

UME-R1: EXPLORING REASONING-DRIVEN GENERATIVE MULTIMODAL EMBEDDINGS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 The remarkable success of multimodal large language models (MLLMs) has
 012 driven advances in multimodal embeddings, yet existing models remain inherently
 013 discriminative, limiting their ability to benefit from reasoning-driven generation
 014 paradigm. In this work, we pioneer the exploration of reasoning-driven generative
 015 **embeddings**, unifying embedding tasks within a generative paradigm. We propose
 016 UME-R1, a universal multimodal embedding framework consisting of a two-stage
 017 training strategy: a cold-start supervised fine-tuning equips the model with reason-
 018 ing capabilities and enables it to generate both discriminative and **reasoning-driven**
 019 **generative embeddings**; a subsequent reinforcement learning enhances reasoning
 020 and further optimizes generative embedding quality. This pioneering work reveals
 021 four key insights: 1) **reasoning-driven generative embeddings** unlock substantial
 022 performance gains over conventional discriminative embeddings by leveraging
 023 the powerful generative reasoning capabilities of MLLMs; 2) discriminative and
 024 **reasoning-driven generative embeddings** are complementary, whose combined or-
 025 acle performance far exceeding that of either alone; 3) RL can effectively en-
 026 hance **reasoning-driven generative embeddings**, establishing a scalable optimiza-
 027 tion paradigm; 4) repeated sampling at inference boosts downstream task coverage
 028 (pass@k), highlighting the inference-time scalability potential of **reasoning-driven**
 029 **generative embeddings**. Evaluated on the MMEB-V2 benchmark across 78 tasks
 030 spanning video, image, and visual documents, UME-R1 significantly outperforms
 031 conventional discriminative embedding models and offers a foundation for more
 032 interpretable, reasoning-driven generative multimodal embeddings.¹

1 INTRODUCTION

035 Recently, the field of multimodal embeddings has been significantly advanced by the remarkable
 036 success of multimodal large language models (MLLMs). For instance, VLM2Vec (Jiang et al.,
 037 2025) and MM-Embed (Lin et al., 2025) construct multimodal embedding models based on MLLMs.
 038 These models demonstrate superior performance across a range of multimodal embedding tasks
 039 compared to traditional dual-encoder vision–language models like CLIP (Radford et al., 2021).

040 In parallel, large reasoning models (LRMs) represented by GPT-4o (Hurst et al., 2024) and
 041 DeepSeek-R1 (Guo et al., 2025) have made breakthroughs in complex reasoning. A distinctive
 042 feature of these models is the incorporation of the chain of thought (CoT) (Wei et al., 2022), which
 043 elicits step-by-step reasoning paths and typically produces more accurate and interpretable outputs.
 044 Building on this success, recent works (Shen et al., 2025b; Hong et al., 2025a) have extended these
 045 advances to MLLMs, substantially enhancing their performance on various multimodal tasks. How-
 046 ever, multimodal embedding models have derived limited benefit from these advances. The key
 047 reason is that existing MLLM-based multimodal embedding models are discriminative: they di-
 048 rectly encode the multimodal input and extract the last token’s final hidden state as the embedding,
 049 without generating any new tokens. Naturally, this raises the question: *How to make a multimodal*
 050 *embedding model act as a generative one?*

051 Several prior studies (Ouali et al., 2025; Yu et al., 2025a) have incorporated a next-token prediction
 052 loss in training multimodal embedding models, demonstrating that it preserves generative capabili-
 053 ties while enhancing discriminative performance. Nevertheless, these approaches merely introduce

¹Our datasets, models, and code will be publicly released.

additional data and losses during training. Ultimately, at inference, they remain discriminative, as their embeddings are obtained by directly encoding the input without generating any intermediate content; we refer to these as *discriminative embeddings*.

In this paper, we propose UME-R1, a universal multimodal embedding framework that enables multimodal embedding models to produce either discriminative or reasoning-driven generative embeddings on demand. First, we construct a cold-start supervised fine-tuning (SFT) dataset by augmenting the original query-target pairs used for embedding training with intermediate reasoning and summaries. During training, the contrastive loss is applied to embedding tokens that follow the summary, while an autoregressive next-token prediction loss is imposed on the reasoning and summary tokens. As a result, the model learns to first generate intermediate reasoning and a summary, and then produce embedding token to obtain representation; we term these as *reasoning-driven generative embeddings*. Meanwhile, discriminative embeddings are preserved throughout training, allowing the model to flexibly output either type of embedding as needed. Interestingly, experiments reveal a substantial gap between the oracle upper bound and current discriminative embeddings, indicating that there remains considerable room for improvement.

We further ask: *Can reinforcement learning with verifiable reward (RLVR) also be effective for generative embedding models?* A natural approach would assign a positive reward if the similarity of a given positive pair exceeds a preset threshold, and no reward otherwise. However, since the degree of similarity varies among different pairs, this approach may render some pairs excessively difficult or easy, resulting in the problem of zero policy gradients (Yu et al., 2025b). To overcome this, we propose a reward policy that considers ranking and similarity gaps simultaneously, and demonstrate that generative embedding models can also benefit from RLVR. Additionally, we find that repeated sampling can improve the coverage (i.e., pass@ k) of generative embedding models, suggesting that embeddings also have the potential for inference-time scaling.

Overall, we make the following four contributions: ① Based on MMEB-V2 (Meng et al., 2025) training data, we build a multimodal embedding cold-start SFT dataset with CoT annotations, and construct a small-scale dataset for efficient RL training. ② We propose UME-R1, a framework designed to endow multimodal embedding models with the flexibility to switch between discriminative and *reasoning-driven generative embeddings*. To the best of our knowledge, we are the first to explore *reasoning-driven generative embeddings*, demonstrating the significant potential of unifying embeddings within a generative paradigm. ③ We pioneer the successful application of rule-based RL to the multimodal embeddings task, which lacks standard best answers like math, by designing a novel reward policy tailored to embeddings. ④ UME-R1 outperforms conventional discriminative embedding models on MMEB-V2, a benchmark comprising 78 tasks across three visual modalities: video, image, and visual documents. Analysis of an oracle upper bound and pass@ k indicates that UME-R1 retains significant potential for further improvement.

2 DATASET CONSTRUCTION

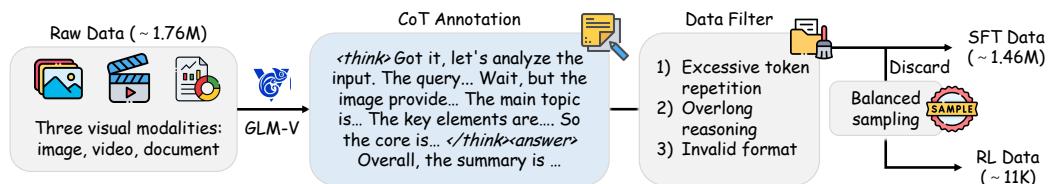


Figure 1: Illustration of the pipeline for data construction. Specific prompts used for CoT annotation and the resulting data samples are presented in Appendix D.

To construct the training corpus for generative multimodal embeddings, as illustrated in Figure 1, we sample 50,000 instances from each of the 20 in-distribution datasets within MMEB (Jiang et al., 2025). Following VLM2Vec-V2 (Meng et al., 2025), we also incorporate the training instances from LLaVA-Hound (Zhang et al., 2025a), ViDoRe (Fayisse et al., 2025b), and VisRAG (Yu et al., 2025c) datasets to cover video and visual-document modalities, yielding a total of 1.76 million

108 pairs. Subsequently, we employ the pure-thinking model GLM-4.1V-Thinking (Hong et al., 2025b)
 109 to generate CoT rationales for both the query and the target of each pair.
 110

111 We filter the data by excluding pairs that meet any of the following criteria: (1) contain extensive
 112 contiguous token repetition; (2) include reasoning that are excessively long (e.g., exceeding 8,192
 113 tokens); or (3) produce responses that do not conform to the `<think>...</think><answer>`
 114 format. This filtering process results in a final set of 1.46 million cold-start SFT pairs. For RL
 115 training, a set of 11,136 pairs is balanced sampled from various datasets spanning the image, video,
 116 and visual-document modalities, prioritizing instances not included in the SFT data to avoid overly
 117 simple samples.
 118

3 UME-R1

3.1 PRELIMINARIES

122 We adopt the formulation from VLM2Vec (Jiang et al., 2025) for discriminative multimodal em-
 123 beddings task as follows: given a query q and its corresponding positive target t^+ , as well as a set
 124 of negative targets $\mathcal{T}^- = \{t_1^-, \dots, t_K^-\}$, the objective is to maximize similarity between q and t^+
 125 over all q and $t^- \in \mathcal{T}^-$ pairs. Here, both queries and targets can be text, image, or interleaved
 126 text-image.

127 In practice, we sample a mini-batch of N query-target pairs $(q_1, t_1), \dots, (q_N, t_N)$, where (q_i, t_i)
 128 forms the positive pair and all targets $\{t_j \mid j \neq i\}$ serve as negatives for q_i . Formally, we optimize
 129 the model by minimizing the following InfoNCE loss function:

$$\mathcal{L}_{dctr} = \frac{1}{N} \sum_{i=1}^N -\log \frac{\exp((\pi_\theta(q_i) \cdot \pi_\theta(t_i))/\tau)}{\exp((\pi_\theta(q_i) \cdot \pi_\theta(t_i))/\tau) + \sum_{j \neq i}^N \exp((\pi_\theta(q_i) \cdot \pi_\theta(t_j))/\tau)}. \quad (1)$$

133 where $\pi_\theta(\cdot)$ denotes the normalized representation of the last input token, derived from the MLLM's
 134 final-layer hidden state, and τ represents the temperature hyper-parameter.
 135

3.2 ARCHITECTURE

138 In this work, we introduce a multimodal embedding model capable of producing both discrimina-
 139 tive and **reasoning-driven generative embeddings**. To obtain the **reasoning-driven generative embed-
 140 dings**, the model first generates distinct reasoning and summaries for each query and target. These
 141 outputs are then concatenated with the original input to produce the final generative representa-
 142 tion. Note that the model can simultaneously yield discriminative embeddings without incurring
 143 additional computation. Specifically, we employ the following template to realize this process:
 144

Template for Discriminative and Reasoning-Driven Generative Embeddings

145 **USER:** `<image> <video> {query/target} <disc_emb>`

146 *Represent the above input text, images, videos, or any combination of the three as embed-
 147 dings. First output the thinking process in `<think> </think>` tags and then summarize
 148 the entire input in a word or sentence. Finally, use the `<gen_emb>` tag to represent the
 149 entire input.*

150 **ASSISTANT:** `<think> {reasoning} </think>`
 151 `<answer> {summary} <gen_emb>`

153 where `<image>` and `<video>` denote placeholders for the input image and video. As illustrated
 154 in Figure 2(a), the last-layer hidden states corresponding to the prompt's `<disc_emb>` token and
 155 the final model-generated `<gen_emb>` token serve as the discriminative and **reasoning-driven gen-
 156 erative embeddings**, respectively.
 157

3.3 MODEL TRAINING

160 We train the model in two stages, enabling it not only to generate discriminative embeddings but also
 161 to develop reasoning capabilities for producing stronger **reasoning-driven generative embeddings**.
 Figure 2 illustrates the overall training process.

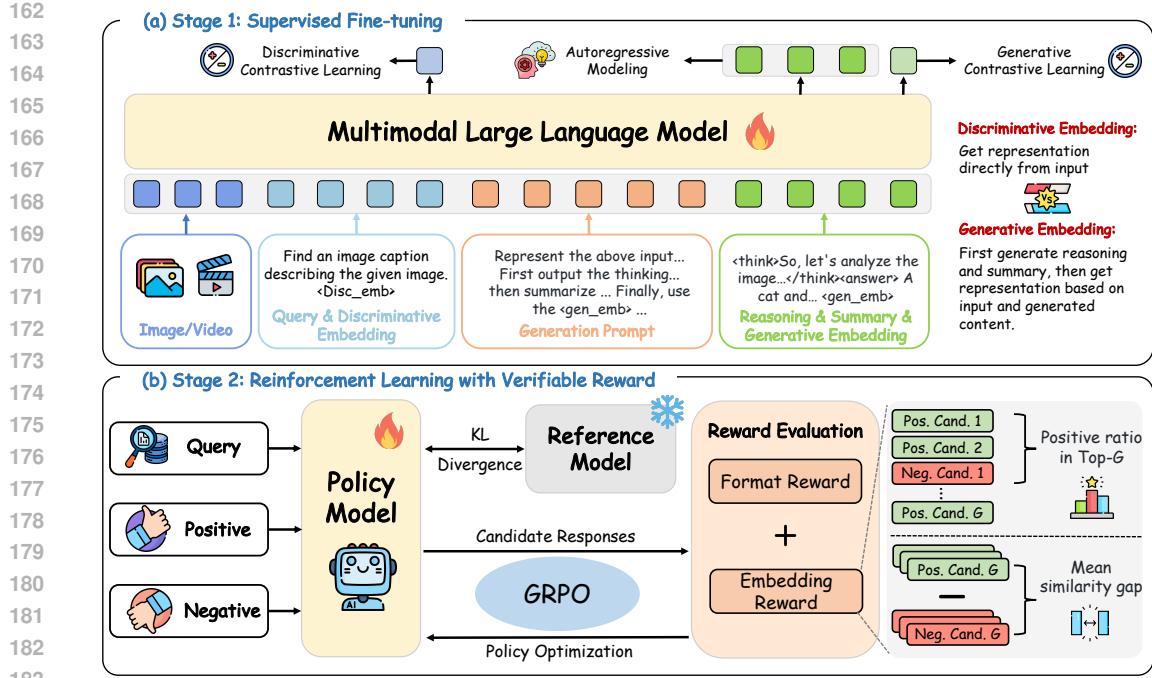


Figure 2: Overview of UME-R1. UME-R1 introduces a two-stage training framework for generative multimodal embedding. (a) Supervised fine-tuning uses query-target pairs with reasoning annotations to train the MLLM, enabling it to generate both discriminative and **reasoning-driven generative embeddings** as well as to possess basic reasoning abilities. (b) RLVR continues to fine-tune the model using regular query-target pairs, encouraging it to generate reasoning trajectories that lead to more beneficial embeddings.

