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ABSTRACT

Partially observable Markov decision process (POMDP) is a powerful framework
for modeling decision-making problems where agents do not have full access to
environment states. In the realm of offline reinforcement learning (RL), agents
need to extract policies on previously recorded decision-making datasets without
directly interacting with environments. Due to the inherent partial observability
of environments and the limited availability of offline data, agents must possess
the capability to extract valuable insights from limited data, which can serve as
crucial prior information for making informed decisions. Recent works have shown
that deep generative models, particularly diffusion models, exhibit impressive
performance in offline RL. However, most of these approaches mainly focus on
fully observed environments while neglecting POMDPs, and heavily rely on history
information for decision-making, disregarding the valuable prior information about
the future that can be extracted from offline data. Having recognized this gap, we
propose a novel framework FutureDD to extract future prior. FutureDD leverages
an auxiliary prior model encoding future sub-trajectories to a latent variable, which
serves as a compensation for directly modeling observations with a diffusion model.
This enables FutureDD to extract richer prior information from limited offline data
for agents to predict potential future dynamics. The experimental results on a set
of tasks demonstrate that in the context of POMDPs, FutureDD provides a simple
yet effective approach for agents to learn behaviours yielding higher returns.

1 INTRODUCTION

Planning under uncertainty is a crucial challenge for intelligent agents to accomplish real-world tasks
due to various limitations such as noisy data collection and transmission. The partially observable
Markov decision process (POMDP) stands out as a prominent framework for modeling such problems,
with numerous works demonstrating its success in domains like robotics (Kurniawati, 2022; Pajarinen
et al., 2022) and autonomous driving (Arbabi et al., 2023; Kuribayashi et al., 2023; Sunberg &
Kochenderfer, 2022; Hubmann et al., 2017; Bai et al., 2015). However, a key challenge with POMDP
environments is that when faced with incomplete state information, agents tend to find predicting
potential future dynamics becomes increasingly stochastic. This underscores the pressing need for
the agents to possess more prior information about the anticipated environmental shifts, which will
enable them to make more informed decisions. Considering the offline reinforcement learning (RL)
where agents extract policies from previously recorded data, both the inherent partial observability of
environments and the limited availability of offline data pose an elevated challenge in obtaining a
high-quality policy within the context of POMDPs.

The past few years have seen an increasing inclination towards formulating offline RL as a se-
quence prediction problem based on deep generative models such as autoregressive transformers
(Katharopoulos et al., 2020; Vaswani et al., 2017) and diffusion models (Ho & Salimans, 2022;
Dhariwal & Nichol, 2021). Numerous prior works (Chen et al., 2021; Janner et al., 2021; 2022;
Zheng et al., 2022; Liu et al., 2022; Carroll et al., 2022; Ajay et al., 2022) have showcased that these
sequence modeling approaches offer significant advantages over traditional TD-learning-based RL
methods such as avoiding the issue of deadly triad (Van Hasselt et al., 2018) and can lead to improved
performance outcomes, especially in fully observable environments. However, the POMDPs, crucial
in many real-world applications, remain underexplored. Furthermore, directly transferring these
outperforming-in-MDPs models to POMDPs may result in sub-optimal results (Ajay et al., 2022).

1



Under review as a conference paper at ICLR 2024

While most of these works are formulated as predicting future based on limited history information,
agents planning in POMDPs demand richer prior information extracted from the offline data to
analyze potential changes in the future.

In light of the above consideration, a natural idea to enrich the prior information is to extract potential
future dynamics as a complement to limited history observations. This motivates us to propose
FutureDD, a novel framework that delves into the exploration of leveraging future prior for sequential
decision making in POMDPs with a deep generative model. The overall framework is in Figure 1.
From an overall perspective, FutureDD consists of four core components: a prior model, a future
encoder, a diffusion model and a MLP-based inverse dynamics model. The prior model is trained to
extract potential future conditioned on the history information and return. The future encoder serves
as a posterior model, which encodes the future sub-trajectories seen in the offline datasets during the
training phase. The diffusion model learns the return-conditioned trajectory generation, where the
trajectory is composed of observations and the corresponding future prior. The inverse model predicts
actions based on history and the diffused future. During inference, we diffuse the trajectories with the
prior future sampled from the prior model and take actions with the inverse model. In this manner,
FutureDD equips agents with a future prior, enabling insightful and informed decision making in
POMDPs where complete state information is unattainable.

