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ABSTRACT

The remarkable success of multimodal large language models (MLLMs) has
driven advances in multimodal embeddings, yet existing models remain inherently
discriminative, limiting their ability to benefit from reasoning-driven generation
paradigm. In this work, we pioneer the exploration of reasoning-driven generative
embeddings, unifying embedding tasks within a generative paradigm. We propose
UME-R1, a universal multimodal embedding framework consisting of a two-stage
training strategy: a cold-start supervised fine-tuning equips the model with reason-
ing capabilities and enables it to generate both discriminative and reasoning-driven
generative embeddings; a subsequent reinforcement learning enhances reasoning
and further optimizes generative embedding quality. This pioneering work reveals
four key insights: 1) reasoning-driven generative embeddings unlock substantial
performance gains over conventional discriminative embeddings by leveraging
the powerful generative reasoning capabilities of MLLMs; 2) discriminative and
reasoning-driven generative embeddings are complementary, whose combined or-
acle performance far exceeding that of either alone; 3) RL can effectively en-
hance reasoning-driven generative embeddings, establishing a scalable optimiza-
tion paradigm; 4) repeated sampling at inference boosts downstream task coverage
(pass@k), highlighting the inference-time scalability potential of reasoning-driven
generative embeddings. Evaluated on the MMEB-V2 benchmark across 78 tasks
spanning video, image, and visual documents, UME-R1 significantly outperforms
conventional discriminative embedding models and offers a foundation for more
interpretable, reasoning-driven generative multimodal embeddingsm

1 INTRODUCTION

Recently, the field of multimodal embeddings has been significantly advanced by the remarkable
success of multimodal large language models (MLLMs). For instance, VLM2Vec (Jiang et al.
2025) and MM-Embed (Lin et al.} 2025)) construct multimodal embedding models based on MLLMs.
These models demonstrate superior performance across a range of multimodal embedding tasks
compared to traditional dual-encoder vision—language models like CLIP (Radford et al.,[2021]).

In parallel, large reasoning models (LRMs) represented by GPT-4o0 (Hurst et al., [2024) and
DeepSeek-R1 (Guo et all [2025) have made breakthroughs in complex reasoning. A distinctive
feature of these models is the incorporation of the chain of thought (CoT) (Wei et al.|, 2022), which
elicits step-by-step reasoning paths and typically produces more accurate and interpretable outputs.
Building on this success, recent works (Shen et al., [2025b; [Hong et al.| 2025a)) have extended these
advances to MLLMs, substantially enhancing their performance on various multimodal tasks. How-
ever, multimodal embedding models have derived limited benefit from these advances. The key
reason is that existing MLLM-based multimodal embedding models are discriminative: they di-
rectly encode the multimodal input and extract the last token’s final hidden state as the embedding,
without generating any new tokens. Naturally, this raises the question: How to make a multimodal
embedding model act as a generative one?

Several prior studies (Ouali et al.,|2025}|Yu et al., 2025a) have incorporated a next-token prediction
loss in training multimodal embedding models, demonstrating that it preserves generative capabili-
ties while enhancing discriminative performance. Nevertheless, these approaches merely introduce

'Our datasets, models, and code will be publicly released.
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additional data and losses during training. Ultimately, at inference, they remain discriminative, as
their embeddings are obtained by directly encoding the input without generating any intermediate
content; we refer to these as discriminative embeddings.

In this paper, we propose UME-RI, a universal multimodal embedding framework that enables
multimodal embedding models to produce either discriminative or reasoning-driven generative em-
beddings on demand. First, we construct a cold-start supervised fine-tuning (SFT) dataset by aug-
menting the original query—target pairs used for embedding training with intermediate reasoning
and summaries. During training, the contrastive loss is applied to embedding tokens that follow the
summary, while an autoregressive next-token prediction loss is imposed on the reasoning and sum-
mary tokens. As a result, the model learns to first generate intermediate reasoning and a summary,
and then produce embedding token to obtain representation; we term these as reasoning-driven
generative embeddings. Meanwhile, discriminative embeddings are preserved throughout training,
allowing the model to flexibly output either type of embedding as needed. Interestingly, experiments
reveal a substantial gap between the oracle upper bound and current discriminative embeddings, in-
dicating that there remains considerable room for improvement.

