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Abstract

Despite recent successes in semi-supervised learning for natural image segmentation, ap-
plying these methods to medical images presents challenges in obtaining discriminative
representations from limited annotations. While contrastive learning frameworks excel in
similarity measures for classification, their transferability to precise pixel-level segmenta-
tion in medical images is hindered, particularly when confronted with inherent prediction
uncertainty. To overcome this issue, our approach incorporates two subnetworks to rectify
erroneous predictions. The first network identifies uncertain predictions, generating an un-
certainty attention map. The second network employs an uncertainty-aware descriptor to
refine the representation of uncertain regions, enhancing the accuracy of predictions. Ad-
ditionally, to adaptively recalibrate the representation of uncertain candidates, we define
class prototypes based on reliable predictions. We then aim to minimize the discrepancy
between class prototypes and uncertain predictions through a deep contrastive learning
strategy. Our experimental results on organ segmentation from clinical MRI and CT scans
demonstrate the effectiveness of our approach compared to state-of-the-art methods. Code.
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1. Introduction

Medical image segmentation plays a pivotal role in the field of medical imaging, serving
as a crucial step in the analysis and interpretation of complex visual data. This process
involves the partitioning of images into meaningful and clinically relevant regions, allowing
for a detailed examination of structures and abnormalities within the human body. One
prominent approach to medical image segmentation is supervised learning. This paradigm
involves training algorithms on labeled datasets, where each image is accompanied by anno-
tations identifying the regions of interest. Despite its success in many applications, its main
drawback lies in its dependency on large and accurate labeled datasets (Aljuaid and Anwar,
2022; Azad et al., 2023). Creating such datasets for medical images requires considerable
expertise and time. Additionally, supervised learning is susceptible to human error caused
by manual segmentation and labeling.

In response to these challenges, various strategies have been proposed to alleviate the de-
pendency on meticulous labeling processes. Unsupervised learning operates without labeled
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data. Algorithms in this category identify inherent patterns and structures within medi-
cal images without prior knowledge of specific regions (Caron et al., 2018; Chen and Frey,
2020; Hamilton et al., 2022; Zhao et al., 2022; Feng et al., 2023; Omidi et al., 2024). How-
ever, its limitations include the difficulty of distinguishing between normal and abnormal
structures, hindering applicability in clinical settings that require precise identification. In-
terpretability of results is also challenging, as decisions rely solely on inherent data patterns.
Transfer learning is another powerful strategy for enhancing medical image segmentation,
leveraging pre-trained models to improve performance on tasks with limited labeled data
(Kora et al., 2022; Araújo et al., 2022; Alhares et al., 2023). However, its drawback stems
from the assumption of similar distributions between the source and target domains. If
this assumption is not met, pre-trained features may not capture the nuances of the target
medical imaging data, potentially leading to suboptimal results. Self-supervised learning
overcomes label scarcity by generating its own supervisory signals, enhancing model per-
formance (Tang et al., 2022; Karimijafarbigloo et al., 2023; Ouyang et al., 2022; Kazerouni
et al., 2023). This approach, beneficial when labeled data is limited, faces the challenge
of designing effective surrogate tasks. Ensuring these tasks capture pertinent information
is crucial for the success of self-supervised methods. Furthermore, these approaches usu-
ally require additional supervisory signals derived from annotated data to be specifically
directed toward the targeted task.

To address these issues, semi-supervised learning (SSL) offers a promising solution. This
approach involves training models with a limited number of labeled samples and a large
number of unlabeled data, striking a balance between supervised and unsupervised meth-
ods. In medical image segmentation, it proves valuable in scenarios where obtaining a fully
labeled dataset is impractical, providing a practical and cost-effective solution for training
robust segmentation models (Luo et al., 2022b; Wu et al., 2022; Luo et al., 2022a; Wang
et al., 2023). SSL commonly employs two primary methods: pseudo-labeling and consis-
tency regularization. Pseudo labeling involves generating “pseudo labels” for unlabeled
data using a model’s predictions. In a teacher-student (Tarvainen and Valpola, 2017; Wang
et al., 2022; Xu et al., 2021) scenario, the teacher model, represented as the EMA of the
student model, plays the role of pseudo labels generation. These pseudo labels are then
integrated with the original labeled dataset to optimize accuracy and achieve cost-effective
training (Lee et al., 2013; Xie et al., 2020). However, it’s important to acknowledge that
while the pseudo-labeling approach offers advantages, the scarcity of labeled data raises
concerns about the reliability of pseudo-label quality. Hence, this method may introduce
the risk of inaccuracies in the training data, potentially affecting the final model’s precision.

