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ABSTRACT

The remarkable success of multimodal large language models (MLLMs) has
driven advances in multimodal embeddings, yet existing models remain inherently
discriminative, limiting their ability to benefit from reasoning-driven generation
paradigm. In this work, we pioneer the exploration of reasoning-driven generative
embeddings, unifying embedding tasks within a generative paradigm. We propose
UME-R1, a universal multimodal embedding framework consisting of a two-stage
training strategy: a cold-start supervised fine-tuning equips the model with reason-
ing capabilities and enables it to generate both discriminative and reasoning-driven
generative embeddings; a subsequent reinforcement learning enhances reasoning
and further optimizes generative embedding quality. This pioneering work reveals
four key insights: 1) reasoning-driven generative embeddings unlock substantial
performance gains over conventional discriminative embeddings by leveraging
the powerful generative reasoning capabilities of MLLMs; 2) discriminative and
reasoning-driven generative embeddings are complementary, whose combined or-
acle performance far exceeding that of either alone; 3) RL can effectively en-
hance reasoning-driven generative embeddings, establishing a scalable optimiza-
tion paradigm; 4) repeated sampling at inference boosts downstream task coverage
(pass@k), highlighting the inference-time scalability potential of reasoning-driven
generative embeddings. Evaluated on the MMEB-V2 benchmark across 78 tasks
spanning video, image, and visual documents, UME-R1 significantly outperforms
conventional discriminative embedding models and offers a foundation for more
interpretable, reasoning-driven generative multimodal embeddings.1

1 INTRODUCTION

Recently, the field of multimodal embeddings has been significantly advanced by the remarkable
success of multimodal large language models (MLLMs). For instance, VLM2Vec (Jiang et al.,
2025) and MM-Embed (Lin et al., 2025) construct multimodal embedding models based on MLLMs.
These models demonstrate superior performance across a range of multimodal embedding tasks
compared to traditional dual-encoder vision–language models like CLIP (Radford et al., 2021).

In parallel, large reasoning models (LRMs) represented by GPT-4o (Hurst et al., 2024) and
DeepSeek-R1 (Guo et al., 2025) have made breakthroughs in complex reasoning. A distinctive
feature of these models is the incorporation of the chain of thought (CoT) (Wei et al., 2022), which
elicits step-by-step reasoning paths and typically produces more accurate and interpretable outputs.
Building on this success, recent works (Shen et al., 2025b; Hong et al., 2025a) have extended these
advances to MLLMs, substantially enhancing their performance on various multimodal tasks. How-
ever, multimodal embedding models have derived limited benefit from these advances. The key
reason is that existing MLLM-based multimodal embedding models are discriminative: they di-
rectly encode the multimodal input and extract the last token’s final hidden state as the embedding,
without generating any new tokens. Naturally, this raises the question: How to make a multimodal
embedding model act as a generative one?

Several prior studies (Ouali et al., 2025; Yu et al., 2025a) have incorporated a next-token prediction
loss in training multimodal embedding models, demonstrating that it preserves generative capabili-
ties while enhancing discriminative performance. Nevertheless, these approaches merely introduce

1Our datasets, models, and code will be publicly released.
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additional data and losses during training. Ultimately, at inference, they remain discriminative, as
their embeddings are obtained by directly encoding the input without generating any intermediate
content; we refer to these as discriminative embeddings.

In this paper, we propose UME-R1, a universal multimodal embedding framework that enables
multimodal embedding models to produce either discriminative or reasoning-driven generative em-
beddings on demand. First, we construct a cold-start supervised fine-tuning (SFT) dataset by aug-
menting the original query–target pairs used for embedding training with intermediate reasoning
and summaries. During training, the contrastive loss is applied to embedding tokens that follow the
summary, while an autoregressive next-token prediction loss is imposed on the reasoning and sum-
mary tokens. As a result, the model learns to first generate intermediate reasoning and a summary,
and then produce embedding token to obtain representation; we term these as reasoning-driven
generative embeddings. Meanwhile, discriminative embeddings are preserved throughout training,
allowing the model to flexibly output either type of embedding as needed. Interestingly, experiments
reveal a substantial gap between the oracle upper bound and current discriminative embeddings, in-
dicating that there remains considerable room for improvement.

We further ask: Can reinforcement learning with verifiable reward (RLVR) also be effective for
generative embedding models? A natural approach would assign a positive reward if the similarity
of a given positive pair exceeds a preset threshold, and no reward otherwise. However, since the
degree of similarity varies among different pairs, this approach may render some pairs excessively
difficult or easy, resulting in the problem of zero policy gradients (Yu et al., 2025b). To overcome
this, we propose a reward policy that considers ranking and similarity gaps simultaneously, and
demonstrate that generative embedding models can also benefit from RLVR. Additionally, we find
that repeated sampling can improve the coverage (i.e., pass@k) of generative embedding models,
suggesting that embeddings also have the potential for inference-time scaling.

Overall, we make the following four contributions: 1 Based on MMEB-V2 (Meng et al., 2025)
training data, we build a multimodal embedding cold-start SFT dataset with CoT annotations, and
construct a small-scale dataset for efficient RL training. 2 We propose UME-R1, a framework
designed to endow multimodal embedding models with the flexibility to switch between discrimina-
tive and reasoning-driven generative embeddings. To the best of our knowledge, we are the first to
explore reasoning-driven generative embeddings, demonstrating the significant potential of unifying
embeddings within a generative paradigm. 3 We pioneer the successful application of rule-based
RL to the multimodal embeddings task, which lacks standard best answers like math, by designing
a novel reward policy tailored to embeddings. 4 UME-R1 outperforms conventional discriminative
embedding models on MMEB-V2, a benchmark comprising 78 tasks across three visual modalities:
video, image, and visual documents. Analysis of an oracle upper bound and pass@k indicates that
UME-R1 retains significant potential for further improvement.

2 DATASET CONSTRUCTION

Raw Data (～1.76M)

Three visual modalities: 
image, video, document

GLM-V

<think> Got it, let's analyze the 
input. The query... Wait, but the 
image provide… The main topic 
is… The key elements are…. So 
the core is… </think><answer> 

Overall, the summary is …

CoT Annotation Data Filter

1) Excessive token 
repetition

2) Overlong 
reasoning

3) Invalid format

SFT Data
(～1.46M)

RL Data
(～11K)

Balanced 
sampling

Discard

Figure 1: Illustration of the pipeline for data construction. Specific prompts used for CoT annotation
and the resulting data samples are presented in Appendix D.

To construct the training corpus for generative multimodal embeddings, as illustrated in Figure 1,
we sample 50,000 instances from each of the 20 in-distribution datasets within MMEB (Jiang et al.,
2025). Following VLM2Vec-V2 (Meng et al., 2025), we also incorporate the training instances
from LLaVA-Hound (Zhang et al., 2025a), ViDoRe (Faysse et al., 2025b), and VisRAG (Yu et al.,
2025c) datasets to cover video and visual-document modalities, yielding a total of 1.76 million
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pairs. Subsequently, we employ the pure-thinking model GLM-4.1V-Thinking (Hong et al., 2025b)
to generate CoT rationales for both the query and the target of each pair.

We filter the data by excluding pairs that meet any of the following criteria: (1) contain extensive
contiguous token repetition; (2) include reasoning that are excessively long (e.g., exceeding 8,192
tokens); or (3) produce responses that do not conform to the <think>...</think><answer>
format. This filtering process results in a final set of 1.46 million cold-start SFT pairs. For RL
training, a set of 11,136 pairs is balanced sampled from various datasets spanning the image, video,
and visual-document modalities, prioritizing instances not included in the SFT data to avoid overly
simple samples.

3 UME-R1

3.1 PRELIMINARIES

We adopt the formulation from VLM2Vec (Jiang et al., 2025) for discriminative multimodal em-
beddings task as follows: given a query q and its corresponding positive target t+, as well as a set
of negative targets T − = {t−1 , . . . , t

−
K}, the objective is to maximize similarity between q and t+

over all q and t− ∈ T − pairs. Here, both queries and targets can be text, image, or interleaved
text-image.

In practice, we sample a mini-batch of N query–target pairs (q1, t1), . . . , (qN , tN ), where (qi, ti)
forms the positive pair and all targets {tj | j ̸= i} serve as negatives for qi. Formally, we optimize
the model by minimizing the following InfoNCE loss function:

Ldctr =
1

N

N∑
i=1

− log
exp

(
(πθ(qi) · πθ(ti))/τ

)
exp

(
(πθ(qi) · πθ(ti))/τ

)
+

∑N
j ̸=i exp

(
(πθ(qi) · πθ(tj))/τ

) . (1)

where πθ(·) denotes the normalized representation of the last input token, derived from the MLLM’s
final-layer hidden state, and τ represents the temperature hyper-parameter.

3.2 ARCHITECTURE

In this work, we introduce a multimodal embedding model capable of producing both discrimina-
tive and reasoning-driven generative embeddings. To obtain the reasoning-driven generative embed-
dings, the model first generates distinct reasoning and summaries for each query and target. These
outputs are then concatenated with the original input to produce the final generative representa-
tion. Note that the model can simultaneously yield discriminative embeddings without incurring
additional computation. Specifically, we employ the following template to realize this process:

Template for Discriminative and Reasoning-Driven Generative Embeddings

USER: <image> <video> {query/target} <disc emb>
Represent the above input text, images, videos, or any combination of the three as embed-
dings. First output the thinking process in <think> </think> tags and then summarize
the entire input in a word or sentence. Finally, use the <gen emb> tag to represent the
entire input.
ASSISTANT: <think> {reasoning} </think>
<answer> {summary} <gen emb>

where <image> and <video> denote placeholders for the input image and video. As illustrated
in Figure 2(a), the last-layer hidden states corresponding to the prompt’s <disc emb> token and
the final model-generated <gen emb> token serve as the discriminative and reasoning-driven gen-
erative embeddings, respectively.

3.3 MODEL TRAINING

We train the model in two stages, enabling it not only to generate discriminative embeddings but also
to develop reasoning capabilities for producing stronger reasoning-driven generative embeddings.
Figure 2 illustrates the overall training process.

3
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Multimodal Large Language Model

Image/Video
Query & Discriminative

Embedding Generation Prompt
Reasoning & Summary & 
Generative Embedding

Find an image caption 
describing the given image. 