We further ask: Can reinforcement learning with verifiable reward (RLVR) also be effective for
generative embedding models? A natural approach would assign a positive reward if the similarity
of a given positive pair exceeds a preset threshold, and no reward otherwise. However, since the
degree of similarity varies among different pairs, this approach may render some pairs excessively
difficult or easy, resulting in the problem of zero policy gradients (Yu et al., 2025b). To overcome
this, we propose a reward policy that considers ranking and similarity gaps simultaneously, and
demonstrate that generative embedding models can also benefit from RLVR. Additionally, we find
that repeated sampling can improve the coverage (i.e., pass@k) of generative embedding models,
suggesting that embeddings also have the potential for inference-time scaling.

Overall, we make the following four contributions: @ Based on MMEB-V2 (Meng et al., 2025)
training data, we build a multimodal embedding cold-start SFT dataset with CoT annotations, and
construct a small-scale dataset for efficient RL training. @ We propose UME-R1, a framework
designed to endow multimodal embedding models with the flexibility to switch between discrimina-
tive and reasoning-driven generative embeddings. To the best of our knowledge, we are the first to
explore reasoning-driven generative embeddings, demonstrating the significant potential of unifying
embeddings within a generative paradigm. € We pioneer the successful application of rule-based
RL to the multimodal embeddings task, which lacks standard best answers like math, by designing
a novel reward policy tailored to embeddings. @ UME-R1 outperforms conventional discriminative
embedding models on MMEB-V2, a benchmark comprising 78 tasks across three visual modalities:
video, image, and visual documents. Analysis of an oracle upper bound and pass@Fk indicates that
UME-RI retains significant potential for further improvement.

2 DATASET CONSTRUCTION
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Figure 1: Illustration of the pipeline for data construction. Specific prompts used for CoT annotation
and the resulting data samples are presented in Appendix D}

To construct the training corpus for generative multimodal embeddings, as illustrated in Figure [T}
we sample 50,000 instances from each of the 20 in-distribution datasets within MMEB (Jiang et al.,
2025)). Following VLM2Vec-V2 (Meng et all [2025), we also incorporate the training instances
from LLaVA-Hound (Zhang et al.| [2025a), ViDoRe (Faysse et al [2025b)), and VisRAG (Yu et al.,
2025c) datasets to cover video and visual-document modalities, yielding a total of 1.76 million
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pairs. Subsequently, we employ the pure-thinking model GLM-4.1V-Thinking (Hong et al., 2025b)
to generate CoT rationales for both the query and the target of each pair.

We filter the data by excluding pairs that meet any of the following criteria: (1) contain extensive
contiguous token repetition; (2) include reasoning that are excessively long (e.g., exceeding 8,192
tokens); or (3) produce responses that do not conform to the <think>...</think><answer>
format. This filtering process results in a final set of 1.46 million cold-start SFT pairs. For RL
training, a set of 11,136 pairs is balanced sampled from various datasets spanning the image, video,
and visual-document modalities, prioritizing instances not included in the SFT data to avoid overly
simple samples.

3 UME-RI1

3.1 PRELIMINARIES

We adopt the formulation from VLM2Vec (Jiang et all, [2025)) for discriminative multimodal em-
beddings task as follows: given a query ¢ and its corresponding positive target t*, as well as a set
of negative targets 7~ = {t;,...,tx}, the objective is to maximize similarity between ¢ and ¢t*
over all ¢ and ¢t~ € 7T~ pairs. Here, both queries and targets can be text, image, or interleaved
text-image.