To address the mentioned issue, current methods suggest adopting confidence score fil-
tering for predictions (Zuo et al., 2021; Zou et al., 2021; Zhang et al., 2021; Sohn et al.,
2020). This means that only the predictions with high confidence scores are employed as
pseudo-labels, while those that are uncertain are disregarded. Nevertheless, this approach
is not perfect in removing inaccurate predictions, as some incorrect predictions might pos-
sess high classification scores, known as over-confidence or miscalibration (Guo et al., 2017).
Furthermore, setting a high threshold would significantly decrease the quantity of generated
pseudo-labels, thereby restricting the efficacy of semi-supervised learning. Additionally, the
potential problem of solely relying on presumably reliable predictions (which may instead
comprise inadequate representations of certain classes or segments) may lead to an imbal-
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ance of the training data and ultimately compromise the model’s performance, particularly
for challenging and less frequent classes. For instance, when the model encounters difficulty
in accurately predicting specific classes, generating accurate pseudo-labels for the corre-
sponding pixels becomes problematic. In this respect, Lu et al. (Lu et al., 2023) suggested a
technique that combines pseudo-labeling with dual consistency regularization, emphasizing
its strong uncertainty awareness capability. This approach incorporates a cycle-loss regu-
larization to enhance the accuracy of uncertainty estimation. Shen et al. (Shen et al., 2023)
introduced the UCMT method for semi-supervised semantic segmentation. This approach
consists of two main components: Collaborative Mean-Teacher (CMT) and an uncertainty-
guided region mix. The CMT component aims to maintain model disagreement while en-
hancing the quality of pseudo-labels through collaboration. Specifically, UCMT generates a
new image by replacing uncertain regions with certain ones and then utilizes a collaborative
approach to ensure consistent predictions across different networks. However, a limitation
of this method is that it does not explicitly modify the representation of related voxels to
reduce uncertainty. Consequently, there is a need for a mechanism to re-represent these
uncertain voxels with different localities, such as through deformable convolutions, which
could significantly enhance the overall effectiveness of the approach.

Acknowledging the reliability concerns linked with pseudo-labeling and the drawbacks
of confidence score filtering, our method introduces a novel semi-supervised contrastive
learning approach to address these challenges. In this context, we outline the following key
contributions: 1) We propose a mechanism to recognize uncertain predictions as a means
to refine network representation, aiming for improved overall representation quality. 2)
To alleviate prediction uncertainty, we introduce an uncertainty-aware feature descriptor
module. This module enhances contextual and semantic representation, contributing to a
more robust and accurate prediction. 3) We design a deep contrastive supervision function
to minimize discrepancies between class prototypes and uncertain predictions.

2. Method

Current SSL algorithms that rely on consistency learning, such as Mean-teacher (Tarvainen
and Valpola, 2017) and (Chen et al., 2021), propose applying consistency regularization
not within a single model but among the pseudo labels within a multi-model architecture.
Nonetheless, throughout the training process, there is a tendency for the dual-network
SSL framework to quickly reach a consensus, causing the co-training to degrade into self-
training (Kendall and Gal, 2017). To address this issue, we introduce a setup consisting
of a predictive model accompanied by an auxiliary model. The predictive model serves as
a pseudo-label generator, directing the training of the other model. In our strategy, we
work with two distinct datasets: Dl, comprising labeled data pairs (xl

i,y
l
i), where i ranges

from 1 to Nl, and Du, a considerably larger unlabeled dataset denoted as {xui }
Nu

i=1, Nl and
Nu indicate the number of samples in the labelled and unlabled dataset, respectively. The
goal is to synergistically leverage the inherent potential of the unlabeled data to enhance
feature representation, effectively training our semantic segmentation model by integrating a
limited set of labeled data with an extensive repository of unlabeled data. For labeled data,
both predictive and auxiliary models undergo optimization through supervised learning:
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Figure 1: The dual-path semi-supervised contrastive learning method proposed aims to
harness unsupervised data while minimizing uncertain predictions.

where ŷl
i, ỹ

l
i denotes the predicted segmentation map of the predictive and auxiliary net-

works, respectively. Bl indicates the batch of labeled data. When handling unlabeled data,
two key factors come into play: 1) direct guidance from the predictive model to the auxiliary
model to reduce uncertainty and 2) minimizing uncertain predictions through the definition
of deep-supervisory contrastive learning. To accomplish the former, we first fed the unla-
beled sample into the predictive model to generate the pseudo label ŷu

i . Then using the
pseudo label we calculate the prediction loss for the auxiliary models. To further enhance
error correction, we incorporate a regularization loss Lreg, which calculates the L1 distance
between the XOR predictions (Wang et al., 2023) of the predictive and the auxiliary models:

Lu =
1

|Bu|
∑
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i ∈Bu

ℓce(ỹ
u
i , ŷ

u
i ) + Dice(ỹu

i , ŷ
u
i ) + λregLreg(ỹ

u
i , ŷ

u
i ), (2)

where λreg indicates the weight of the Lreg. We additionally restrict the computation of
the loss function to voxels with prediction confidence exceeding 0.7. The overall training
loss (L) incorporates three components: the supervised loss (Ls), unsupervised loss (Lu),
and the contrastive loss (Lc). Details of the contrastive loss are presented in subsection 2.2.
The optimization objective revolves around minimizing the overall loss, expressed as:

L = Ls + λuLu + λcLc, (3)

The weights λu and λc determine the contribution of the unsupervised and contrastive
losses, respectively. The overall architecture of the network is depicted in Figure 1.

2.1. Multi-Branch Contextual Uncertainty Reduction (MultiCURE) Module

In our design, we argue that inaccuracies can arise due to inadequate contextual information
in the vicinity of voxels, which makes precise predictions challenging. To address this issue,
we first input the sample into the predictive model to generate the segmentation map. Then,
We create a binary uncertainty map by thresholding the softmax output of the network.
In this process, pixels with confidence scores below a specified threshold are labeled as
uncertain regions (assigned a value of 1), while pixels with confidence scores above the

4



Reducing Uncertainty in 3D Medical Image Segmentation

Conv

GAP

L
in

ea
r

L
in

ea
r

L
in

ea
r

SoftMax & Split

B
N

R
eL

U

B
N

R
eL

U

L
in

ea
r

L
in

ea
r

Deformable
Conv

B
N

R
eL

U

L
in

ea
r

Conv

Figure 2: MultiCURE Module: Adaptive feature recalibration across scales using three
branches, overcoming fixed kernel limitations with deformable convolutions, selec-
tively extracting information from uncertain and certain regions, and integrating
through channel-wise concatenation with a soft attention mechanism.

threshold are labeled as certain regions (assigned a value of 0). Finally, we enhance the
representation of uncertain voxels on the auxiliary map using the MultiCURE module.

MultiCURE, a key component in our proposed architecture, is designed to recalibrate
context information across multiple scales by adaptively selecting receptive fields from global
and local pathways. It effectively overcomes the limitations of fixed kernel sizes in tradi-
tional convolutions, reducing uncertainty in critical areas, especially along object bound-
aries, which inherently have the highest degree of uncertainty. Comprising three branches,
two maintain fixed kernel sizes, enhancing the flexibility of receptive field sizes. However,
grid misalignment issues persist, particularly along object boundaries (or uncertain regions),
resulting in less optimal results. The third branch provides vital global information, refining
boundary delineation, and significantly helps to improve overall performance.

The MultiCURE employs a three-path split, incorporating convolution, Batch Normal-
ization (BN), and ReLU activation function in two paths with 3× 3 and 5× 5 kernel sizes.
The third path performs a 3 × 3 Deformable convolution (Dai et al., 2017) on the input
z ∈ RH×W×d. The deformable convolution in our design dynamically adjusts the receptive
field for each feature map location by using an offset field to flexibly warp the sampling
grid. This allows the model to handle varied object sizes in an image and gain a superior
understanding of object regions. To further enhance feature representation within uncer-
tain regions, we integrate (i.e., sum) an uncertain attention map with the output of the
deformable convolution. This integration conditions the representation based on uncer-
tain regions, serving as a mechanism to accentuate the representation of these areas using
non-fixed resampling points. Consequently, this approach allows us to allocate increased
attention to uncertain regions.

To integrate information from all branches, a fusion step entails performing channel-
wise concatenation: q = [u1||u2||u3] ∈ RH×W×3d. The next step involves applying global
average pooling (GAP) to q to condense the spatial information across the entire feature
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map. In this context, the vector q′ ∈ R3d undergoes a linear transformation denoted as
F : q′ → k, resulting in the vector k in R3d/r. This transformation serves the purpose of
dimensionality reduction, thereby enhancing computational efficiency. Subsequently, each
path follows an independent linear layer to revert the transformed vector of dimension 3d/r
back to its original dimensionality, denoted as d in the original input.