Stage 1: Supervised Fine-tuning. In this initial stage, we perform SFT on the model using the multimodal embedding dataset constructed in Section 2, which incorporates the step-by-step reasoning processes. As shown in Figure 2(a), alongside the discriminative embedding training objective outlined in Section 3.1, we also include the following generative embedding training objectives:

$$\mathcal{L}_{gctr} = \frac{1}{N} \sum_{i=1}^N -\log \frac{\exp((\pi_\theta(q_i, o_i^q) \cdot \pi_\theta(t_i, o_i^t)) / \tau)}{\exp((\pi_\theta(q_i, o_i^q) \cdot \pi_\theta(t_i, o_i^t)) / \tau) + \sum_{j \neq i}^N \exp((\pi_\theta(q_i, o_i^q) \cdot \pi_\theta(t_j, o_j^t)) / \tau)}. \quad (2)$$

where o_i^q and o_i^t denote the i -th reasoning trajectory and summary of the query and target, respectively. Compared to the original input, reasoning process and summarization provide more detailed and useful information, which often enhances the performance of the resulting embeddings.

Furthermore, to endow the model with reasoning capabilities during inference, we apply a next-token prediction loss over both the reasoning trajectories and summaries, formalized as

$$\mathcal{L}_{ce} = -\frac{1}{N} \sum_{i=1}^N \left(\sum_{j=1}^{L_q} \log \pi_\theta(o_{i,j}^q | q_i, o_{i,<j}^q) + \sum_{j=1}^{L_t} \log \pi_\theta(o_{i,j}^t | t_i, o_{i,<j}^t) \right), \quad (3)$$

where L_q and L_t denote the lengths of the reasoning trajectories for the query and the target, respectively. Overall, the loss for the SFT stage is defined as follows:

$$\mathcal{L}_{sft} = \mathcal{L}_{dctr} + \mathcal{L}_{gctr} + \mathcal{L}_{ce}. \quad (4)$$

This stage of training not only equips the model to generate both discriminative and **reasoning-driven generative embeddings**, but also lays the foundation for its reasoning abilities.

Stage 2: Reinforcement Learning with Verifiable Reward. As illustrated in Figure 2(b), in this stage, we further refine the model π_θ using Group Relative Policy Optimization (GRPO) (Shao et al.,

216 2024). Unlike methods that rely on a learned value function, GRPO utilizes the mean reward across
 217 multiple sampled outputs as its baseline. Specifically, for each input query q , it samples a group of
 218 G candidate responses $\{o_i\}_{i=1}^G$ from the old policy $\pi_{\theta_{old}}$, and then optimizes the policy model π_θ
 219 by maximizing the following objective:

$$\begin{aligned} \mathcal{L}_{\text{grpo}} = \mathbb{E}_{q \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}} \left[\frac{1}{G} \sum_{i=1}^G \left(\min \left(\frac{\pi_\theta(o_i | q)}{\pi_{\theta_{old}}(o_i | q)} A_i, \right. \right. \right. \\ \left. \left. \left. \text{clip} \left(\frac{\pi_\theta(o_i | q)}{\pi_{\theta_{old}}(o_i | q)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right) - \beta \mathbb{D}_{KL}(\pi_\theta \| \pi_{\text{ref}}) \right) \right], \end{aligned} \quad (5)$$

226 where \mathcal{D} denotes the training dataset, ϵ and β are hyper-parameters, and π_{ref} represents the reference
 227 model before optimization. A_i indicates the advantage of the i -th response, computed based on a
 228 group of rewards $\{r_1, \dots, r_G\}$ corresponding to the outputs within each group:

$$A_i = \frac{r_i - \text{mean}(\{r_1, \dots, r_G\})}{\text{std}(\{r_1, \dots, r_G\})}. \quad (6)$$

232 Accordingly, we design the reward function to include two components: format rewards and em-
 233 bedding rewards, which we will now describe in detail.

234 *Format Reward.* The use of this reward encourages the model to adhere to a predefined template, en-
 235 suring that responses are well-structured and interpretable. Specifically, the model is required to per-
 236 form reasoning within the `<think>` and `</think>` tags, provide a summary after the `<answer>`
 237 tag, and finally generate the `<gen_emb>` for obtaining the generative embedding. A reward of 1 is
 238 granted for strict adherence to the template, while any deviation results in a reward of 0.

239 *Embedding Reward.* This component is used to evaluate the quality of the embeddings generated
 240 by the model. Since embeddings cannot be directly evaluated against standard answers as in math-
 241 ematics, we evaluate them from two aspects: the ranking of positives among negatives, and the
 242 similarity gap between positives and negatives. Concretely, for each query q with a positive tar-
 243 get t^+ and a negative target t^- , we sample a group of responses $\{o_j^+\}_{j=1}^G$ corresponding to the
 244 positive target, another group $\{o_j^-\}_{j=1}^G$ corresponding to the negative target². For the i -th sam-
 245 pled response o_i of the query, we calculate its similarity scores with the positive targets as $\mathcal{S}^+ =$
 246 $\{\pi_\theta(q, o_i) \cdot \pi_\theta(t^+, o_j^+)\}_{j=1}^G$, and with the negative targets as $\mathcal{S}^- = \{\pi_\theta(q, o_i) \cdot \pi_\theta(t^-, o_j^-)\}_{j=1}^G$. The
 247 embedding reward for the i -th response o_i sampled from the query is defined as follows:

$$R_{\text{emb}}(o_i) = \underbrace{\frac{|\mathcal{S}^+ \cap \text{top}_G(\mathcal{S}^+ \cup \mathcal{S}^-)|}{G}}_{\text{Ranking}} \times \underbrace{(\text{avg}(\mathcal{S}^+) - \text{avg}(\mathcal{S}^-))}_{\text{Similarity Gap}}, \quad (7)$$

252 where $\text{top}_G(\cdot)$ denotes the operation of selecting the top- G largest elements from input set. By
 253 optimizing this reward, the model learns to produce reasoning trajectories that are more conducive
 254 to generating high-quality generative embedding.

256 4 EXPERIMENTS

258 4.1 EXPERIMENTAL SETUP

260 **Training Details.** Following VLM2Vec-V2 (Meng et al., 2025), we adopt Qwen2-VL-2B and
 261 Qwen2-VL-7B as backbone models. During the SFT stage, we train using the cold-start dataset con-
 262 structed in Section 2, which is approximately two-thirds the size of the dataset used by VLM2Vec-
 263 V2. Consistent with the settings of VLM2Vec-V2, the temperature τ is set to 0.02, the batch size to
 264 1,024 (achieved through gradient accumulation), and the number of training steps to 5K. Besides,
 265 the maximum sequence length is 12,288 tokens, and the learning rate is 5e-5. During the RL stage,
 266 the model is trained on approximately 11K pairs and uses the default GRPO hyperparameter set-
 267 tings: group size $G = 8$, clipping parameter $\epsilon = 0.2$, and KL-divergence coefficient $\beta = 0.04$. In
 268 this stage, we set the batch size to 256, the learning rate to 1e-6, and train for one epoch.

269 ²For simplicity, only one negative target is illustrated; however, this method can extends to any number of
 negative targets in practice.

270
271
272
273
274
275

Table 1: Comparison of performance between baselines and UME-R1 on MMEB-V2. **CLS**: classification, **QA**: question answering, **RET**: retrieval, **GD**: grounding, **MRET**: moment retrieval, **VDR**: ViDoRe, **VR**: VisRAG, **OOD**: out-of-domain. *Oracle* denotes the case where the best result between reasoning-driven generative and discriminative embeddings is picked. Detailed results can be found in Appendix E.

Model	Image					Video					VisDoc					All
	CLS	QA	RET	GD	Overall	CLS	QA	RET	MRET	Overall	VDRv1	VDRv2	VR	OOD	Overall	
# of Datasets	10	10	12	4	36	5	5	5	3	18	10	4	6	4	24	78
<i>Baseline Models</i>																
ColPali-V1.3 (PaliGemma-3B)	40.3	11.5	48.1	40.3	34.9	26.7	37.8	21.6	25.5	28.2	83.6	52.0	81.1	43.1	71.0	44.4
GME (Qwen2-VL-2B)	54.4	29.9	66.9	55.5	51.9	34.9	42.0	25.6	32.4	33.9	86.1	54.0	82.5	43.1	72.7	54.1
GME (Qwen2-VL-7B)	57.7	34.7	71.2	59.3	56.0	37.4	50.4	28.4	38.2	38.6	89.4	55.6	85.0	44.4	75.2	57.8
LamRA (Qwen2-VL-7B)	59.2	26.5	70.6	62.7	54.1	39.3	42.6	24.3	34.6	35.2	22.0	11.5	37.4	21.0	23.9	40.4
LamRA (Qwen2.5-VL-7B)	51.7	34.1	66.9	56.7	52.4	32.9	42.6	23.2	37.6	33.7	56.3	33.3	58.2	40.1	50.2	47.4
VLM2Vec (Qwen2-VL-2B)	58.7	49.3	65.0	72.9	59.7	33.4	30.5	20.6	33.0	29.0	49.8	13.5	51.8	33.5	41.6	47.0
VLM2Vec (Qwen2-VL-7B)	62.7	56.9	69.4	82.2	65.5	39.1	30.0	29.0	40.6	34.0	56.9	9.4	59.1	38.1	46.4	52.3
VLM2Vec-V2 (Qwen2-VL-2B)	62.9	56.3	69.5	77.3	64.9	39.3	34.3	28.8	38.5	34.9	75.5	44.9	79.4	39.4	65.4	58.0
CAFé (LLaVA-OV-7B)	63.6	61.7	69.1	87.6	67.6	35.8	58.7	34.4	39.5	42.4	70.7	49.6	79.5	38.1	63.9	60.6
DUME (Qwen2-VL-2B)	59.3	55.0	66.3	78.0	62.5	37.7	46.6	17.1	30.0	33.2	67.6	43.3	47.1	33.8	52.8	52.7
DUME (Qwen2-VL-7B)	64.2	57.0	70.8	81.8	66.4	32.9	47.4	8.6	28.0	29.4	67.1	35.2	82.6	34.9	60.3	55.9
<i>Ours</i>																
UME-R1 (Qwen2-VL-2B)	64.8	62.8	67.6	77.2	66.6	44.3	51.2	32.9	39.7	42.2	72.4	46.2	79.2	37.2	63.9	60.1
UME-R1 (Qwen2-VL-7B)	67.1	69.2	71.9	84.9	71.3	48.6	60.7	38.2	39.3	47.5	75.7	50.5	83.7	37.6	67.1	64.5
<i>Oracle</i>																
UME-R1 (Qwen2-VL-2B)	67.6	67.5	71.2	80.1	70.2	47.0	58.7	37.2	48.8	47.9	76.8	51.5	82.6	41.5	68.2	64.4
△– Ours	+2.8	+4.7	+3.6	+2.9	+3.6	+2.7	+7.5	+4.3	+9.1	+5.7	+4.4	+5.3	+3.4	+4.3	+4.3	+4.3
UME-R1 (Qwen2-VL-7B)	69.1	73.2	74.8	87.4	74.2	51.6	67.2	39.6	49.6	52.2	79.7	55.8	86.0	40.7	70.8	68.1
△– Ours	+2.0	+4.0	+2.9	+2.5	+2.9	+3.0	+6.5	+1.4	+10.3	+4.7	+4.0	+5.3	+2.3	+3.1	+3.7	+3.6

294
295
296
297
298
299
300
301

Evaluation. We evaluate UME-R1 on MMEB-V2 (Meng et al., 2025), a benchmark that extends MMEB-V1 (Jiang et al., 2025) by introducing 5 meta-tasks focused on video and visual document, covering a total of 9 meta-tasks and 78 tasks. During inference, we use greedy search and set the maximum number of newly generated tokens to 8,192. Unless otherwise specified, we use **reasoning-driven generative embeddings** for evaluation. Hit@1 is used as the evaluation metric for all video and image tasks, while NDCG@5 (Järvelin & Kekäläinen, 2002) is reported for visual document tasks. In addition, we compare several strong models on MMEB-V1, with the corresponding results presented in Appendix F.

302
303
304
305
306
307
308

Baselines. We compare against several MLLM-based multimodal embedding models, including GME (Zhang et al., 2025b), ColPali (Faysse et al., 2025a), VLM2Vec (Jiang et al., 2025), LamRA (Liu et al., 2025a), CAFé (Yu et al., 2025a), and VLM2Vec-V2 (Meng et al., 2025). To ensure a fair comparison and to clearly assess the role of **reasoning-driven generative embeddings**, we evaluate a model that performs contrastive learning exclusively on discriminative embeddings, using the same dataset and settings as ours. We refer to this model as DUME (**discriminative UME**).

