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ABSTRACT

In this work, we study the behavior of standard models for community detection
under spectral manipulations. Through various ablation experiments, we evalu-
ate the impact of bandpass filtering on the numerical performances of a GCN: we
empirically show that most of the necessary and used information for nodes classi-
fication is contained in the low-frequency domain, and thus contrary to Euclidean
graph (e.g., images), high-frequencies are less crucial to community detection. In
particular, it is possible to obtain accuracies at a state-of-the-art level with simple
classifiers that rely only on a few low frequencies: this is surprising because con-
trary to GCNs, no cascade of filtering along the graph structure is involved and
it indicates that the important spectral components for the supervised community
detection task are essentially in the low-frequency domain.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) are the state of the art in community detection (Kipf &
Welling, 2016). They correspond to Graph Neural Networks (GNNs) that propagate graph features
through a cascade of linear operator and non-linearities, while exploiting the graph structure through
a linear smoothing operator. However, the principles that allow GCNs to obtain good performances
remain unclear. It is suggested in Li et al. (2018) that GCNs are eager to over-smooth their rep-
resentation, which indicates they average too much neighborhood nodes and dilute classification
information. The smoothing is generally interpreted as a low-pass filtering through the graph Lapla-
cian, and finding a way to exploit high-frequencies of the graph Laplacian is an active research
question (Oono & Suzuki, 2019). In contrast to this, our work actually suggests that, in the setting
of community detection, graph Laplacian high-frequencies have actually a minor impact on the clas-
sification performances of a standard GCN, as opposed to standard Convolutional Neural Networks
for vision, which are built thanks to image processing considerations.

Graph Signal Processing (GSP) is a popular field whose objective is to manipulate signals spectrum
whose topology is given by a graph. Typically, this graph has a non-Euclidean structure, however
many central theoretical results (Hammond et al., 2011) are based on an analogy with Euclidean,
regular grids. For instance, a spectral component or frequency has to be understood as an eigenvalue
of the Laplacian, yet it thus suffers from intrinsic issues such as isotropy (Oyallon, 2020). The
principles of GSP are very appealing because they allow to use the dense literature of harmonic
analysis, on graphs. Thus, this literature is at the core of many intuitions and drives many key
ingredients of a GCN design, which evokes standard tools of signal processing: convolutions, shift
invariance, wavelets, Fourier (Bronstein et al., 2017), etc. Here, we certainly observe several limits
of this analogy in the context of community detection: for instance, we observe that discarding
high-frequencies has a minor impact on a GCN behavior, because the spectrum of the graphs of the
datasets that are used is essentially located in the low-frequency domain. This type of ideas is for
instance core in spectral clustering algorithms.

Spectral clustering is a rather different point of view from deep supervised GCNs which studies
node labeling in unsupervised contexts: it generally relies on generative models based on the graph
spectrum. The main principle is to consider the eigenvectors corresponding to the smallest non-
zero eigenvalues, referred to as Fiedler vectors (Doshi & Eun, 2020): those directions allow to
define clusters, depending on the sign of a feature. Several theoretical guarantees can be obtained
in the context of Stochastic Block Model approximation (Rohe et al., 2011). Our paper proposes
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to establish a clear link with this approach: we show that the informative graph features are located
in a low-frequency band of the graph Laplacian and do not need extra graph processing tools to be
efficiently used in a deep supervised classifier.

This paper shows via various ablation experiments that experiments on standard community de-
tection datasets like Cora, Citeseer, Pubmed can be conducted using only few frequencies of their
respective graph spectrum without observing any significant performances drop. Other contributions
are as follows: (a) First we show that most of the necessary information exploited by a GCN for a
community detection task can actually be isolated in the very first eigenvectors of a Laplacian. (b)
We numerically show that the high-frequency eigenvalues are less informative for the supervised
community detection task and that a trained GCN is more stable to them. (c) We observe that a
simple MLP method fed with handcrafted features allows to successfully deal with transdusctive
datasets like Cora, Citeseer or Pubmed: to our knowledge, this is the first competitive results ob-
tained with a MLP on those datasets.

We now discuss the organization of the paper: first, we discuss the related work in Sec. 2. We explain
our notations as well as our work hypotheses in Sec. 3. Then, we study low-rank approximations of
the graph Laplacian in Sec. 4.1. Finally, the end of Sec. 4 proposes several experiments to study the
impact of high-frequencies on GCNs. A basic code is provided in the supplementary materials, and
our code will be released on an online public repository at the time of publication.