We conduct a variety of experiments on Gym Mujoco tasks from the D4RL benchmark (Fu et al.,
2020). Comparing FutureDD and its counterpart without future prior (Ajay et al., 2022), experimental
results demonstrate that FutureDD exhibits outstanding performance on most tasks by introducing
the future prior for POMDPs, particularly in the presence of diverse data qualities. We also compare
FutureDD with a variant where the prior model is conditioned only on observations. The results show
that the performance of FutureDD is more stable and consistently superior.

Overall, our main contributions can be summarized into three points. (1) We introduce FutureDD to
address the sequential decision making problem in POMDPs, faced with challenges of the inherent
partial observability and the limited offline data. (2) Motivated by extracting more prior information
from the offline data as well as the neglected future information in datasets, we propose to leverage
the future information as a prior for agents, which is realized by encoding the future sub-trajectories
to a latent variable with the prior model and future encoder in FutureDD. (3) Experimental results on
a set of Gym Mujoco tasks show that FutureDD has outstanding performance compared with other
baselines in POMDP environments.

2 RELATED WORK

Offline RL and Sequential Decision Making. Offline reinforcement learning(RL) is a paradigm
that extracts behavioral policies from a fixed dataset that was previously collected. Most work in this
area focus on policy optimization, aiming to maximize the reward gained by performing the learnt
policy. Motivated by the success of deep generative models in computer vision(Rombach et al., 2022;
Saharia et al., 2022; Meng et al., 2021) and natural language processing (Gong et al., 2023; Brown
et al., 2020; Devlin et al., 2019), there has been a growing trend to model offline RL as a sequence
generation problem in the past few years. Chen et al. (2021) and Janner et al. (2021) concurrently
explore to predict sequence based on autoregressive transformers, while the former focus on reward
conditioning and the latter concentrate on beam-search-based planning. Zheng et al. (2022) propose
a unified framework blending offline pretraining with online finetuning. Liu et al. (2022) employ
masked autoencoder(MAE) to state-action trajectories and find randomly masking helps train a model
generalizing well on several downstreams tasks. Apart from transformer-based methods, recent works
Janner et al. (2022); Ajay et al. (2022); Dai et al. (2023) have also levaraged diffusion models, to aid
planning in MDP environments.

Diffusion Models for Decision Making. Recent years, diffusion models have emerged as a prominent
approach to generate high-quality samples with a wide range of applications, such as computer vision
(Rombach et al., 2022; Saharia et al., 2022; Meng et al., 2021) and sequence modeling (Ajay et al.,
2022; Janner et al., 2022). Training diffusion models involves a forward process transforming initial
data distribution to a prior distribution and a reverse process that iteratively denoises the prior state
back to the initial state using a neural network. To generate samples from a conditional distribution
p(x0|c) given condition c, classifier guidance (Dhariwal & Nichol, 2021) and classifier-free guidance
(Ho & Salimans, 2022) have been proposed to boost sample quality. In the field of sequence modeling,
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Figure 1: The overall framework of FutureDD. FutureDD consists of four core components: a
prior model, a future encoder, a diffusion model and a MLP-based inverse dynamics model. During
training, the future encoder q encodes future sub-trajectories τfuture from the offline dataset D into
latent variables z as the future prior to be concatenated with the observations. The diffusion model
learns the return-conditional distribution of concatenated observations and latent variables outputted
by the future encoder. During evaluation, the prior model conditioned on observations and the target
return, predicts the future prior z to be utilized for planning. In this manner, FutureDD is enabled to
be trained and evaluated to make decisions with future prior in POMDPs.