<Disc_emb>

Represent the above input... 
First output the thinking... 

then summarize ... Finally, use 
the <gen_emb> ... 

<think>So, let's analyze the 
image…</think><answer> A 

cat and… <gen_emb>

Autoregressive 
Modeling

Discriminative 
Contrastive Learning

Generative 
Contrastive Learning

Discriminative Embedding:
Get representation 
directly from input

Generative Embedding:
First generate reasoning 
and summary, then get
representation based on 
input and generated 
content.

Policy
Model

Query

Positive

Negative
GRPO

Reward Evaluation

Candidate Responses

Policy Optimization

Format Reward

Reference
Model

KL 

Divergence

Embedding 
Reward

Pos. Cand. 1

Pos. Cand. 2

Neg. Cand. 1

Pos. Cand. G

…

Positive ratio 
in Top-G

Pos. Cand. G

Neg. Cand. G

Mean 
similarity gap

(a) Stage 1: Supervised Fine-tuning

(b) Stage 2: Reinforcement Learning with Verifiable Reward

Figure 2: Overview of UME-R1. UME-R1 introduces a two-stage training framework for gen-
erative multimodal embedding. (a) Supervised fine-tuning uses query-target pairs with reasoning
annotations to train the MLLM, enabling it to generate both discriminative and reasoning-driven
generative embeddings as well as to possess basic reasoning abilities. (b) RLVR continues to fine-
tune the model using regular query-target pairs, encouraging it to generate reasoning trajectories that
lead to more beneficial embeddings.

Stage 1: Supervised Fine-tuning. In this initial stage, we perform SFT on the model using the
multimodal embedding dataset constructed in Section 2, which incorporates the step-by-step reason-
ing processes. As shown in Figure 2(a), alongside the discriminative embedding training objective
outlined in Section 3.1, we also include the following generative embedding training objectives:

Lgctr =
1

N

N∑
i=1

− log
exp

(
(πθ(qi, o

q
i ) · πθ(ti, o

t
i))/τ

)
exp

(
(πθ(qi, o

q
i ) · πθ(ti, oti))/τ

)
+

∑N
j ̸=i exp

(
(πθ(qi, o

q
i ) · πθ(tj , o

q
j))/τ

) .
(2)

where oqi and oti denote the i-th reasoning trajectory and summary of the query and target, respec-
tively. Compared to the original input, reasoning process and summarization provide more detailed
and useful information, which often enhances the performance of the resulting embeddings.

Furthermore, to endow the model with reasoning capabilities during inference, we apply a next-
token prediction loss over both the reasoning trajectories and summaries, formalized as

Lce = − 1

N

N∑
i=1

 Lq∑
j=1

log πθ

(
oqi,j | qi, o

q
i,<j

)
+

Lt∑
j=1

log πθ

(
oti,j | ti, oti,<j

) , (3)

where Lq and Lt denote the lengths of the reasoning trajectories for the query and the target, respec-
tively. Overall, the loss for the SFT stage is defined as follows:

Lsft = Ldctr + Lgctr + Lce. (4)

This stage of training not only equips the model to generate both discriminative and reasoning-driven
generative embeddings, but also lays the foundation for its reasoning abilities.

Stage 2: Reinforcement Learning with Verifiable Reward. As illustrated in Figure 2(b), in this
stage, we further refine the model πθ using Group Relative Policy Optimization (GRPO) (Shao et al.,

4
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2024). Unlike methods that rely on a learned value function, GRPO utilizes the mean reward across
multiple sampled outputs as its baseline. Specifically, for each input query q, it samples a group of
G candidate responses {oi}Gi=1 from the old policy πθold , and then optimizes the policy model πθ

by maximizing the following objective:

Lgrpo = Eq∼D,{oi}G
i=1∼πθold

[
1

G

G∑
i=1

(
min

( πθ(oi | q)
πθold(oi | q)

Ai,

clip

(
πθ(oi | q)
πθold(oi | q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL(πθ∥πref)

)]
,

(5)

where D denotes the training dataset, ϵ and β are hyper-parameters, and πref represents the reference
model before optimization. Ai indicates the advantage of the i-th response, computed based on a
group of rewards {r1,. . . ,rG} corresponding to the outputs within each group:

Ai =
ri −mean({r1, · · · , rG})

std({r1, · · · , rG})
. (6)

Accordingly, we design the reward function to include two components: format rewards and em-
bedding rewards, which we will now describe in detail.

Format Reward. The use of this reward encourages the model to adhere to a predefined template, en-
suring that responses are well-structured and interpretable. Specifically, the model is required to per-
form reasoning within the <think> and </think> tags, provide a summary after the <answer>
tag, and finally generate the <gen emb> for obtaining the generative embedding. A reward of 1 is
granted for strict adherence to the template, while any deviation results in a reward of 0.

Embedding Reward. This component is used to evaluate the quality of the embeddings generated
by the model. Since embeddings cannot be directly evaluated against standard answers as in math-
ematics, we evaluate them from two aspects: the ranking of positives among negatives, and the
similarity gap between positives and negatives. Concretely, for each query q with a positive tar-
get t+ and a negative target t−, we sample a group of responses {o+j }Gj=1 corresponding to the
positive target, another group {o−j }Gj=1 corresponding to the negative target2. For the i-th sam-
pled response oi of the query, we calculate its similarity scores with the positive targets as S+ =
{πθ(q, oi) ·πθ(t

+, o+j )}Gj=1, and with the negative targets as S− = {πθ(q, oi) ·πθ(t
−, o−j )}Gj=1. The

embedding reward for the i-th response oi sampled from the query is defined as follows:

Remb(oi) =
|S+ ∩ topG(S+ ∪ S−)|

G︸ ︷︷ ︸
Ranking

×
(
avg(S+)− avg(S−)

)︸ ︷︷ ︸
Similarity Gap

, (7)

where topG(·) denotes the operation of selecting the top-G largest elements from input set. By
optimizing this reward, the model learns to produce reasoning trajectories that are more conducive
to generating high-quality generative embedding.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Details. Following VLM2Vec-V2 (Meng et al., 2025), we adopt Qwen2-VL-2B and
Qwen2-VL-7B as backbone models. During the SFT stage, we train using the cold-start dataset con-
structed in Section 2, which is approximately two-thirds the size of the dataset used by VLM2Vec-
V2. Consistent with the settings of VLM2Vec-V2, the temperature τ is set to 0.02, the batch size to
1,024 (achieved through gradient accumulation), and the number of training steps to 5K. Besides,
the maximum sequence length is 12,288 tokens, and the learning rate is 5e-5. During the RL stage,
the model is trained on approximately 11K pairs and uses the default GRPO hyperparameter set-
tings: group size G = 8, clipping parameter ϵ = 0.2, and KL-divergence coefficient β = 0.04. In
this stage, we set the batch size to 256, the learning rate to 1e-6, and train for one epoch.

2For simplicity, only one negative target is illustrated; however, this method can extends to any number of
negative targets in practice.
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Table 1: Comparison of performance between baselines and UME-R1 on MMEB-V2. CLS: classi-
fication, QA: question answering, RET: retrieval, GD: grounding, MRET: moment retrieval, VDR:
ViDoRe, VR: VisRAG, OOD: out-of-domain. Oracle denotes the case where the best result between
reasoning-driven generative and discriminative embeddings is picked. Detailed results can be found
in Appendix E.

Model Image Video VisDoc All
CLS QA RET GD Overall CLS QA RET MRET Overall VDRv1 VDRv2 VR OOD Overall

# of Datasets 10 10 12 4 36 5 5 5 3 18 10 4 6 4 24 78

Baseline Models

ColPali-V1.3 (PaliGemma-3B) 40.3 11.5 48.1 40.3 34.9 26.7 37.8 21.6 25.5 28.2 83.6 52.0 81.1 43.1 71.0 44.4
GME (Qwen2-VL-2B) 54.4 29.9 66.9 55.5 51.9 34.9 42.0 25.6 32.4 33.9 86.1 54.0 82.5 43.1 72.7 54.1
GME (Qwen2-VL-7B) 57.7 34.7 71.2 59.3 56.0 37.4 50.4 28.4 38.2 38.6 89.4 55.6 85.0 44.4 75.2 57.8
LamRA (Qwen2-VL-7B) 59.2 26.5 70.0 62.7 54.1 39.3 42.6 24.3 34.6 35.2 22.0 11.5 37.4 21.0 23.9 40.4
LamRA (Qwen2.5-VL-7B) 51.7 34.1 66.9 56.7 52.4 32.9 42.6 23.2 37.6 33.7 56.3 33.3 58.2 40.1 50.2 47.4
VLM2Vec (Qwen2-VL-2B) 58.7 49.3 65.0 72.9 59.7 33.4 30.5 20.6 33.0 29.0 49.8 13.5 51.8 33.5 41.6 47.0
VLM2Vec (Qwen2-VL-7B) 62.7 56.9 69.4 82.2 65.5 39.1 30.0 29.0 40.6 34.0 56.9 9.4 59.1 38.1 46.4 52.3
VLM2Vec-V2 (Qwen2-VL-2B) 62.9 56.3 69.5 77.3 64.9 39.3 34.3 28.8 38.5 34.9 75.5 44.9 79.4 39.4 65.4 58.0
CAFe (LLaVA-OV-7B) 63.6 61.7 69.1 87.6 67.6 35.8 58.7 34.4 39.5 42.4 70.7 49.6 79.5 38.1 63.9 60.6
DUME (Qwen2-VL-2B) 59.3 55.0 66.3 78.0 62.5 37.7 46.6 17.1 30.0 33.2 67.6 43.3 47.1 33.8 52.8 52.7
DUME (Qwen2-VL-7B) 64.2 57.0 70.8 81.8 66.4 32.9 47.4 8.6 28.0 29.4 67.1 35.2 82.6 34.9 60.3 55.9

Ours

UME-R1 (Qwen2-VL-2B) 64.8 62.8 67.6 77.2 66.6 44.3 51.2 32.9 39.7 42.2 72.4 46.2 79.2 37.2 63.9 60.1
UME-R1 (Qwen2-VL-7B) 67.1 69.2 71.9 84.9 71.3 48.6 60.7 38.2 39.3 47.5 75.7 50.5 83.7 37.6 67.1 64.5