2 RELATED WORK

GCNs and Spectral GCNs Introduced in Kipf & Welling (2016), GCNs allow to deal with large
graph structure in semi-supervised classification contexts. This type of model works at the node
level, meaning that it uses locally the adjacency matrix. This approach has inspired a wide range of
models, such as linear GCN (Wu et al., 2019), Graph Attention Networks (Veličković et al., 2017),
GraphSAGE (Hamilton et al., 2017), etc. In general, this line of work does not consider directly
the graph Laplacian. Another line of work corresponds to spectral methods, that employ filters
which are designed from the spectrum of a graph Laplacian (Bruna et al., 2013). In general, those
works make use of polynomials in the Laplacian (Defferrard et al., 2016), which are very similar
to an anisotropic diffusion (Klicpera et al., 2019). All those references share the idea to manipulate
bandpass filters that discriminate the different ranges of frequencies.

Over-smoothing in GCNs In the context of GCN, Li et al. (2018) is one of the first papers to
notice that cascading low-pass filters can lead to a substantial information loss. The result of our
work indicates that the important spectral components for detecting communities are already in the
low-frequency domain and that this is not due to an architecture bias. Zhao & Akoglu (2019); Yang
et al. (2020) proposes to introduce regularizations which address the loss of information issues. Cai
& Wang (2020); Oono & Suzuki (2019) study the spectrum of a graph Laplacian under various
transform, yet they consider the spectrum globally and in asymptotic settings, with a deep cascade
of layers. Huang et al. (2020); Rong et al. (2019b) introduce data augmentations, whose aim is to
alleviate over-smoothing in deep networks: we study GCNs without this ad-hoc procedure.

Spectral clustering and low rank approximation As the literature about spectral clustering is
large, we mainly focus on the subset that connects directly with GCN. Mehta et al. (2019) proposes to
learn an unsupervised auto-encoder in the framework of a Stochastic Block Model. Oono & Suzuki
(2019) introduces the Erdös – Renyi model in the GCN analysis, but only in an asymptotic setting.
Loukas & Vandergheynst (2018) studies the graph topology preservation under the coarsening of the
graph, which could be a potential direction for future works.

Node embedding A MLP approach can be understood as an embedding at the node level. For
instance, Aubry et al. (2011) applies a spectral embedding combined with a diffusion process for
shape analysis, which allows point-wise comparisons. We should also point Deutsch & Soatto
(2020) that uses a node embedding, based on the spectrum of a quite modified graph Laplacian,
obtained from on a measure of node centrality.

Graph Scattering Networks (GSN) This class model explicitly employs band-pass based on the
spectrum of a graph Laplacian and it is thus necessary to review it. Gao et al. (2019); Gama et al.
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(2018; 2019) are a class of neural networks built upon an analogy with a Scattering Transform (Mal-
lat, 2012). They typically rely on a cascade of wavelets followed by an absolute value: the objective
of each wavelet is to separate multi-scale information into dyadic bandpass filters. This method re-
lies heavily on each eigenvector of the Laplacian and the dyadic space is typically constructed from
a diffusion process at dyadic intervals. Interferometric Graph Transform on the other hand relies on
the concept of demodulation, which is clear in the context of Lie groups but unclear for community
detection tasks (Oyallon, 2020).

GCN stability Stability of GCNs has been theoretically studied in Gama et al. (2019), which
shows that defining a generic notion of deformations is difficult. Surprisingly, it was noted in Oyal-
lon (2020) that stability is not a key component to good performances. The stability of GCN has also
been investigated in Verma & Zhang (2019) but only considers neural networks with a single layer
and relies on the whole spectrum of the learned layer. Keriven et al. (2020) considers the stability of
GCNs, and relies on an implicit Euclidean structure: it is unclear if this holds in our settings. Sun
et al. (2020) is one of the first works to study adversarial examples linked to the node connectivity
and introduces a loss to reduce their effects. Zhu et al. (2019) also addresses the stability issues by
embedding GCNs in a continuous representation. None of these work directly related a trained GCN
to spectral perturbations.