309
310

4.2 MAIN RESULTS

311
312
313
314
315
316
317
318
319
320
321

Table 1 presents a performance comparison between UME-R1 and the Baseline on 78 tasks spanning three visual modalities: images, videos, and visual documents. The results show that UME-R1 consistently achieves the best performance in images and videos with the same backbone. Although ColPali and GME perform well on visual document retrieval, the former is specifically optimized for visual document tasks, while the latter uses a large amount of closed-source data. In particular, compared to VLM2Vec-V2, UME-R1 achieves an overall improvement of 2.1 while using only two-thirds of its training data. Compared to the discriminative embedding model DUME trained with the same amount of data, UME-R1 increases the total scores for images, videos, and visual documents by 4.1, 9.0, and 11.1, respectively, fully demonstrating the effectiveness of **reasoning-driven generative embeddings**. Comparative examples of reasoning-driven generative and discriminative embeddings are provided in Appendix G.

322
323

Since UME-R1 can flexibly choose discriminative or **reasoning-driven generative embeddings** as needed, we report an oracle upper bound. For each test instance, the oracle selects the embedding mode that yields the best retrieval performance. Under the oracle setting, UME-R1-2B and

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: Ablation study of the RL stage on images, videos, and visual documents.

#	Model	Image	Video	VisDoc	ALL
1	UME-R1 (Qwen2VL-2B)	66.6	42.2	63.9	60.1
2	w/o RL (UME)	65.2 $\downarrow 1.4$	41.2 $\downarrow 1.0$	63.5 $\downarrow 0.4$	59.1 $\downarrow 1.0$
3	w/o similarity gap reward	65.2 $\downarrow 1.4$	41.2 $\downarrow 1.0$	63.6 $\downarrow 0.3$	59.2 $\downarrow 0.9$
4	w/o ranking reward	66.0 $\downarrow 0.6$	41.8 $\downarrow 0.4$	63.3 $\downarrow 0.6$	59.6 $\downarrow 0.5$
5	w/ threshold reward	65.6 $\downarrow 1.0$	41.7 $\downarrow 0.5$	63.5 $\downarrow 0.4$	59.4 $\downarrow 0.7$

UME-R1-7B achieve overall score improvements of 4.3 and 3.6, respectively. The results demonstrate that the oracle substantially outperforms using only **reasoning-driven generative embeddings**, which means that in practical applications users can freely switch modes to obtain more satisfactory retrieval results.

4.3 ABLATION STUDY

Impact of RL Stage and Reward Design on Model Effectiveness. As shown in Table 2, we study the effectiveness of different components in the RL stage across 78 tasks of MMEB-V2. From the second row, we observe that although the RL stage uses only a small dataset for training with GRPO and does not incorporate contrastive learning, it still substantially improves model performance. This finding suggests that effective reasoning paths and summarization contribute to better embeddings. The results in the Rows 3 and 4 show that jointly considering ranking and similarity differences in the reward is essential. Ranking offers supervision that aligns more closely with downstream tasks, but for relatively easy samples, the ranking reward often saturates. In such cases, similarity differences help guide the model toward learning more effective reasoning paths. In addition, we explore using a fixed threshold (set to 0.5) as the evaluation criterion for assigning rewards, where positive pairs exceeding the threshold receive a reward of 1 and others receive 0. The results in Row 5 show that this approach is mainly beneficial for video tasks but provides limited improvement for other modalities. We attribute this to the varying similarity distributions across task categories, which make it difficult to define a single fixed threshold. Developing an adaptive threshold for reward assignment may be a promising solution.

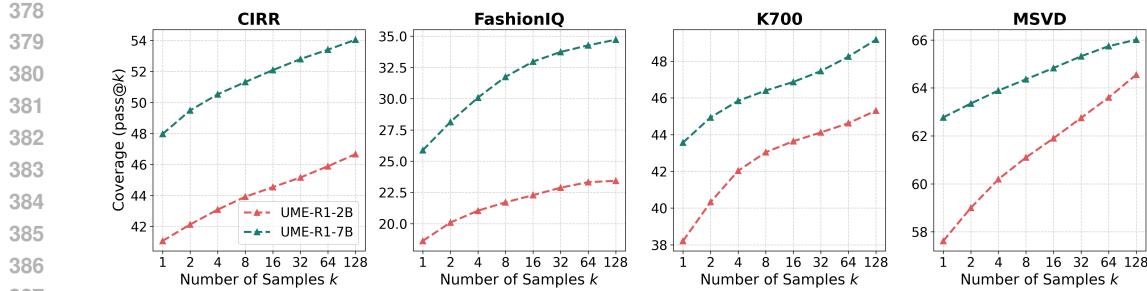
Impact of Reasoning-Driven Generative Embedding Training on Discriminative Embeddings. While UME-R1 is primarily designed for **reasoning-driven generative embeddings**, it also supports discriminative embeddings. In this study, we investigate how the SFT stage and the RL stage affect the performance of discriminative embeddings. Table 3 reports the performance of 2B-parameter models DUME, UME (without RL training), and UME-R1. Under the same training settings, introducing **reasoning-driven generative embeddings** and the next-token prediction objective during the SFT stage improves the overall score of discriminative embeddings across 78 tasks by 3 points. Notably, for visual document tasks, the improvement reaches 7.5 points, likely due to the limited amount of such data in the training set, suggesting that incorporating the generative embedding and the next-token prediction objective provides richer supervisory signals. Furthermore, UME-R1 achieves an additional 0.4-point improvement over UME in the overall score. Although the RL stage only optimizes the **reasoning-driven generative embeddings**, it does not compromise the performance of the discriminative embeddings, indicating that the two types of embeddings do not conflict during training.

4.4 DEEP ANALYSIS

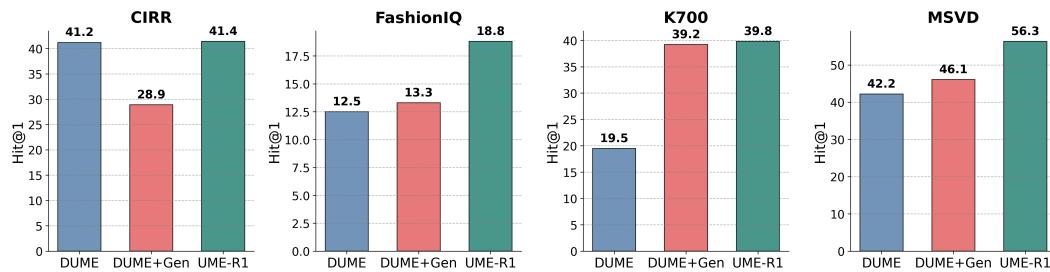
Potential of Reasoning-Driven Generative Embeddings for Inference-Time Scaling. One of the key characteristics of generative reasoning models is their ability to scale at inference time, meaning that performance can be improved by allocating more computing resources. Motivated

Table 3: Comparison of UME and UME-R1 using only discriminative embeddings against DUME under the same training settings.

Model	Image	Video	VisDoc	ALL
DUME	62.5	33.2	52.8	52.7
UME	63.2 $\uparrow 0.7$	34.4 $\uparrow 1.2$	60.3 $\uparrow 7.5$	55.7 $\uparrow 3.0$
UME-R1	64.0 $\uparrow 1.5$	34.4 $\uparrow 1.2$	60.3 $\uparrow 7.5$	56.0 $\uparrow 3.3$

388 Figure 3: pass@ k curves of UME-2B and UME-7B across multiple datasets.
389

390 by this, we explore whether **reasoning-driven generative embeddings** possess similar potential for
391 inference-time scaling. To this end, we evaluate model coverage (pass@ k) on four randomly se-
392 lected test sets from the image and video modalities, each containing 128 randomly sampled exam-
393 ples. Pass@ k considers a problem solved if any of the k sampled outputs is correct, thereby indicat-
394 ing the model’s ability to retrieve the correct result through multiple attempts. To reduce variance
395 in coverage estimation, we apply the unbiased estimation formula proposed by Brown et al. (2024).
396 As illustrated in Figure 3, both UME-R1-2B and UME-R1-7B yield improved embedding represen-
397 tations through repeated sampling, underscoring that **reasoning-driven generative embeddings** also
398 hold strong promise for inference-time scaling. Appendix H presents visual illustrations of how
399 repeated sampling affects retrieval results.

409 Figure 4: Comparison between DUME, DUME+Gen, and UME-R1. DUME+Gen denotes the ap-
410 proach in which an external model first generates reasoning and summaries, followed by DUME to
411 obtain the corresponding embeddings.
412

413 **External-Enhanced Discriminative Embeddings vs. Self-Generated Generative Embeddings.**
414 We further investigate an approach where an external reasoning model generates reasoning and
415 summaries, subsequently encoded by discriminative embedding model to obtain representations.
416 We evaluate whether this approach enhances performance and compare it with our proposed self-
417 generated method. Concretely, we evaluate the 2B model on previously extracted test set, employing
418 the 9B GLM-4.1V-Thinking (Hong et al., 2025a) as the external reasoning model. As shown in Fig-
419 ure 4, incorporating an external model can enhance discriminative embeddings on certain tasks, with
420 improvements of 19.7 and 3.9 observed on K700 and MSVD, respectively. However, this approach
421 may also degrade performance, exemplified by a 12.3-point drop on CIRR. Importantly, UME-R1
422 consistently outperforms DUME+Gen, indicating that self-generated reasoning and summaries are
423 more efficient and effective than even a stronger external model for producing high-quality embed-
424 ding representations.

425 5 RELATED WORK

428 5.1 MULTIMODAL LARGE LANGUAGE MODEL

430 Multimodal large language models (MLLMs) (OpenAI, 2023; Liu et al., 2023; Chen et al., 2023; Li
431 et al., 2024; Wang et al., 2024) have achieved remarkable progress across a wide range of multimodal
understanding tasks. The emergence of Large Reasoning Models (LRMs), exemplified by GPT-4o

(Hurst et al., 2024) and DeepSeek-R1 (Guo et al., 2025), has catalyzed the development of various strategies to elicit chain-of-thought (CoT) reasoning within MLLMs. Among the most prominent is the use of reinforcement learning with verifiable reward signals to enhance visual reasoning (Zhou et al., 2025a; Zhan et al., 2025; Liu et al., 2025b; Shen et al., 2025a). However, to our knowledge, no prior work has applied reinforcement learning with verifiable reward to embedding tasks, primarily due to such tasks are non-generative and do not have definitive answers.

5.2 UNIVERSAL MULTIMODAL EMBEDDINGS

Universal multimodal embedding models aim to encode inputs of various modalities into vector representations, facilitating a range of multimodal tasks such as image-text retrieval (Wu et al., 2021; Zhang et al., 2024a), automatic evaluation (Hessel et al., 2021), and retrieval-augmented generation (RAG) (Zhao et al., 2023). Early vision-language models (VLMs) (Radford et al., 2021; Jia et al., 2021; Zhai et al., 2023) primarily used a dual-encoder architecture and were trained with contrastive learning on large-scale image–text datasets. Although these models exhibited strong representational capabilities, they still suffered from deficiencies such as poor understanding of interleaved image–text inputs and a tendency to behave like bag-of-words (Yüksekgnül et al., 2023).

To address these issues, VLM2Vec (Jiang et al., 2025) and MM-Embed (Lin et al., 2025) convert MLLMs into multimodal embedding models through contrastive learning, leveraging MLLMs’ strong multimodal understanding and inherent advantages in handling interleaved image–text inputs. Given the limited scale of existing multimodal embedding datasets, MegaPairs (Zhou et al., 2025c) and GME (Zhang et al., 2025b) introduce automated data synthesis pipelines to generate large-scale pairs, thereby further improving the performance of MLLM-based multimodal embedding models. On the other hand, some works focus on negative sample selection or learning, for example, UniME (Gu et al., 2025a) filters out false negatives and easy negatives during training based on similarity, while LLaVE (Lan et al., 2025) and QQMM (Xue et al., 2025) estimate negative difficulty and weight negatives accordingly. Furthermore, B3 (Thirukovalluru et al., 2025) introduces a hard negative mining method that leverages community detection to construct training batches enriched with in-batch negatives.

Additionally, some studies explore how to preserve MLLMs’ generative strengths when converting them from generative to discriminative models. VladVA (Ouali et al., 2025) and CAFé (Yu et al., 2025a) combine a contrastive objective with autoregressive language modeling to prevent catastrophic forgetting of the models’ generative abilities while enhancing their discriminative capabilities. Moreover, Jú & Lee (2025) design hierarchical prompts to elicit powerful discriminative embeddings from generative models in a zero-shot manner. Despite these advances, existing MLLM-based embedding models remain limited to producing discriminative embeddings and therefore do not exploit MLLMs’ generative and reasoning capabilities. In contrast, UME-R1 can generate discriminative or [reasoning-driven generative embeddings](#) on demand, demonstrating the substantial potential of harnessing MLLMs’ reasoning power for embedding tasks.

6 CONCLUSION

In this work, [we pioneer the exploration of reasoning-driven generative embeddings](#) and propose UME-R1, a universal multimodal embedding framework that unifies discriminative and [reasoning-driven generative embeddings](#). To support this, we construct an SFT dataset by augmenting existing multimodal embedding benchmarks with reasoning and summaries produced by a thinking-capable MLLM. Fine-tuning on this dataset enables the model to produce both embedding types. We further apply reinforcement learning with a reward function that incorporates similarity gaps and ranking, encouraging reasoning trajectories that enhance [reasoning-driven generative embeddings](#). Experiments on MMEB-V2, spanning 78 tasks across video, image, and visual document domains, show that reasoning-driven generative embeddings yield significant gains over discriminative ones. Finally, oracle and inference-time analyses suggest that UME-R1 holds substantial headroom for further improvement.

