
SAMKE: An Open-Ended Autonomous Foundation-Model-Based Agent for
Meta-Knowledge Discovery and Learning

Nitin Vetcha1,2, Dianbo Liu1

1National University of Singapore
2Indian Institute of Science, Bangalore

nitinvetcha@iisc.ac.in, dianbo@nus.edu.sg

Abstract

Given the recent tremendous success of large language mod
els (LLMs), there has been an increasing trend in applying
them to several down-stream tasks via fine-tuning (FT). How
ever, there persist two significant challenges in FT- 1) cura
tion of high-quality task-specific data and 2) expensive time
consuming model adaptation via gradient descent optimiza
tion. To mitigate these limitations, we leverage prior works in
large-scale parameter generation for LLMs and propose Sci-
entific Autonomous Meta-Knowledge Explorer (SAMKE) to
open up a new paradigm of parameter-level meta learn ing,
thereby serving a critical advance in the AI Scientist domain.
SAMKE is an open-ended autonomous foundation model-
based agent which is capable of self-improvement by dis-
covering and learning the rich meta-knowledge informa tion
present in large neural network weights, thereby enabling ef-
ficient adaptation of LLMs by parameter-level weight mod
ifications to unseen domains as well. To achieve this, SAMKE
has a multi-level reinforcement learning approach to train
models for efficient understanding of parameter space and
of fers higher degree of flexibility compared to prior works
on self-evolution by providing freedom to the model for
choos ing its own adaptation strategy thereby breaking the
scal ing solely through data regime. Early experiments de-
mon strate the superior performance of SAMKE in the com-
mon sense reasoning domain as it outperforms task-specific
FT by 23.6% on average and even some of the most recent
works in parameter generation (by 10.4%), model merging
(by 24.3and test-time learning (by 25.2%) as well out-of-
domain tasks such as coding, social, logical and mathematical
reasoning as well.

1. Introduction
Large Language Models (LLMs) due to their impressive
scalable transformer architecture and massive internet-data
level pretraining process, is often endowed with impressive
emergent abilities and zero-shot generalization, which in it-
self is a remarkable advancement in several natural language
processing (NLP) tasks such as text generation, question-
answering, creative writing, summarization and knowledge
engineering. Despite this progress, there are several down-
stream applications which demand behavioral adaptation

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

particular to the specific task under consideration such as re-
flects domain jargon or bespoke response styles. To enable
this, there is a class of techniques called Parameter-Efficient
Fine-Tuning (PEFT), which work in general by keeping the
original weights frozen and introducing an additional set of
trainable parameters that is usually minimal compared to the
base model. They thus, can only reduce, but not erase the
cost of per-task-tuning, which becomes an important bottle-
neck for large-scale deployment in addition to the curation
of high-quality task-specific data which reflects the internal
specifications required.

Moreover, widely adopted downstream task-specific fine-
tuning strategies such as LoRA (Hu et al. 20222), DoRA
(Liu et al. 2024), ReFT (Wu et al. 2024) are generic hand-
crafted solutions and might not be optimal approaches for
a particular class of LLMs or set of tasks. While an op-
tion for developing a good set of directives for updating the
LLM is to take assistance of domain experts, it is quite time
and compute intensive as well as susceptible to human defi-
ciencies since the exploratory space for parameters is high-
dimensional and quite vast. Keeping these points in mind,
we aim at developing through our project, an open-ended
approach for neural network weight modification using the
expressive power of foundation models. Such an approach
holds a promising potential for adapting LLMs on the fly to
unseen tasks by effectively answering the following research
question.

RQ: Can LLMs learn to modify their internal rep-
resentation space autonomously to handle concept
drift, analogous to how humans assimilate and re-
structure knowledge in lifelong learning scenarios?

In short, the primary contribution of this work is the develop-
ment of SAMKE or Scientific Autonomous Meta-Knowledge
Explorer, a first-of-its-kind open-ended autonomous founda-
tion model-based agent empowering LLMs to self-improve
by discovering and learning meta-knowledge encoded in
neural network weights, thereby allowing efficient adapta-
tion to unseen tasks via parameter-level weight modifica-
tions. Rest of the paper is organized as follow. In Section
2, we highlight the motivation for our approach in detail.
Section 3 presents the literature survey conducted, Section

4 contains the methodology with implementation specifics
in Section 5. Experimental results are provided in Section 6
and in Section 7, we present our concluding remarks.

2. Motivation

Our primary motivation stems from human psychology and
pedagogy. For example, consider a human student who is
preparing to take an end-sem examination of a machine
learning course. Quite often, students tend to rely on their
prior prepared notes for preparation. These notes are often
derived from the lecture content, textbooks or information
available on the internet. Thus instead of relying on the raw
content, students assimilate and rewrite the information in
the form of notes as per their own intrinsic reasoning skill
and aptitude. This improves the capability of students to
comprehend the content better and therefore respond well to
the exam questions. This phenomenon of reinterpreting and
augmenting external knowledge in a way that is easier to un-
derstand as well as developing the necessary skill-sets is not
limited to just taking exams, but seems to be universally true
of human learning across tasks. Furthermore, depending on
one’s interests, humans assimilate information in different
ways - some might condense the information into a visual di-
agram, some into text, or some might rely more on concrete
mathematical descriptions. Such restructuring or develop-
ment of internal knowledge as well as assimilation or rewrit-
ing of external information, as part of the learning process is
in contrast with how LLMs undergo currently training and
adaptation. Given a new task, current LLMs consume and
learn from the task data “as-is” via finetuning or in-context
learning. The issue with this, just like in the human setting,
such data may not be in an optimal format (or volume) for
learning, or there might not be the relevant skill-set devel-
oped to learn it and current approaches do not enable mod-
els to develop bespoke strategies for how to best transform
themselves internally or even learn from their training data.
In this work, we therefore investigate the question as to if it
is possible for even LLMs, analogous to humans, to suggest
strategies by themselves which can enable them to perform
better on a given task.

A secondary source of motivation as to why we ground our
strategy search space in the neural network weights is be-
cause unlike task-specific knowledge, the weight-level meta-
knowledge represents generalized principles about how neu-
ral network parameters relate to model capabilities, thereby
providing crucial insights for self-evolving agents. There are
several prior research works which have shown that there
exists a positive correlation between types of neural net-
work weight patterns and downstream model performance
characteristics. For example, scaling laws research (Kaplan
et al. 2020) has demonstrated that there are predictable re-
lationships between model size and performance. Similarly,
structured sparsity learning gives an indication so as to how
particular weight patterns can be useful for developing more
efficient representations (Wen et al. 2016).

3. Related Work
Test-Time Training (TTT) is a recently emerging class
of approaches which updates model weights at inference
time using techniques such as input perplexity or cross-
entropy minimization on only unlabeled test data enabling
self supervised enhancement of LLM performance (Hu et al.
2025a,b) or via reinforcement learning by utilizing the pri-
ors in the pre-trained models (Zuo et al. 2025) or by using
reflection and verifier-driven sample selection (Moradi et al.
2025; Lee et al. 2025) or by using a task-specific curricu-
lum (Hübotter et al. 2025) or by using a mixture-of-expert
based model merging (Bertolissi et al. 2025). An alterna-
tive approach is to scale inference compute at test time as
well using for example ensemble approaches such as ma-
jority voting. While test-time approaches is a promising op-
tion, such a computational overhead might not be necessary
always and it often fails in cases where data is scarce or qual-
ity of unlabeled data is poor.