3 FRAMEWORK

3.1 METHOD

We first describe our baseline model. Our initial graph data are node features X obtained from
a graph with N nodes and an adjacency matrix A with diagonal degree matrix D. We consider
GCNs f(X,A) as introduced in (Kipf & Welling, 2016), which correspond to GNNs that propagate
features graph input H(0) , X through a cascade of layers, via the iteration:

H(l+1) , σ

(
ÃH(l)W (l)

)
, (1)

where Ã = 1
2 (I + D−1/2AD−1/2), σ a point-wise non-linearity and W (l) a parametrized affine

operator. Note that if Ã = IN , then Eq. 1 is simply an MLP, which makes its implementation
simple. The 1

2 factor is a normalization factor to obtain ‖Ã‖ = 1. In the semi-supervised setting, a
final layer f(X, Ã) , H(L) is fed to a supervised loss ` (here a softmax) and {W (0), ...,WL−1} are
trained in an end-to-end manner to adjust the label of each node. We note that for undirected graph,
Ã is a positive definite matrix with positive weights, which is understood as an averaging operator
Li et al. (2018), as, ignoring D̃, we see that for some node features X , we have:

[(IN +A)X]i = Xi +
∑
j→i

Ai,jXj . (2)

We remark that multiple choices of averaging operators are possible: as briefly discussed in Ap-
pendix A.3 other formulations did not change our numerical conclusions, thus we decided to keep
the simplest to be handled mathematically. We are interested in analyzing the properties of spec-
tral approximations of Ã. We consider the decreasing set of eigenvalues Λ = {λk}k≥0 of Ã, such
that λk ≥ λk+1, and we denote by uk the k-th eigenvector corresponding to λk ∈ Λ. We remind
that Λ ⊂ [0, 1] and that λ0 = 1 can be interpreted as the lowest frequency of the graph Laplacian.
Since the adjacency matrix is normalized, one basis of λ0’s eigenspace is constituted by the constant
vectors of 1 supported on each connected component. We then write:

Ã[k1,k2] ,
∑

k1≤k≤k2

λkuku
T
k , (3)

such that Ã = Ã[0,N ]. We are interested to study the degradation accuracy if we replace Ã with
Ã[0,k] or Ã[k,N ] for some 0 < k < N . The next section explains that under standard but over-
simplifying assumptions, an approximation of the type Ã[0,k] is relevant for community detection
tasks.
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3.2 UNDERSTANDING LOW RANK APPROXIMATIONS FOR GCNS

We now justify our approach under the standard setting of the Stochastic Block Model (Abbe, 2017),
and we will simply remind the reader of several elementary results. This model corresponds to a
generative model that describes the interaction between r communities {C1, ..., Cr}. Assuming that
two nodes i, j belong to the communities Cri , Crj , an edge is sampled with a probability pri,rj
(Rohe et al., 2011). For the sake of simplicity, let us assume that r = 2, that the probability of
an edge between two nodes i, j is p if those nodes belong to the same community and q < p
otherwise, and that both communities correspond to |C| nodes. In this case, the unnormalized
expected adjacency matrix is given by:

p · · · p q · · · q
...

...
...

...
p · · · p q · · · q
q · · · q p · · · p
...

...
...

...
q · · · q p · · · p


, (4)

where we grouped in matrix block the nodes from the same community. We note that the two
dominant eigenvectors are given by:

u1 = [

|C| times︷ ︸︸ ︷
1, ..., 1, 1, ..., 1︸ ︷︷ ︸

|C| times

] and u2 = [

|C| times︷ ︸︸ ︷
1, ..., 1,−1, ...,−1︸ ︷︷ ︸

|C| times

] . (5)

Observe that the second eigenvector u2 captures all the information about the two communities,
through the sign of its coefficients. Here, the spectral gap (the ratio between the two dominant
eigenvalues) is given by 0 ≤ p−q

p+q < 1 and ideally this spectral gap should be as large as possible for
identifying the two communities. If the number of nodes is large, concentration results (Wainwright,
2019) imply that the empirical adjacency matrix concentrates around its expectation, and that under
this assumption, a low-rank approximation Ã[0,2] captures most of the available information about
the two communities. We illustrate this idea on Fig. 1. While these assumptions might not hold in
practice, it justifies why low-rank approximations of a Laplacian are relevant in the setting of com-
munity detection and it explains why high-frequencies might not be as important as low-frequencies
for supervised community detection task. The next section validates empirically this approach in the
context of GCNs and simpler architectures.

(a)

u1 u2 u147 u148

u3 u4 u149 u150

(b)

Figure 1: Under a Stochastic Block Model with 4 communities (a), we represent the first Eigen-
vectors (b, left) and the last Eigenvectors (b, right). On the left figure, the colors stand for the
communities. On the right, they stand for the values of the considered eigenvectors (the brighter the
higher). A low rank approximation maintains the information related to the different communities.
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Figure 2: Spectrum Λ of Ã. Note that the eigenvalues are decreasing, displayed with multiplicity.
Observe that the decay of the spectrum is fast.