Our work highlights three promising directions for future research: 1) developing mechanisms that allow the model to adaptively decide whether to produce discriminative or [reasoning-driven generative embeddings](#) based on the input; 2) constructing more challenging RL datasets or designing

486 more effective RL training strategies to encourage the model to produce reasoning and summaries
 487 that are more conducive to embedding quality; and 3) exploring inference-time scaling techniques to
 488 further enhance the quality of **reasoning-driven generative embeddings**. In general, UME-R1 estab-
 489 lishes a new direction for reasoning-driven generative multimodal embeddings and lays a foundation
 490 for future research.

492 ETHICS STATEMENT

494 This work complies with the ICLR Code of Ethics and does not involve the collection of new human
 495 subject data or any personally identifiable information. All datasets used in this study are publicly
 496 available and widely adopted in the research community. Additionally, the constructed data in our
 497 experiments is derived from existing models and datasets, without introducing any new sensitive,
 498 private, or proprietary content. We have carefully ensured that our methodology and experiments
 499 comply with relevant ethical standards, including fairness, transparency, and reproducibility.

501 REPRODUCIBILITY STATEMENT

503 To facilitate reproducibility, we will release code, datasets, and trained models used in this work. The
 504 code has already been included in the supplementary materials submitted with this paper. Detailed
 505 descriptions of the dataset construction, model architectures, and training procedures are provided
 506 in both the main text and the appendix. These resources are intended to enable other researchers to
 507 reproduce the results reported in this work and build upon our methods.

510 REFERENCES

511 Bradley C. A. Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré,
 512 and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sam-
 513 pling. *CoRR*, abs/2407.21787, 2024.

515 Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, and Zhicheng Dou.
 516 mme5: Improving multimodal multilingual embeddings via high-quality synthetic data. In Wanx-
 517 iang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of*
 518 *the Association for Computational Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1,*
 519 *2025*, pp. 8254–8275. Association for Computational Linguistics, 2025a.

520 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization
 521 ability in vision-language models with less than \$3. [https://github.com/Deep-Agent/](https://github.com/Deep-Agent/R1-V)
 522 R1-V, 2025b. Accessed: 2025-02-02.

524 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, Vinci, Lingpeng Kong, Qi Liu, and Baobao Chang.
 525 R1vr in vision language models: Findings, questions and directions. *Notion Post*, Feb 2025c.

527 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 528 Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
 529 Scaling up vision foundation models and aligning for generic visual-linguistic tasks. *CoRR*,
 530 abs/2312.14238, 2023.

531 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
 532 don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
 533 contrastive language-image learning. In *IEEE/CVF Conference on Computer Vision and Pat-*
 534 *tern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 2818–2829. IEEE,
 535 2023.

537 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and Pierre
 538 Colombo. Colpali: Efficient document retrieval with vision language models. In *The Thirteenth*
 539 *International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.
 OpenReview.net, 2025a. URL <https://openreview.net/forum?id=ogjBpZ8uSi>.

540 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and Pierre
 541 Colombo. Colpali: Efficient document retrieval with vision language models. In *The Thirteenth*
 542 *International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.
 543 OpenReview.net, 2025b.

544 Tiancheng Gu, Kaicheng Yang, Ziyong Feng, Xingjun Wang, Yanzhao Zhang, Dingkun Long,
 545 Yingda Chen, Weidong Cai, and Jiankang Deng. Breaking the modality barrier: Universal em-
 546 bedding learning with multimodal llms. *CoRR*, abs/2504.17432, 2025a.

547 Tiancheng Gu, Kaicheng Yang, Ziyong Feng, Xingjun Wang, Yanzhao Zhang, Dingkun Long,
 548 Yingda Chen, Weidong Cai, and Jiankang Deng. Breaking the modality barrier: Universal em-
 549 bedding learning with multimodal llms. *CoRR*, abs/2504.17432, 2025b.

550 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 551 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 552 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

553 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 554 reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuanjing
 555 Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on*
 556 *Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana,*
 557 *Dominican Republic, 7-11 November, 2021*, pp. 7514–7528. Association for Computational Lin-
 558 *guistics*, 2021.

559 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 560 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 561 with scalable reinforcement learning. *arXiv preprint arXiv:2507.01006*, 2025a.

562 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 563 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 564 with scalable reinforcement learning. *arXiv e-prints*, pp. arXiv–2507, 2025b.

565 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 566 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 567 *arXiv:2410.21276*, 2024.

568 Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR techniques. *ACM*
 569 *Trans. Inf. Syst.*, 20(4):422–446, 2002.

570 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan
 571 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 572 with noisy text supervision. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th*
 573 *International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*,
 574 *volume 139 of Proceedings of Machine Learning Research*, pp. 4904–4916. PMLR, 2021.

575 Ting Jiang, Minghui Song, Zihan Zhang, Haizhen Huang, Weiwei Deng, Feng Sun, Qi Zhang,
 576 Deqing Wang, and Fuzhen Zhuang. E5-V: universal embeddings with multimodal large language
 577 models. *CoRR*, abs/2407.12580, 2024.

578 Ziyan Jiang, Rui Meng, Xinyi Yang, Semih Yavuz, Yingbo Zhou, and Wenhui Chen. Vlm2vec:
 579 Training vision-language models for massive multimodal embedding tasks. In *The Thirteenth*
 580 *International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.
 581 OpenReview.net, 2025. URL <https://openreview.net/forum?id=TE0KOzWYAF>.

582 Yeong-Joon Ju and Seong-Whan Lee. From generator to embedder: Harnessing innate abilities
 583 of multimodal llms via building zero-shot discriminative embedding model. *arXiv preprint*
 584 *arXiv:2508.00955*, 2025.

585 Zhibin Lan, Liqiang Niu, Fandong Meng, Jie Zhou, and Jinsong Su. Llave: Large language and
 586 vision embedding models with hardness-weighted contrastive learning. *CoRR*, abs/2503.04812,
 587 2025.

594 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li,
 595 Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *CoRR*, abs/2408.03326,
 596 2024.

597 Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-
 598 image pre-training with frozen image encoders and large language models. In Andreas Krause,
 599 Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
 600 (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
 601 Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 19730–19742.
 602 PMLR, 2023.

603 Sheng-Chieh Lin, Chankyu Lee, Mohammad Shoeybi, Jimmy Lin, Bryan Catanzaro, and Wei Ping.
 604 Mm-embed: Universal multimodal retrieval with multimodal LLMS. In *The Thirteenth Inter-
 605 national Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.
 606 OpenReview.net, 2025.

607 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Alice
 608 Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 609 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
 610 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*,
 611 2023.

612 Yikun Liu, Yajie Zhang, Jiayin Cai, Xiaolong Jiang, Yao Hu, Jiangchao Yao, Yanfeng Wang, and
 613 Weidi Xie. Lamra: Large multimodal model as your advanced retrieval assistant. In *IEEE/CVF
 614 Conference on Computer Vision and Pattern Recognition, CVPR 2025, Nashville, TN, USA, June
 615 11-15, 2025*, pp. 4015–4025. Computer Vision Foundation / IEEE, 2025a.

616 Zheyuan Liu, Cristian Rodriguez-Opazo, Damien Teney, and Stephen Gould. Image retrieval on
 617 real-life images with pre-trained vision-and-language models. In *Proceedings of the IEEE/CVF
 618 International Conference on Computer Vision (ICCV)*, pp. 2125–2134, October 2021.

619 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 620 Wang. Visual-rft: Visual reinforcement fine-tuning. *CoRR*, abs/2503.01785, 2025b.

621 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. OK-VQA: A visual
 622 question answering benchmark requiring external knowledge. In *IEEE Conference on Computer
 623 Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp. 3195–
 624 3204. Computer Vision Foundation / IEEE, 2019.

625 Ahmed Masry, Do Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A benchmark
 626 for question answering about charts with visual and logical reasoning. In *Findings of the Asso-
 627 ciation for Computational Linguistics: ACL 2022*, pp. 2263–2279, Dublin, Ireland, May 2022.
 Association for Computational Linguistics.

628 Rui Meng, Ziyan Jiang, Ye Liu, Mingyi Su, Xinyi Yang, Yuepeng Fu, Can Qin, Zeyuan Chen, Ran
 629 Xu, Caiming Xiong, Yingbo Zhou, Wenhui Chen, and Semih Yavuz. Vlm2vec-v2: Advancing
 630 multimodal embedding for videos, images, and visual documents. *CoRR*, abs/2507.04590, 2025.

631 OpenAI. Gpt-4v(ision) system card, September 2023. URL https://cdn.openai.com/papers/GPTV_System_Card.pdf.

632 Yassine Ouali, Adrian Bulat, Alexandros Xenos, Anestis Zaganidis, Ioannis Maniadis Metaxas,
 633 Brais Martínez, and Georgios Tzimiropoulos. Vladva: Discriminative fine-tuning of lmlms. In
 634 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2025, Nashville, TN,
 635 USA, June 11-15, 2025*, pp. 4101–4111. Computer Vision Foundation / IEEE, 2025.

636 Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
 637 Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
 638 abilities through two-stage rule-based rl. *arXiv preprint arXiv:2503.07536*, 2025.

639 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 640 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 641 Sutskever. Learning transferable visual models from natural language supervision. In Marina

648 Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine*
 649 *Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine*
 650 *Learning Research*, pp. 8748–8763. PMLR, 2021.

651

652 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 653 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 654 language models. *CoRR*, abs/2402.03300, 2024.

655 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 656 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. VLM-R1: A stable
 657 and generalizable r1-style large vision-language model. *CoRR*, abs/2504.07615, 2025a.

658

659 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 660 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. VLM-R1: A stable
 661 and generalizable r1-style large vision-language model. *CoRR*, abs/2504.07615, 2025b.

662 Raghuveer Thirukovalluru, Rui Meng, Ye Liu, Karthikeyan K, Mingyi Su, Ping Nie, Semih Yavuz,
 663 Yingbo Zhou, Wenhui Chen, and Bhuvan Dhingra. Breaking the batch barrier (B3) of contrastive
 664 learning via smart batch mining. *CoRR*, abs/2505.11293, 2025.

665

666 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 667 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 668 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 669 perception of the world at any resolution. *CoRR*, abs/2409.12191, 2024.

670 Cong Wei, Yang Chen, Haonan Chen, Hexiang Hu, Ge Zhang, Jie Fu, Alan Ritter, and Wenhui
 671 Chen. Uniir: Training and benchmarking universal multimodal information retrievers. In Ales
 672 Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.),
 673 *Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October*
 674 *4, 2024, Proceedings, Part LXXXVII*, volume 15145 of *Lecture Notes in Computer Science*, pp.
 675 387–404. Springer, 2024.

676 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 677 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 678 models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
 679 (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural*
 680 *Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -*
 681 *December 9, 2022*, 2022.

682 Hui Wu, Yupeng Gao, Xiaoxiao Guo, Ziad Al-Halah, Steven Rennie, Kristen Grauman, and Rogério
 683 Feris. Fashion IQ: A new dataset towards retrieving images by natural language feedback. In *IEEE*
 684 *Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*,
 685 pp. 11307–11317. Computer Vision Foundation / IEEE, 2021.

686 Youze Xue, Dian Li, and Gang Liu. Improve multi-modal embedding learning via explicit hard
 687 negative gradient amplifying. *CoRR*, abs/2506.02020, 2025.

688

689 Hao Yu, Zhuokai Zhao, Shen Yan, Lukasz Korycki, Jianyu Wang, Baosheng He, Jiayi Liu, Lizhu
 690 Zhang, Xiangjun Fan, and Hanchao Yu. Cafe: Unifying representation and generation with
 691 contrastive-autoregressive finetuning. *CoRR*, abs/2503.19900, 2025a.

692

693 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 694 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 695 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 696 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
 697 Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an
 698 open-source LLM reinforcement learning system at scale. *CoRR*, abs/2503.14476, 2025b.

699

700 Shi Yu, Chaoyue Tang, Bokai Xu, Junbo Cui, Junhao Ran, Yukun Yan, Zhenghao Liu, Shuo Wang,
 701 Xu Han, Zhiyuan Liu, and Maosong Sun. Visrag: Vision-based retrieval-augmented generation
 702 on multi-modality documents. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025c.

702 Mert Yüksekgönül, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
 703 why vision-language models behave like bags-of-words, and what to do about it? In *The Eleventh*
 704 *International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,*
 705 *2023*. OpenReview.net, 2023.

706 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 707 image pre-training. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023,*
 708 *Paris, France, October 1-6, 2023*, pp. 11941–11952. IEEE, 2023.

709 Yufei Zhan, Yousong Zhu, Shurong Zheng, Hongyin Zhao, Fan Yang, Ming Tang, and Jinqiao
 710 Wang. Vision-r1: Evolving human-free alignment in large vision-language models via vision-
 711 guided reinforcement learning. *CoRR*, abs/2503.18013, 2025.

712 Kai Zhang, Yi Luan, Hexiang Hu, Kenton Lee, Siyuan Qiao, Wenhua Chen, Yu Su, and Ming-Wei
 713 Chang. Magiclens: Self-supervised image retrieval with open-ended instructions. In *Forty-first*
 714 *International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.*
 715 OpenReview.net, 2024a.

716 Kai Zhang, Yi Luan, Hexiang Hu, Kenton Lee, Siyuan Qiao, Wenhua Chen, Yu Su, and Ming-Wei
 717 Chang. Magiclens: Self-supervised image retrieval with open-ended instructions. In *Forty-first*
 718 *International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.*
 719 OpenReview.net, 2024b.