Janner et al. (2022) samples stacked states and actions under the guidance of a trained reward function
while the work presented in Ajay et al. (2022) eliminate the need for training an additional reward
function by utilizing a classifier-free guidance approach for state sampling, taking into account
that states in RL tasks are typically continuous in nature, while actions exhibit more diversity.
These works have indeed achieved impressive results in the context of MDP. However, they have
somewhat overlooked the significance of POMDP environments. Given the remarkable performance
demonstrated by Ajay et al. (2022) in MDP settings, our work builds upon their foundations.

Encoding Future as Prior Information. Leveraging future information is a popular and effective
approach in Reinforcement Learning (RL). The utilized future information can encompass elements
such as future returns or rewards (Chen et al., 2021; Schmidhuber, 2019; Kumar et al., 2019),
goals (Liu et al., 2022; Andrychowicz et al., 2017), trajectory statistics (Furuta et al., 2021) and
learned trajectory embeddings (Xie et al., 2023; Yang et al., 2022; Furuta et al., 2021). This
information can be employed in various ways, including its use as a condition in future-conditioned
supervised learning (Chen et al., 2021; Zheng et al., 2022) and future-conditioned unsupervised
pretraining (Xie et al., 2023). Alternatively, it can be encoded as a latent variable to improve long-term
prediction (Ke et al., 2019), address environmental stochasticity (Yang et al., 2022; Villaflor et al.,
2022; Venuto et al., 2021), or aid function approximation for model-free RL (Venuto et al., 2021).
Distinguished from prior works, our motivation lies in the extraction of valuable prior information
from offline data to address the challenge of partial observability. And we consider the framework of
modeling RL trajectories into conditional generation (Ajay et al., 2022) within the context of POMDP
environments.

3 PROBLEM SETUP AND PRELIMINARIES

In this section, we firstly formulate the sequential decision making problem as a POMDP and give
more detailed description of the definition. Secondly, we introduce the way to view decision making
through the lens of conditional generative modeling (Ajay et al., 2022). The above parts are setup for
our proposed FutureDD in Section 4.
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3.1 SEQUENTIAL DECISION MAKING IN POMDPS

We formulate the sequential decision making problem as a discounted partially observable Markov
decision process defined by the tuple (S,O,A, T ,R,Z, γ), where S, O, A denote the state, obser-
vation and action spaces respectively. The transition function, T : S ×A → S , defines the transition
between states when an action is taken. The reward function R : S × A × S → R specifies the
reward when a transition happens. Z : S → O denotes the observation emission model describing the
probability distribution that maps the unseen state to its corresponding observation. γ is the discount
factor (Puterman, 2014). The RL objective of a agent in POMDP is to find the policy maximizing the
expected return of a trajectory τ := {(ot, at, rt)}Tt=0, which could be formulated as:

π∗ = argmaxEat∼π, st+1∼T (·|st,at),rt∼R(st,at,st+1)

[
ΣT

t=0γ
trt

]
. (1)

3.2 DIFFUSION MODELS

To learn the data distribution q (x), a diffusion model (Sohl-Dickstein et al., 2015; Ho
et al., 2020) consists of two Markov chains: a predefined forward process q (xk|xk−1) :=
N

(
xk;
√
1− βkxk−1, βtI

)
perturbing data to noise, and a reverse denoising process learning

transition kernels parameterized by trainable neural networks, which take the form of p (xk−1|xk) :=
N (xk−1;µθ (xk, k) ,Σθ (xk, k)). The variance schedule βk ∈ (0, 1) is a carefully chosen hyper-
parameter, and N (µ,Σ) denotes a Gaussian distribution with mean µ and variance Σ. The prior
distribution is defined as p (xK) := N (xK ;0, I) with a long enough K. Diffusion models can
be trained by the mean square loss between the predicted noise ϵθ (xk, k) and the noise ϵ sampled
from N (0, I) proposed by Ho et al. (2020). For conditional sample generation with classifier-free
guidance (Ho & Salimans, 2022), the predicted noise of diffusion models can be extended to both
an unconditional ϵθ (xk, ∅, k) and a conditional ϵθ (xk, c, k), where ∅ represents a dummy value.
Diffusion models sample conditional data using the perturb noise