Adversarial Fine Tuning is another emerging class of tech-
niques where in two LLM instances are made to debate
with each other about a topic or one instance serves as
a challenger or teacher and the other instance serves as
a solver or student to generate synthetic data, either from
unlabeled prompts or even from scratch itself and use ap-
proaches like majority voting to create pseudo-labels which
can further be used for updating model’s knowledge ac-
cordingly (Yang et al. 2024; Wang et al. 2025c,b). This can
also be done by some additional fine-tuning using informa-
tion which is available in the LLM’s context as well (Park,
Zhang, and Tanaka 2025) similar to knowledge distillation.
Recent works include SQLM (Chen et al. 2025a), R-Zero
(Huang et al. 2025a), TT-SI (Acikgoz et al. 2025), SIRLC
(Pang et al. 2023). While this is an efficient approach in data
scarce domains where TTT fails, it is not always efficient
as there are certain challenging domains which require mas-
tering novel reasoning skills and it is well known that scal-
ing data isn’t sufficient in this regimes such as mathematics
(Hendrycks et al. 2021a).

Reinforcement Learning (RL) is a well established ap-
proach for pushing the capabilities of LLMs and recent
works such as SEAL (Zweiger et al. 2025), RLAIF (Li et al.
2025b), SRLM (Yuan et al. 2025) and Memento (Zhou et al.
2025), which uses a memory-based online RL policy have
shown promising potential in the low-cost continual adapta-
tion of LLMs. In RL, meta-learning has been used as well
in order train agents in scenarios where it needs to learn
novel tasks quickly (Gupta et al. 2018). SAMKE can be seen
as thus following meta-learning principles since it learns an
adaptation strategy i.e., how to generate effective self weight
update using a meta optimization loop. Closely, related are
self-referential systems as well which learn to update their
own parameters as in (Irie et al. 2022) and self-evolving
agents which enable LLM to improvise by autonomously
acquiring, refining and learning from experiences generated
by the model itself (Tao et al. 2024; ang Gao et al. 2025).
While RL based approaches are quite good, its often chal-

lenging to achieve convergence and design optimal policies
which are efficient in terms of compute and time as well.

Parameter Generation is another research direction which
has seen several pioneering works such as RPG (Wang
et al. 2025a), DnD (Liang et al. 2025), T2L (Charakorn
et al. 2025), ORAL (Khan et al. 2025), COND P-DIFF (Jin
et al. 2024). DnD generates task-specific parameters from
unlabeled prompts without per-task training via a prompt-
conditioned hyper-convolutional decoder while T2L does
the same but uses a hyper-network and task description in-
stead. ORAL leverages architectural and textual condition-
ing for flexible, scalable LoRA parameter adaptation. RPG
introduces a recurrent diffusion architecture for scalable un-
conditional LoRA parameter generation. COND P-DIFF ap-
plies conditional latent diffusion for controllable LoRA pa-
rameter synthesis with strong cross-domain generalization.
An associated direction is model merging as well, which fa-
cilitates generalization to unseen tasks via multi-task learn-
ing (Shao et al. 2025a,b). While these works have been
effective, the limitation is that these are static parameters
which once generated do not undergo any further modifi-
cation but this feature is crucial for domains requiring the
implicit meta-knowledge.

4. Methodology
In this section, we describe the framework of our pro-
posed approach (see Figure 1). SAMKE starts by treating
the LLMs own weights as environment variables to explore,
upon which it would systematically propose scientific hy-
potheses to modify the internal representation space appro-
priately so as to adapt the LLM to the unseen task. A ma-
jor challenge for the design, therefore, is the high dimen-
sionality and non-convexity of the LLM weight space itself
which makes the initialization and subsequent exploration
process extremely complex. To overcome this, we work only
with low-rank parameters (Hu et al. 20222) which consti-
tutes a much smaller fraction (∼ 1%) of the original model’s
weights. In addition, to avoid the limitations arising from
selecting a single starting point, which might not be opti-
mal to wiggle around, we prefer to sample from a plausi-
ble weight distribution space. This step is essential to elimi-
nate the risk of non-convergence. To get this initial distribu-
tion for weights i.e., self-weight sampling, we refer to prior
works in large-scale LLM parameter generation and use a
convolution-based decoder architecture as the backbone for
SAMKE’s exploration point initializer.

Once the weights have been initialized1 for exploration,
SAMKE then uses a foundation-model-based agent, which
is for now simply an LLM trained using reinforcement learn-
ing (RL) to come up with probable hypotheses at inference
time for weight-space exploration using test-time scaling
and compute. To however, facilitate the training process, it

1These weights can optionally be encoded into a structured rep-
resentation correlated with network performance like world models
such as JEPA (LeCun 2022).

is necessary to first curate by hand a seed knowledge base,
consisting of either proven or plausible weight modifica-
tion strategies, which will then serve as the action space
for LLM’s initial stages of exploration during RL training.
This would be a multi-stage recipe consisting of three dis-
tinct progressively harder levels. Level I consists of training
the LLM to produce only single valid and efficient self-edits
(a self-edit as the name suggests is basically a modification
strategy proposed by an LLM to update its own weights de-
pending on the task) from among the ones present in the
initial knowledge base. Level II comprises of training the
model to output chain-of-self-edits, since coupling strategies
sequentially is also helpful (moreover if viewed in a abstract
sense, it can be considered in effect as a single complex edit
which can be decomposed into simpler instances). Level III
is a significantly challenging aspect both for the LLMs as
well as from implementation perspective as well, which is
basically letting LLMs to explore the hypothesis space in its
entirety, thereby going beyond human-crafted approaches. A
positive performance in Level III would be a significant leap
as it could possibly open up new frontiers in training and
fine-tuning paradigms as has been similarly done in other
areas as well such as neural architecture search (Liu et al.
2025b) and optimization (Lu et al. 2024).

Figure 1: SAMKE’s methodology of weight-level meta-
knowledge discovery and modification summarized
(adapted from (Zhang 2025))

After plausible hypothesis have been generated by the foun-
dation model-based agent and implemented, its necessary
to test the hypothesis. For this purpose, we create a sepa-
rate evaluation split if available. However, since SAMKE
is designed to adapt LLMs efficiently to unseen tasks as
well, the dataset for evaluation itself would be generated
on the fly using adversarial approaches involving multiple
instances of an LLM, one proposing and one solving ques-
tions on a particular topic as in SQLM (Chen et al. 2025a)
or R-Zero (Huang et al. 2025b). Once the hypothesis has
been tested and is found to be valid (as in it improves per-
formance in some pre-determined metric such as accuracy
on the eval set), it would be then added back into the
knowledge base, thereby enriching the action space of LLM
for future iterations. In order to prevent catastrophic forget-
ting, SAMKE implements a meta-level weight regulariza-

tion technique as well. Therefore, by automating the pro-
cess of self-improvement using principled methodologies
and meta-knowledge in a scientific manner (i.e., propose,
validate and accept hypotheses), SAMKE provides a holis-
tic framework towards the next generation of AI generat-
ing AI agents, because as soon as web-scale data corpora
is exhausted, progress will hinge on a model’s capacity to
generate its own high-utility training signal.