By concatenating all paths within the channel dimension (K ∈ R3×d), a soft attention
mechanism, specifically the SoftMax function, is deployed across channels. This adaptive
approach facilitates the selective emphasis on the most pertinent feature scales. The resul-
tant feature map, denoted as z′ ∈ RH×W×d, is attained by applying attention weights to
kernels associated with the individual streamlines: z′ = u1 ·K1 + u2 ·K2 + u3 ·K3

2.2. Deep Contrastive Learning

In our methodology, we propose deep contrastive supervision to refine the model’s repre-
sentation and enhance its discriminative capabilities. Initially, we identify high-confidence
and uncertain predictions within the segmentation output. Leveraging the high-confidence
predictions, we define class prototypes by extracting representations from multiple network
levels, to capture both shallow and depth representation. To compute each prototype, we
calculate the mean vector (c) of reliable voxel representations for class k by defining ck as:

ck =
1

|Sk|
∑

(vr
i,yi)∈Sk

fl:L(v
r
i), (4)

where fl:L(v
r
i) represents the feature representation of the voxel corresponding to the re-

liable predictions (vr
i, yi) from different levels of the network and Sk is the set of certain

predictions for class k. Subsequently, for the set of uncertain predictions f(vuri), we resam-
ple candidates to align them with the corresponding class prototype, employing a contrastive
learning algorithm for this purpose. By applying contrastive learning to feature sets ex-
tracted from various network blocks, we provide a deep supervisory signal for the network
to contextually recalibrate the representation of uncertain pixels, aligning them with the
class prototype. The contrastive loss is computed by aggregating their representations, and
our objective is to minimize this loss. This approach leverages multi-level representations
for deep supervision, enabling the refinement and improvement of the network’s predictions
to generate more discriminative features.

Lck = − 1
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where, Lck is the contrastive loss for class k, sim (vu
i, ck) is the similarity function measuring

the cosine similarity between an uncertain voxel representation vr
i and the class prototype

ck, τ is a temperature parameter controlling the sharpness of the contrastive loss function.
We augment the contrastive loss by adding an additional term that considers the distance
between class prototypes. This extra term is incorporated to promote the representation
space to actively separate the clustering spaces of different classes.
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3. Experiments

We implemented a two-stream pipeline in PyTorch, utilizing an RTX A5000 GPU. Following
(Wang et al., 2023), Vnet and Resnet were chosen for the predictive and auxiliary models,
respectively. The training involved 6000 iterations with a batch size of 2, sampling randomly
from supervised and unsupervised sources. SGD optimizer with parameters: decay factor
0.0001, momentum 0.9, and initial learning rate 0.01 (decayed by a factor of 10 every 2500
iterations). To manage hyperparameters, we set λu = 1.0 and λc = 0.1 ∗ e4(1−t/tmax)2

for dynamic weighting, where t and tmax denote current and maximum iterations. For
evaluation, we follow (Wang et al., 2023) setting and use 5-fold and 4-fold cross-validation
on the LA and Pancreas datasets, respectively.

3.1. Dataset

Left Atrial Dataset (LA): This dataset (Xiong et al., 2021) consists of 100 3D gadolinium-
enhanced MR imaging volumes with non-uniform resolution (0.625 × 0.625 × 0.625 mm³)
and manual annotations for the left atrial region. Following the pre-processing protocol
from (Wang et al., 2023), we normalized volumes to zero mean and unit variance. During
training, random cropping used with dimensions of 112 × 112 × 80. For inference, we used
a sliding window approach (112 × 112 × 80) with a stride of 18 × 18 × 4.

NIH Pancreas Dataset: This dataset (Roth et al., 2015) consists of 82 abdominal CT
volumes annotated for the pancreas. We preprocess it by applying soft tissue windowing
(HU range: -120 to 240) and spatial alignment using a method from (Luo et al., 2021; Wang
et al., 2023). In training, we use random cropping for volumes, resulting in dimensions of
96×96×96. During inference, a stride of 16×16×16 is employed for efficient data processing.

3.2. Results

Table 1 illustrates the performance comparison between our proposed approach and the
latest State-of-the-Art (SOTA) methods. Our method exhibits substantial enhancements
across all metrics, excelling particularly in organ voxel detection, notably in Dice and Jac-
card indices. This demonstrates that the incorporation of the uncertainty map along with
the deep contrastive supervision can significantly enhance the efficacy of the model. In
comparison to MCF, our technique is clearly superior, achieving a notable boost in DSC
from 88.71 to 89.21 and a remarkable enhancement in the Jaccard index from 80.41 to
81.64, while simultaneously maintaining a superior 95HD metric. Furthermore, our method
not only maintains a stable and reliable performance by minimizing variance but also ex-
cels in the visual comparison presented in Figure 3, showcasing its superiority in left atrial
segmentation. The visuals emphasize the increased alignment with ground truth labels
and a noticeable reduction in false segmentations, signifying the nuanced details effectively
captured by our innovative approach.