720 Ruohong Zhang, Liangke Gui, Zhiqing Sun, Yihao Feng, Keyang Xu, Yuanhan Zhang, Di Fu, Chun-
 721 yuan Li, Alexander G. Hauptmann, Yonatan Bisk, and Yiming Yang. Direct preference optimiza-
 722 tion of video large multimodal models from language model reward. In Luis Chiruzzo, Alan
 723 Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Ameri-
 724 cas Chapter of the Association for Computational Linguistics: Human Language Technologies,
 725 NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025,*
 726 pp. 694–717. Association for Computational Linguistics, 2025a.

727 Xin Zhang, Yanzhao Zhang, Wen Xie, Mingxin Li, Ziqi Dai, Dingkun Long, Pengjun Xie, Meis-
 728 han Zhang, Wenjie Li, and Min Zhang. Bridging modalities: Improving universal multimodal
 729 retrieval by multimodal large language models. In *IEEE/CVF Conference on Computer Vision
 730 and Pattern Recognition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025*, pp. 9274–9285.
 731 Computer Vision Foundation / IEEE, 2025b.

732 Ruochen Zhao, Hailin Chen, Weishi Wang, Fangkai Jiao, Do Xuan Long, Chengwei Qin, Bosheng
 733 Ding, Xiaobao Guo, Minzhi Li, Xingxuan Li, and Shafiq Joty. Retrieving multimodal information
 734 for augmented generation: A survey. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
 735 *Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December
 736 6-10, 2023*, pp. 4736–4756. Association for Computational Linguistics, 2023.

737 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
 738 zero's "aha moment" in visual reasoning on a 2b non-sft model. *CoRR*, abs/2503.05132, 2025a.

739 Junjie Zhou, Yongping Xiong, Zheng Liu, Ze Liu, Shitao Xiao, Yueze Wang, Bo Zhao, Chen Jason
 740 Zhang, and Defu Lian. Megapairs: Massive data synthesis for universal multimodal retrieval.
 741 In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
 742 *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
 743 ume 1: Long Papers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 19076–19095.
 744 Association for Computational Linguistics, 2025b.

745 Junjie Zhou, Yongping Xiong, Zheng Liu, Ze Liu, Shitao Xiao, Yueze Wang, Bo Zhao, Chen Jason
 746 Zhang, and Defu Lian. Megapairs: Massive data synthesis for universal multimodal retrieval.
 747 In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
 748 *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
 749 ume 1: Long Papers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 19076–19095.
 750 Association for Computational Linguistics, 2025c.

751 Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei. Visual7w: Grounded question answer-
 752 ing in images. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 753 pp. 4995–5004, 2016.

756 **A USE OF LARGE LANGUAGE MODELS**
757759 In the preparation of this paper, we use Large Language Models (LLMs) solely to aid in writing
760 and polishing the text, including improving clarity, grammar, and readability. LLMs are not used
761 for generating scientific content, experimental design, analysis, or conclusions. All technical ideas,
762 experiments, and results reported in this paper are entirely the work of the authors.766 **B LIMITATIONS OF UME-R1**
767769 Although UME-R1 demonstrates that reasoning-driven generative embeddings exhibit stronger per-
770 formance and greater potential than discriminative embeddings, they incur higher training and in-
771 ference costs due to the generation of long CoT and summaries. However, this also opens a new
772 avenue for improving embedding performance beyond scaling model size, namely scaling compu-
773 tation. Moreover, while our oracle upper-bound analysis empirically shows the complementarity
774 between discriminative and reasoning-driven generative embeddings, designing a practical router to
775 select between the two in real-world applications remains an open problem. Finally, there is still
776 room for further performance improvement in our current RL setup, for example, by constructing
777 harder negative examples for RL training or scaling up the training instances.779 **C TRAINING AND INFERENCE COST**
780782 In this section, we discuss the training cost of UME-R1 as well as the inference overhead of
783 reasoning-driven generative embeddings compared to discriminative embeddings.784 Under the same training configuration, DUME requires 1487 H20 GPU-hours for fine-tuning,
785 whereas UME-R1 incurs 2336 H20 GPU-hours in the SFT stage and 1344 H20 GPU-hours in the
786 RL stage.789 Table 4: Comparison of inference speed between discriminative and reasoning-driven generative
790 embeddings across different datasets. The embedding type produced is indicated in parentheses.

792 Model	CIRR	FashIQ	K700	MSVD
794 UME-R1 (Generative)	1.48 samples/s	1.14 samples/s	0.50 samples/s	1.10 samples/s
795 UME-R1 (Discriminative)	20.0 samples/s	19.1 samples/s	1.59 samples/s	28.0 samples/s

798 As for inference cost, we evaluate inference speed on CIRR, FashionIQ, K700, and MSVD using
799 a single L40s GPU under the vLLM framework. The batch size is set to 8 for image modalities
800 and 4 for video modalities. As shown in Table 4, reasoning-driven generative embeddings indeed
801 introduce a noticeably higher inference overhead, especially when the input token length is short.
802 The speed gap narrows as the input token length increases. Nevertheless, the stronger performance,
803 better interpretability, and the ability to scale computation to further enhance embedding quality
804 make the cost of reasoning-driven generative embeddings well justified.805 **D EXAMPLE OF DATA CONSTRUCTION**
806807 The prompt template for SFT CoT annotation is provided as follows:
808

810
811**Prompt Template for Reasoning Annotation**

812

{query/candidate}

813

The above input is a query/candidate for retrieval. Carefully examine and analyze the above input (which may include text, images, videos, or any combination). Identify and describe the key elements present in the input, such as the main topic, important entities, relationships, context, and any notable features or details that contribute to the overall meaning. Finally, synthesize your analysis and reflection into a single word or a concise sentence that best captures the essence of the input for retrieval purposes. If the input is a phrase or word, the summary is that word itself.

814

815

816

817

818

819

820

We present examples of our constructed cold-start dataset in Figures 5, 6, and 7 to illustrate the typical query-target pairs it contains. For RL training, we sampled roughly equal numbers of instances from each modality while ensuring a balanced numbers across different datasets within each modality. In particular, for the image modality, pairs were drawn only from OK-VQA (Marino et al., 2019), ChartQA (Masry et al., 2022), CIRR (Liu et al., 2021), A-OKVQA (Marino et al., 2019), and Visual7W (Zhu et al., 2016), as the tasks in the other image datasets are relatively simple.

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864
865
866
867
868
869
870
871
872
873
874

Query:

Given an image, find a similar everyday image with the described changes: Shows a similar dog touching noses with a smaller light brown and white dog. *<disc_emb>*

Represent the above input text, images, videos, or any combination of the three as embeddings. First output the thinking process in *<think> </think>* tags and then summarize the entire input in a word or sentence.

Finally, use the *<gen_emb>* tag to represent the entire input.

<think> So, let's analyze the input. The query is asking for a similar everyday image with a dog touching noses with a smaller light brown and white dog. First, identify key elements: main topic is a dog image with interaction (nose touching) with a smaller dog of specific colors (light brown and white). Important entities: dogs, touching noses, smaller light brown and white dog. Relationships: interaction between two dogs, one larger (similar to original dog maybe), one smaller with light brown and white. Context: everyday image, so a normal scene, not a special setting. Notable features: size difference, color of the smaller dog, the action of touching noses. Now, synthesize into a concise sentence for retrieval purposes. Maybe something like "Dog touching noses with smaller light brown and white dog in everyday setting" or a shorter version. Wait, the task says a single word or concise sentence. Let's make it concise. "Dog interacting with smaller light brown and white dog by nose touching" or even shorter. Hmm. Let's check the original image: the first image is a white dog on a leash. The query is for similar image (so maybe same type setting, park maybe) with two dogs, larger dog (similar to original maybe) touching noses with smaller light brown and white one. So the essence is finding an image of a dog (probably similar to first dog or same context) touching noses with a smaller, light brown and white dog. So the summary could be a sentence that captures the key elements: "Dog touching nose with smaller light brown and white dog." But need to make sure it's concise. Alternatively, "Similar image of dog touching noses with smaller light brown and white dog." Wait, the original input is a query for retrieval, so the output should be a concise summary. Let me think again. The input is a query asking for an image of a dog touching noses with a smaller light brown and white dog (similar to an everyday image). So key elements: dog, touch noses, smaller, light brown and white, everyday image. So the summary could be "dog touching nose with smaller light brown and white dog" or a brief description. Since it's a retrieval query, maybe "similar dog touching smaller light brown and white dog with noses". But need to be concise. Let's go with "dog touching noses with smaller light brown and white dog" as that captures all key elements. *</think><answer>* dog touching noses with smaller light brown and white dog *<gen_emb>*

Target:

Represent the given image. *<disc_emb>*

Represent the above input text, images, videos, or any combination of the three as embeddings. First output the thinking process in *<think> </think>* tags and then summarize the entire input in a word or sentence.

Finally, use the *<gen_emb>* tag to represent the entire input.

<think> So, let's analyze the image. There are two dogs touching noses, one white and fluffy, the other tan and white (like a corgi). The setting is a grassy area. The main elements are the two dogs interacting, their breeds/color, and the outdoor environment. So the key elements are the interaction between the two dogs, their appearance, and the grassy background. The essence would be two dogs touching noses in a grassy area. *</think><answer>* Two dogs nose-to-nose on grass
(Interpreting the image: two dogs, one white fluffy breed and one tan/white corgi-like, touching noses in a grassy setting. Syncretized essence for retrieval: two dogs nose-to-nose on grass.) *<gen_emb>*

910
911
912
913
914
915
916
917

Figure 5: Example from the constructed cold-start dataset (Case 1). The orange part represents the original data, the blue part denotes the added prompt, the black part indicates the reasoning content, and the green part shows the summary. **orange** segments correspond to the original data, **blue** segments represent the added prompts, black segments capture the reasoning process, and **green** segments provide the summaries.

972
973
974
975
976
977
978
979
980
981

Query:

Find a video that contains the following visual content: This video captures the heart-pounding moment of an airplane, with a visibly blue and white body probably belonging to a commercial airline, flying at a low altitude over an overhead green sign. The sign reads "João Pessoa" in white capital letters, it appears to be naming a city or a specific area. It's made of reflective material allowing high visibility even in darker conditions. This particular sign is prominently installed on metal pillars with a series of lights to illuminate it, suggesting it is likely situated near a busy motorway or highway. As the airplane ascends, its undercarriage is still visible, highlighting that it has likely just taken off from a nearby airport. We do not have clear visibility of the airplane's livery or any markings that could identify the specific airline or model of the plane. The sky is clear, with scarce, fluffy clouds scattered, suggesting good weather conditions. No other objects or subjects are visible in the video other than the stationary overhead sign and the airplane making its ascent. *<disc_emb>*

Represent the above input text, images, videos, or any combination of the three as embeddings. First output the thinking process in *<think> </think>* tags and then summarize the entire input in a word or sentence. Finally, use the *<gen_emb>* tag to represent the entire input.

<think> So, let's analyze the input. The user is looking for a specific video with a detailed description of the visual content. Let's break down the key elements:
 Main topic: A video capturing an airplane (commercial, blue and white) flying low over a "João Pessoa" sign.
 Important entities:
 - Airplane: blue/white, low altitude takeoff, undercarriage visible, livery/terms unclear.
 - Sign: "João Pessoa" (white letters, green background, reflective, on metal pillars with lights), near motorway/highway.
 - Context: clear sky, low cloud, no other objects.
 Relationships: Airplane is flying over the sign which is near a motorway. The sign's purpose is to name a city/area, the airplane is ascending (justice takeoff).
 Notable features: Color of airplane, visibility of sign, sky conditions, absence of other objects.
</think> <answer> Commercial airplane flies low over "João Pessoa" sign near motorway, clear sky.
<gen_emb>

Target:

Understand the content of the provided video. *<disc_emb>*

Represent the above input text, images, videos, or any combination of the three as embeddings. First output the thinking process in *<think> </think>* tags and then summarize the entire input in a word or sentence. Finally, use the *<gen_emb>* tag to represent the entire input.

<think> Got it, let's analyze the input. The user provided multiple images (though text describes them as video frames maybe) showing green highway signs with "João Pessoa" and airplanes in some. Let's identify key elements: green highway signs, João Pessoa as a place name, airplanes (aviation elements), the signs' structure (metal frames), sky, trees, etc. The main topic is highway signs for João Pessoa with airplanes (maybe an airport area). Important entities: "João Pessoa" signs, airplanes, highway infrastructure. Relationships: signs are for directing to João Pessoa, airplanes indicate proximity to an airport. Context: outdoor setting, clear sky, urban/airport infrastructure. Notable features: repeated green sign with João Pessoa, airplanes flying above signs.
</think> <answer> João Pessoa highway signs with aircraft
<gen_emb>

1020
1021
1022
1023
1024
1025

Figure 7: Example from the constructed cold-start dataset (Case 3).

1026 E DETAILED SCORES OF MMEB-V2
1027
1028
10291030 Table 5: The detailed results of the baselines and UME-R1 the full MMEB-v2 benchmark. We
1031 only include the best version of each series of previous models in the table. Numbers in parentheses
1032 represent the task count for each category.