5. Implementation
Architecture
Primary architectural detail in SAMKE’s framework is the
design of the weight-space exploration initializer. As men-
tioned in Section , we use a convolution based decoder
model for this purpose. We assume that we have access to
either the unseen task’s description or atleast a handful of
unlabeled examples representative of its requirements. We
then send them to an open-sourced text encoder for embed-
ding extraction. This extraction process can be formally rep-
resented as, ci = Encoder(pi, θ), where Encoder(·, ·) de-
notes the embedding extraction function parameterized by θ,
and ci represents the extracted embedding corresponding to
prompt pi. We use an encoder-based language model archi-
tecture for this purpose i.e., Sentence-BERT (all-MiniLM-
L6-v2 specifically) (Reimers and Gurevych 2019) 2.

Next, following (Wang et al. 2025a), is the parameter to-
kenization process (see Figure 2), which is done so as
to preserve both the layer-wise distribution and the cross-
layer correlations. Specifically, (i) weights are split accord-
ing to their layer indices, (ii) layer-wise normalization is
applied to mitigate distribution shifts, (iii) parameters are
sliced into non-overlapping tokens with uniform size, and
(iv) a lightweight permutation state (encoded as a one-hot
vector) is used to alleviate symmetry issues (Kunin et al.
2020) when collecting multiple checkpoints. Additionally,
2D position embeddings (first dimension encodes layer in-
dex, while second dimension captures the token’s in-layer
position). (Dosovitskiy et al. 2020) are employed to en-
sure the network retains positional awareness of each token
within the entire set. In our case, each LoRA matrix is of
shape 8 × 896, which is then split into 7 smaller chunks,
each with a shape of 8 × 128, which is then finally padded
to a uniform size of 10× 130.

Say, the dimension of prompt embeddings is [B,N,L,C]
where B,N,L and C denote batch size, length of prompt
batch (i.e., number of prompts), sequence length, and hidden
dimension, respectively. The decoder (see Figure 3) consists
of multiple sequential layers, each performing 5 2D convo-
lutions. These convolutions are divided into three categories:
i) width convolution that operates on (C,L) dimension, ii)
height convolution that operates on (L,N) dimension) iii)

2It is to be noted that BERT’s supported sequence length is only
512 and for longer sequences, padding should be done. However,
in our use case, maximum sequence length is only 384 and thus
padding is not necessary.

Figure 2: Parameter tokenization (adapted from (Wang et al.
2025a))

layer-wise convolution that on (N,L) dimension) , with no-
tations ConvW , ConvH , and ConvL. Each layer consists of
two ConvW , two ConvH and one ConvL. Given this, the for-
ward operation of the decoder block is,

clW = Conv1H(Conv1
W (cl−1))

clH = Conv2W
(
Conv2

H(cl−1)
)

cl = ConvL
(
(clW + clH + b)/3

)
where cl is hidden state output by the l th layer, c0 is prompt
embedding encoded by the condition extractor, and b is
learnable bias. Through this process, input is transformed
from dimension [B,N,L,C] to [B,N ′, L′, C ′] which is
then compatible to be converted into a flattened LoRA
adapter for the LLM 3. In this work, the base LLM used
is Qwen2.5-0.5B-Instruct (Qwen et al. 2025) and LoRA is
applied to the linear projection layers within both the self-
attention mechanism and the MLP blocks of the transformer
architecture. Specifically, this includes the query, key, value
and output projections in attention blocks, as well as the
gate, up and down projections in MLP blocks.

Figure 3: Convolutional Decoder (adapter from (Liang et al.
2025))

Training
In this work, we focus on the domain of common-sense
reasoning and select 4 datasets for evaluation, namely Hel-
laSwag (Zellers et al. 2019), BoolQ (Clark et al. 2019)
as well as the challenge and easy set of AI2 Reasoning

3In our present implementation, the entire flow is (128,384,384)
→ (128,200,300) → (128,100,256) → (256,50,200) →
(512,50,200)→ (1024,25,200)→ (1024,10,200)→ (2048,10,200)
→ (4296,8,128)

Challenge (ARC) (Clark et al. 2018). ARC dataset contains
grade-school level, multiple-choice science questions. Hel-
laSwag instructs models to select from choices that best
finish the sentence among ground truth and an adversarial
set of machine-generated wrong answers. BoolQ is a ques-
tion answering dataset for yes/no questions containing vari-
ous factual problems. We use existing checkpoints of these
datasets 4 (batch size was 32 and number of samples was
5000) which have been collected by first pretraining on the
target dataset for 75 steps with a learning rate of 1e-4 and
then performing fine-tuning on the target dataset for 50 ad-
ditional steps with a learning rate of 1e-5, while saving a
checkpoint at each step.

Subsequently, prompt-checkpoint pairing is done as fol-
lows. Given a dataset P , it is first divided it into non-
overlapping prompt batches [p1, · · · , pi, · · · , pI]. Denote
the trained LLM checkpoints of this dataset as M =
[m1, · · · ,mj , · · · ,mJ]. Then randomly a batch of prompts
and a corresponding checkpoint is picked to create a pair
{pi,mj}, which then serves as an input-output data point
for training the decoder. The objective function for training
is the mean squared error (MSE) loss between the output
from the decoder’s last block for a particular prompt batch
and the training checkpoint associated with it.

Next crucial step is the hand-crafting of seed knowledge
base. To this end, we identify five primary families of strate-
gies5, each containing its own sub-strategies as well, namely

• Test-Time Training (TTT) using input perplexity mini-
mization (Hu et al. 2025a) or via reinforcement learn-
ing (Zuo et al. 2025) for example by using self-reflection
and verification loops like GEPA (Agrawal et al. 2025),
ReflectEvo (Li et al. 2025a), REVISE (Lee et al. 2025)
or Instruct-of-Reflection (Liu et al. 2025a). It could
also involve prompt optimization using frameworks like
TextGrad (Yuksekgonul et al. 2024) or CAST (Tang et al.
2025)

• Post-training data-free LoRA modifications such as mix-
ing LoRA subspaces obtained by weight decomposi-
tion of constituent matrices (Wu et al. 2025) or bound-
ing norm of selected parameters (Wang, Dvijotham, and
Manchester 2025) or evening merging multiple task-
specific LoRA adapters (Zhao et al. 2024)

4For training however, even Open-Book Question Answering or
OBQA (Mihaylov et al. 2018), Physical Interaction: Question An-
swering or PIQA (Bisk et al. 2019) and WinoGrande (Sakaguchi
et al. 2019) have been used as well. OBQA aims to promote re-
search in advanced question-answering with salient facts summa-
rized as an open book. PIQA focuses on everyday situations with
a preference for a typical solutions. WinoGrande features a fill-in-
a-blank task with binary options for commonsense reasoning ques-
tions.