Additionally, this robust performance also extends to the NIH Pancreas Dataset, as
evidenced in the comprehensive results provided in Table 2. As the pancreas is situated
deep within the abdomen, it exhibits notable variations in size, location, and shape. Adding
to the complexity, pancreatic CT volumes present a more intricate background compared
to the relatively simpler background of left atrial MRI volumes. This inherent complexity
makes pancreas segmentation a more challenging task than left atrial segmentation. More
specifically, our method outperformed all SOTA methods across all performance metrics in
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Table 1: Comparison of results using the LA dataset (average ± standard deviation).
Method Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

MT (Tarvainen and Valpola, 2017) 85.89 ± 0.024 76.58 ± 0.027 12.63 ± 5.741 3.44 ± 1.382
UA-MT (Yu et al., 2019) 85.98 ± 0.014 76.65 ± 0.017 9.86 ± 2.707 2.68 ± 0.776
SASSNet (Li et al., 2020) 86.21 ± 0.023 77.15 ± 0.024 9.80 ± 1.842 2.68 ± 0.416
DTC (Luo et al., 2021) 86.36 ± 0.023 77.25 ± 0.020 9.02 ± 1.015 2.40 ± 0.223

MC-Net (Wu et al., 2021) 87.65 ± 0.011 78.63 ± 0.013 9.70 ± 2.361 3.01 ± 0.700
UCMT (Shen et al., 2023) 88.13 ± 0.000 79.18 ± 0.000 9.14 ± 0.000 3.06 ± 0.000
MCF (Wang et al., 2023) 88.71 ± 0.018 80.41 ± 0.022 6.32 ± 0.800 1.90 ± 0.187

Our Method 89.21 ± 00.18 81.64 ± 00.24 6.31 ± 0.842 1.92 ± 0.195

pancreas segmentation. Expanding on the segmentation outcomes, Figure 3 offers deeper
insights, emphasizing the consequential influence of the proposed modules on elevating the
overall segmentation quality. Notably, our method excels by producing sharper edges and
achieving more precise boundary separation compared to the MCF and MC-Net method-
ologies. This emphasizes its effectiveness in enhancing the reliability of object boundary
predictions and distinctly discerning the organ of interest from the background.

(a) Ground Truth (b) MC-Net (c) MCF (e) Proposed Method

Figure 3: Visual comparison of segmentation results: the first and the second rows show
the left atrium (LA) and pancreas, respectively.

Table 2: Comparison of results using the NIH dataset (average ± standard deviation).
Method Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

MT (Tarvainen and Valpola, 2017) 74.43 ± 0.024 60.53 ± 0.030 14.93 ± 2.000 4.61 ± 0.929
UA-MT (Yu et al., 2019) 74.01 ± 0.029 60.00 ± 3.031 17.00 ± 3.031 5.19 ± 1.267
SASSNet (Li et al., 2020) 73.57 ± 0.017 59.71 ± 0.020 13.87 ± 1.079 3.53 ± 1.416
DTC (Luo et al., 2021) 73.23 ± 0.024 59.18 ± 0.027 13.20 ± 2.241 3.81 ± 0.953

MC-Net (Wu et al., 2021) 73.73 ± 0.019 59.19 ± 0.021 13.65 ± 3.902 3.92 ± 1.055
MCF (Wang et al., 2023) 75.00 ± 0.026 61.27 ± 0.030 11.59 ± 1.611 3.27 ± 0.919

Our Method 76.20 ± 0.022 62.33 ± 0.028 11.55 ± 2.703 3.10 ± 0.0980

4. Conclusion

In summary, our approach tackles challenges in semi-supervised medical image segmentation
through the integration of two subnetworks aimed at identifying and refining uncertain
predictions. The model employs both an uncertainty attention map and an uncertainty-
aware descriptor to enhance accuracy in pixel-level segmentation, particularly in scenarios
with inherent prediction uncertainty. The efficiency of our method is substantiated by
results obtained from both left atrial and pancreas datasets.
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Rafael Luz Araújo, Flávio HD de Araújo, and Romuere RV e Silva. Automatic segmentation
of melanoma skin cancer using transfer learning and fine-tuning. Multimedia Systems, 28
(4):1239–1250, 2022.