In practice, we sample a mini-batch of N query—target pairs (q1,t1), ..., (qn,tn), Where (g;,t;)
forms the positive pair and all targets {¢; | j # i} serve as negatives for g;. Formally, we optimize
the model by minimizing the following InfoNCE loss function:

Canr = 3 o e ((roa) 7a(1))/7)

ctr — 77 - .
N = exp((mo(qi) - 7o (t:))/7) + Y1z exp((mo (i) - mo(t;))/7)

where 7y (-) denotes the normalized representation of the last input token, derived from the MLLM’s

final-layer hidden state, and 7 represents the temperature hyper-parameter.

(1)

3.2 ARCHITECTURE

In this work, we introduce a multimodal embedding model capable of producing both discrimina-
tive and reasoning-driven generative embeddings. To obtain the reasoning-driven generative embed-
dings, the model first generates distinct reasoning and summaries for each query and target. These
outputs are then concatenated with the original input to produce the final generative representa-
tion. Note that the model can simultaneously yield discriminative embeddings without incurring
additional computation. Specifically, we employ the following template to realize this process:

Template for Discriminative and Reasoning-Driven Generative Embeddings

USER: <image> <video> {query/target} <disc_emb>

Represent the above input text, images, videos, or any combination of the three as embed-
dings. First output the thinking process in <think> </think> tags and then summarize
the entire input in a word or sentence. Finally, use the <gen_emb> tag to represent the
entire input.

ASSISTANT: <think>{reasoning} </think>

<answer> {summary} <gen_emb>

where <image> and <video> denote placeholders for the input image and video. As illustrated
in Figure [2{a), the last-layer hidden states corresponding to the prompt’s <disc_emb> token and
the final model-generated <gen_emb> token serve as the discriminative and reasoning-driven gen-
erative embeddings, respectively.

3.3 MODEL TRAINING

We train the model in two stages, enabling it not only to generate discriminative embeddings but also
to develop reasoning capabilities for producing stronger reasoning-driven generative embeddings.
Figure [2)illustrates the overall training process.
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Figure 2: Overview of UME-R1. UME-RI1 introduces a two-stage training framework for gen-
erative multimodal embedding. (a) Supervised fine-tuning uses query-target pairs with reasoning
annotations to train the MLLM, enabling it to generate both discriminative and reasoning-driven
generative embeddings as well as to possess basic reasoning abilities. (b) RLVR continues to fine-
tune the model using regular query-target pairs, encouraging it to generate reasoning trajectories that
lead to more beneficial embeddings.

Stage 1: Supervised Fine-tuning. In this initial stage, we perform SFT on the model using the
multimodal embedding dataset constructed in Section 2] which incorporates the step-by-step reason-
ing processes. As shown in Figure P{a), alongside the discriminative embedding training objective
outlined in Section [3.1] we also include the following generative embedding training objectives:

N
1 exp((mg(qs, 0f) - mo(ts,0}))/7)
‘Cgctr = N §:1 710g

N
exp((ma(qi, o) - mo(ti, o)) /7) + D iss exp((ma (i, 0f) - wo(t5,05))/7)
2
where of and o! denote the i-th reasoning trajectory and summary of the query and target, respec-
tively. Compared to the original input, reasoning process and summarization provide more detailed
and useful information, which often enhances the performance of the resulting embeddings.

Furthermore, to endow the model with reasoning capabilities during inference, we apply a next-
token prediction loss over both the reasoning trajectories and summaries, formalized as

1 N
Ece: _NZ

i=1 \j=

Ly Ly

logm (0! | @iy ;) + 3 logma(ol, [ 1ol )) | )
1 j=1

where L, and L, denote the lengths of the reasoning trajectories for the query and the target, respec-
tively. Overall, the loss for the SFT stage is defined as follows:

£sft = ‘Cdctr + Lgctr + ‘Cce- (4)
This stage of training not only equips the model to generate both discriminative and reasoning-driven

generative embeddings, but also lays the foundation for its reasoning abilities.