5Unfortunately, there are no research works highlighting ap-
proaches for optimizing the performance of LoRA’s obtained via
the process of parameter generation, thereby posing a major chal-
lenge in identification of plausible strategies, which had to be
cherry-picked via trial and error.

• SQLM (Chen et al. 2025b), R-Zero (Huang et al. 2025a)
or SEAL (Zweiger et al. 2025) like reinforcement learn-
ing based frameworks which enable LLMs to self-adapt
by generating their own finetuning data and update direc-
tives (another example is TT-SI (Acikgoz et al. 2025))

• Test-Time Scaling (TTS) using either a router or an en-
semble approach i.e., we generate and perform infer-
ence with multiple adapters obtained by using differ-
ent representative prompt batches and to obtain the fi-
nal prediction, select either the most confident prediction
(max confidence) or by a majority vote or sum logprobs
(i.e., sum log probabilities across adapters per prediction
and pick the one with highest total logprob)

• Latent Space (LS) Approaches which aim at working or
modifying the internal layers (Hu et al. 2025b) or hid-
den activations (Zhang et al. 2025) directly of the LLM.
It may also involve decoding algorithms which modify
the sampling procedure itself (Karan and Du 2025; Wang
et al. 2025d). We consider them as part of latent space
family because they tamper with internal probability dis-
tribution of next-tokens unlike other families which mod-
ify the parameters explicitly.

We first formulate the objective for outer-loop RL training
which generates adaptation strategies AS, as in (Zweiger
et al. 2025). Let θ denote the parameters of the language
model LMθ. In order to adapt to an unseen dataset (task)
D, SAMKE requires as specified in Section , C which is
a context containing information relevant to the task and τ
which is the evaluation strategy and metric used to assess
the model’s downstream adaptation. Based on C, SAMKE
generates an AS and updates its parameters accordingly
θ′ ← Update(θ,AS). We thus have an RL setup i.e., the
model takes an action (generating AS), receives a reward r
based on LMθ′ ’s performance on τ and updates its policy to
maximize expected reward,

LRL(θt) := −E(C,τ)∼D

[
EAS∼LMθt (·|C) [r(AS, τ, θt)]

]
It is to be noted that the reward assigned to a given action
depends on the model parameters θ at the time the action is
taken (since θ is updated to θ′, which is then evaluated). An
implication of this is that the while modeling the RL state,
one must therefore include θ in the policy’s parameters as
well along with C, even though the policy’s observation is
limited to C (because it is extremely infeasible to directly
place θ in the LLM’s context window). Therefore, the (state,
action, reward) triples which have been collected by using
an older model weights, θold, will not be aligned for the cur-
rent model θcurrent. Hence, an on-policy approach should be
adapted, by which adaptation strategies are sampled from
and, even more importantly, the rewards itself will be calcu-
lated using the current model.

In particular, the specific on-policy approach used is
ReSTEM (Singh et al. 2024) where samples are first gen-
erated6 from the current model and are filtered by using

6Currently, only a deterministic number of samples are being

binary feedback [r(AS, τ, θt) is 1 if on τ , AS improves
LMθt ’s performance and is 0 otherwise]. The model is then
fine-tuned on these samples and this continues in an iterative
manner (See Algorithm 1).

A subtle detail, which hasn’t yet been covered is the exact
nature of the adaptation strategy itself. This depends on the
particular strategy family being used, however the format is
consistent across all which is basically a JSON object spec-
ifying the particular configurations to be used7. It contains
a field, family which takes values TTT, LoRA and TTS.
Currently, the following choices have been experimented

Figure 4: Router Approach for TTS

• For TTT, we use (Hu et al. 2025a) and the correspond-
ing JSON object has fields ttl_steps (number of
training steps in the TTL loop), learning_rate,
batch_size and shuffle_data (boolean vari-
able).

• For LoRA modifications, we use two-subspace (TS) mix-
ing version from (Wu et al. 2025) and the correspond-
ing JSON object has only a single field, namely lambda
which is a hyperparameter determining the ratio in which
the two resulting subspaces must be mixed.

• For TTS, we use either an ensemble or router ap-
proach. In the router approach (see Figure 4), we ba-
sically sample multiple prompt batches and choose
that batch whose average of similarity scores8 of in-

generated, 15 to be precise. This could however be improvised to
be dynamic in future version of the work wherein samples would
continue to be generated until a particular confidence threshold, as
determined by the model itself is reached instead. The same is true
for number of iterations as well which is just 2 for now.

7Since the model being used is Qwen2.5-0.5B-Instruct, it was
facing difficulty in following instructions given in the prompt
for generation of structured outputs even after temperature alter-
ation. In such cases, verification and formatting was done by using
Qwen2.5-7B-Instruct instead.

8Cosine similarity and Euclidean distance were tested and
the latter was found to perform better empirically. Thus,
avg sim score and avg prompt embed. use euclidean dis-
tance by default. Alternatively, measure of similarity can also be
included as a new field but hasn’t been explored in the current
work.

dividual prompts (M1) or averaged prompt embed-
ding (M2), is closest to that of the question at
test time. The corresponding JSON object has fields
num_prompt_batches (indicating the number of
prompt batches to be sampled from the test split of un-
seen dataset) and method which can take one of five
values - avg_sim_score, avg_prompt_embed,
max_confidence, majority_vote or (summing
log probabilities) i.e., sum_logprobs (former two be-
long to router approach and the latter three constitute the
ensemble approach).

• For LS, we use (Hu et al. 2025b) and the corresponding
JSON object has fields times and learning_rate.

6. Experiments
Setup
As described in Section , the base LLM used is Qwen2.5-
0.5B-Instruct, domain is common-sense-reasoning and eval-
uation datasets are ARC-c, BoolQ, HellaSwag and ARC-
e. Baselines used include quite recent works such as
DnD (Liang et al. 2025), Test-Time Learning (TTL) (Hu
et al. 2025a), Decoupled and Orthogonal Merging (DOM)9

(Zheng et al. 2025) and average of task-specific training
LoRA’s (Hu et al. 20222). On one extreme, TTL uses the
entire unlabeled corpus of the training LoRA’s in addition to
the 128 unlabeled examples from the target dataset as seen
by SAMKE. On the other extreme, instead of using the un-
labeled corpus, DOM merges all the 7 training LoRA’s in-
clusive of the target set.

Hardware
All experiments were conducted on a high-performance
computing node running Ubuntu 22.04.1. The backend pro-
cessor was EPYC 8434P, which had 48 physical cores (96
logical threads), 256 GB of system RAM and a maximum
clock speed of 2.5 GHz. Four NVIDIA RTX A6000 GPUs,
each with 48 GB of dedicated VRAM were utilized. Python
version used was 3.12.11 and GPU-accelerated tasks were
managed using CUDA version 12.4.