Reza Azad, Amirhossein Kazerouni, Moein Heidari, Ehsan Khodapanah Aghdam, Ami-
rali Molaei, Yiwei Jia, Abin Jose, Rijo Roy, and Dorit Merhof. Advances in medi-
cal image analysis with vision transformers: A comprehensive review. arXiv preprint
arXiv:2301.03505, 2023.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European conference
on computer vision (ECCV), pages 132–149, 2018.

Junyu Chen and Eric C. Frey. Medical image segmentation via unsupervised convolu-
tional neural network. In Medical Imaging with Deep Learning, 2020. URL https:

//openreview.net/forum?id=XrbnSCv4LU.

Xiaokang Chen, Yuhui Yuan, Gang Zeng, and Jingdong Wang. Semi-supervised semantic
segmentation with cross pseudo supervision. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 2613–2622, 2021.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei.
Deformable convolutional networks. In Proceedings of the IEEE international conference
on computer vision, pages 764–773, 2017.

Wei Feng, Lie Ju, Lin Wang, Kaimin Song, Xin Zhao, and Zongyuan Ge. Unsupervised
domain adaptation for medical image segmentation by selective entropy constraints and
adaptive semantic alignment. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 37, pages 623–631, 2023.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. In International Conference on Machine Learning, pages 1321–1330.
PMLR, 2017.

Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, and William T. Free-
man. Unsupervised semantic segmentation by distilling feature correspondences. In In-
ternational Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=SaKO6z6Hl0c.

9

https://openreview.net/forum?id=XrbnSCv4LU
https://openreview.net/forum?id=XrbnSCv4LU
https://openreview.net/forum?id=SaKO6z6Hl0c
https://openreview.net/forum?id=SaKO6z6Hl0c


Wei Ji, Shuang Yu, Junde Wu, Kai Ma, Cheng Bian, Qi Bi, Jingjing Li, Hanruo Liu,
Li Cheng, and Yefeng Zheng. Learning calibrated medical image segmentation via multi-
rater agreement modeling. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12341–12351, 2021.

Sanaz Karimijafarbigloo, Reza Azad, Amirhossein Kazerouni, Yury Velichko, Ulas Bagci,
and Dorit Merhof. Self-supervised semantic segmentation: Consistency over transforma-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2654–2663, 2023.

Amirhossein Kazerouni, Sanaz Karimijafarbigloo, Reza Azad, Yury Velichko, Ulas Bagci,
and Dorit Merhof. Fusenet: Self-supervised dual-path network for medical image seg-
mentation. arXiv preprint arXiv:2311.13069, 2023.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? In Advances in Neural Information Processing Systems, 2017.

Padmavathi Kora, Chui Ping Ooi, Oliver Faust, U Raghavendra, Anjan Gudigar, Wai Yee
Chan, K Meenakshi, K Swaraja, Pawel Plawiak, and U Rajendra Acharya. Transfer
learning techniques for medical image analysis: A review. Biocybernetics and Biomedical
Engineering, 42(1):79–107, 2022.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In Workshop on challenges in representation learning,
ICML, volume 3, page 896. Atlanta, 2013.

Shuailin Li, Chuyu Zhang, and Xuming He. Shape-aware semi-supervised 3d semantic
segmentation for medical images. In MICCAI 2020. Springer, 2020.

Shanfu Lu, Zijian Zhang, Ziye Yan, Yiran Wang, Tingting Cheng, Rongrong Zhou, and
Guang Yang. Mutually aided uncertainty incorporated dual consistency regularization
with pseudo label for semi-supervised medical image segmentation. Neurocomputing, page
126411, 2023.

Xiangde Luo, Jieneng Chen, Tao Song, and Guotai Wang. Semi-supervised medical image
segmentation through dual-task consistency. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pages 8801–8809, 2021.

Xiangde Luo, Minhao Hu, Tao Song, Guotai Wang, and Shaoting Zhang. Semi-supervised
medical image segmentation via cross teaching between cnn and transformer. In In-
ternational Conference on Medical Imaging with Deep Learning, pages 820–833. PMLR,
2022a.

Xiangde Luo, Guotai Wang, Wenjun Liao, Jieneng Chen, Tao Song, Yinan Chen, Shichuan
Zhang, Dimitris N Metaxas, and Shaoting Zhang. Semi-supervised medical image seg-
mentation via uncertainty rectified pyramid consistency. Medical Image Analysis, 80:
102517, 2022b.