Oracle

UME-R1 (Qwen2-VL-2B) 67.6 67.5 71.2 80.1 70.2 47.0 58.7 37.2 48.8 47.9 76.8 51.5 82.6 41.5 68.2 64.4
△− Ours +2.8 +4.7 +3.6 +2.9 +3.6 +2.7 +7.5 +4.3 +9.1 +5.7 +4.4 +5.3 +3.4 +4.3 +4.3 +4.3

UME-R1 (Qwen2-VL-7B) 69.1 73.2 74.8 87.4 74.2 51.6 67.2 39.6 49.6 52.2 79.7 55.8 86.0 40.7 70.8 68.1
△− Ours +2.0 +4.0 +2.9 +2.5 +2.9 +3.0 +6.5 +1.4 +10.3 +4.7 +4.0 +5.3 +2.3 +3.1 +3.7 +3.6

Evaluation. We evaluate UME-R1 on MMEB-V2 (Meng et al., 2025), a benchmark that extends
MMEB-V1 (Jiang et al., 2025) by introducing 5 meta-tasks focused on video and visual docu-
ment, covering a total of 9 meta-tasks and 78 tasks. During inference, we use greedy search and
set the maximum number of newly generated tokens to 8,192. Unless otherwise specified, we use
reasoning-driven generative embeddings for evaluation. Hit@1 is used as the evaluation metric for
all video and image tasks, while NDCG@5 (Järvelin & Kekäläinen, 2002) is reported for visual doc-
ument tasks. In addition, we compare several strong models on MMEB-V1, with the corresponding
results presented in Appendix F.

Baselines. We compare against several MLLM-based multimodal embedding models, including
GME (Zhang et al., 2025b), ColPali (Faysse et al., 2025a), VLM2Vec (Jiang et al., 2025), LamRA
(Liu et al., 2025a), CAFe (Yu et al., 2025a), and VLM2Vec-V2 (Meng et al., 2025). To ensure a fair
comparison and to clearly assess the role of reasoning-driven generative embeddings, we evaluate a
model that performs contrastive learning exclusively on discriminative embeddings, using the same
dataset and settings as ours. We refer to this model as DUME (discriminative UME).

4.2 MAIN RESULTS

Table 1 presents a performance comparison between UME-R1 and the Baseline on 78 tasks span-
ning three visual modalities: images, videos, and visual documents. The results show that UME-R1
consistently achieves the best performance in images and videos with the same backbone. Although
ColPali and GME perform well on visual document retrieval, the former is specifically optimized
for visual document tasks, while the latter uses a large amount of closed-source data. In particular,
compared to VLM2Vec-V2, UME-R1 achieves an overall improvement of 2.1 while using only two-
thirds of its training data. Compared to the discriminative embedding model DUME trained with
the same amount of data, UME-R1 increases the total scores for images, videos, and visual docu-
ments by 4.1, 9.0, and 11.1, respectively, fully demonstrating the effectiveness of reasoning-driven
generative embeddings. Comparative examples of reasoning-driven generative and discriminative
embeddings are provided in Appendix G.

Since UME-R1 can flexibly choose discriminative or reasoning-driven generative embeddings as
needed, we report an oracle upper bound. For each test instance, the oracle selects the embed-
ding mode that yields the best retrieval performance. Under the oracle setting, UME-R1-2B and

6
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Table 2: Ablation study of the RL stage on images, videos, and visual documents.

# Model Image Video VisDoc ALL

1 UME-R1 (Qwen2VL-2B) 66.6 42.2 63.9 60.1

2 w/o RL (UME) 65.2 ↓1.4 41.2 ↓1.0 63.5 ↓0.4 59.1 ↓1.0
3 w/o similarity gap reward 65.2 ↓1.4 41.2 ↓1.0 63.6 ↓0.3 59.2 ↓0.9
4 w/o ranking reward 66.0 ↓0.6 41.8 ↓0.4 63.3 ↓0.6 59.6 ↓0.5
5 w/ threshold reward 65.6 ↓1.0 41.7 ↓0.5 63.5 ↓0.4 59.4 ↓0.7

UME-R1-7B achieve overall score improvements of 4.3 and 3.6, respectively. The results demon-
strate that the oracle substantially outperforms using only reasoning-driven generative embeddings,
which means that in practical applications users can freely switch modes to obtain more satisfactory
retrieval results.

4.3 ABLATION STUDY

Impact of RL Stage and Reward Design on Model Effectiveness. As shown in Table 2, we
study the effectiveness of different components in the RL stage across 78 tasks of MMEB-V2. From
the second row, we observe that although the RL stage uses only a small dataset for training with
GRPO and does not incorporate contrastive learning, it still substantially improves model perfor-
mance. This finding suggests that effective reasoning paths and summarization contribute to better
embeddings. The results in the Rows 3 and 4 show that jointly considering ranking and similar-
ity differences in the reward is essential. Ranking offers supervision that aligns more closely with
downstream tasks, but for relatively easy samples, the ranking reward often saturates. In such cases,
similarity differences help guide the model toward learning more effective reasoning paths. In addi-
tion, we explore using a fixed threshold (set to 0.5) as the evaluation criterion for assigning rewards,
where positive pairs exceeding the threshold receive a reward of 1 and others receive 0. The re-
sults in Row 5 show that this approach is mainly beneficial for video tasks but provides limited
improvement for other modalities. We attribute this to the varying similarity distributions across
task categories, which make it difficult to define a single fixed threshold. Developing an adaptive
threshold for reward assignment may be a promising solution.

Table 3: Comparison of UME and UME-R1 using
only discriminative embeddings against DUME un-
der the same training settings.

Model Image Video VisDoc ALL

DUME 62.5 33.2 52.8 52.7
UME 63.2 ↑0.7 34.4 ↑1.2 60.3 ↑7.5 55.7 ↑3.0
UME-R1 64.0 ↑1.5 34.4 ↑1.2 60.3 ↑7.5 56.0 ↑3.3

Impact of Reasoning-Driven Generative
Embedding Training on Discriminative
Embeddings. While UME-R1 is primar-
ily designed for reasoning-driven generative
embeddings, it also supports discriminative
embeddings. In this study, we investigate
how the SFT stage and the RL stage affect
the performance of discriminative embed-
dings. Table 3 reports the performance of
2B-parameter models DUME, UME (with-
out RL training), and UME-R1. Under the same training settings, introducing reasoning-driven
generative embeddings and the next-token prediction objective during the SFT stage improves the
overall score of discriminative embeddings across 78 tasks by 3 points. Notably, for visual docu-
ment tasks, the improvement reaches 7.5 points, likely due to the limited amount of such data in
the training set, suggesting that incorporating the generative embedding and the next-token predic-
tion objective provides richer supervisory signals. Furthermore, UME-R1 achieves an additional
0.4-point improvement over UME in the overall score. Although the RL stage only optimizes the
reasoning-driven generative embeddings, it does not compromise the performance of the discrimi-
native embeddings, indicating that the two types of embeddings do not conflict during training.

4.4 DEEP ANALYSIS

Potential of Reasoning-Driven Generative Embeddings for Inference-Time Scaling. One of
the key characteristics of generative reasoning models is their ability to scale at inference time,
meaning that performance can be improved by allocating more computing resources. Motivated
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Figure 3: pass@k curves of UME-2B and UME-7B across multiple datasets.

by this, we explore whether reasoning-driven generative embeddings possess similar potential for
inference-time scaling. To this end, we evaluate model coverage (pass@k) on four randomly se-
lected test sets from the image and video modalities, each containing 128 randomly sampled exam-
ples. Pass@k considers a problem solved if any of the k sampled outputs is correct, thereby indicat-
ing the model’s ability to retrieve the correct result through multiple attempts. To reduce variance
in coverage estimation, we apply the unbiased estimation formula proposed by Brown et al. (2024).
As illustrated in Figure 3, both UME-R1-2B and UME-R1-7B yield improved embedding represen-
tations through repeated sampling, underscoring that reasoning-driven generative embeddings also
hold strong promise for inference-time scaling. Appendix H presents visual illustrations of how
repeated sampling affects retrieval results.

Figure 4: Comparison between DUME, DUME+Gen, and UME-R1. DUME+Gen denotes the ap-
proach in which an external model first generates reasoning and summaries, followed by DUME to
obtain the corresponding embeddings.

External-Enhanced Discriminative Embeddings vs. Self-Generated Generative Embeddings.
We further investigate an approach where an external reasoning model generates reasoning and
summaries, subsequently encoded by discriminative embedding model to obtain representations.
We evaluate whether this approach enhances performance and compare it with our proposed self-
generated method. Concretely, we evaluate the 2B model on previously extracted test set, employing
the 9B GLM-4.1V-Thinking (Hong et al., 2025a) as the external reasoning model. As shown in Fig-
ure 4, incorporating an external model can enhance discriminative embeddings on certain tasks, with
improvements of 19.7 and 3.9 observed on K700 and MSVD, respectively. However, this approach
may also degrade performance, exemplified by a 12.3-point drop on CIRR. Importantly, UME-R1
consistently outperforms DUME+Gen, indicating that self-generated reasoning and summaries are
more efficient and effective than even a stronger external model for producing high-quality embed-
ding representations.

5 RELATED WORK

5.1 MULTIMODAL LARGE LANGUAGE MODEL

Multimodal large language models (MLLMs) (OpenAI, 2023; Liu et al., 2023; Chen et al., 2023; Li
et al., 2024; Wang et al., 2024) have achieved remarkable progress across a wide range of multimodal
understanding tasks. The emergence of Large Reasoning Models (LRMs), exemplified by GPT-4o
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(Hurst et al., 2024) and DeepSeek-R1 (Guo et al., 2025), has catalyzed the development of various
strategies to elicit chain-of-thought (CoT) reasoning within MLLMs. Among the most prominent is
the use of reinforcement learning with verifiable reward signals to enhance visual reasoning (Zhou
et al., 2025a; Zhan et al., 2025; Liu et al., 2025b; Shen et al., 2025a). However, to our knowledge, no
prior work has applied reinforcement learning with verifiable reward to embedding tasks, primarily
due to such tasks are non-generative and do not have definitive answers.