Results
The major results of this work are presented in Table 1
wherein we conduct experiments of 5 benchmarks which
are in the domain of common-sense reasoning and also on 5
out-of-domain benchmarks namely GSM-MC and MATH-
MC 10 to evaluate mathematical reasoning, DivLogicEval

9DOM is a data-free framework for LoRA merging. It separates
parameters into magnitude and direction components and merges
them independently, thereby reducing the impact of magnitude dif-
ferences on the directional alignment of the merged models, thus
helping in preserving task information. It also uses a data-free,
layer-wise gradient descent method with orthogonal constraints to
mitigate interference during the merging of direction components.
For evaluation on a target dataset, LoRA’s of remaining datasets are
merged and used.

10GSM-MC and MATH-MC are multiple choice versions of the
standard GSM-8K (Cobbe et al. 2021) and MATH (Hendrycks

Algorithm 1: Sequential Multi-Level RL Loop for Adapta-
tion Strategy (AS) Generation of SAMKE
1: Input: Base LMθ , dataset context C, evaluation metric τ , ini-

tial knowledge base K
2: Init: Low-rank adapter generator G, sampled adapters S ←

Sampler(C,G)

3: Level I (Single-edit self-training):
4: for iteration t = 1, . . . , T1 do
5: Propose single-edit AS from K AS ∼ LMθ(K,C)
6: Apply AS and obtain weights θ′ ←

ApplyStrategy(θ,AS, S)
7: Evaluate Ans ∼ LMθ′(· | τ)
8: Compute reward r ← r(Ans, τ)
9: if r > threshold1 then

10: θ ← RL Update(θ, r,AS)
11: end if
12: end for

13: Level II (Chained/compositional strategies):
14: for iteration t = 1, . . . , T2 do
15: Propose chain of edits AS = [e1, . . . , ek], ei ∈ K
16: Sequentially apply chain θ0 ← θ;

θi ← ApplyStrategy(θi−1, ei, S)
17: Evaluate final weights Ans ∼ LMθk (· | τ)
18: Compute reward r ← r(Ans, τ)
19: if r > threshold2 then
20: Add chain to KB K ← K ∪ {AS}
21: θ ← RL Update(θ, r,AS)
22: end if
23: end for

24: Level III (Open-ended exploration):
25: for iteration t = 1, . . . , T3 do
26: Generate unconstrained AS AS ∼ LMθ(· | C) (novel

structure)
27: Validate (syntax/safety); if invalid continue
28: Apply AS conservatively (strong meta-reg) θ′ ←

ApplyStrategy(θ,AS, S)
29: Evaluate and compute reward Ans ∼ LMθ′(· | τ);

r ← r(Ans, τ)
30: if r > threshold3 then
31: K ← K ∪ {AS}; θ ← RL Update(θ, r,AS)
32: else
33: Penalize harmful proposals in policy update
34: end if
35: end for
36: Return: Refined parameters θ∗, enriched KB K∗

(Chung et al. 2025) for logical reasoning, SocialIQA (Sap
et al. 2019) for reasoning about social interactions and
CodeMMLU (Manh et al. 2024) for reasoning about code-
related tasks. It can be seen that SAMKE in its initial version
itself outperforms the task-specific training LoRA’s, TTL,
DOM and even DnD by a significant margin, showcasing
the promising potential it is capable of, if further levels of
RL training11 is completed as well.

et al. 2021b) datasets. They were selected for two reasons - ease
of evaluation and correlation with performance on their subjective
counterparts (Zhang et al. 2024).

11This might be quite time-intensives however with current ver-
sion itself taking around 4 days using 2 A6000 GPU’s. The reason

Following were the adaptation strategies identified, which
enabled SAMKE to reach the accuracy levels presented,

• For ARC-e and PIQA, it was TTT family with configu-
ration {“ttl_steps”: 25, “learning_rate”: 1e-5,
“batch_size”: 4, “shuffle_data”: True}

• For ARC-c and SocialIQA, it was LS family with config-
uration {“times”: 5, “learning_rate”: 0.1}

• For BoolQ, GSM-MC and MATH-MC, it was LoRA
family with TS-mixing strategy and the configuration
was {“lambda”: 0.5}

• For HellaSwag, DivLogicEval and CodeMMLU, it was
TTS family. Ex:, for Hellaswag, the corresponding
configuration was {“num_prompt_batches”: 20,
“method”: max_confidence}, indicative of the en-
semble approach

Ablation Study
A primary effect we would like to isolate and study is that
of initial prompt batch provided to start the LLM adaptation
process using SAMKE. It would be ideal if SAMKE results
in similar performance even if a highly representative, di-
verse and influential prompt batch is used. For this purpose,
inspired by (Tang et al. 2025), we use the following strategy
for prompt filtering and selection (see Figure 5).

We first model inter-prompt relations as a directed graph
G = (V,E,P), wherein each prompt is encoded as a vec-
tor by using Sentence-BERT. Each vertex vi ∈ V denotes a
prompt (sample), a directed edge e(i, j) ∈ E connects vi to
its neighbor vj , and weight p(i, j) ∈ P is the cosine similar-
ity of their embeddings. For each node vi, an si is computed
as shown below so that nodes with higher average similarity
make more connections.

si =
1

|V| − 1

∑
j ̸=i

s(i, j), ki = ⌈α · si · (|V| − 1)⌉

Samples are then scored by by (1) influence and (2) diversity.
The influence score I(v) is obtained by a diffusion simula-
tion12. For this, first initialize an active set Sactive = {v},
then iteratively sample an active node u and attempt to ac-
tivate each neighbor w ∈ N1(u) with probability p(u,w).
Newly activated nodes join Sactive. This process is repeated
until no active nodes remain. Let I(v) be the total number
of visited nodes. Diversity penalty D(v) measures overlap
with already selected nodes:

D(v) = −
k∑

i=1

βi
∣∣Ni(v)∩Sselected

∣∣, fG(v) = I(v)+γ D(v)

for using only 2 despite 4, is because Qwen family has 14 attention
heads and the vllm serves used for improved efficiency in inference
requires this number to be divisible by the number of GPU’s which
is only possible if either 2 or 7 are available.

12The simulation is run 20 times and is then averaged to obtain
the final value.

In-Domain Tasks Avg. Out-of-Domain Tasks Avg.
Dataset ARC-e ARC-c BoolQ HellaSwag PIQA In GSM MATH Logic Social Code Out
LoRA 47.4 39.7 14.7 26.3 51.5 35.9 15.6 6.8 20.3 39.5 29.8 22.4
TTL 24.4 24.7 44.4 25.9 51.9 34.3 23.5 19.7 26.2 34.9 29.7 26.8

DOM 56.5 38.9 33.2 28.3 18.8 35.1 17.7 2.6 24.7 51.3 31.6 25.6
DnD 70.9 48.1 51.9 26.5 47.8 49.0 20.8 24.1 21.0 33.5 29.1 25.7

SAMKE 74.7 55.5 58.8 48.3 60.1 59.5 30.3 24.5 25.1 55.0 35.6 34.1
∆ DnD 3.8↑ 7.4↑ 6.9↑ 21.8↑ 12.3↑ 10.4↑ 9.5↑ 0.4↑ 4.1↑ 21.5↑ 6.5↑ 8.4↑
∆ DOM 18.2↑ 16.6↑ 25.6↑ 20.0↑ 41.3↑ 24.3↑ 12.6↑ 21.9↑ 0.4↑ 3.7↑ 4.0↑ 8.5↑
∆ TTL 50.3↑ 30.8↑ 14.4↑ 22.4↑ 8.2↑ 25.2↑ 6.8↑ 4.8↑ 1.1↓ 20.1↑ 5.9↑ 7.3↑
∆ LoRA 27.3↑ 15.8↑ 44.1↑ 22.0↑ 8.6↑ 23.6↑ 14.7↑ 17.7↑ 4.8↑ 15.5↑ 5.8↑ 11.7↑

Table 1: Accuracy (in %) of SAMKE Level I approach over the baselines TTL (25.2↑), LoRA (23.6↑), DOM (24.3↑), and DnD
(10.4↑) for in-domain tasks, and TTL (7.3↑), LoRA (11.7↑), DOM (8.5↑), and DnD (8.4↑) for out-of-domain tasks, where
values in parentheses denote average ∆ (change in accuracy) for Qwen2.5-0.5B-Instruct.