	ColPali v1.3	GME-7B	LamRA-Qwen2.5-VL	VLM2Vec-7B	VLM2Vec-V2.0	CAFe-7B	DUME-2B	DUME-7B	UME-R1-2B	UME-R1-7B
Avg - All (78 tasks)	44.4	57.8	47.4	52.3	58.0	60.6	52.7	55.9	60.1	64.5
Avg - Image (36 tasks, Hit@1)	34.9	56.0	52.4	65.5	64.9	67.6	62.5	66.4	66.6	71.3
Avg - Video (18 tasks, Hit@1)	28.2	38.4	33.6	33.7	34.6	42.4	33.2	29.4	42.2	47.5
Avg - Visdoc (24 tasks, NDCG@5)	71.0	75.2	50.2	46.4	65.4	63.9	52.8	60.3	63.9	67.1
I-CLS (10)	40.3	57.7	51.7	62.7	62.9	63.6	59.3	64.2	64.8	67.1
I-QA (10)	11.5	34.7	34.1	56.9	56.3	61.7	54.9	57.0	62.8	69.2
I-RET (12)	48.1	71.2	66.9	69.4	69.5	69.1	66.3	70.8	67.6	71.9
I-VG (4)	40.3	59.3	56.7	82.2	77.3	87.6	78.0	81.8	77.2	84.9
V-CLS (5)	26.7	37.4	32.9	39.1	39.3	35.8	37.7	32.9	44.3	48.6
V-QA (5)	37.8	50.4	42.6	30.0	34.3	58.7	46.6	47.4	51.0	60.7
V-RET (5)	21.6	28.4	23.2	29.0	28.8	34.4	17.1	8.6	32.9	38.2
V-MR (3)	25.5	37.0	37.2	38.9	36.8	39.5	30.0	28.0	39.7	39.3
VD-VideoRE-V1 (10)	83.6	89.4	56.3	56.9	75.7	70.7	67.6	67.1	72.4	75.7
VD-VideoRE-V2 (4)	52.0	55.6	33.3	9.4	45.1	49.6	43.3	35.2	46.2	50.5
VD-VisRAG (6)	81.1	85.0	58.2	59.1	79.6	79.5	47.1	82.6	79.2	83.7
VD-ODD (4)	43.1	44.4	40.1	38.1	39.6	38.1	33.8	34.9	37.2	37.6
ImageNet-1K	42.4	64.6	58.9	80.1	80.8	77.3	74.6	76.6	75.3	80.4
N24News	25.5	50.5	29.8	79.7	72.9	83.2	69.7	77.2	81.1	82.3
HatefulMemes	50.6	53.6	51.3	69.7	56.3	78.7	65.3	79.6	75.2	79.0
VOC2007	69.8	80.3	78.7	80.7	85.0	89.8	68.9	85.5	80.0	90.8
SUN397	56.1	69.5	66.5	77.4	71.0	79.9	71.4	74.6	79.4	80.3
Place365	27.5	39.1	37.4	37.4	35.9	45.0	41.0	41.9	42.6	46.8
ImageNet-A	14.9	41.2	36.3	58.1	47.4	55.2	41.3	48.6	50.4	53.9
ImageNet-R	64.6	83.9	77.0	73.9	89.3	88.0	90.7	88.8	88.7	90.1
ObjectNet	45.6	69.0	59.4	40.1	65.2	22.5	46.2	44.8	52.0	42.3
Country211	6.0	24.8	21.7	29.8	25.2	16.7	23.9	24.7	23.4	25.0
OK-VQA	9.4	33.2	39.9	56.8	51.5	67.3	56.8	61.6	62.4	71.7
A-OKVQA	6.6	21.0	34.1	47.3	43.6	63.8	46.9	51.4	51.1	58.7
DocVQA	11.3	41.4	37.1	89.7	90.1	79.2	86.0	86.3	92.2	93.8
InfographicsVQA	5.0	20.3	23.7	60.0	58.8	53.3	59.2	62.3	67.7	79.2
ChartQA	5.7	17.8	15.0	56.9	47.4	48.8	39.1	49.8	64.9	75.1
Visual7W	6.1	22.2	24.6	52.7	52.9	52.5	46.9	52.1	54.1	55.2
ScienceQA	16.3	28.0	31.3	38.5	38.2	65.4	38.7	45.5	42.7	53.7
VizWiz	27.6	39.0	32.0	39.9	43.3	43.8	42.0	44.3	46.8	51.6
GQA	8.3	76.9	57.4	55.1	64.9	65.7	60.2	46.9	67.3	69.3
TextVQA	18.8	46.8	46.1	71.6	72.2	76.8	73.9	69.9	78.6	83.5
VisDial	41.2	60.8	62.5	81.9	82.7	82.7	75.9	75.7	76.6	80.7
CIRR	8.2	54.9	44.7	51.1	57.5	60.4	52.0	51.6	53.7	55.3
VisualNews_t2i	50.1	79.7	70.1	80.5	74.5	69.5	71.2	76.9	71.7	76.8
VisualNews_t2t	47.6	83.6	74.2	81.2	78.2	79.4	72.5	82.3	74.2	82.0
MSCOCO_t2i	59.2	71.2	65.7	77.2	75.3	75.4	74.5	77.1	75.1	78.3
MSCOCO_t2t	49.9	57.7	71.1	73.9	71.4	73.1	68.3	71.2	68.9	71.4
NIGHTS	65.5	67.6	64.4	67.6	68.6	66.7	67.5	69.6	67.2	68.1
WebQA	53.8	91.4	85.7	88.3	90.6	89.3	90.2	90.3	90.0	90.9
FashionIQ	5.9	37.8	33.4	17.1	19.5	39.0	11.5	20.5	17.1	23.4
Wiki-SS-NQ	80.5	78.2	67.0	62.3	66.9	61.2	60.0	70.6	62.0	72.5
OVEN	50.0	75.1	84.8	66.5	64.3	60.8	65.2	70.5	66.9	71.4
EDIS	64.7	96.0	78.7	85.7	84.1	71.3	86.5	92.8	88.0	92.0
MSCOCO	36.7	31.4	36.0	75.7	67.1	84.7	68.1	72.3	69.5	72.7
ReiCOCO	64.5	60.9	57.1	87.6	87.1	89.4	85.1	86.8	83.3	91.4
ReiCOCO-Matching	3.9	78.4	82.6	84.6	85.8	83.0	89.3	85.1	84.4	91.1
Visual7W-Pointing	56.1	66.5	51.2	81.0	69.2	93.2	69.5	83.1	71.5	84.2
K700	23.4	39.7	32.1	35.5	38.0	40.1	22.7	27.3	35.8	42.8
SmithSmithV2	25.1	30.6	25.3	32.1	42.8	35.8	37.7	25.1	44.1	50.4
HMDB51	24.8	47.9	33.8	42.2	40.9	46.9	53.4	42.6	54.4	58.3
UCF101	49.4	54.7	53.0	61.8	60.0	39.6	55.7	48.8	67.2	70.0
Breakfast	10.9	14.3	20.1	23.8	14.8	16.6	18.9	20.8	20.1	21.5
MBench	33.7	46.6	37.6	28.5	33.7	48.9	48.8	47.4	49.9	58.2
Video-MME	30.6	39.2	35.1	27.8	30.7	46.0	39.2	40.2	41.7	47.3
NEXTQA	35.2	53.6	44.9	20.3	20.9	62.4	55.2	48.6	59.9	69.6
EgoSchema	38.4	46.8	47.0	21.8	34.0	60.0	23.2	50.4	45.4	52.4
ActivityNetQA	51.3	65.6	48.5	51.4	52.3	76.0	66.7	50.2	57.8	76.0
DiDeMo	22.8	26.4	22.8	29.3	30.4	37.8	16.9	0.10	32.4	40.0
MSR-VTT	17.6	31.8	25.0	34.5	28.3	36.5	16.2	0.10	34.3	38.9
MSVD	45.4	49.7	41.9	46.7	48.1	56.4	34.9	28.8	55.4	60.8
VATEX	16.7	24.9	18.7	25.5	26.5	32.0	11.1	13.8	29.9	32.6
YouCook2	5.3	9.1	7.5	9.0	10.6	9.5	0.06	0.00	12.7	18.5
QVHighlight	19.9	59.5	60.9	57.7	49.4	58.4	40.3	29.4	57.5	54.9
Charades-STA	29.0	14.0	18.8	19.8	20.2	18.7	16.1	15.8	20.4	21.9
MomentSeeker	27.6	37.4	31.8	39.3	40.8	41.4	33.7	38.8	41.2	41.1
ViDoRe_arxivqa	81.7	86.9	53.0	60.2	80.6	73.3	68.7	66.6	73.9	73.6
ViDoRe_docvqa	56.6	57.5	25.4	34.7	44.9	38.3	33.6	35.8	37.9	41.1
ViDoRe_infvqa	84.9	91.6	72.3	70.4	83.7	80.6	74.5	72.8	76.2	80.8
ViDoRe_tabfquad	86.9	94.6	66.1	78.2	89.2	80.7	78.3	89.2	86.1	90.2
ViDoRe_tatdqf	70.9	74.1	25.9	27.6	43.8	37.8	35.3	38.5	40.6	46.7
ViDoRe_shiftproject	75.1	96.8	27.3	38.6	60.8	52.0	61.8	61.9	66.8	65.0
ViDoRe_artificial_intelligence	95.7	99.6	72.0	67.7	88.5	86.0	74.3	69.3	85.9	89.5
ViDoRe_energy	94.7	95.3	65.2	60.4	86.5	84.8	78.4	68.4	83.3	85.7
ViDoRe_government_reports	93.6	98.8	72.2	61.8	85.0	85.0	83.0	83.1	82.6	89.8
ViDoRe_healthcare_industry	95.9	99.3	83.8	69.9	92.2	88.4	88.2	84.9	90.8	94.3
ViDoRe_lesg_reports_human_labeled_v2	51.3	63.4	33.0	6.8	45.6	50.7	48.0	40.4	50.2	50.4
ViDoRe_biomedical_lectures_v2_multilingual	54.7	49.5	35.9	5.1	44.3	50.9	39.8	37.4	46.2	50.7
ViDoRe_economics_reports_v2_multilingual	49.0	54.2	31.9	13.9	43.0	54.3	44.1	29.6	45.7	57.8
ViDoRe_lesg_reports_v2_multilingual	52.9	55.4	32.5	11.9	46.6	42.3	41.1	33.5	42.7	43.2
VisRAG_ArxivQA	80.9	87.4	37.7	52.6	76.9	74.0	35.8	77.3	74.3	80.5
VisRAG_ChartQA	72.3	86.1	68.2	57.7	83.7	82.7	47.2	83.4	86.0	85.0
VisRAG_MP_DocVQA	82.0	89.7	72.0	60.6	88.1	75.1	35.3	83.8	75.6	83.4
VisRAG_SlideVQA	85.1	92.6	71.1	54.7	84.1	87.6	61.3	91.5	87.1	91.5
VisRAG_InfoVQA	83.5	88.6	67.9	66.0	82.3	87.9	64.7	88.2	84.4	89.2
VisRAG_PlotQA	79.3	76.5	56.4	62.7	75.9	69.4	38.5	71.3	68.0	72.7
ViDoSeek-page	38.1	32.6	10.7	16.3	29.1	22.5	20.0	20.2	21.2	21.3
ViDoSeek-doc	87.5	90.3	63.9	69.4	79.0	73.8	69.5	73.2	75.9	75.3
MMLongBench-page	27.1	36.9	0.5	0.4	15.8	13.3	10.4	10.3	11.9	12.3
MMLongBench-doc	80.4	85.2	51.4	28.8	63.0	42.6	35.4	36.0	39.7	41.3

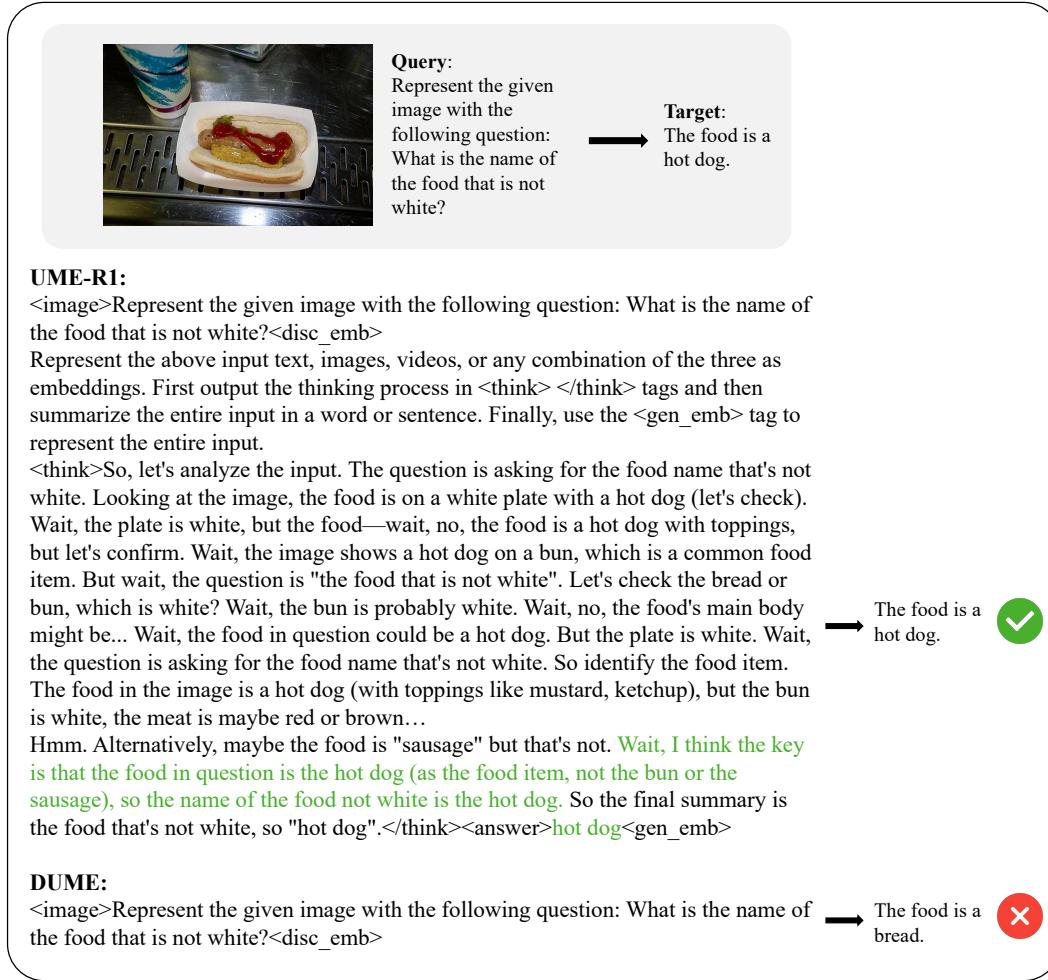
1080 **F MMEB-V1 BENCHMARK SCORES**
10811082 Since MMEB-V1 has been widely adopted in prior work, in this section we also report the performance
1083 of UME-R1 alongside other baseline models on MMEB-V1. The results in Table 6 demonstrate
1084 that UME-R1 achieves the best overall score among models of the same size.
10851086 Table 6: Results on the MMEB-V1 benchmark, which comprises a total of 36 image embedding
1087 tasks. IND represents the in-distribution dataset, and OOD represents the out-of-distribution dataset.
1088 In UniIR, the FF and SF subscripts under CLIP or BLIP represent feature-level fusion and score-
1089 level fusion, respectively. CAFE-V1 indicates that the model is trained solely on the MMEB-V1
1090 training data (contains only image data), whereas CAFE-V2 denotes that the model is trained on
1091 the MMEB-V2 training data. The best results are marked in bold, and the second-best results are
1092 underlined.
1093