5.2 UNIVERSAL MULTIMODAL EMBEDDINGS

Universal multimodal embedding models aim to encode inputs of various modalities into vector rep-
resentations, facilitating a range of multimodal tasks such as image-text retrieval (Wu et al., 2021;
Zhang et al., 2024a), automatic evaluation (Hessel et al., 2021), and retrieval-augmented generation
(RAG) (Zhao et al., 2023). Early vision-language models (VLMs) (Radford et al., 2021; Jia et al.,
2021; Zhai et al., 2023) primarily used a dual-encoder architecture and were trained with contrastive
learning on large-scale image–text datasets. Although these models exhibited strong representa-
tional capabilities, they still suffered from deficiencies such as poor understanding of interleaved
image–text inputs and a tendency to behave like bag-of-words (Yüksekgönül et al., 2023).

To address these issues, VLM2Vec (Jiang et al., 2025) and MM-Embed (Lin et al., 2025) con-
vert MLLMs into multimodal embedding models through contrastive learning, leveraging MLLMs’
strong multimodal understanding and inherent advantages in handling interleaved image–text inputs.
Given the limited scale of existing multimodal embedding datasets, MegaPairs (Zhou et al., 2025c)
and GME (Zhang et al., 2025b) introduce automated data synthesis pipelines to generate large-scale
pairs, thereby further improving the performance of MLLM-based multimodal embedding models.
On the other hand, some works focus on negative sample selection or learning, for example, UniME
(Gu et al., 2025a) filters out false negatives and easy negatives during training based on similar-
ity, while LLaVE (Lan et al., 2025) and QQMM (Xue et al., 2025) estimate negative difficulty and
weight negatives accordingly. Furthermore, B3 (Thirukovalluru et al., 2025) introduces a hard neg-
ative mining method that leverages community detection to construct training batches enriched with
in-batch negatives.

Additionally, some studies explore how to preserve MLLMs’ generative strengths when converting
them from generative to discriminative models. VladVA (Ouali et al., 2025) and CAFe (Yu et al.,
2025a) combine a contrastive objective with autoregressive language modeling to prevent catas-
trophic forgetting of the models’ generative abilities while enhancing their discriminative capabili-
ties. Moreover, Ju & Lee (2025) design hierarchical prompts to elicit powerful discriminative em-
beddings from generative models in a zero-shot manner. Despite these advances, existing MLLM-
based embedding models remain limited to producing discriminative embeddings and therefore do
not exploit MLLMs’ generative and reasoning capabilities. In contrast, UME-R1 can generate dis-
criminative or reasoning-driven generative embeddings on demand, demonstrating the substantial
potential of harnessing MLLMs’ reasoning power for embedding tasks.

6 CONCLUSION

In this work, we pioneer the exploration of reasoning-driven generative embeddings and propose
UME-R1, a universal multimodal embedding framework that unifies discriminative and reasoning-
driven generative embeddings. To support this, we construct an SFT dataset by augmenting existing
multimodal embedding benchmarks with reasoning and summaries produced by a thinking-capable
MLLM. Fine-tuning on this dataset enables the model to produce both embedding types. We further
apply reinforcement learning with a reward function that incorporates similarity gaps and ranking,
encouraging reasoning trajectories that enhance reasoning-driven generative embeddings. Experi-
ments on MMEB-V2, spanning 78 tasks across video, image, and visual document domains, show
that reasoning-driven generative embeddings yield significant gains over discriminative ones. Fi-
nally, oracle and inference-time analyses suggest that UME-R1 holds substantial headroom for fur-
ther improvement.

Our work highlights three promising directions for future research: 1) developing mechanisms that
allow the model to adaptively decide whether to produce discriminative or reasoning-driven gen-
erative embeddings based on the input; 2) constructing more challenging RL datasets or designing
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more effective RL training strategies to encourage the model to produce reasoning and summaries
that more conducive to embedding quality; and 3) exploring inference-time scaling techniques to
further enhance the quality of reasoning-driven generative embeddings. In general, UME-R1 estab-
lishes a new direction for reasoning-driven generative multimodal embeddings and lays a foundation
for future research.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics and does not involve the collection of new human
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Colombo. Colpali: Efficient document retrieval with vision language models. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025a. URL https://openreview.net/forum?id=ogjBpZ8uSi.

10

https://github.com/Deep-Agent/R1-V
https://github.com/Deep-Agent/R1-V
https://openreview.net/forum?id=ogjBpZ8uSi


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and Pierre
Colombo. Colpali: Efficient document retrieval with vision language models. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025b.

Tiancheng Gu, Kaicheng Yang, Ziyong Feng, Xingjun Wang, Yanzhao Zhang, Dingkun Long,
Yingda Chen, Weidong Cai, and Jiankang Deng. Breaking the modality barrier: Universal em-
bedding learning with multimodal llms. CoRR, abs/2504.17432, 2025a.

Tiancheng Gu, Kaicheng Yang, Ziyong Feng, Xingjun Wang, Yanzhao Zhang, Dingkun Long,
Yingda Chen, Weidong Cai, and Jiankang Deng. Breaking the modality barrier: Universal em-
bedding learning with multimodal llms. CoRR, abs/2504.17432, 2025b.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pp. 7514–7528. Association for Computational Lin-
guistics, 2021.

Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
with scalable reinforcement learning. arXiv preprint arXiv:2507.01006, 2025a.

Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
with scalable reinforcement learning. arXiv e-prints, pp. arXiv–2507, 2025b.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.
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A USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we use Large Language Models (LLMs) solely to aid in writing
and polishing the text, including improving clarity, grammar, and readability. LLMs are not used
for generating scientific content, experimental design, analysis, or conclusions. All technical ideas,
experiments, and results reported in this paper are entirely the work of the authors.

B LIMITATIONS OF UME-R1

Although UME-R1 demonstrates that reasoning-driven generative embeddings exhibit stronger per-
formance and greater potential than discriminative embeddings, they incur higher training and in-
ference costs due to the generation of long CoT and summaries. However, this also opens a new
avenue for improving embedding performance beyond scaling model size, namely scaling compu-
tation. Moreover, while our oracle upper-bound analysis empirically shows the complementarity
between discriminative and reasoning-driven generative embeddings, designing a practical router to
select between the two in real-world applications remains an open problem. Finally, there is still
room for further performance improvement in our current RL setup, for example, by constructing
harder negative examples for RL training or scaling up the training instances.

C TRAINING AND INFERENCE COST

In this section, we discuss the training cost of UME-R1 as well as the inference overhead of
reasoning-driven generative embeddings compared to discriminative embeddings.

Under the same training configuration, DUME requires 1487 H20 GPU-hours for fine-tuning,
whereas UME-R1 incurs 2336 H20 GPU-hours in the SFT stage and 1344 H20 GPU-hours in the
RL stage.

Table 4: Comparison of inference speed between discriminative and reasoning-driven generative
embeddings across different datasets. The embedding type produced is indicated in parentheses.

Model CIRR FashIQ K700 MSVD

UME-R1 (Generative) 1.48 samples/s 1.14 samples/s 0.50 samples/s 1.10 samples/s
UME-R1 (Discriminative) 20.0 samples/s 19.1 samples/s 1.59 samples/s 28.0 samples/s

As for inference cost, we evaluate inference speed on CIRR, FashionIQ, K700, and MSVD using
a single L40s GPU under the vLLM framework. The batch size is set to 8 for image modalities
and 4 for video modalities. As shown in Table 4, reasoning-driven generative embeddings indeed
introduce a noticeably higher inference overhead, especially when the input token length is short.
The speed gap narrows as the input token length increases. Nevertheless, the stronger performance,
better interpretability, and the ability to scale computation to further enhance embedding quality
make the cost of reasoning-driven generative embeddings well justified.

D EXAMPLE OF DATA CONSTRUCTION

The prompt template for SFT CoT annotation is provided as follows:
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Prompt Template for Reasoning Annotation

{query/candidate}
The above input is a query/candidate for retrieval. Carefully examine and analyze the above
input (which may include text, images, videos, or any combination). Identify and describe the
key elements present in the input, such as the main topic, important entities, relationships,
context, and any notable features or details that contribute to the overall meaning. Finally,
synthesize your analysis and reflection into a single word or a concise sentence that best
captures the essence of the input for retrieval purposes. If the input is a phrase or word, the
summary is that word itself.

We present examples of our constructed cold-start dataset in Figures 5, 6, and 7 to illustrate the
typical query–target pairs it contains. For RL training, we sampled roughly equal numbers of in-
stances from each modality while ensuring a balanced numbers across different datasets within each
modality. In particular, for the image modality, pairs were drawn only from OK-VQA (Marino et al.,
2019), ChartQA (Masry et al., 2022), CIRR (Liu et al., 2021), A-OKVQA (Marino et al., 2019), and
Visual7W (Zhu et al., 2016), as the tasks in the other image datasets are relatively simple.
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Query:
Given an image, find a similar everyday image with the described changes: Shows a similar dog touching 
noses with a smaller light brown and white dog.<disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output 
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence. 
Finally, use the <gen_emb> tag to represent the entire input.
<think>So, let\'s analyze the input. The query is asking for a similar everyday image with a dog touching 
noses with a smaller light brown and white dog. First, identify key elements: main topic is a dog image with 
interaction (nose touching) with a smaller dog of specific colors (light brown and white). Important entities: 
dogs, touching noses, smaller light brown and white dog. Relationships: interaction between two dogs, one 
larger (similar to original dog maybe), one smaller with light brown and white. Context: everyday image, so a 
normal scene, not a special setting. Notable features: size difference, color of the smaller dog, the action of 
touching noses. Now, synthesize into a concise sentence for retrieval purposes. Maybe something like "Dog 
touching noses with smaller light brown and white dog in everyday setting" or a shorter version. Wait, the 
task says a single word or concise sentence. Let\'s make it concise. "Dog interacting with smaller light brown 
and white dog by nose touching" or even shorter. Hmm. Let\'s check the original image: the first image is a 
white dog on a leash. The query is for similar image (so maybe same type setting, park maybe) with two dogs, 
larger dog (similar to original maybe) touching noses with smaller light brown and white one. So the essence 
is finding an image of a dog (probably similar to first dog or same context) touching noses with a smaller, 
light brown and white dog. So the summary could be a sentence that captures the key elements: "Dog 
touching nose with smaller light brown and white dog." But need to make sure it\'s concise. Alternatively, 
"Similar image of dog touching noses with smaller light brown and white dog." Wait, the original input is a 
query for retrieval, so the output should be a concise summary. Let me think again. The input is a query 
asking for an image of a dog touching noses with a smaller light brown and white dog (similar to an everyday 
image). So key elements: dog, touch noses, smaller, light brown and white, everyday image. So the summary 
could be "dog touching nose with smaller light brown and white dog" or a brief description. Since it\'s a 
retrieval query, maybe "similar dog touching smaller light brown and white dog with noses". But need to be 
concise. Let\'s go with "dog touching noses with smaller light brown and white dog" as that captures all key 
elements.</think><answer>dog touching noses with smaller light brown and white dog\n<gen_emb>
Target:
Represent the given image.<disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output 
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence. 
Finally, use the <gen_emb> tag to represent the entire input.
<think>So, let's analyze the image. There are two dogs touching noses, one white and fluffy, the other tan 
and white (like a corgi). The setting is a grassy area. The main elements are the two dogs interacting, their 
breeds/color, and the outdoor environment. So the key elements are the interaction between the two dogs, 
their appearance, and the grassy background. The essence would be two dogs touching noses in a grassy 
area.</think><answer>Two dogs nose-to-nose on grass\n(Interpreting the image: two dogs, one white fluffy 
breed and one tan/white corgi-like, touching noses in a grassy setting. Syncretized essence for retrieval: two 
dogs nose-to-nose on grass.)\n<gen_emb>