ϵθ (xk, k) + ω (ϵθ (xk, c, k)− ϵθ (xk, ∅, k)) , (2)

in which ω describes the guidance strength given condition c. In this work, we apply the conditional
diffusion models to model the states of a trajectory conditioned on returns c := R (τ), following
the approach by Ajay et al. (2022), which is defined as xk (τ) := (ot, ot+1, ..., ot+H−1)k with k
denoting the noising step and t denoting the timestep in trajectory τ of horizon H . During the training
phase, the return R (τ) is defined as the discounted accumulated reward of τ while during evaluation
return R is a predefined hyperparameter.

4 METHODOLOGY

In this section, we present FutureDD, which learns policies with future prior from offline data in
POMDP environments. We begin by providing an overview of the FutureDD framework, followed by
detailed explanations of its individual components. After that, we give a comprehensive exposition of
the training and inference processes of FutureDD.

4.1 FutureDD: AN OVERVIEW AND COMPONENT BREAKDOWN

Overview of FutureDD. The overall framework is shown in Figure 1. To achieve of the goal of
planning with future prior, we first need a prior model capable of extracting future information
based on history information. However, the challenge lies in how to provide appropriate future
information to train the prior model. Both the availability and quality of future information are crucial
for effectively training the whole framework. Considering the availability, we can utilize the future
sub-trajectories recoreded in offline data. Motivated by prior work (Xie et al., 2023), we leverage a
future encoder to encode the actual future sub-trajectories from offline data into latent space. This
encoded future serves as the prior information to train the prior model. As for the quality of future
information, it’s essential to condition not only on history but also on return. This dual conditioning
ensures that the model has access to comprehensive information for more accurate and robust learning.
Apart from the prior model and the future encoder, we utilize a diffusion model to predict the future
and an inverse dynamics model to predict actions based on the observations and the future prior.
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Algorithm 1: Planning with FutureDD in POMDPs

1 Input: Prior model pθ1 , noise model ϵθ3 , inverse dynamics model fθ4 , guidance intensity ω,
noise scale α, history length c, condition return R, denoising steps K

2 Initialize τpast ← Queue(length=c);
3 t← 0;
4 while not done do
5 Get observation ot;
6 zt ← pθ1 (ot, R); // get the future prior z
7 st← [ot, zt];
8 τpast.insert (st);
9 Initialize xK (τ) ∼ N (0, αI);

10 for k = K,K − 1, ..., 1 do // Diffuse with observation and prior
11 xk (τ)[:length(τpast)]←τpast;
12 ϵ̂← ϵθ3 (xk(τ), ∅, k) + ω (ϵθ3 (xk (τ) , ∅, k)− ϵθ3 (xk (τ) , R, k)) ;
13 µk−1,Σk−1 ← Denoise (xk(τ), ϵ̂);
14 xk (τ) ∼ N (µk−1, αΣk−1);
15 Extract (st, st+1) from x0 (τ);
16 Take action at ← fθ4 (st, st+1); // Predict action with inverse model
17 t← t+ 1;

Overall, our proposed FutureDD comprises four main components, which can be classified into two
major categories. The first category includes a future encoder and prior model, which are used for
providing future information. The second category consists of the diffusion model and MLP-based
inverse dynamics model, which are utilized for planning based on both historical and extracted future
information.

The Prior Model and Future Encoder. We jointly train the future encoder compressing the future
sub-trajectories into the latent space and the prior model extracting the future prior. And the prior
model is trained to predict the future prior z conditioned on observations and returns, which can be
formulated as z ∼ p (·|o,R) with p (·|o,R) outputing a multivariate Gaussian distribution.