Figure 5: Prompt Selection Strategy (adapted from (Liu et al.
2025a))

Finally, greedy graph search is done to select the final
prompt subset S. For this, start with S = ∅ and at each round
pick

v∗ = argmax
v/∈S

fG(v),

v∗ is then added to S and diversity penalties only for neigh-
bors of v∗ are updated13. This process continues until |S|
reaches the target size which in our case is 128.

Fortunately, the influence of the initial prompt batch was
marginal (with just a 0.3% improvement in accuracy when
averaged across all evaluation datasets), indicating that
SAMKE can efficiently adapt LLMs to unseen datasets with-
out the requirement of high-quality or manually curated
dataset. Only a handful of unlabeled prompt instances which
are merely indicative of the task suffice.

7. Conclusion
In this work, we propose the SAMKE framework which rep-
resents a significant leap in autonomous foundation-model-
based agents for scientific meta-knowledge discovery and
learning. By enabling large language models to self-improve

13Note that the influence scores are precomputed.

through parameter-level weight modifications, we are ca-
pable of addressing the key limitations in traditional fine-
tuning methods such as the high dependency on curated
task-specific data and expensive gradient-based training. Ini-
tial experimental results demonstrate its superior perfor-
mance over existing approaches in the domain of common-
sense reasoning, showcasing its potential for efficient adap-
tation to unseen domains. Although the current version faces
challenges such as high computational requirements, re-
liance on a handcrafted seed knowledge base and a labeled
evaluation set, we nevertheless lay a robust foundation for
future research in open-ended, self-improving AI agents. Fu-
ture work will focus on scaling to larger models, extend-
ing to other fine-tuning methods, and enabling unbounded
exploration in the weight space towards truly autonomous
meta-learning systems.

References
Acikgoz, E. C.; Qian, C.; Ji, H.; Hakkani-Tür, D.; and
Tur, G. 2025. Self-Improving LLM Agents at Test-Time.
arXiv:2510.07841.
Agrawal, L. A.; Tan, S.; Soylu, D.; Ziems, N.; Khare, R.;
Opsahl-Ong, K.; Singhvi, A.; Shandilya, H.; Ryan, M. J.;
Jiang, M.; Potts, C.; Sen, K.; Dimakis, A. G.; Stoica, I.;
Klein, D.; Zaharia, M.; and Khattab, O. 2025. GEPA: Re-
flective Prompt Evolution Can Outperform Reinforcement
Learning. arXiv:2507.19457.
ang Gao, H.; Geng, J.; Hua, W.; Hu, M.; Juan, X.; Liu, H.;
Liu, S.; Qiu, J.; Qi, X.; Wu, Y.; Wang, H.; Xiao, H.; Zhou, Y.;
Zhang, S.; Zhang, J.; Xiang, J.; Fang, Y.; Zhao, Q.; Liu, D.;
Ren, Q.; Qian, C.; Wang, Z.; Hu, M.; Wang, H.; Wu, Q.; Ji,
H.; and Wang, M. 2025. A Survey of Self-Evolving Agents:
On Path to Artificial Super Intelligence. arXiv:2507.21046.
Bertolissi, R.; Hübotter, J.; Hakimi, I.; and Krause, A.
2025. Local Mixtures of Experts: Essentially Free Test-Time
Training via Model Merging. arXiv:2505.14136.
Bisk, Y.; Zellers, R.; Bras, R. L.; Gao, J.; and Choi, Y. 2019.
PIQA: Reasoning about Physical Commonsense in Natural
Language. arXiv:1911.11641.
Charakorn, R.; Cetin, E.; Tang, Y.; and Lange, R. T.

2025. Text-to-LoRA: Instant Transformer Adaption.
arXiv:2506.06105.
Chen, L.; Prabhudesai, M.; Fragkiadaki, K.; Liu, H.; and
Pathak, D. 2025a. Self-questioning language models. arXiv
preprint arXiv:2508.03682.
Chen, L.; Prabhudesai, M.; Fragkiadaki, K.; Liu, H.; and
Pathak, D. 2025b. Self-Questioning Language Models.
arXiv:2508.03682.
Chung, T. T.; Liu, L.; Yu, M.; and Yeung, D.-Y. 2025.
DivLogicEval: A Framework for Benchmarking Logical
Reasoning Evaluation in Large Language Models. arXiv
preprint arXiv:2509.15587.
Clark, C.; Lee, K.; Chang, M.-W.; Kwiatkowski, T.;
Collins, M.; and Toutanova, K. 2019. BoolQ: Explor-
ing the Surprising Difficulty of Natural Yes/No Questions.
arXiv:1905.10044.
Clark, P.; Cowhey, I.; Etzioni, O.; Khot, T.; Sabharwal, A.;
Schoenick, C.; and Tafjord, O. 2018. Think you have Solved
Question Answering? Try ARC, the AI2 Reasoning Chal-
lenge. arXiv:1803.05457.
Cobbe, K.; Kosaraju, V.; Bavarian, M.; Chen, M.; Jun, H.;
Kaiser, L.; Plappert, M.; Tworek, J.; Hilton, J.; Nakano, R.;
et al. 2021. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Gupta, A.; Mendonca, R.; Liu, Y.; Abbeel, P.; and Levine, S.
2018. Meta-Reinforcement Learning of Structured Explo-
ration Strategies. arXiv:1802.07245.
Hendrycks, D.; Burns, C.; Kadavath, S.; Arora, A.; Basart,
S.; Tang, E.; Song, D.; and Steinhardt, J. 2021a. Measur-
ing Mathematical Problem Solving With the MATH Dataset.
arXiv:2103.03874.
Hendrycks, D.; Burns, C.; Kadavath, S.; Arora, A.; Basart,
S.; Tang, E.; Song, D.; and Steinhardt, J. 2021b. Measuring
mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.
Hu, E. J.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang,
L.; Chen, W.; et al. 20222. LoRA: Low-Rank Adaptation
of Large Language Models. In International Conference on
Learning Representations.
Hu, J.; Zhang, Z.; Chen, G.; Wen, X.; Shuai, C.; Luo, W.;
Xiao, B.; Li, Y.; and Tan, M. 2025a. Test-Time Learning for
Large Language Models. arXiv:2505.20633.
Hu, Y.; Zhang, X.; Fang, X.; Chen, Z.; Wang, X.; Zhang, H.;
and Qi, G. 2025b. SLOT: Sample-specific Language Model
Optimization at Test-time. arXiv:2505.12392.
Huang, C.; Yu, W.; Wang, X.; Zhang, H.; Li, Z.; Li, R.;
Huang, J.; Mi, H.; and Yu, D. 2025a. R-Zero: Self-Evolving
Reasoning LLM from Zero Data. arXiv:2508.05004.
Huang, C.; Yu, W.; Wang, X.; Zhang, H.; Li, Z.; Li, R.;
Huang, J.; Mi, H.; and Yu, D. 2025b. R-Zero: Self-
Evolving Reasoning LLM from Zero Data. arXiv preprint
arXiv:2508.05004.