Figure 5: Example from the constructed cold-start dataset (Case 1). The orange part represents
the original data, the blue part denotes the added prompt, the black part indicates the reasoning
content, and the green part shows the summary. orange segments correspond to the original data,
blue segments represent the added prompts, black segments capture the reasoning process, and green
segments provide the summaries.
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Query:
Represent the given image with the following question: What is the Account Name? <disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output 
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence. 
Finally, use the <gen_emb> tag to represent the entire input. 
<think>So, let\'s look at the image. The question is asking for the Account Name. In the document, under 
"Account" it has "Janeto\'s Super Market" written. So we need to extract that. The key element here is the 
account name, which is clearly labeled next to "Account".</think><answer>Janeto\'s Super 
Market\n<gen_emb>
Target:
Janeto's Super Market<disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output 
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence. 
Finally, use the <gen_emb> tag to represent the entire input.
<think>So, let\'s analyze the input. The input says "Janeto\'s Super Market" as a candidate for retrieval. I 
need to identify key elements:\n\nMain topic: Janeto\'s Super Market (which is likely a store name). 
Important entities: "Janeto\'s" ( Likely a business name, super market as the type). Relationships: It\'s a 
business (super market) owned or named "Janeto\'s". Context: This seems to be a name for a supermarket 
business. Notable features: It\'s presented as a candidate for retrieval, so it\'s a name that might be used for 
identification.\n\nSynthesize this into a single word or concise sentence. The main essence is a supermarket 
business named Janeto\'s. So the summary would be the business name, or a concise description. But since 
the task says "single word or concise sentence", "Janeto\'s Super Market" is the key, but maybe shorter. 
Alternatively, "Janeto\'s Supermarket" as the essence. Wait, the input is "Janeto\'s Super Market" (with an 
apostrophe), so the essence is the supermarket with that name.</think><answer>Janeto\'s Super Market 
(essence: supermarket named Janeto\'s)\n(Concise summary for retrieval: "Janeto\'s super market" or 
"Janeto\'s Super Market") \n<gen_emb>

Figure 6: Example from the constructed cold-start dataset (Case 2).
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Query:
Find a video that contains the following visual content: This video captures the heart-pounding moment of 
an airplane, with a visibly blue and white body probably belonging to a commercial airline, flying at a low 
altitude over an overhead green sign. The sign reads "João Pessoa" in white capital letters, it appears to be 
naming a city or a specific area. It\'s made of reflective material allowing high visibility even in darker 
conditions. This particular sign is prominently installed on metal pillars with a series of lights to illuminate it, 
suggesting it is likely situated near a busy motorway or highway. As the airplane ascends, its undercarriage is 
still visible, highlighting that it has likely just taken off from a nearby airport. We do not have clear visibility 
of the airplane\'s livery or any markings that could identify the specific airline or model of the plane. The sky 
is clear, with scarce, fluffy clouds scattered, suggesting good weather conditions. No other objects or 
subjects are visible in the video other than the stationary overhead sign and the airplane making its 
ascent.<disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output 
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence. 
Finally, use the <gen_emb> tag to represent the entire input.
<think>So, let\'s analyze the input. The user is looking for a specific video with a detailed description of the 
visual content. Let\'s break down the key elements:\n\nMain topic: A video capturing an airplane 
(commercial, blue and white) flying low over a "João Pessoa" sign. \n\nImportant entities: \n- Airplane: 
blue/white, low altitude takeoff, undercarriage visible, livery/terms unclear.\n- Sign: "João Pessoa" (white 
letters, green background, reflective, on metal pillars with lights), near motorway/highway.\n- Context: clear 
sky, low cloud, no other objects.\n\nRelationships: Airplane is flying over the sign which is near a motorway. 
The sign\'s purpose is to name a city/area, the airplane is ascending (justice takeoff). \n\nNotable features: 
Color of airplane, visibility of sign, sky conditions, absence of other objects.\n\nSynthesize into a concise 
summary. The essence is video of commercial airplane flying low over "João Pessoa" sign near motorway 
with clear sky.</think><answer>Commercial airplane flies low over "João Pessoa" sign near motorway, 
clear sky.\n<gen_emb>
Target:
Understand the content of the provided video.<disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output 
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence. 
Finally, use the <gen_emb> tag to represent the entire input.
<think>Got it, let\'s analyze the input. The user provided multiple images (though text describes them as 
video frames maybe) showing green highway signs with "João Pessoa" and airplanes in some. Let\'s identify 
key elements: green highway signs, João Pessoa as a place name, airplanes (aviation elements), the signs\' 
structure (metal frames), sky, trees, etc. The main topic is highway signs for João Pessoa with airplanes 
(maybe an airport area). Important entities: "João Pessoa" signs, airplanes, highway infrastructure. 
Relationships: signs are for directing to João Pessoa, airplanes indicate proximity to an airport. Context: 
outdoor setting, clear sky, urban/airport infrastructure. Notable features: repeated green sign with João 
Pessoa, airplanes flying above signs. \n\nSynthesize into a single word or concise sentence. The core is 
highway signs for João Pessoa with airplanes, so maybe "João Pessoa highway signs with airplanes" but 
make it concise. Or "João Pessoa highway signage with aircraft". But need to capture essence. Alternatively, 
"João Pessoa highway signs and airplanes".</think><answer>João Pessoa highway signs with 
aircraft\n(Condensed to capture the key elements: the main subject "João Pessoa" on highway signs plus the 
included aircraft.)\n<gen_emb>

Figure 7: Example from the constructed cold-start dataset (Case 3).
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E DETAILED SCORES OF MMEB-V2

Table 5: The detailed results of the baselines and UME-R1 the full MMEB-v2 benchmark. We
only include the best version of each series of previous models in the table. Numbers in parentheses
represent the task count for each category.

ColPali v1.3 GME-7B LamRA-Qwen2.5-VL VLM2Vec-7B VLM2Vec-V2.0 CAFe-7B DUME-2B DUME-7B UME-R1-2B UME-R1-7B

Avg - All (78 tasks) 44.4 57.8 47.4 52.3 58.0 60.6 52.7 55.9 60.1 64.5

Avg - Image (36 tasks, Hit@1) 34.9 56.0 52.4 65.5 64.9 67.6 62.5 66.4 66.6 71.3
Avg - Video (18 tasks, Hit@1) 28.2 38.4 33.6 33.7 34.6 42.4 33.2 29.4 42.2 47.5
Avg - Visdoc (24 tasks, NDCG@5) 71.0 75.2 50.2 46.4 65.4 63.9 52.8 60.3 63.9 67.1

I-CLS (10) 40.3 57.7 51.7 62.7 62.9 63.6 59.3 64.2 64.8 67.1
I-QA (10) 11.5 34.7 34.1 56.9 56.3 61.7 54.9 57.0 62.8 69.2
I-RET (12) 48.1 71.2 66.9 69.4 69.5 69.1 66.3 70.8 67.6 71.9
I-VG (4) 40.3 59.3 56.7 82.2 77.3 87.6 78.0 81.8 77.2 84.9
V-CLS (5) 26.7 37.4 32.9 39.1 39.3 35.8 37.7 32.9 44.3 48.6
V-QA (5) 37.8 50.4 42.6 30.0 34.3 58.7 46.6 47.4 51.0 60.7
V-RET (5) 21.6 28.4 23.2 29.0 28.8 34.4 17.1 8.6 32.9 38.2
V-MR (3) 25.5 37.0 37.2 38.9 36.8 39.5 30.0 28.0 39.7 39.3
VD-Vidore-V1 (10) 83.6 89.4 56.3 56.9 75.7 70.7 67.6 67.1 72.4 75.7
VD-Vidore-V2 (4) 52.0 55.6 33.3 9.4 45.1 49.6 43.3 35.2 46.2 50.5
VD-VisRAG (6) 81.1 85.0 58.2 59.1 79.6 79.5 47.1 82.6 79.2 83.7
VD-OOD (4) 43.1 44.4 40.1 38.1 39.6 38.1 33.8 34.9 37.2 37.6