Model	Per Meta-Task Score				Average Score		
	Classification	VQA	Retrieval	Grounding	IND	OOD	Overall
# of Datasets		10	10	12	4	20	16
<i>Baseline Models</i>							
CLIP (Radford et al., 2021)	42.8	9.1	53.0	51.8	37.1	38.7	37.8
BLIP2 (Li et al., 2023)	27.0	4.2	33.9	47.0	25.3	25.1	25.2
SigLIP (Zhai et al., 2023)	40.3	8.4	31.6	59.5	32.3	38.0	34.8
OpenCLIP (Cherti et al., 2023)	47.8	10.9	52.3	53.3	39.3	40.2	39.7
UniIR (BLIP _{FF}) (Wei et al., 2024)	42.1	15.0	60.1	62.2	44.7	40.4	42.8
UniIR (CLIP _{SF}) (Wei et al., 2024)	44.3	16.2	61.8	65.3	47.1	41.7	44.7
Magiclens (Zhang et al., 2024b)	38.8	8.3	35.4	26.0	31.0	23.7	27.8
<i>MLM-based Baseline Models</i>							
E5-V (Jiang et al., 2024)	21.8	4.9	11.5	19.0	14.9	11.5	13.3
VLM2Vec (Qwen2-VL-2B) (Jiang et al., 2025)	59.0	49.4	65.4	73.4	66.0	52.6	60.1
VLM2Vec (Qwen2-VL-7B) (Jiang et al., 2025)	62.6	57.8	69.9	81.7	72.2	57.8	65.8
VLM2Vec-V2 (Qwen2-VL-7B) (Jiang et al., 2025)	62.9	56.3	69.5	77.3	68.8	59.9	64.9
MMRet-7B (Zhou et al., 2025b)	56.0	57.4	69.9	83.6	68.0	59.1	64.1
CAFE-V1-7B (Yu et al., 2025a)	65.2	65.6	70.0	<u>91.2</u>	<u>75.8</u>	62.4	69.8
CAFE-V2-7B (Yu et al., 2025a)	63.6	61.7	69.1	87.6	72.8	61.1	67.6
mme5-11B (Chen et al., 2025a)	67.6	62.8	<u>70.9</u>	89.7	72.3	66.7	69.8
LLaVE-2B (Lan et al., 2025)	62.1	60.2	65.2	84.9	69.4	59.8	65.2
LLaVE-7B (Lan et al., 2025)	65.7	65.4	<u>70.9</u>	91.9	75.0	64.4	70.3
UniME-4B (Gu et al., 2025b)	54.8	55.9	64.5	81.8	68.2	52.7	64.2
UniME-7B (Gu et al., 2025b)	66.8	<u>66.6</u>	70.6	90.9	74.6	<u>65.8</u>	<u>70.7</u>
<i>Ours</i>							
UME-R1-2B	64.8	62.8	67.6	77.2	71.5	60.4	66.6
UME-R1-7B	<u>67.1</u>	69.2	71.9	84.9	76.1	65.1	71.3
<i>Oracle</i>							
UME-R1-2B	67.6	67.5	71.2	80.1	75.3	63.8	70.2
UME-R1-7B	69.1	73.2	74.8	87.4	79.2	67.9	74.2

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

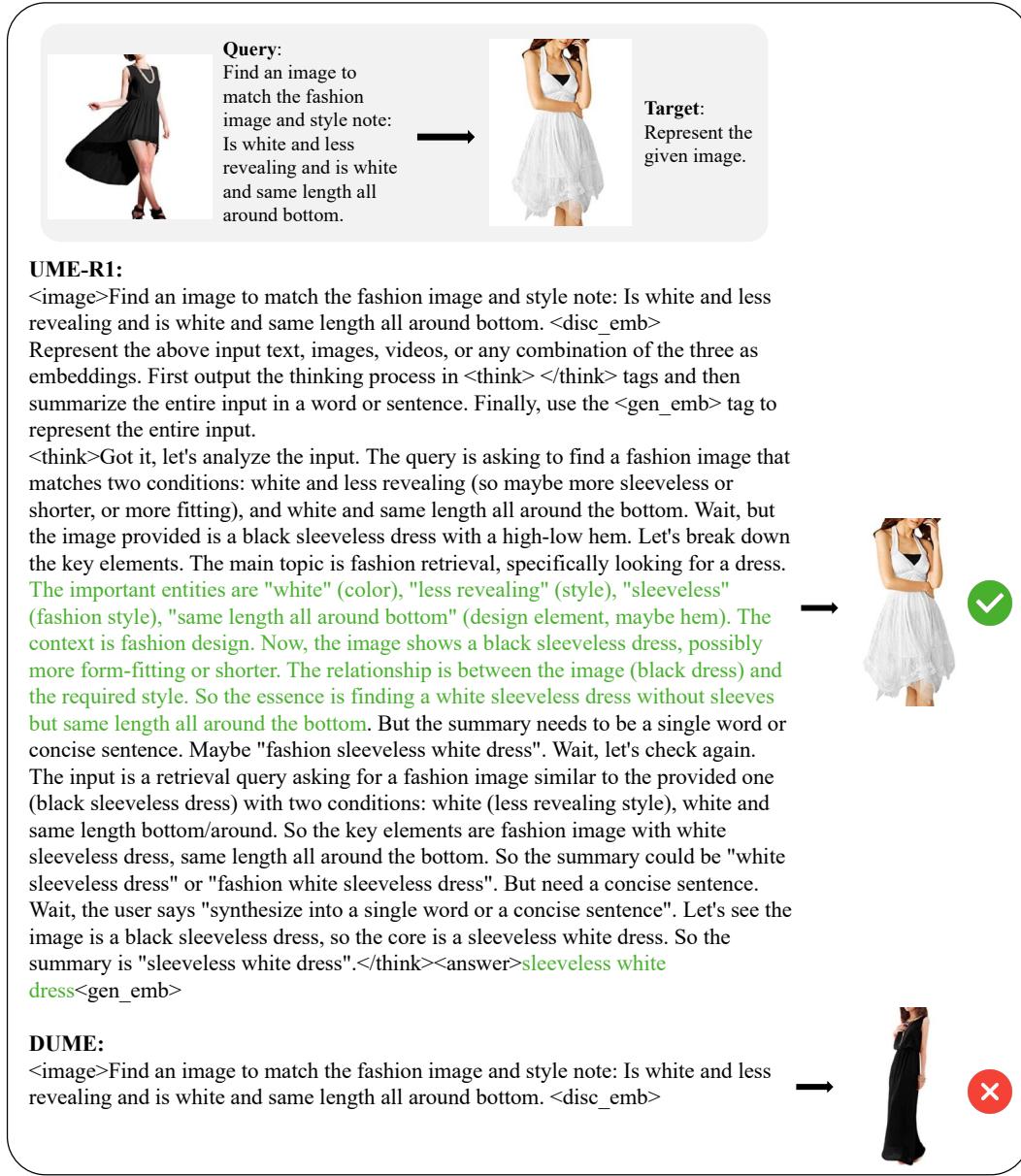
1134 **G COMPARATIVE EXAMPLES OF REASONING-DRIVEN GENERATIVE AND**
 1135 **DISCRIMINATIVE EMBEDDINGS**

1137 Figures 8, 9, 10, and 11 present several comparative examples of reasoning-driven generative and
 1138 discriminative embeddings. It can be observed that reasoning-driven generative embeddings are ca-
 1139 pable of producing effective reasoning and summaries, thereby facilitating the generation of higher-
 1140 quality embeddings. For example, as shown in Figure 8, UME-R1 first engages in reasoning. The
 1141 intermediate thought process includes: *"Wait, I think the key is that the food in question is the hot*
 1142 *dog ... so the name of the food not white is the hot dog."* As a result, the final summary directly
 1143 produces *"hot dog"*, yielding a higher-quality embedding and enabling correct retrieval results.



1177 Figure 8: A comparison of reasoning-driven generative and discriminative embeddings is shown
 1178 (Case 1). **Green** highlights denote content that positively impacts retrieval performance. **UME-**
 1179 **R1** demonstrates the results of reasoning-driven generative embeddings, while **DUME** is trained
 1180 using standard discriminative contrastive learning. In this example, UME-R1 produces "hot dog"
 1181 directly during both the reasoning and summarization steps, which helps generate a higher-quality
 1182 embedding.

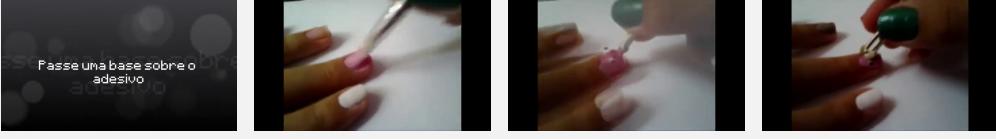
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201



1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 9: A comparison of reasoning-driven generative and discriminative embeddings is shown (Case 2). In this example, UME-R1 reasons and summarizes that it needs to find a white sleeveless dress with a skirt length matching the provided image, whereas DUME retrieves results based only on the input image and instruction, which do not fully satisfy the requirements.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295



Query: Recognize the category of the video content.

↓

Target: doing nails

UME-R1:
<video>Recognize the category of the video content. <disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence. Finally, use the <gen_emb> tag to represent the entire input.
<think>So, let's analyze the input. The video shows a nail tutorial where someone is painting a pink design on a nail using a brush. The text "Passe uma base sobre o adesivo" is present, likely part of the instructions. The key elements are nail art demonstration, using a base and adhesives, hands applying polish/paint on a nail. The essence is a nail art process demonstration. So the concise summary would be about nail art tutorial.</think><answer>Nail art tutorial demonstration<gen_emb>

→ doing nails ✓

DUME:
<video>Recognize the category of the video content. <disc_emb>

→ fly tying ✗

Figure 10: A comparison of reasoning-driven generative and discriminative embeddings is shown (Case 3). **In this example, UME-R1 summarizes the video as a “Nail art tutorial demonstration,” providing crucial information for correct retrieval.**

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Query: Recognize the category of the video content.