Stage 2: Reinforcement Learning with Verifiable Reward. As illustrated in Figure 2|b), in this
stage, we further refine the model 7y using Group Relative Policy Optimization (GRPO) (Shao et al.,
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2024). Unlike methods that rely on a learned value function, GRPO utilizes the mean reward across
multiple sampled outputs as its baseline. Specifically, for each input query g, it samples a group of
G candidate responses {oi}iG:1 from the old policy mg_,,, and then optimizes the policy model g
by maximizing the following objective:

old?

G
_ 1 . mo(oi | q)
Egrpo - ]EqND’{Oi}iG:1~”90M 5 Z (Inln (WA“
= (5)
clip <7T9(0,q)7 1—€1+ 6) A,) — ,BDKL(TFgHﬂ'ref)) ,
T001a (Oi | q)

where D denotes the training dataset, € and /3 are hyper-parameters, and .. r represents the reference
model before optimization. A; indicates the advantage of the i-th response, computed based on a
group of rewards {r1,...,rg} corresponding to the outputs within each group:

A = r; — mean({ry,- - ,rg}). ©)
std({r1, -+ ,ra})
Accordingly, we design the reward function to include two components: format rewards and em-
bedding rewards, which we will now describe in detail.

Format Reward. The use of this reward encourages the model to adhere to a predefined template, en-
suring that responses are well-structured and interpretable. Specifically, the model is required to per-
form reasoning within the <think> and </think> tags, provide a summary after the <answer>
tag, and finally generate the <gen_emb> for obtaining the generative embedding. A reward of 1 is
granted for strict adherence to the template, while any deviation results in a reward of 0.

Embedding Reward. This component is used to evaluate the quality of the embeddings generated
by the model. Since embeddings cannot be directly evaluated against standard answers as in math-
ematics, we evaluate them from two aspects: the ranking of positives among negatives, and the
similarity gap between positives and negatives. Concretely, for each query q with a positive tar-
get tT and a negative target ¢t~, we sample a group of responses {0 1 correspondrng to the
positive target, another group {OJ 16 j=1 corresponding to the negative targe For the i-th sam-
pled response o; of the query, we calculate its similarity scores with the positive targets as ST =
{mo(q,0;)-m(tT,07) 1> and with the negative targets as S~ = = {mo(q,0:) mo(t~ of)}J»Gzl. The

embeddrng reward fyor tﬁe i-th response o; sampled from the query is defined as follr;wéz

|ST Ntope(STUST)]
G

Ranking

Remp(0;) = x (avg(ST) —avg(S7)), @)

Similarity Gap

where top(-) denotes the operation of selecting the top-G largest elements from input set. By
optimizing this reward, the model learns to produce reasoning trajectories that are more conducive
to generating high-quality generative embedding.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Details. Following VLM2Vec-V2 (Meng et al., [2025), we adopt Qwen2-VL-2B and
Qwen2-VL-7B as backbone models. During the SFT stage, we train using the cold-start dataset con-
structed in Section [2] which is approximately two-thirds the size of the dataset used by VLM2Vec-
V2. Consistent with the settings of VLM2Vec-V2, the temperature 7 is set to 0.02, the batch size to
1,024 (achieved through gradient accumulation), and the number of training steps to SK. Besides,
the maximum sequence length is 12,288 tokens, and the learning rate is Se-5. During the RL stage,
the model is trained on approximately 11K pairs and uses the default GRPO hyperparameter set-
tings: group size G = 8, clipping parameter ¢ = 0.2, and KL-divergence coefficient 5 = 0.04. In
this stage, we set the batch size to 256, the learning rate to le-6, and train for one epoch.