4 NUMERICAL EXPERIMENTS

Matching the previous work practice, we focus on the three classical benchmark dataset for com-
munity detection: Cora, Citeseer and Pubmed (Sen et al., 2008). The task consists in classifying the
research topic of papers in three citation datasets. Those tasks are transductive, meaning all node
features are accessible during training. We apply the full-supervised training fashion used in Huang
et al. (2016), Chen et al. (2018), and Rong et al. (2019b) on all datasets in our experiments. Fig.
2 plots the 3 spectra Λ in decreasing order for each of those datasets. The three datasets exhibit a
significant spectral gap, which is aligned with the model of Sec. 1b. Note that Pubmed has one con-
nected component, and that the decay of its spectrum is fast compared to Cora or Citeseer, which
indicates a low-dimensional structure (Belkin & Niyogi, 2002). The statistics of each dataset are
listed in the supplemental materials.

We choose σ to be the ReLU non-linearity (Krizhevsky et al., 2012). Unless specified otherwise,
the weights of our models (either GCN or MLP) are optimized via Adam, with an initial learning
rate 0.01 and weight decay of 0.001, during 800 epochs. We use by default a dropout of 0.5. Our
model consists in GCN layers with 2 hidden layers of size 128. In all experiments, we cross validate
our hyper-parameters on a validation set, using an early stopping at epoch 400. Unless specified
otherwise, each plot is obtained by an average over at least 3 different seeds.

4.1 LOW RANK APPROXIMATION

GCN ablation Here, we consider the two projections Ã[0,k] and Ã[N−k,N ], where k is adjusted
to retain only a portion of the spectrum. Via the GSP lens, those projections can be interpreted
respectively as high-pass and low-pass filters. As explained in Sec. 1b, those projections will allow
to study which frequency band is important for the community detection task. Fig. 3 and Fig.
4 report the respective numerical performance when considering the models f(X, Ã[N−k,N ]) and
f(X, Ã[0,k]) for some k.

On Fig. 3, we observe that retaining only very few frequencies (less than 10%) does not degrade
much the accuracy of the original network. This does not contradict the observation of Li et al.
(2018) which studies empirically the over-smoothing phenomenon, as our finding indicates that a
GCN uses mainly the low frequency domain. For Pubmed, using almost all the high-frequencies is
required to recover the original accuracy of our model. Interestingly, deeper GCNs seem to benefit
from the high frequency ablation, yet their accuracy remains below their shallow counter-part and
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Figure 3: Test accuracies reached by a GCN as a function of the Low-Frequencies (LF) band [λk, λ0]

retained by Ã[0,k], for various depths (100% corresponds to the full spectrum, including low frequen-
cies). This figure indicates that informative component for the community detection task are located
in the low frequency domain.
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Figure 4: Test accuracies reached by a GCN as a function of the High-Frequencies (HF) band
[λN , λN−k] retained by Ã[N−k,N ], for a GCN of depth 2 (100% corresponds to the full spectrum).
This figure indicates that high-frequencies are less informative for a community detection task.

they are still difficult to train, as shown on Cora. This instability to spectral perturbations is further
studied in Sec 4.2. Fig. 4 indicates that the major information for supervised community detection
is contained in the low frequencies: dropping the latter leads to substantial accuracy drop, even for
a shallow GCN.

MLP ablation We further study how informative low-frequencies are for community detection
tasks via a spare ablation experiment based on a MLP. We augment each graph features X through
the concatenation Xk = [X,uT1 , ..., u

T
k ] of the first k eigenvectors. For a fair evaluation, we used

exactly the same hyper-parameters as for the experiments above. Fig. 5 reports the accuracy of our
MLP trained on Xk as a function of k. We see that using a fraction k

K ≤ 20% of the eigenvectors
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Figure 5: Accuracy of MLPs trained onXk, according to the Low-Frequency band [λk, λ0] retained.
We note that selecting a narrow low-frequency band can lead to competitive accuracies.

allows to recover the performance of a GCN trained end-to-end. More surprisingly, we note that as
k increases, the accuracy drops, which indicates that high-frequencies behave like a residual noise
that is not well filtered by a MLP, and rather overfitted. This is particularly true for Pubmed, which
has a fast spectral decay and for which the low frequencies seem to be the most informative. This
experiment emphasizes that a low rank approximation of the Laplacian of the graph of a community
detection task can be beneficial to a MLP classifier.