From an episode τ of length T in the offline dataset, a sub-trajectory τt:t+H of length H is sampled
as

τt:t+H := (ot, at, rt, ot+1, at+1, rt+1, ..., ot+H−1, at+H−1, rt+H−1) . (3)

The return of τt:t+H can be represented as R (τt:t+H). And the corresponding future sub-trajectory
to be embedded into the latent space can be denoted as

τfuture := (ot+u, at+u, ot+u+1, at+u+1, ..., ot+u+H−1, at+u+H−1) , (4)

where u is an integer denoting the distance between the history horizon and the future horizon.
However, we only embed the future dynamics consisting of the observations and actions. With the
prior model and future encoder, the training objective of predicting the future prior is to minimize

Lfuture := βEτ∼D,z∼qθ(·|τfuture) [DKL (qθ(· | τfuture)∥N (0, I))] (5)

+ Eτ∼D,z∼qθ(·|τfuture) [DKL (⌊qθ (z | τfuture)⌋ ∥pθ (z | ot, R (τ)))] , (6)

inspired by previous work (Xie et al., 2023). Here, DKL denotes the Kullback-Leibler divergence and
⌊·⌋ describes the stop-gradient operator. The former term of the future loss is a regularization term to
control the capacity of z and to avoid that the future encoder fails to capture the full distribution of
future (Xie et al., 2023; Higgins et al., 2016), where β is a carefully chosen hyperparameter as the
regularization coefficient. The second term is for training the prior model to extract the future prior
conditioned on history observations and returns.

The Diffusion Model and Inverse Dynamics Model. The diffusion model is trained to forecast
the subsequent observation from history observations. However, if we directly apply the diffuser
to the observations ot:t+H in the dataset as xk (τ) := (ot, ot+1, ..., ot+H−1)k representing incom-
plete environmental states typically, it may lead to suboptimal outcomes (Ajay et al., 2022). This
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underscores the significant function of the future prior prior as a complement to the part of unseen
states for agents. Therefore, instead of directly modeling the raw observations in the offline dataset,
FutureDD utilizes a concatenation of the observations and the corresponding latent variables z.
For simplification, we denote the augmented observations as st := (ot, zt), and the target data to
be modelled by the diffusion model as xk (τ) := (st, st+1, ..., st+H−1)k. The simplified training
objective of the diffusion model (Ho et al., 2020) can be represented as

Ldiff := Eϵ∼N (0,I)

[
∥ϵ− ϵθ (xk, c, k) ∥2

]
(7)

where condtition c can be empty or return R (τ).

At each timestep, FutureDD extracts (st, st+1) from x0 (τ) after K denoising steps, and a MLP-
based inverse dynamics model f (st, st+1) is utilized to take both of them as input and predict the
current action ât := f (st, st+1) with the training objective of

Linv := ∥at − f (st, st+1) ∥2. (8)

4.2 TRAINING AND EVALUATION

Training. To train FutureDD with four components, we need to consider all the losses mentioned
above. Having sub-trajectories and the corresponding future sub-trajectories from the offline dataset,
the latent variables z can be sampled from the output distributions from the future encoder and be
used for training the prior model. After concatenating observations with the latent variables, the
combination is leveraged for training the diffusion model and the inverse dynamics model. The
overall training objective is

LFutureDD := Lfuture + λ1 · Ldiff + λ2 · Linv (9)

where λ1 and λ2 are weights of Ldiff and Linv respectively.

Evaluation. During evaluation, the future piror is sampled from the learned prior model and is
concatenated with observations to predict the future in the same way as the training process. The
overall pipeline of planning with FutureDD is outlined in Algorithm 1.

5 EXPERIMENTS

In this section, we evaluate the performance of FutureDD. Our primary aim is to explore two key
questions: 1) Can providing more future prior information assist the agent in learning a superior
policy from offline data? 2) Does a reward conditioned prior model demonstrate better performance
compared to a prior model without reward conditioning?

Baselines. To answer the first question, we evaluate the performance of FutureDD compared with
Decision Diffuser (Ajay et al., 2022) which models observations with a diffusion model. Since the
diffusion model and inverse model of FutureDD are built on Decision Diffuser (DD), the difference
between FutureDD and DD lies in whether the future information is leveraged. Apart from that, we
also design a variant of FutureDD, the FutureDD_w/oR with the prior model that is conditioned on
observations solely.

