
lower wall time at low number of evaluations but increases at a higher rate. This is due to the complexity of
calculating pair-wise delta functions between all inputs in the dataset. In terms of computational complexity,
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Figure 14: Optimization results for different variants of CBOSS. CBOSS-CHEI is the variant that does not
handle failures, and CBOSS-FRCEI is the variant that implements a GP instead of T P regression.

the final performance should be evaluated individually for the problem at hand and depends on the number
of samples and the number of input dimensions.
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