Table 1: Comparison of various models on Cora, Citeseer and Pubmed.

Method Data augmentation Cora Citeseer Pubmed

GCN (Rong et al., 2019b) No 86.6 79.3 90.2
Fastgcn (Chen et al., 2018) No 86.5 - 88.8
MLP on X No 74.0 73.3 89.1
MLP on X̃k (ours) No 86.6 77.3 91.4

DropEdge (Rong et al., 2019b) Yes 88.2 80.5 91.7
(Huang et al., 2018) Yes 87.4 79.7 90.6

Boosting MLP performances We perform a hyper-parameter grid search on each dataset to in-
vestigate MLP strengths further, and report the case giving the best accuracy on each validation set.
We summarize our findings in Tab. 1. In particular, one uses a fraction 5.9%, 15.0% and 0.7% of the
spectrum respectively on Cora, Citeseer and Pubmed in order to obtain our best performances. We
note that a MLP trained solely onX already outperforms the approach of Chen et al. (2018), without
relying on a graph structure. More details on the methodology are provided in the supplementary
material. This simple model is highly competitive with concurrent works like Rong et al. (2019b);
Huang et al. (2018); Chen et al. (2018), and in particular with vanilla GCNs. Note also that our
method does not incorporate any data augmentation procedure such as Rong et al. (2019a), and thus
a performance gap still remains. We could also potentially incorporated data augmentation proce-
dures, at the price of an extended computation time. We conclude that GCNs do not compute more
complex invariants than a MLP fed with low-frequencies, in the context of community detection.

Note on the computational overhead The MLPs introduced above are of interest if the corre-
sponding graph topology is fixed, with a large graph, and high connectivity. Indeed, using a MLP
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allows to easily employ mini-batch strategies and the training data can be reduced according to the
fraction of low frequencies being kept: an exact k-truncated SVD has a complexity about O(kN2).
We note that fast k-truncated ε-approximate SVD algrotithms for sparse matrix exist (Allen-Zhu &
Li, 2016): if ρ is the number of non-zero coefficients of Ã, the complexity can be aboutO(kρε +k2N

ε ).

4.2 STABILITY TO HIGH FREQUENCIES
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Figure 6: The (top) and (bottom) figures corresponds to | ∂`λk
| of the same model taken respectively

at the initialization and the end of training. Note that high frequencies are more stable than low
frequencies for the three datasets.

We now study the stability of a GCN w.r.t. spectrum perturbations. In the case of image processing,
it is standard that low-frequencies almost do not affect the classification performances and that
perturbations of high-frequencies lead to instabilities. We would like to validate that this principle
does not hold here, and to do so, we consider ∇Λ`, which is the gradient w.r.t. every singular
value λk. Small amplitudes of | ∂`∂λk

| indicate more stable coefficients. Fig. 6 plots the amplitude
of the gradient w.r.t. λk at the initialization of a GCN and after training. First, we note that a
GCN is more sensitive to spectral perturbations after training, which is logical because the GCN
adapts its weights to the specific structure of a given graph. After training, we remark that the high-
frequency perturbations have a small impact compared to the low-frequency perturbations on the
three datasets, except for Pubmed which has dominant low-frequencies. This is consistent with our
previous findings.

4.3 SMOOTHNESS AND SELF-LOOPS

As proposed by Kipf & Welling (2016), we now study how the self-loop of Ã affects our GCN
training procedure and in particular, we study it through the lens of spectral analysis. We consider:

Ãη ,
1

1 + η

(
ηIN + Ã

)
, (6)

where η ∈ [− 1
2 ,+∞[ can be understood as a smoothness parameter. Note that for η < 0, the

spectrum of Ãη is not necessarily positive and we renormalize Ãη such that ‖Ãη‖ = 1,∀η. Here,
Ãη enhances the high-frequencies of the averaging while allowing to balance a trade-off between a
smoothing and an identity operator, which can be here observed as

Ãη ∼
η→∞

I and Ã0 = Ã . (7)
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Figure 7: Test (dashed line) and train (plain line) accuracy according to η for various depth of a
GCN. We observed marginal improvements when varying η.