Hübotter, J.; Diaz-Bone, L.; Hakimi, I.; Krause, A.; and
Hardt, M. 2025. Learning on the Job: Test-Time Curricula
for Targeted Reinforcement Learning. arXiv:2510.04786.
Irie, K.; Schlag, I.; Csordás, R.; and Schmidhuber, J. 2022.
A Modern Self-Referential Weight Matrix That Learns to
Modify Itself. arXiv:2202.05780.
Jin, X.; Wang, K.; Tang, D.; Zhao, W.; Zhou, Y.; Tang, J.;
and You, Y. 2024. Conditional LoRA Parameter Generation.
arXiv:2408.01415.
Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T. B.;
Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; and
Amodei, D. 2020. Scaling laws for neural language mod-
els. arXiv preprint arXiv:2001.08361.
Karan, A.; and Du, Y. 2025. Reasoning with Sampling: Your
Base Model is Smarter Than You Think. arXiv:2510.14901.
Khan, R. M. S.; Tang, D.; Li, P.; Wang, K.; and Chen, T.
2025. ORAL: Prompting Your Large-Scale LoRAs via Con-
ditional Recurrent Diffusion. arXiv:2503.24354.
Kunin, D.; Sagastuy-Brena, J.; Ganguli, S.; Yamins, D. L.;
and Tanaka, H. 2020. Neural mechanics: Symmetry and
broken conservation laws in deep learning dynamics. arXiv
preprint arXiv:2012.04728.
LeCun, Y. 2022. A path towards autonomous machine in-
telligence version 0.9. 2, 2022-06-27. Open Review, 62(1):
1–62.
Lee, H.; Oh, S.; Kim, J.; Shin, J.; and Tack, J. 2025. Re-
VISE: Learning to Refine at Test-Time via Intrinsic Self-
Verification. arXiv:2502.14565.
Li, J.; Dong, X.; Liu, Y.; Yang, Z.; Wang, Q.; Wang, X.;
Zhu, S.; Jia, Z.; and Zheng, Z. 2025a. ReflectEvo: Improv-
ing Meta Introspection of Small LLMs by Learning Self-
Reflection. arXiv:2505.16475.
Li, M.; Lin, J.; Zhao, X.; Lu, W.; Zhao, P.; Wermter, S.;
and Wang, D. 2025b. Curriculum-RLAIF: Curriculum
Alignment with Reinforcement Learning from AI Feedback.
arXiv:2505.20075.
Liang, Z.; Tang, D.; Zhou, Y.; Zhao, X.; Shi, M.; Zhao,
W.; Li, Z.; Wang, P.; Schürholt, K.; Borth, D.; et al. 2025.
Drag-and-Drop LLMs: Zero-Shot Prompt-to-Weights. arXiv
preprint arXiv:2506.16406.
Liu, L.; Zhang, C.; Wu, L.; Zhao, C.; Hu, Z.; He, M.; and
Fan, J. 2025a. Instruct-of-Reflection: Enhancing Large Lan-
guage Models Iterative Reflection Capabilities via Dynamic-
Meta Instruction. arXiv:2503.00902.
Liu, S.-Y.; Wang, C.-Y.; Yin, H.; Molchanov, P.; Wang, Y.-
C. F.; Cheng, K.-T.; and Chen, M.-H. 2024. DoRA: Weight-
Decomposed Low-Rank Adaptation. arXiv:2402.09353.
Liu, Y.; Nan, Y.; Xu, W.; Hu, X.; Ye, L.; Qin, Z.; and Liu, P.
2025b. AlphaGo Moment for Model Architecture Discov-
ery. arXiv:2507.18074.
Lu, C.; Holt, S.; Fanconi, C.; Chan, A. J.; Foerster, J.; van der
Schaar, M.; and Lange, R. T. 2024. Discovering Prefer-
ence Optimization Algorithms with and for Large Language
Models. arXiv:2406.08414.

Manh, D. N.; Chau, T. P.; Le Hai, N.; Doan, T. T.; Nguyen,
N. V.; Pham, Q.; and Bui, N. D. 2024. Codemmlu: A multi-
task benchmark for assessing code understanding capabili-
ties of codellms. CoRR.
Mihaylov, T.; Clark, P.; Khot, T.; and Sabharwal, A.
2018. Can a suit of armor conduct electricity? a new
dataset for open book question answering. arXiv preprint
arXiv:1809.02789.
Moradi, M. M.; Amer, H.; Mudur, S.; Zhang, W.; Liu, Y.;
and Ahmed, W. 2025. Continuous Self-Improvement of
Large Language Models by Test-time Training with Verifier-
Driven Sample Selection. arXiv:2505.19475.
Pang, J.-C.; Wang, P.; Li, K.; Chen, X.-H.; Xu, J.; Zhang,
Z.; and Yu, Y. 2023. Language Model Self-improvement by
Reinforcement Learning Contemplation. arXiv:2305.14483.
Park, C. F.; Zhang, Z.; and Tanaka, H. 2025. New News:
System-2 Fine-tuning for Robust Integration of New Knowl-
edge. arXiv:2505.01812.
Qwen; :; Yang, A.; Yang, B.; Zhang, B.; Hui, B.; Zheng, B.;
Yu, B.; Li, C.; Liu, D.; Huang, F.; Wei, H.; Lin, H.; Yang,
J.; Tu, J.; Zhang, J.; Yang, J.; Yang, J.; Zhou, J.; Lin, J.;
Dang, K.; Lu, K.; Bao, K.; Yang, K.; Yu, L.; Li, M.; Xue,
M.; Zhang, P.; Zhu, Q.; Men, R.; Lin, R.; Li, T.; Tang, T.;
Xia, T.; Ren, X.; Ren, X.; Fan, Y.; Su, Y.; Zhang, Y.; Wan,
Y.; Liu, Y.; Cui, Z.; Zhang, Z.; and Qiu, Z. 2025. Qwen2.5
Technical Report. arXiv:2412.15115.
Reimers, N.; and Gurevych, I. 2019. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084.
Sakaguchi, K.; Bras, R. L.; Bhagavatula, C.; and Choi,
Y. 2019. WinoGrande: An Adversarial Winograd Schema
Challenge at Scale. arXiv:1907.10641.
Sap, M.; Rashkin, H.; Chen, D.; LeBras, R.; and Choi, Y.
2019. Socialiqa: Commonsense reasoning about social in-
teractions. arXiv preprint arXiv:1904.09728.
Shao, Y.; Lin, X.; Long, X.; Chen, S.; Yan, M.; Liu, Y.;
Yan, Z.; Ma, A.; Tang, H.; and Guo, J. 2025a. ICM-Fusion:
In-Context Meta-Optimized LoRA Fusion for Multi-Task
Adaptation. arXiv:2508.04153.
Shao, Y.; Yan, M.; Liu, Y.; Chen, S.; Chen, W.; Long, X.;
Yan, Z.; Li, L.; Zhang, C.; Sebe, N.; Tang, H.; Wang, Y.;
Zhao, H.; Wang, M.; and Guo, J. 2025b. In-Context Meta
LoRA Generation. arXiv:2501.17635.
Singh, A.; Co-Reyes, J. D.; Agarwal, R.; Anand, A.; Patil,
P.; Garcia, X.; Liu, P. J.; Harrison, J.; Lee, J.; Xu, K.; Parisi,
A.; Kumar, A.; Alemi, A.; Rizkowsky, A.; Nova, A.; Ad-
lam, B.; Bohnet, B.; Elsayed, G.; Sedghi, H.; Mordatch, I.;
Simpson, I.; Gur, I.; Snoek, J.; Pennington, J.; Hron, J.; Ke-
nealy, K.; Swersky, K.; Mahajan, K.; Culp, L.; Xiao, L.;
Bileschi, M. L.; Constant, N.; Novak, R.; Liu, R.; Warkentin,
T.; Qian, Y.; Bansal, Y.; Dyer, E.; Neyshabur, B.; Sohl-
Dickstein, J.; and Fiedel, N. 2024. Beyond Human Data:
Scaling Self-Training for Problem-Solving with Language
Models. arXiv:2312.06585.
Tang, X.; Lv, Z.; Cheng, X.; Li, J.; Zhao, W. X.; Wen,
Z.; Zhang, Z.; and Zhou, J. 2025. Enhancing Cross-task