2For simplicity, only one negative target is illustrated; however, this method can extends to any number of
negative targets in practice.
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Table 1: Comparison of performance between baselines and UME-R1 on MMEB-V2. CLS: classi-
fication, QA: question answering, RET: retrieval, GD: grounding, MRET: moment retrieval, VDR:
ViDoRe, VR: VisRAG, OOD: out-of-domain. Oracle denotes the case where the best result between
reasoning-driven generative and discriminative embeddings is picked. Detailed results can be found
in Appendix [E]

Model Image Video VisDoc All
CLS QA RET GD Overal CLS QA RET MRET Overall VDRvl VDRv2Z VR OOD Overall
# of Datasets 10 10 12 4 36 5 5 5 3 18 10 4 6 4 24 78

Baseline Models
ColPali-V1.3 (PaliGemma-3B) ~ 40.3 11.5 48.1 403 34.9 267 378 216 25.5 282 83.6 52.0 81.1 431 71.0 444

GME (Qwen2-VL-2B) 544 299 669 555 51.9 349 420 256 324 339 86.1 54.0 825 431 72.7 54.1
GME (Qwen2-VL-7B) 577 347 712 593 56.0 374 504 284 38.2 38.6 89.4 55.6 85.0 444 75.2 57.8
LamRA (Qwen2-VL-7B) 592 265 700 627 54.1 393 426 243 34.6 35.2 22.0 115 374 210 239 40.4
LamRA (Qwen2.5-VL-7B) 51.7 341 669 56.7 524 329 426 232 37.6 33.7 56.3 333 582 40.1 50.2 474
VLM2Vec (Qwen2-VL-2B) 587 493 650 729 59.7 334 305 206 33.0 29.0 49.8 135 518 335 41.6 47.0
VLM2Vec (Qwen2-VL-7B) 62.7 569 694 822 65.5 39.1  30.0 29.0 40.6 34.0 56.9 9.4 59.1  38.1 46.4 52.3
VLM2Vec-V2 (Qwen2-VL-2B) 629 563 69.5 773 64.9 39.3 343 288 38.5 349 75.5 44.9 794 394 65.4 58.0
CAFe (LLaVA-OV-7B) 63.6 61.7 69.1 87.6 67.6 358 587 344 39.5 424 70.7 49.6 79.5  38.1 63.9 60.6
DUME (Qwen2-VL-2B) 593 550 663 78.0 62.5 377 466 17.1 30.0 332 67.6 433 47.1 338 52.8 52.7
DUME (Qwen2-VL-7B) 642 570 708 81.8 66.4 329 474 86 28.0 29.4 67.1 35.2 82.6 349 60.3 559
Ours
UME-R1 (Qwen2-VL-2B) 648 628 67.6 772 66.6 443 512 329 39.7 422 724 46.2 792 372 63.9 60.1
UME-R1 (Qwen2-VL-7B) 67.1 692 719 849 71.3 48.6 60.7 382 39.3 47.5 75.7 50.5 83.7 376 67.1 64.5
Oracle
UME-RI (Qwen2-VL-2B) 67.6 675 712 80.1 70.2 470 587 372 48.8 479 76.8 515 82.6 415 68.2 64.4
A— Ours +28 +47 436 +29 +3.6 +27 475 +43 +9.1 +5.7 +4.4 +5.3 +34 443 +4.3 +4.3
UME-R1 (Qwen2-VL-7B) 69.1 732 748 874 74.2 516 672 39.6 49.6 522 79.7 55.8 86.0 40.7 70.8 68.1
A~ Ours +20 +40 +29 425 +2.9 +3.0 +65 +14  +103 +4.7 +4.0 +5.3 +2.3  +43.1 +3.7 +3.6