ImageNet-1K 42.4 64.6 58.9 80.1 80.8 77.3 74.6 76.6 75.3 80.4
N24News 25.5 50.5 29.8 79.7 72.9 83.2 69.7 77.2 81.1 82.3
HatefulMemes 50.6 53.6 51.3 69.7 56.3 78.7 65.3 79.6 75.2 79.0
VOC2007 69.8 80.3 78.7 80.7 85.0 89.8 68.9 85.5 80.0 90.8
SUN397 56.1 69.5 66.5 77.4 71.0 79.9 71.4 74.6 79.4 80.3
Place365 27.5 39.1 37.4 37.4 35.9 45.0 41.0 41.9 42.6 46.8
ImageNet-A 14.9 41.2 36.3 58.1 47.4 55.2 41.3 48.6 50.4 53.9
ImageNet-R 64.6 83.9 77.0 73.9 89.3 88.0 90.7 88.8 88.7 90.1
ObjectNet 45.6 69.0 59.4 40.1 65.2 22.5 46.2 44.8 52.0 42.3
Country211 6.0 24.8 21.7 29.8 25.2 16.7 23.9 24.7 23.4 25.0
OK-VQA 9.4 33.2 39.9 56.8 51.5 67.3 56.8 61.6 62.4 71.7
A-OKVQA 6.6 21.0 34.1 47.3 43.6 63.8 46.9 51.4 51.1 58.7
DocVQA 11.3 41.4 37.1 89.7 90.1 79.2 86.0 86.3 92.2 93.8
InfographicsVQA 5.0 20.3 23.7 60.0 58.8 53.3 59.2 62.3 67.7 79.2
ChartQA 5.7 17.8 15.0 56.9 47.4 48.8 39.1 49.8 64.9 75.1
Visual7W 6.1 22.2 24.6 52.7 52.9 52.5 46.9 52.1 54.1 55.2
ScienceQA 16.3 28.0 31.3 38.5 38.2 65.4 38.7 45.5 42.7 53.7
VizWiz 27.6 39.0 32.0 39.9 43.3 43.8 42.0 44.3 46.8 51.6
GQA 8.3 76.9 57.4 55.1 64.9 65.7 60.2 46.9 67.3 69.3
TextVQA 18.8 46.8 46.1 71.6 72.2 76.8 73.9 69.9 78.6 83.5
VisDial 41.2 60.8 62.5 81.9 82.7 82.7 75.9 75.7 76.6 80.7
CIRR 8.2 54.9 44.7 51.1 57.5 60.4 52.0 51.6 53.7 55.3
VisualNews t2i 50.1 79.7 70.1 80.5 74.5 69.5 71.2 76.9 71.7 76.8
VisualNews i2t 47.6 83.6 74.2 81.2 78.2 79.4 72.5 82.3 74.2 82.0
MSCOCO t2i 59.2 71.2 65.7 77.2 75.3 75.4 74.5 77.1 75.1 78.3
MSCOCO i2t 49.9 57.7 71.1 73.9 71.4 73.1 68.3 71.2 68.9 71.4
NIGHTS 65.5 67.6 64.4 67.6 68.6 66.7 67.5 69.6 67.2 68.1
WebQA 53.8 91.4 85.7 88.3 90.6 89.3 90.2 90.3 90.0 90.9
FashionIQ 5.9 37.8 33.4 17.1 19.5 39.0 11.5 20.5 17.1 23.4
Wiki-SS-NQ 80.5 78.2 67.0 62.3 66.9 61.2 60.0 70.6 62.0 72.5
OVEN 50.0 75.1 84.8 66.5 64.3 60.8 65.2 70.5 66.9 71.4
EDIS 64.7 96.0 78.7 85.7 84.1 71.3 86.5 92.8 88.0 92.0
MSCOCO 36.7 31.4 36.0 75.7 67.1 84.7 68.1 72.3 69.5 72.7
RefCOCO 64.5 60.9 57.1 87.6 87.1 89.4 85.1 86.8 83.3 91.4
RefCOCO-Matching 3.9 78.4 82.6 84.6 85.8 83.0 89.3 85.1 84.4 91.1
Visual7W-Pointing 56.1 66.5 51.2 81.0 69.2 93.2 69.5 83.1 71.5 84.2

K700 23.4 39.7 32.1 35.5 38.0 40.1 22.7 27.3 35.8 42.8
SmthSmthV2 25.1 30.6 25.3 32.1 42.8 35.8 37.7 25.1 44.1 50.4
HMDB51 24.8 47.9 33.8 42.2 40.9 46.9 53.4 42.6 54.4 58.3
UCF101 49.4 54.7 53.0 61.8 60.0 39.6 55.7 48.8 67.2 70.0
Breakfast 10.9 14.3 20.1 23.8 14.8 16.6 18.9 20.8 20.1 21.5
MVBench 33.7 46.6 37.6 28.5 33.7 48.9 48.8 47.4 49.9 58.2
Video-MME 30.6 39.2 35.1 27.8 30.7 46.0 39.2 40.2 41.7 47.3
NExTQA 35.2 53.6 44.9 20.3 20.9 62.4 55.2 48.6 59.9 69.6
EgoSchema 38.4 46.8 47.0 21.8 34.0 60.0 23.2 50.4 45.4 52.4
ActivityNetQA 51.3 65.6 48.5 51.4 52.3 76.0 66.7 50.2 57.8 76.0
DiDeMo 22.8 26.4 22.8 29.3 30.4 37.8 16.9 0.10 32.4 40.0
MSR-VTT 17.6 31.8 25.0 34.5 28.3 36.5 16.2 0.10 34.3 38.9
MSVD 45.4 49.7 41.9 46.7 48.1 56.4 34.9 28.8 55.4 60.8
VATEX 16.7 24.9 18.7 25.5 26.5 32.0 11.1 13.8 29.9 32.6
YouCook2 5.3 9.1 7.5 9.0 10.6 9.5 0.06 0.00 12.7 18.5
QVHighlight 19.9 59.5 60.9 57.7 49.4 58.4 40.3 29.4 57.5 54.9
Charades-STA 29.0 14.0 18.8 19.8 20.2 18.7 16.1 15.8 20.4 21.9
MomentSeeker 27.6 37.4 31.8 39.3 40.8 41.4 33.7 38.8 41.2 41.1

ViDoRe arxivqa 81.7 86.9 53.0 60.2 80.6 73.3 68.7 66.6 73.9 73.6
ViDoRe docvqa 56.6 57.5 25.4 34.7 44.9 38.3 33.6 35.8 37.9 41.1
ViDoRe infovqa 84.9 91.6 72.3 70.4 83.7 80.6 74.5 72.8 76.2 80.8
ViDoRe tabfquad 86.9 94.6 66.1 78.2 89.2 80.7 78.3 89.2 86.1 90.2
ViDoRe tatdqa 70.9 74.1 25.9 27.6 43.8 37.8 35.3 38.5 40.6 46.7
ViDoRe shiftproject 75.1 96.8 27.3 38.6 60.8 52.0 61.8 61.9 66.8 65.0
ViDoRe artificial intelligence 95.7 99.6 72.0 67.7 88.5 86.0 74.3 69.3 85.9 89.5
ViDoRe energy 94.7 95.3 65.2 60.4 86.5 84.8 78.4 68.4 83.3 85.7
ViDoRe government reports 93.6 98.8 72.2 61.8 85.0 85.0 83.0 83.1 82.6 89.8
ViDoRe healthcare industry 95.9 99.3 83.8 69.9 92.2 88.4 88.2 84.9 90.8 94.3
ViDoRe esg reports human labeled v2 51.3 63.4 33.0 6.8 45.6 50.7 48.0 40.4 50.2 50.4
ViDoRe biomedical lectures v2 multilingual 54.7 49.5 35.9 5.1 44.3 50.9 39.8 37.4 46.2 50.7
ViDoRe economics reports v2 multilingual 49.0 54.2 31.9 13.9 43.0 54.3 44.1 29.6 45.7 57.8
ViDoRe esg reports v2 multilingual 52.9 55.4 32.5 11.9 46.6 42.3 41.1 33.5 42.7 43.2
VisRAG ArxivQA 80.9 87.4 37.7 52.6 76.9 74.0 35.8 77.3 74.3 80.5
VisRAG ChartQA 72.3 86.1 68.2 57.7 83.7 82.7 47.2 83.4 86.0 85.0
VisRAG MP-DocVQA 82.0 89.7 72.0 60.6 88.1 75.1 35.3 83.8 75.6 83.4
VisRAG SlideVQA 85.1 92.6 71.1 54.7 84.1 87.6 61.3 91.5 87.1 91.5
VisRAG InfoVQA 83.5 88.6 67.9 66.0 82.3 87.9 64.7 88.2 84.4 89.2
VisRAG PlotQA 79.3 76.5 56.4 62.7 75.9 69.4 38.5 71.3 68.0 72.7
ViDoSeek-page 38.1 32.6 10.7 16.3 29.1 22.5 20.0 20.2 21.2 21.3
ViDoSeek-doc 87.5 90.3 63.9 69.4 79.0 73.8 69.5 73.2 75.9 75.3
MMLongBench-page 27.1 36.9 0.5 0.4 15.8 13.3 10.4 10.3 11.9 12.3
MMLongBench-doc 80.4 85.2 51.4 28.8 63.0 42.6 35.4 36.0 39.7 41.3
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F MMEB-V1 BENCHMARK SCORES

Since MMEB-V1 has been widely adopted in prior work, in this section we also report the perfor-
mance of UME-R1 alongside other baseline models on MMEB-V1. The results in Table 6 demon-
strate that UME-R1 achieves the best overall score among models of the same size.

Table 6: Results on the MMEB-V1 benchmark, which comprises a total of 36 image embedding
tasks. IND represents the in-distribution dataset, and OOD represents the out-of-distribution dataset.
In UniIR, the FF and SF subscripts under CLIP or BLIP represent feature-level fusion and score-
level fusion, respectively. CAFe-V1 indicates that the model is trained solely on the MMEB-V1
training data (contains only image data), whereas CAFe-V2 denotes that the model is trained on
the MMEB-V2 training data. The best results are marked in bold, and the second-best results are
underlined.