Transfer of Large Language Models via Activation Steering.
arXiv:2507.13236.
Tao, Z.; Lin, T.-E.; Chen, X.; Li, H.; Wu, Y.; Li, Y.; Jin, Z.;
Huang, F.; Tao, D.; and Zhou, J. 2024. A Survey on Self-
Evolution of Large Language Models. arXiv:2404.14387.
Wang, K.; Tang, D.; Zhao, W.; Schürholt, K.; Wang, Z.; and
You, Y. 2025a. Recurrent diffusion for large-scale parameter
generation. arXiv preprint arXiv:2501.11587.
Wang, R.; Dvijotham, K.; and Manchester, I. R. 2025.
Norm-Bounded Low-Rank Adaptation. arXiv:2501.19050.
Wang, R.; Ping, P.; Guo, Z.; Zhang, X.; Shi, Q.; Zhou, L.;
and Ji, T. 2025b. LoKI: Low-damage Knowledge Implanting
of Large Language Models. arXiv:2505.22120.
Wang, Y.; Liu, X.; Chen, X.; O’Brien, S.; Wu, J.; and
McAuley, J. 2025c. Self-Updatable Large Language
Models by Integrating Context into Model Parameters.
arXiv:2410.00487.
Wang, Z.; Ma, D.; Huang, X.; Cai, D.; Lan, T.; Xu, J.;
Mi, H.; Tang, X.; and Wang, Y. 2025d. The End of Man-
ual Decoding: Towards Truly End-to-End Language Mod-
els. arXiv:2510.26697.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016.
Learning structured sparsity in deep neural networks. Ad-
vances in neural information processing systems, 29.
Wu, T.; Wang, J.; Zhao, Z.; and Wong, N. 2025. Mixture-of-
Subspaces in Low-Rank Adaptation. arXiv:2406.11909.
Wu, Z.; Arora, A.; Wang, Z.; Geiger, A.; Jurafsky, D.; Man-
ning, C. D.; and Potts, C. 2024. ReFT: Representation Fine-
tuning for Language Models. arXiv:2404.03592.
Yang, Z.; Band, N.; Li, S.; Candès, E.; and Hashimoto, T.
2024. Synthetic continued pretraining. arXiv:2409.07431.
Yuan, W.; Pang, R. Y.; Cho, K.; Li, X.; Sukhbaatar, S.; Xu,
J.; and Weston, J. 2025. Self-Rewarding Language Models.
arXiv:2401.10020.
Yuksekgonul, M.; Bianchi, F.; Boen, J.; Liu, S.; Huang, Z.;
Guestrin, C.; and Zou, J. 2024. TextGrad: Automatic ”Dif-
ferentiation” via Text. arXiv:2406.07496.
Zellers, R.; Holtzman, A.; Bisk, Y.; Farhadi, A.; and Choi,
Y. 2019. HellaSwag: Can a Machine Really Finish Your
Sentence? arXiv:1905.07830.
Zhang, G.; Meng, F.; Wan, G.; Li, Z.; Wang, K.; Yin, Z.;
Bai, L.; and Yan, S. 2025. LatentEvolve: Self-Evolving Test-
Time Scaling in Latent Space. arXiv:2509.24771.
Zhang, T. 2025. Toward Weight-level Self-
improving Agents with Meta-knowledge Discovery.
10.36227/techrxiv.175744083.37752625/v1.
Zhang, Z.; Jiang, Z.; Xu, L.; Hao, H.; and Wang, R. 2024.
Multiple-choice questions are efficient and robust llm eval-
uators. arXiv preprint arXiv:2405.11966.
Zhao, Z.; Shen, T.; Zhu, D.; Li, Z.; Su, J.; Wang, X.; Kuang,
K.; and Wu, F. 2024. Merging LoRAs like Playing LEGO:
Pushing the Modularity of LoRA to Extremes Through
Rank-Wise Clustering. arXiv:2409.16167.

Zheng, S.; Wang, H.; Huang, C.; Wang, X.; Chen, T.;
Fan, J.; Hu, S.; and Ye, P. 2025. Decouple and Or-
thogonalize: A Data-Free Framework for LoRA Merging.
arXiv:2505.15875.
Zhou, H.; Chen, Y.; Guo, S.; Yan, X.; Lee, K. H.; Wang,
Z.; Lee, K. Y.; Zhang, G.; Shao, K.; Yang, L.; and Wang,
J. 2025. Memento: Fine-tuning LLM Agents without Fine-
tuning LLMs. arXiv:2508.16153.
Zuo, Y.; Zhang, K.; Sheng, L.; Qu, S.; Cui, G.; Zhu, X.; Li,
H.; Zhang, Y.; Long, X.; Hua, E.; Qi, B.; Sun, Y.; Ma, Z.;
Yuan, L.; Ding, N.; and Zhou, B. 2025. TTRL: Test-Time
Reinforcement Learning. arXiv:2504.16084.
Zweiger, A.; Pari, J.; Guo, H.; Akyürek, E.; Kim, Y.;
and Agrawal, P. 2025. Self-Adapting Language Models.
arXiv:2506.10943.