As observed in Li et al. (2018), oversmoothing phenomena occur because one propagates an in-
put through a cascade of n smoothing operators. Here, we note that a Taylor expansion reveals
asymptotically this trade-off for large η:

Ãnη =
∑
λk=1

uku
T
k +

∑
λk<1

uku
T
k −

n(1− λk)

η
uku

T
k +O(

1

η2
) . (8)

Thus depending on the nature of uk, the degree of averaging can be adjusted. The details of the cal-
culations are given in App. A.4. Fig. 7 indicates that it is possible to adjust the degree of smoothing
to train deeper networks (in the degenerate setting η < 0) and to slightly boost the accuracy of a
GCN. We report both the training and testing accuracies to emphasize the impact of η on the training
dynamics of a GCN. Citeseer exhibits a significant generalization gap for large values of η and a
depth of 4: high-frequencies deteriorate the generalization properties. We note that varying η allows
to improve the training accuracy of deeper GCNs, though larger η emphasizes higher-frequencies
which leads to a significant drop in accuracy. We finally observe that selecting η via the best accu-
racy on a validation set allows minor boosts in performances: of the order of 1.4% (η = 1) and 1.5%
(η = 0.5) for a GCN of depth 2 respectively on Citeseer and Pubmed.

5 CONCLUSION

In this work, we have studied the classification performance of a GCN if applying low-pass and
high-pass filters, in the context of community detection. Our finding is that by design, a GCN
mainly relies on the low-frequencies, and that the high-frequencies have less impact on this task.
Then, we are able to design MLPs that rely simply on a few eigenvectors of the graph Laplacian
that are competitive with deep supervised graph approaches. We also study the stability of a GCN
w.r.t. spectral perturbations, and show that they are more robust to high-frequency, which is counter-
intuitive when compared to vanilla CNNs.

Our work indicates that not only more difficult graph benchmarks are necessary, but also benchmarks
whose optimal model would rely on the high-frequencies of a graph Laplacian. It also shows that
standard GSP tools such as graph wavelets might be simplified to low-pass filters, in the context of
community detection, as we observed that the high-frequency does not bring a significant amount of
information, and can even be interpreted as a residual noise, in this particular setting. Note also that
our methodology can help to identify if an accuracy improvement of a given algorithm is due to a
better processing of high frequencies.
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A APPENDIX

A.1 DATASET STATISTICS

Table 2: Dataset Statistics

Datasets Nodes Edges Classes Features Traing/Validation/Testing split

Cora 2,708 5,429 7 1,433 1,208/500/1,000
Citeseer 3,327 4,732 6 3,703 1,812/500/1,000
Pubmed 19,717 44,338 3 500 18,217/500/1,000

A.2 HYPER-PARAMETER DESCRIPTION

Table 3: Hyper-parameter Description

Hyper-parameter Description

lr learning rate
hidden layers the number of hidden layers
weight-decay L2 regulation weight

dropout dropout rate
frequencies the number of low frequencies to add

eigenvector features normalization whether to normalize the new MLP features
in line (per nodes) or column (per features)

A.3 ON THE CHOICE OF THE NORMALIZATION

GCNs defined in Kipf & Welling (2016) don’t exactly used the first order Laplacian approximation,
but introduce a normalization trick : Ã = (D + IN )−

1
2 (A + IN )(D + IN )−

1
2 . Using the stan-

dard hyper-parameters defined in Section 4, we averaged our results on 3 seeds and observed no
significant difference across datasets, as shown in Fig. 8.

A.4 TAYLOR EXPANSION

We recall that Ãη = 1
1+η

(
ηIN + Ã

)
. Thus an eigenvector uk of Ã corresponding to the eigenvalue

λk is an eigenvector of Ãη corresponding to the eigenvalue η+λk

1+η . Therefore, we have:

Ãη =
∑
λk

η + λk
1 + η

uku
T
k ,

And thus,

Ãnη =
∑
λk

(
η + λk
1 + η

)n
uku

T
k

Ãnη =
∑
λk=1

uku
T
k +

∑
λk<1

(
η + λk
1 + η

)n
uku

T
k

Ãnη =
∑
λk=1

uku
T
k +

∑
λk<1

uku
T
k −

n(1− λk)

η
uku

T
k +O(

1

η2
)

13



Under review as a conference paper at ICLR 2021

2 4
number of hidden layers

0.0

0.2

0.4

0.6

0.8

te
st

 a
cc

ur
ac

y

Cora

normalization trick
first order GCN

2 4
number of hidden layers

0.0

0.2

0.4

0.6
te

st
 a

cc
ur

ac
y

Citeseer

normalization trick
first order GCN

2 4
number of hidden layers

0.0

0.2

0.4

0.6

0.8

te
st

 a
cc

ur
ac

y

Pubmed

normalization trick
first order GCN

Figure 8: Comparison between the standard Laplacian first order normalization and the GCN nor-
malization trick
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