Model Per Meta-Task Score Average Score
Classification VQA Retrieval Grounding IND OOD Overall

# of Datasets 10 10 12 4 20 16 36

Baseline Models

CLIP (Radford et al., 2021) 42.8 9.1 53.0 51.8 37.1 38.7 37.8
BLIP2 (Li et al., 2023) 27.0 4.2 33.9 47.0 25.3 25.1 25.2
SigLIP (Zhai et al., 2023) 40.3 8.4 31.6 59.5 32.3 38.0 34.8
OpenCLIP (Cherti et al., 2023) 47.8 10.9 52.3 53.3 39.3 40.2 39.7
UniIR (BLIPFF ) (Wei et al., 2024) 42.1 15.0 60.1 62.2 44.7 40.4 42.8
UniIR (CLIPSF ) (Wei et al., 2024) 44.3 16.2 61.8 65.3 47.1 41.7 44.7
Magiclens (Zhang et al., 2024b) 38.8 8.3 35.4 26.0 31.0 23.7 27.8

MLLM-based Baseline Models

E5-V (Jiang et al., 2024) 21.8 4.9 11.5 19.0 14.9 11.5 13.3
VLM2Vec (Qwen2-VL-2B) (Jiang et al., 2025) 59.0 49.4 65.4 73.4 66.0 52.6 60.1
VLM2Vec (Qwen2-VL-7B) (Jiang et al., 2025) 62.6 57.8 69.9 81.7 72.2 57.8 65.8
VLM2Vec-V2 (Qwen2-VL-7B) (Jiang et al., 2025) 62.9 56.3 69.5 77.3 68.8 59.9 64.9
MMRet-7B (Zhou et al., 2025b) 56.0 57.4 69.9 83.6 68.0 59.1 64.1
CAFe-V1-7B (Yu et al., 2025a) 65.2 65.6 70.0 91.2 75.8 62.4 69.8
CAFe-V2-7B (Yu et al., 2025a) 63.6 61.7 69.1 87.6 72.8 61.1 67.6
mmE5-11B (Chen et al., 2025a) 67.6 62.8 70.9 89.7 72.3 66.7 69.8
LLaVE-2B (Lan et al., 2025) 62.1 60.2 65.2 84.9 69.4 59.8 65.2
LLaVE-7B (Lan et al., 2025) 65.7 65.4 70.9 91.9 75.0 64.4 70.3
UniME-4B (Gu et al., 2025b) 54.8 55.9 64.5 81.8 68.2 52.7 64.2
UniME-7B (Gu et al., 2025b) 66.8 66.6 70.6 90.9 74.6 65.8 70.7

Ours

UME-R1-2B 64.8 62.8 67.6 77.2 71.5 60.4 66.6
UME-R1-7B 67.1 69.2 71.9 84.9 76.1 65.1 71.3

Oracle

UME-R1-2B 67.6 67.5 71.2 80.1 75.3 63.8 70.2
UME-R1-7B 69.1 73.2 74.8 87.4 79.2 67.9 74.2
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G COMPARATIVE EXAMPLES OF REASONING-DRIVEN GENERATIVE AND
DISCRIMINATIVE EMBEDDINGS

Figures 8, 9, 10, and 11 present several comparative examples of reasoning-driven generative and
discriminative embeddings. It can be observed that reasoning-driven generative embeddings are ca-
pable of producing effective reasoning and summaries, thereby facilitating the generation of higher-
quality embeddings. For example, as shown in Figure 8, UME-R1 first engages in reasoning. The
intermediate thought process includes: ”Wait, I think the key is that the food in question is the hot
dog . . . so the name of the food not white is the hot dog.” As a result, the final summary directly
produces ”hot dog”, yielding a higher-quality embedding and enabling correct retrieval results.

UME-R1:
<image>Represent the given image with the following question: What is the name of 
the food that is not white?<disc_emb>
Represent the above input text, images, videos, or any combination of the three as 
embeddings. First output the thinking process in <think> </think> tags and then 
summarize the entire input in a word or sentence. Finally, use the <gen_emb> tag to 
represent the entire input.
<think>So, let's analyze the input. The question is asking for the food name that's not 
white. Looking at the image, the food is on a white plate with a hot dog (let's check). 
Wait, the plate is white, but the food—wait, no, the food is a hot dog with toppings, 
but let's confirm. Wait, the image shows a hot dog on a bun, which is a common food 
item. But wait, the question is "the food that is not white". Let's check the bread or 
bun, which is white? Wait, the bun is probably white. Wait, no, the food's main body 
might be... Wait, the food in question could be a hot dog. But the plate is white. Wait, 
the question is asking for the food name that's not white. So identify the food item. 
The food in the image is a hot dog (with toppings like mustard, ketchup), but the bun 
is white, the meat is maybe red or brown…
Hmm. Alternatively, maybe the food is "sausage" but that's not. Wait, I think the key 
is that the food in question is the hot dog (as the food item, not the bun or the 
sausage), so the name of the food not white is the hot dog. So the final summary is 
the food that's not white, so "hot dog".</think><answer>hot dog<gen_emb>

DUME:
<image>Represent the given image with the following question: What is the name of 
the food that is not white?<disc_emb>

Query:
Represent the given 
image with the 
following question: 
What is the name of 
the food that is not 
white?

Target:
The food is a 
hot dog.

The food is a 
hot dog.

The food is a 
bread.

Figure 8: A comparison of reasoning-driven generative and discriminative embeddings is shown
(Case 1). Green highlights denote content that positively impacts retrieval performance. UME-
R1 demonstrates the results of reasoning-driven generative embeddings, while DUME is trained
using standard discriminative contrastive learning. In this example, UME-R1 produces “hot dog”
directly during both the reasoning and summarization steps, which helps generate a higher-quality
embedding.
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UME-R1:
<image>Find an image to match the fashion image and style note: Is white and less 
revealing and is white and same length all around bottom. <disc_emb>
Represent the above input text, images, videos, or any combination of the three as 
embeddings. First output the thinking process in <think> </think> tags and then 
summarize the entire input in a word or sentence. Finally, use the <gen_emb> tag to 
represent the entire input.
<think>Got it, let's analyze the input. The query is asking to find a fashion image that 
matches two conditions: white and less revealing (so maybe more sleeveless or 
shorter, or more fitting), and white and same length all around the bottom. Wait, but 
the image provided is a black sleeveless dress with a high-low hem. Let's break down 
the key elements. The main topic is fashion retrieval, specifically looking for a dress. 
The important entities are "white" (color), "less revealing" (style), "sleeveless" 
(fashion style), "same length all around bottom" (design element, maybe hem). The 
context is fashion design. Now, the image shows a black sleeveless dress, possibly 
more form-fitting or shorter. The relationship is between the image (black dress) and 
the required style. So the essence is finding a white sleeveless dress without sleeves 
but same length all around the bottom. But the summary needs to be a single word or 
concise sentence. Maybe "fashion sleeveless white dress". Wait, let's check again. 
The input is a retrieval query asking for a fashion image similar to the provided one 
(black sleeveless dress) with two conditions: white (less revealing style), white and 
same length bottom/around. So the key elements are fashion image with white 
sleeveless dress, same length all around the bottom. So the summary could be "white 
sleeveless dress" or "fashion white sleeveless dress". But need a concise sentence. 
Wait, the user says "synthesize into a single word or a concise sentence". Let's see the 
image is a black sleeveless dress, so the core is a sleeveless white dress. So the 
summary is "sleeveless white dress".</think><answer>sleeveless white 
dress<gen_emb>

DUME:
<image>Find an image to match the fashion image and style note: Is white and less 
revealing and is white and same length all around bottom. <disc_emb>

Query:
Find an image to 
match the fashion 
image and style note: 
Is white and less 
revealing and is white 
and same length all 
around bottom.

Target:
Represent the 
given image.

Figure 9: A comparison of reasoning-driven generative and discriminative embeddings is shown
(Case 2). In this example, UME-R1 reasons and summarizes that it needs to find a white sleeveless
dress with a skirt length matching the provided image, whereas DUME retrieves results based only
on the input image and instruction, which do not fully satisfy the requirements.
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UME-R1:
<video>Recognize the category of the video content. <disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. 
First output the thinking process in <think> </think> tags and then summarize the entire input 
in a word or sentence. Finally, use the <gen_emb> tag to represent the entire input.
<think>So, let's analyze the input. The video shows a nail tutorial where someone is painting a 
pink design on a nail using a brush. The text "Passeuma base sobre o adesivo" is present, 
likely part of the instructions. The key elements are nail art demonstration, using a base and 
adhesives, hands applying polish/paint on a nail. The essence is a nail art process 
demonstration. So the concise summary would be about nail art 
tutorial.</think><answer>Nail art tutorial demonstration<gen_emb>

DUME:
<video>Recognize the category of the video content. <disc_emb>

Query: Recognize the category of the video content.

Target: doing nails

doing nails

fly tying

Figure 10: A comparison of reasoning-driven generative and discriminative embeddings is shown
(Case 3). In this example, UME-R1 summarizes the video as a “Nail art tutorial demonstration,”
providing crucial information for correct retrieval.

UME-R1 :
<video>Recognize the category of the video content. <disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. 
First output the thinking process in <think> </think> tags and then summarize the entire input 
in a word or sentence. Finally, use the <gen_emb> tag to represent the entire input.
<think>So, let's analyze the input. The image shows a news studio with two women (reporters) 
sitting at a desk, a backdrop with "WUFT 5 NEWS" and "WUFT5" branding, holding papers 
and notebooks, so the key elements are a news studio, two news presenters, studio setup with 
logos, so the main topic is a news broadcast scene. The key elements include the studio setting 
(news anchor set), the people (two news anchors), the network (WUFT 5 News), and the 
presentation materials. The essence is a news studio presentation. So the concise sentence 
would be "News studio broadcast with two journalists."</think><answer>News studio 
broadcast with two journalists (analysis: the image shows a studio with two women at desks, 
wearing professional attire, holding documents, under the "WUFT 5 NEWS" and "WUFT5" 
branding, indicating a news broadcast setting. Key elements include the news studio 
environment, the presenters, their attire, and the media branding, so the essence is a news 
studio broadcast featuring two journalists.)<gen_emb>

DUME:
<video>Recognize the category of the video content. <disc_emb>

Query: Recognize the category of the video content.

Target: news anchoring

news 
anchoring

presenting 
weather 
forecast

Figure 11: A comparison of reasoning-driven generative and discriminative embeddings is shown
(Case 4). In this example, UME-R1 identifies key elements such as “WUFT 5 News” during rea-
soning, preventing an incorrect retrieval as a weather forecast.
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H EXAMPLE OF REPEATED SAMPLING

Figures 12, 13, and 14 illustrate the impact of different samplings on the reasoning and summa-
rization of reasoning-driven generative embeddings. Interestingly, we observe that for correctly
retrieved examples, the generated reasoning and summaries tend to be more effective. This sug-
gests that reasoning-driven generative embeddings offer a more interpretable approach, potentially
allowing the quality of embeddings to be assessed through the generated reasoning and summaries.