↓

Target: news anchoring

UME-R1 :
<video>Recognize the category of the video content. <disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence. Finally, use the <gen_emb> tag to represent the entire input.
<think>So, let's analyze the input. The image shows a news studio with two women (reporters) sitting at a desk, a backdrop with "WUFT 5 NEWS" and "WUFT5" branding, holding papers and notebooks, so the key elements are a news studio, two news presenters, studio setup with logos, so the main topic is a news broadcast scene. The key elements include the studio setting (news anchor set), the people (two news anchors), the network (WUFT 5 News), and the presentation materials. The essence is a news studio presentation. So the concise sentence would be "News studio broadcast with two journalists."</think><answer>News studio broadcast with two journalists</answer>
<gen_emb>

→ news anchoring ✓

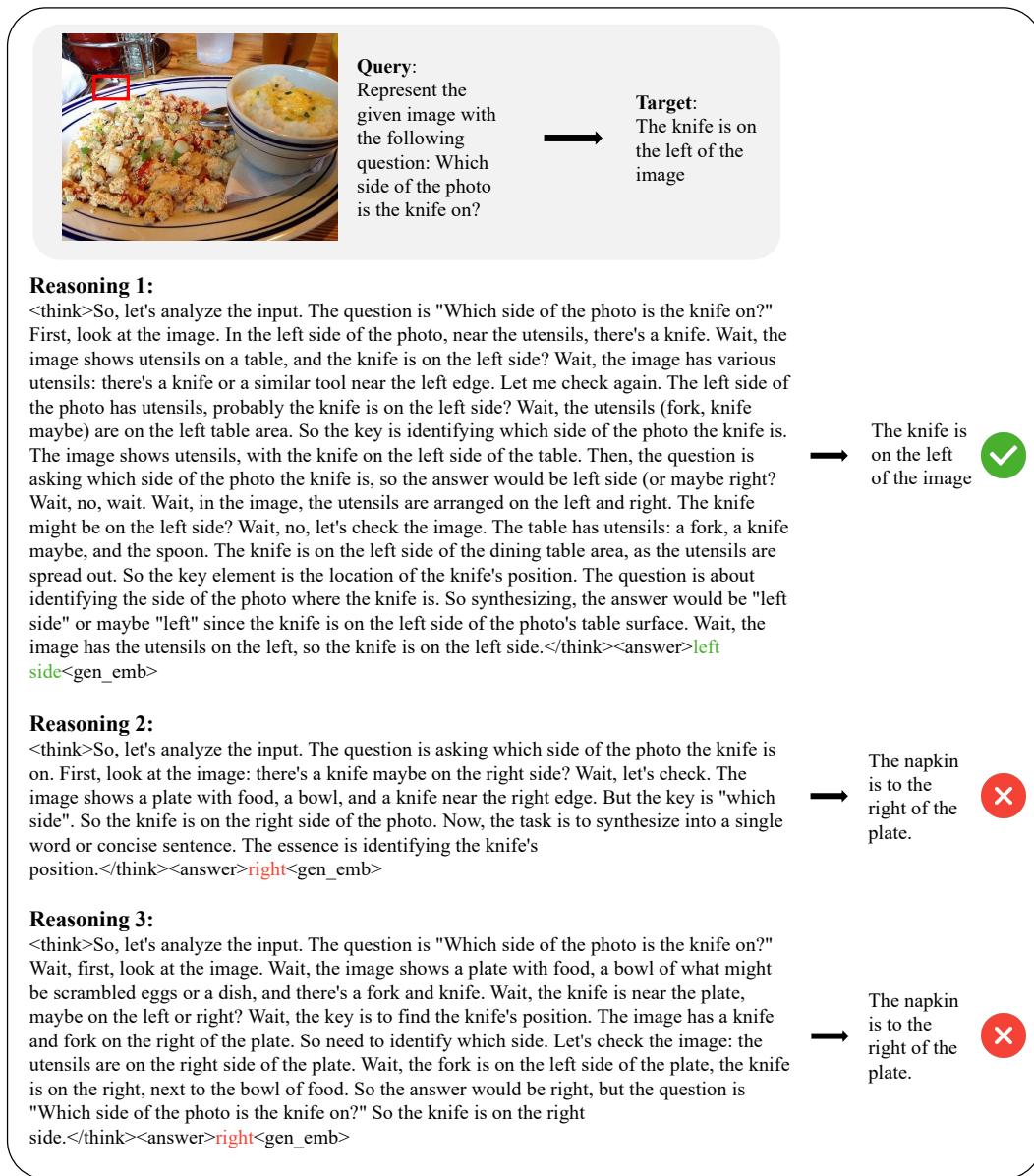
DUME:
<video>Recognize the category of the video content. <disc_emb>

→ presenting weather forecast ✗

Figure 11: A comparison of reasoning-driven generative and discriminative embeddings is shown (Case 4). **In this example, UME-R1 identifies key elements such as “WUFT 5 News” during reasoning, preventing an incorrect retrieval as a weather forecast.**

1296 **H EXAMPLE OF REPEATED SAMPLING**

1297
 1298 Figures 12, 13, and 14 illustrate the impact of different samplings on the reasoning and summa-
 1299 rization of reasoning-driven generative embeddings. Interestingly, we observe that for correctly
 1300 retrieved examples, the generated reasoning and summaries tend to be more effective. This sug-
 1301 gests that reasoning-driven generative embeddings offer a more interpretable approach, potentially
 1302 allowing the quality of embeddings to be assessed through the generated reasoning and summaries.
 1303



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360

Query:
Find an image to match the fashion image and style
note: Is a black dress with a shade of grey and is similar in black.

Target:
Represent the given image.

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

Reasoning 1:

<think>Got it, let's analyze the input. The query is about finding a black dress with a shade of grey (similar to a black) that's like the one provided. Let's break down the key elements:

- Main topic: Fashion dress (specifically a dress, which is a clothing item)
- Important entities: Black dress, shade of grey, similar in black
- Relationship: The query is asking for a dress that matches a style (like the original dress) but with a specific color scheme (black and grey, similar to the original).
- Context: It's a retrieval query for an image of a dress with these color and style attributes.
- Notable features: The original image shows a yellow dress, so the target dress should be a black dress (or similar color family) with a grey-like shade, matching the style.

1371
1372
1373

Now, synthesize this into a concise sentence or single word for retrieval. The essence is about finding a dress similar to the one provided but in black and grey colors.</think><answer>A black dress with grey shade similar to the one shown.<gen_emb>

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385

Reasoning 2:
<think>Got it, let's analyze the input. The user is asking to find a black dress (shade of grey) similar in color to a given one? Wait, first, the input mentions "a black dress with a shade of grey and is similar in black." Wait, maybe a black dress is being asked for, and the context involves finding a similar black dress? Wait, let's check the key elements. Main topic: fashion (clothing, dresses) retrieval. Important entities: dress (style note), black, grey shade, similar in black. Context is about finding a similar black-dress. Notable features: the request for a black dress with a grey-like tone (shading) and similar black. Now, the task is to summarize into a concise idea for retrieval. The core is identifying a black dress similar in color, so the summary would capture that they're looking for a black (with grey tone) dress similar in color.</think><answer>A query to find a black dress with a grey - **toned shade identical in color to a given black dress**. Summary: Find a black dress similar in color to another.<gen_emb>

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

Reasoning 3:
<think>Got it, let's analyze the input. The query is asking to find a black dress with a shade of grey, similar to a given one. Wait, no—wait, the input says "is a black dress with a shade of grey and is similar in black." Wait, first, the main topic is a fashion item, specifically a dress. Important entities: black dress, shade of grey (so a light or darker shade of grey), similar in black (meaning the dress has a greyish shade, maybe matching). Context is about matching a specific dress (with those color attributes and style similarity). The process is to identify key elements: the object is a dress, its color (black, with grey shade), and the task is to find a similar one (so same style, color-related). Then, synthesize into a concise sentence for retrieval. Wait, the input is about retrieving a dress similar in color and style to a black dress with grey shade. So key elements: dress, black, shade of grey, similar. Then, the summary should capture that. Maybe "black dress with grey shade similar".</think><answer>A black dress with a greyish shade (similar in black) for retrieval.<gen_emb>

1398
1399
1400
1401
1402
1403

Figure 13: An example showing how repeated sampling leads to variations in model-generated reasoning and summaries, resulting in different retrieval outcomes (Case 2). **In this example, correctly retrieved cases are able to reason and summarize that the item needs to match the original style, whereas in incorrectly retrieved cases, the reasoning and summarization only consider the color.**

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

Reasoning 1:

<think>So, let's analyze the input. The input is a description of a video clip with a toddler in sandals holding a trowel (or similar tool) with a bucket, working near a wall. Key elements: child (toddler), activity (using tools for wall work), setting (indoor, possibly construction or repair), actions (holding trowel, moving near wall). The main topic is a child working with tools for construction. To capture the essence, a concise phrase would be "toddler doing construction work" or similar. Wait, the video shows a toddler using a tool near a wall, so the key elements are the child, tool, and construction-related action. So a concise summary could be "toddler constructing with tools" or "child doing construction work". But need a single word or concise sentence. Let's check: main topic is a child (infant/toddler) engaging in construction or repair, using a tool near a wall....

So the final summary should capture the main action: a toddler using a tool for construction. So "toddler constructing" or "child doing construction work". I think "toddler construction" is a concise way, or "child working on wall". **Wait, let's check the video: the toddler has a bucket and a tool (trowel) near a wall. So the action is related to building or fixing a wall.** So the best summary is a sentence that captures the child's action. "Toddlers working on wall with tool" but maybe too long. The question says "single word or concise sentence". So "toddler construction" works, or "child building" but "toddler" is specific. So "toddler constructing" might be good.</think><answer>Toddler constructing with a tool near a wall (Summary for retrieval: "toddler constructing with tool" or similar, capturing the key elements of a toddler, tool, and construction work)<gen_emb>

Reasoning 2:

<think>So, let's analyze the input. The input is a description of a video clip showing a child playing with a broom in a room. Key elements: main topic is a child playing with a broom, important entities are a young child, a broom, an indoor setting (with concrete wall, some items on the floor), actions like sweeping or playing with the broom. Context is a domestic environment, possibly home play. Notable features: the child's activity with the broom, the setting. So the essence is about a child playing with a broom in a room.</think><answer>**A child playing with a broom indoors (essence: a child playing with a broom in a room)**<gen_emb>

Reasoning 3:

<think> So, let's analyze the input. The input says to recognize the category of the video content. The video shows a child using a shovel to dig (or maybe play with sand/mud), with another child and a construction worker in the background. The key elements are a child engaged in digging with a shovel, another child watching, and an adult assisting. The context is likely a playful or instructional activity, maybe in a casual setting (like a home or construction site). So the main topic is a child playing with a shovel, and the context is a simple activity with others around. The essence would be a child digging with a shovel.</think><answer>**A child using a shovel to dig at a location with other people.**<gen_emb>

Figure 14: An example showing how repeated sampling leads to variations in model-generated reasoning and summaries, resulting in different retrieval outcomes (Case 3). **In this example, only Reasoning Path 1 correctly identifies that the video depicts a child building, leading to the correct retrieval, while the other reasoning paths mainly focus on "playing."**

Query: Recognize the category of the video content.

↓
Target: plastering

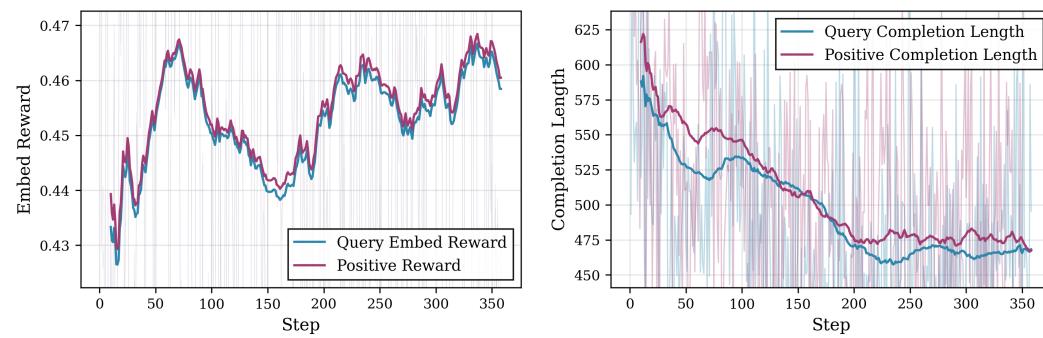
→ plastering

→ moving child

→ moving child

1458 I REWARD AND COMPLETION LENGTH VISUALIZATION

1459
 1460 In this section, we present visualizations in Figures 15 and 16 illustrating the evolution of reward
 1461 and completion length throughout training. We observe that for both the 2B and 7B models, the
 1462 lowest reward value increases as training progresses. However, unlike other tasks, our reward does
 1463 not exhibit a strictly increasing trend. This is because our RL dataset consists of data from multiple
 1464 modalities and sources, and follows the VLM2Vec-V2 strategy of using data from the same source
 1465 within each batch to avoid overly trivial negatives. Due to substantial differences in similarity and
 1466 difficulty across datasets, the rewards vary considerably between batches: rewards are relatively
 1467 high when the batch is easier, but lower when the batch is more challenging. Consequently, the
 1468 reward curve does not follow a strictly monotonic upward trajectory. In addition, we observe that
 1469 the completion length of the 2B model decreases as training progresses. This trend is consistent
 1470 with the findings of Chen et al. (2025c), Chen et al. (2025b), and Peng et al. (2025) on small-scale
 1471 MLLMs. A possible explanation is that the reasoning capacity of the 2B model is limited, and
 1472 excessively long reasoning may even impair its performance.

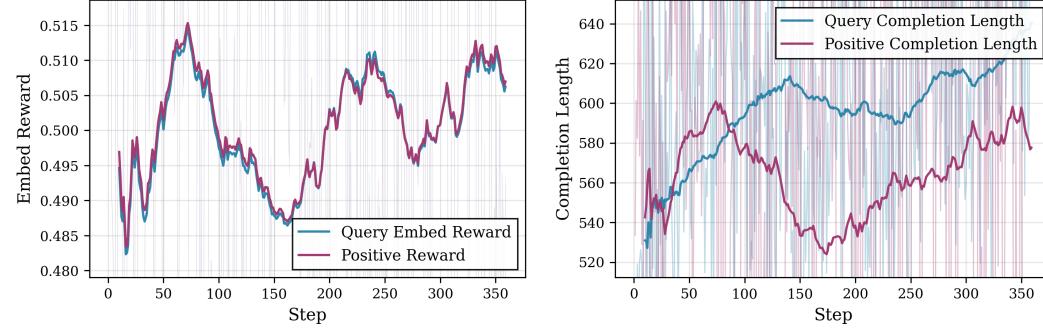


1473
 1474 Figure 15: Evolution of reward and generated completion length of UME-R1-2B during training.
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484

1485

1486

1487



1488
 1489 Figure 16: Evolution of reward and generated completion length of UME-R1-7B during training.
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511