10



Reducing Uncertainty in 3D Medical Image Segmentation

Abbas Omidi, Aida Mohammadshahi, Neha Gianchandani, Regan King, Lara Leijser, and
Roberto Souza. Unsupervised domain adaptation of mri skull-stripping trained on adult
data to newborns. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 7718–7727, 2024.

Cheng Ouyang, Carlo Biffi, Chen Chen, Turkay Kart, Huaqi Qiu, and Daniel Rueckert.
Self-supervised learning for few-shot medical image segmentation. IEEE Transactions on
Medical Imaging, 41(7):1837–1848, 2022.

Holger R Roth, Le Lu, Amal Farag, Hoo-Chang Shin, Jiamin Liu, Evrim B Turkbey, and
Ronald M Summers. Deeporgan: Multi-level deep convolutional networks for automated
pancreas segmentation. In MICCAI 2015, pages 556–564. Springer, 2015.

Zhiqiang Shen, Peng Cao, Hua Yang, Xiaoli Liu, Jinzhu Yang, and Osmar R Zaiane. Co-
training with high-confidence pseudo labels for semi-supervised medical image segmen-
tation. Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, 2023.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. In Advances in Neural Information
Processing Systems, volume 33, pages 596–608, 2020.

Yucheng Tang, Dong Yang, Wenqi Li, Holger R Roth, Bennett Landman, Daguang Xu,
Vishwesh Nath, and Ali Hatamizadeh. Self-supervised pre-training of swin transformers
for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20730–20740, 2022.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In Advances in Neural
Information Processing Systems, 2017.

Yongchao Wang, Bin Xiao, Xiuli Bi, Weisheng Li, and Xinbo Gao. Mcf: Mutual cor-
rection framework for semi-supervised medical image segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15651–
15660, 2023.

Yuchao Wang, Haochen Wang, Yujun Shen, Jingjing Fei, Wei Li, Guoqiang Jin, Liwei
Wu, Rui Zhao, and Xinyi Le. Semi-supervised semantic segmentation using unreliable
pseudo-labels. In IEEE Conference on Computer Vision and Pattern Recognition, 2022.

Yicheng Wu, Minfeng Xu, Zongyuan Ge, Jianfei Cai, and Lei Zhang. Semi-supervised left
atrium segmentation with mutual consistency training. In Medical Image Computing and
Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Stras-
bourg, France, September 27–October 1, 2021, Proceedings, Part II 24, pages 297–306.
Springer, 2021.

Yicheng Wu, Zongyuan Ge, Donghao Zhang, Minfeng Xu, Lei Zhang, Yong Xia, and Jian-
fei Cai. Mutual consistency learning for semi-supervised medical image segmentation.
Medical Image Analysis, 81:102530, 2022.

11



Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy
student improves imagenet classification. In IEEE Conference on Computer Vision and
Pattern Recognition, 2020.

Zhaohan Xiong, Qing Xia, Zhiqiang Hu, Ning Huang, Cheng Bian, Yefeng Zheng, Sulaiman
Vesal, Nishant Ravikumar, Andreas Maier, Xin Yang, et al. A global benchmark of
algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic
resonance imaging. Medical image analysis, 67:101832, 2021.

Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang
Bai, and Zicheng Liu. End-to-end semi-supervised object detection with soft teacher. In
IEEE International Conference on Computer Vision, pages 3060–3069, 2021.

Lequan Yu, Shujun Wang, Xiaomeng Li, Chi-Wing Fu, and Pheng-Ann Heng. Uncertainty-
aware self-ensembling model for semi-supervised 3d left atrium segmentation. In MICCAI
2019, pages 605–613. Springer, 2019.

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura,
and Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum
pseudo labeling. In Advances in Neural Information Processing Systems, volume 34, 2021.

Ziyuan Zhao, Fangcheng Zhou, Kaixin Xu, Zeng Zeng, Cuntai Guan, and S Kevin Zhou.
Le-uda: Label-efficient unsupervised domain adaptation for medical image segmentation.
IEEE Transactions on Medical Imaging, 42(3):633–646, 2022.

Yuliang Zou, Zizhao Zhang, Han Zhang, Chun-Liang Li, Xiao Bian, Jia-Bin Huang, and
Tomas Pfister. Pseudoseg: Designing pseudo labels for semantic segmentation. In Inter-
national Conference on Learning Representations, 2021.