Implementation Details. We use an autoregressive transformer as the future encoder mapping
future sub-trajecotries to a set of latent variables. And the prior model we use in FutureDD is a
single layer neural network mapping the embedded observations and returns to the future prior. The
denoising model and inverse dynamics model are built on Decision Diffuser. The former model ϵθ is
parameterized by a temporal U-net composed of a set of convolutional residual blocks. The final loss
weights λ1 and λ2 we adopt are set to 1.

Datasets and Environments. The experiments are conducted in 3 Gym Mujoco environments with a
total of 9 datasets from the D4RL benchmark (Fu et al., 2020). Each environment includes datasets of
"medium replay", "medium" and "medium expert". The "medium replay" datasets
consist of all the observed samples in the replay buffer during training until the polices reach
"medium" level, while the "medium" datasets are all generated by "medium" level policies. The
"medium expert" datasets are composed of optimal and suboptimal data. All the observations
to be leveraged come from the original states excluded with 2 dims. In this manner, we investigate
the performance of FutureDD in POMDP environments.
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Figure 2: Experimental results on 9 datasets. These results are the average and variance of
evaluations under 10 random seeds with each evaluation consisting of 10 episodes. Among the 9
datasets, FutureDD outperforms other baselines in 7/9 environments.

Main Results and Analysis. The results are in Figure 2. While FutureDD outperforms DD on 8/9
environments, FutureDD performs the best in 7/9 environments. First, with FutureDD outperforming
DD on 8/9 environments, it reveals that leveraging additional future information can improve the
policy learned from offline data in POMDPs. However, the degree of this improvement may vary with
the quality of datasets. It is noted that on the three "medium expert" datasets, the improvement
from prior information is relatively marginal. This observations are attributed to the "medium
expert" datasets themselves inherently containing optimal or sub-optimal information. Extra prior
information may not substantially alter the quality of policy, and could potentially even be detrimental.
This is evident from the performance of FutureDD_w/oR on the three "medium expert" datasets,
where it exhibits a notable decline in two out of three datasets compared to DD. In this scenario, the
prior information inadvertently introduces bias during model training, harming the performance of
the policy. However, when comparing FutureDD with FutureDD_w/oR, incorporating return in the
condition helps mitigate the adverse impact of bias when prior information is not as essential for
policy learning. This adjustment ultimately solidifies FutureDD as the superior performer across all
nine datasets, ensuring its robustness against the negative influences of additional bias.

Therefore, a reasonable and efficient prior model can significantly improve the performance and
robustness of the algorithm, while inappropriate prior information might introduce unnecessary bias,
negatively affecting the learning process and the final performance. Overall, the experimental results
prove that FutureDD can effectively utilize prior information to learn better policies across various
environments.

6 CONCLUSION

In this paper, we introduce FutureDD, a novel framework that extracts future prior for conditional
generative modeling of decision making in POMDP environments. Our experiments conducted
acorss diverse datasets have empirically validated the efficacy of FutureDD. The additional future
prior information has been shown to sustantially aid agents in learning return-maxmizing policies in
POMDP environments, demonstrating the effectiveness of FutureDD. Moreover, the reward condi-
tioning of the prior model further bolsters the performance of the prior model, as evidenced by the
consistent outperformance of FutureDD compared with FutureDD_w/oR. Our findings substantiate
the critical role of utilizing the future information to extract prior for decision making in POMDPs
where complete state information is out of reach.

Limitation. Despite the promising results in our work, there are also some limitations in FutureDD.
The focus of FutureDD is to leverage the future prior for decision making in POMDPs and predict
actions with a simple MDP-based inverse dynamics model following the work by Ajay et al. (2022).
However, some previous works (Paischer et al., 2022) show that memorizing history information
is also crucial for POMDPs. Therefore, the inverse dynamics model utilized in our work may lead
to constraints of the capacity of the whole framwork. Replacing MLP with a model capable of
simultaneously utilizing both longer history information and rich future prior should be an interesting
direction to explore.
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