Reasoning 1:
<think>So, let's analyze the input. The question is "Which side of the photo is the knife on?" 
First, look at the image. In the left side of the photo, near the utensils, there's a knife. Wait, the 
image shows utensils on a table, and the knife is on the left side? Wait, the image has various 
utensils: there's a knife or a similar tool near the left edge. Let me check again. The left side of 
the photo has utensils, probably the knife is on the left side? Wait, the utensils (fork, knife 
maybe) are on the left table area. So the key is identifying which side of the photo the knife is. 
The image shows utensils, with the knife on the left side of the table. Then, the question is 
asking which side of the photo the knife is, so the answer would be left side (or maybe right? 
Wait, no, wait. Wait, in the image, the utensils are arranged on the left and right. The knife 
might be on the left side? Wait, no, let's check the image. The table has utensils: a fork, a knife 
maybe, and the spoon. The knife is on the left side of the dining table area, as the utensils are 
spread out. So the key element is the location of the knife's position. The question is about 
identifying the side of the photo where the knife is. So synthesizing, the answer would be "left 
side" or maybe "left" since the knife is on the left side of the photo's table surface. Wait, the 
image has the utensils on the left, so the knife is on the left side.</think><answer>left 
side<gen_emb>

Reasoning 2:
<think>So, let's analyze the input. The question is asking which side of the photo the knife is 
on. First, look at the image: there's a knife maybe on the right side? Wait, let's check. The 
image shows a plate with food, a bowl, and a knife near the right edge. But the key is "which 
side". So the knife is on the right side of the photo. Now, the task is to synthesize into a single 
word or concise sentence. The essence is identifying the knife's 
position.</think><answer>right<gen_emb>

Reasoning 3: 
<think>So, let's analyze the input. The question is "Which side of the photo is the knife on?" 
Wait, first, look at the image. Wait, the image shows a plate with food, a bowl of what might 
be scrambled eggs or a dish, and there's a fork and knife. Wait, the knife is near the plate, 
maybe on the left or right? Wait, the key is to find the knife's position. The image has a knife 
and fork on the right of the plate. So need to identify which side. Let's check the image: the 
utensils are on the right side of the plate. Wait, the fork is on the left side of the plate, the knife 
is on the right, next to the bowl of food. So the answer would be right, but the question is 
"Which side of the photo is the knife on?" So the knife is on the right 
side.</think><answer>right<gen_emb>

Query:
Represent the 
given image with 
the following 
question: Which 
side of the photo 
is the knife on?

Target:
The knife is on 
the left of the 
image

The knife is 
on the left 
of the image

The napkin 
is to the 
right of the 
plate.

The napkin 
is to the 
right of the 
plate.

Figure 12: An example showing how repeated sampling leads to variations in model-generated
reasoning and summaries, resulting in different retrieval outcomes (Case 1). The green segments
indicate correct reasoning or summaries, while the red segments highlight incorrect ones. It can
be observed that in correctly retrieved examples, the summaries are more accurate. For instance,
when the summary is “left side,” the retrieval results include “left of,” whereas when the summary
is “right,” the retrieval results include “right of.”
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Reasoning 1:
<think>Got it, let's analyze the input. The query is about finding a black dress with a shade of 
grey (similar to a black) that's like the one provided. Let's break down the key elements:

- Main topic: Fashion dress (specifically a dress, which is a clothing item)
- Important entities: Black dress, shade of grey, similar in black
- Relationship: The query is asking for a dress that matches a style (like the original dress) but 
with a specific color scheme (black and grey, similar to the original).
- Context: It's a retrieval query for an image of a dress with these color and style attributes.
- Notable features: The original image shows a yellow dress, so the target dress should be a 
black dress (or similar color family) with a grey-like shade, matching the style.

Now, synthesize this into a concise sentence or single word for retrieval. The essence is about 
finding a dress similar to the one provided but in black and grey colors.</think><answer>A 
black dress with grey shade similar to the one shown.<gen_emb>

Reasoning 2:
<think>Got it, let's analyze the input. The user is asking to find a black dress (shade of grey) 
similar in color to a given one? Wait, first, the input mentions "a black dress with a shade of 
grey and is similar in black." Wait, maybe a black dress is being asked for, and the context 
involves finding a similar black dress? Wait, let's check the key elements. Main topic: fashion 
(clothing, dresses) retrieval. Important entities: dress (style note), black, grey shade, similar in 
black. Context is about finding a similar black-dress. Notable features: the request for a black 
dress with a grey-like tone (shading) and similar black. Now, the task is to summarize into a 
concise idea for retrieval. The core is identifying a black dress similar in color, so the summary 
would capture that they're looking for a black (with grey tone) dress similar in 
color.</think><answer>A query to find a black dress with a grey - toned shade identical in 
color to a given black dress. Summary: Find a black dress similar in color to 
another.<gen_emb>

Reasoning 3: 
<think>Got it, let's analyze the input. The query is asking to find a black dress with a shade of 
grey, similar to a given one. Wait, no—wait, the input says "is a black dress with a shade of 
grey and is similar in black." Wait, first, the main topic is a fashion item, specifically a dress. 
Important entities: black dress, shade of grey (so a light or darker shade of grey), similar in 
black (meaning the dress has a greyish shade, maybe matching). Context is about matching a 
specific dress (with those color attributes and style similarity). The process is to identify key 
elements: the object is a dress, its color (black, with grey shade), and the task is to find a similar 
one (so same style, color-related). Then, synthesize into a concise sentence for retrieval. Wait, 
the input is about retrieving a dress similar in color and style to a black dress with grey shade. 
So key elements: dress, black, shade of grey, similar. Then, the summary should capture that. 
Maybe "black dress with grey shade similar".</think><answer>A black dress with a greyish 
shade (similar in black) for retrieval. <gen_emb>

Query:
Find an image to 
match the fashion 
image and style 
note: Is a black 
dress with a shade 
of grey and is 
similar in black.

Target:
Represent the 
given image.

Figure 13: An example showing how repeated sampling leads to variations in model-generated rea-
soning and summaries, resulting in different retrieval outcomes (Case 2). In this example, correctly
retrieved cases are able to reason and summarize that the item needs to match the original style,
whereas in incorrectly retrieved cases, the reasoning and summarization only consider the color.
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Reasoning 1:
<think>So, let's analyze the input. The input is a description of a video clip with a toddler in 
sandals holding a trowel (or similar tool) with a bucket, working near a wall. Key elements: 
child (toddler), activity (using tools for wall work), setting (indoor, possibly construction or 
repair), actions (holding trowel, moving near wall). The main topic is a child working with 
tools for construction. To capture the essence, a concise phrase would be "toddler doing 
construction work" or similar. Wait, the video shows a toddler using a tool near a wall, so the 
key elements are the child, tool, and construction-related action. So a concise summary could 
be "toddler constructing with tools" or "child doing construction work". But need a single 
word or concise sentence. Let's check: main topic is a child (infant/toddler) engaging in 
construction or repair, using a tool near a wall….
So the final summary should capture the main action: a toddler using a tool for construction. 
So "toddler constructing" or "child doing construction work". I think "toddler construction" is 
a concise way, or "child working on wall". Wait, let's check the video: the toddler has a bucket 
and a tool (trowel) near a wall. So the action is related to building or fixing a wall. So the best 
summary is a sentence that captures the child's action. "Toddlers working on wall with tool" 
but maybe too long. The question says "single word or concise sentence". So "toddler 
construction" works, or "child building" but "toddler" is specific. So "toddler constructing" 
might be good.</think><answer>Toddler constructing with a tool near a wall (Summary for 
retrieval: "toddler constructing with tool" or similar, capturing the key elements of a toddler, 
tool, and construction work)<gen_emb>
Reasoning 2:
<think>So, let's analyze the input. The input is a description of a video clip showing a child 
playing with a broom in a room. Key elements: main topic is a child playing with a broom, 
important entities are a young child, a broom, an indoor setting (with concrete wall, some 
items on the floor), actions like sweeping or playing with the broom. Context is a domestic 
environment, possibly home play. Notable features: the child's activity with the broom, the 
setting. So the essence is about a child playing with a broom in a room.</think><answer>A 
child playing with a broom indoors (essence: a child playing with a broom in a 
room)<gen_emb>

Reasoning 3: 
<think> So, let's analyze the input. The input says to recognize the category of the video 
content. The video shows a child using a shovel to dig (or maybe play with sand/mud), with 
another child and a construction worker in the background. The key elements are a child 
engaged in digging with a shovel, another child watching, and an adult assisting. The context 
is likely a playful or instructional activity, maybe in a casual setting (like a home or 
construction site). So the main topic is a child playing with a shovel, and the context is a 
simple activity with others around. The essence would be a child digging with a 
shovel.</think><answer>A child using a shovel to dig at a location with other people.
<gen_emb>

Query: Recognize the category of the video content.

Target: plastering

plastering

moving 
child

moving 
child

Figure 14: An example showing how repeated sampling leads to variations in model-generated
reasoning and summaries, resulting in different retrieval outcomes (Case 3). In this example, only
Reasoning Path 1 correctly identifies that the video depicts a child building, leading to the correct
retrieval, while the other reasoning paths mainly focus on “playing.”
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I REWARD AND COMPLETION LENGTH VISUALIZATION

In this section, we present visualizations in Figures 15 and 16 illustrating the evolution of reward
and completion length throughout training. We observe that for both the 2B and 7B models, the
lowest reward value increases as training progresses. However, unlike other tasks, our reward does
not exhibit a strictly increasing trend. This is because our RL dataset consists of data from multiple
modalities and sources, and follows the VLM2Vec-V2 strategy of using data from the same source
within each batch to avoid overly trivial negatives. Due to substantial differences in similarity and
difficulty across datasets, the rewards vary considerably between batches: rewards are relatively
high when the batch is easier, but lower when the batch is more challenging. Consequently, the
reward curve does not follow a strictly monotonic upward trajectory. In addition, we observe that
the completion length of the 2B model decreases as training progresses. This trend is consistent
with the findings of Chen et al. (2025c), Chen et al. (2025b), and Peng et al. (2025) on small-scale
MLLMs. A possible explanation is that the reasoning capacity of the 2B model is limited, and
excessively long reasoning may even impair its performance.

Figure 15: Evolution of reward and generated completion length of UME-R1-2B during training.

Figure 16: Evolution of reward and generated completion length of UME-R1-7B during training.
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