Simiao Zuo, Yue Yu, Chen Liang, Haoming Jiang, Siawpeng Er, Chao Zhang, Tuo Zhao, and
Hongyuan Zha. Self-training with differentiable teacher. arXiv preprint arXiv:2109.07049,
2021.

12



Reducing Uncertainty in 3D Medical Image Segmentation

Appendix A. Ablation Study on the Effect of Suggested Modules

In our strategic approach, we incorporated both the deep contrastive learning algorithm
and the MultiCURE Module to mitigate prediction uncertainty. To assess the impact of
this loss function in reducing uncertainty, we have illustrated the uncertainty map of the
network predictions on two sample data in Figure 4. Specifically, we conducted training
with two settings: the first setting excludes the MultiCURE Module and deep contrastive
learning, while the second setting includes them to address uncertainty.

Figure 4 indicates that, during the inference process, the network tends to produce lower
confidence scores in cases without utilizing the uncertainty aware modules. However, in-
cluding the MultiCURE Module and deep contrastive modules leads to a more substantial
increase in the models’ prediction confidence. This observation suggests that incorporating
these modules enhances the network’s confidence in predicting uncertain voxels, thereby
improving overall prediction performance. Additionally, Table 3 has been provided to high-
light the individual effect of each module on overall performance. Removing the MultiCURE
Module results in a notable decline in model performance, and similarly, omitting deep con-
trastive learning leads to a slight drop in model performance.

Ground Truth Prediction (ours) Heatmap (ours) Prediction (baseline) Heatmap (baseline)

Figure 4: Visualization of prediction maps and activation maps for two samples from the
LA dataset using our suggested modules alongside the baseline model without
the proposed enhancements.

The module’s architecture allows the network to adapt its focus based on the charac-
teristics of the input, providing a mechanism to selectively reduce uncertainty in regions
where it is most crucial. This adaptability contributes to the observed improvement in
the model’s confidence, especially in predicting uncertain voxels. The results suggest that
the MultiCURE Module enhances the network’s ability to handle contextual uncertainties,
leading to more confident and accurate predictions. Also, the contrastive loss is employed
to guide the learning process. The results in Table 3 reveal that the absence of contrastive
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Table 3: Effect of each suggested module on the overall performance using the Pancrese
Dataset (average).

Lcontrastive MultiCURE Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
× × 74.10 61.00 12.30 4.12
√ × 75.00 61.22 11.95 3.27

× √
75.80 62.33 11.58 3.25

√ √
76.20 62.33 11.55 3.10

learning negatively impacts the model’s performance, emphasizing its role in enhancing fea-
ture representations. The contrastive learning mechanism enables the model to focus on
relevant information, thereby improving its ability to make accurate predictions. The com-
bination of the MultiCURE Module and contrastive learning synergistically contributes to
the overall success of the proposed architecture. While the MultiCURE Module addresses
contextual uncertainties, contrastive learning complements this by refining feature repre-
sentations. The experimental results underscore the efficacy of this combined approach in
achieving more robust and confident predictions, particularly in scenarios involving uncer-
tain or ambiguous image data.

Appendix B. Limitation

In our strategy, we proposed various mechanisms to increase the certainty of pseudo-labels,
thereby enhancing the utilization of unlabeled data. While our method is designed to
recalibrate features to improve voxel representation for certain predictions, uncertainty
in voxel representation along object boundaries is often inherent due to abnormalities in
the imaging device, making it challenging to distinguish between object boundaries and
overlapped backgrounds. Despite our efforts, our method still faces limitations in enhancing
prediction certainty along boundary regions, which are influenced by the characteristics of
the imaging device. As illustrated in Figure 4, the predictions of the LA boundaries lack high
confidence. It’s noteworthy that this limitation is also encountered by expert radiologists
in precisely distinguishing boundary voxels, especially in 3D volumes, where multiple raters
are often employed to mitigate boundary errors by prioritizing the most agreed-upon regions
(Ji et al., 2021).

Additionally, While our strategy focuses on enhancing the network receptive field size,
incorporating our MultiCURE module, it is essential to acknowledge its limitations, par-
ticularly in scenarios involving small lesions, such as microbleedings in brain MRI. Despite
our efforts to extend the receptive field size for capturing long-range dependencies, our
approach may not adequately address the need for strong texture representation required
for precise detection of such lesions, which involves both fine-grained and coarse features.
This limitation highlights the challenges inherent in balancing the requirements of captur-
ing both fine-grained and coarse features within a single model framework. Future research
directions could explore specialized architectures or fusion techniques aimed at improving
the detection sensitivity for these types of lesions.
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