Evaluation. We evaluate UME-R1 on MMEB-V2 (Meng et al.,|[2025), a benchmark that extends
MMEB-V1 (Jiang et al., 2025) by introducing 5 meta-tasks focused on video and visual docu-
ment, covering a total of 9 meta-tasks and 78 tasks. During inference, we use greedy search and
set the maximum number of newly generated tokens to 8,192. Unless otherwise specified, we use
reasoning-driven generative embeddings for evaluation. Hit@]1 is used as the evaluation metric for
all video and image tasks, while NDCG@35 (Jarvelin & Kekildinen, 2002) is reported for visual doc-
ument tasks. In addition, we compare several strong models on MMEB-V 1, with the corresponding
results presented in Appendix [F|

Baselines. We compare against several MLLM-based multimodal embedding models, including
GME (Zhang et al., 2025b)), ColPali (Faysse et al.,[2025a), VLM2Vec (Jiang et al., 2025), LamRA
(Liu et al., [2025a), CAFe (Yu et al.,[2025a), and VLM2Vec-V2 (Meng et al.,[2025). To ensure a fair
comparison and to clearly assess the role of reasoning-driven generative embeddings, we evaluate a
model that performs contrastive learning exclusively on discriminative embeddings, using the same
dataset and settings as ours. We refer to this model as DUME (discriminative UME).

4.2 MAIN RESULTS

Table [T] presents a performance comparison between UME-R1 and the Baseline on 78 tasks span-
ning three visual modalities: images, videos, and visual documents. The results show that UME-R1
consistently achieves the best performance in images and videos with the same backbone. Although
ColPali and GME perform well on visual document retrieval, the former is specifically optimized
for visual document tasks, while the latter uses a large amount of closed-source data. In particular,
compared to VLM2Vec-V2, UME-R1 achieves an overall improvement of 2.1 while using only two-
thirds of its training data. Compared to the discriminative embedding model DUME trained with
the same amount of data, UME-R1 increases the total scores for images, videos, and visual docu-
ments by 4.1, 9.0, and 11.1, respectively, fully demonstrating the effectiveness of reasoning-driven
generative embeddings. Comparative examples of reasoning-driven generative and discriminative
embeddings are provided in Appendix

Since UME-R1 can flexibly choose discriminative or reasoning-driven generative embeddings as
needed, we report an oracle upper bound. For each test instance, the oracle selects the embed-
ding mode that yields the best retrieval performance. Under the oracle setting, UME-R1-2B and
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Table 2: Ablation study of the RL stage on images, videos, and visual documents.

# Model Image Video VisDoc ALL
1 UME-R1 (Qwen2VL-2B) 66.6 42.2 63.9 60.1
2 w/o RL (UME) 65.2 1.4 41.2 11.0 63.5 10.4 59.1 1.0
3 w/o similarity gap reward 652 1.4 41.2 1.0 63.6 /0.3 59.2 10.9
4 w/o ranking reward 66.0 10.6 41.8 10.4 63.3 10.6 59.6 10.5
5 w/ threshold reward 65.6 1.0 41.7 10.5 63.5 104 59.4 10.7

UME-R1-7B achieve overall score improvements of 4.3 and 3.6, respectively. The results demon-
strate that the oracle substantially outperforms using only reasoning-driven generative embeddings,
which means that in practical applications users can freely switch modes to obtain more satisfactory
retrieval results.

4.3 ABLATION STUDY

Impact of RL Stage and Reward Design on Model Effectiveness. As shown in Table 2| we
study the effectiveness of different components in the RL stage across 78 tasks of MMEB-V2. From
the second row, we observe that although the RL stage uses only a small dataset for training with
GRPO and does not incorporate contrastive learning, it still substantially improves model perfor-
mance. This finding suggests that effective reasoning paths and summarization contribute to better
embeddings. The results in the Rows 3 and 4 show that jointly considering ranking and similar-
ity differences in the reward is essential. Ranking offers supervision that aligns more closely with
downstream tasks, but for relatively easy samples, the ranking reward often saturates. In such cases,
similarity differences help guide the model toward learning more effective reasoning paths. In addi-
tion, we explore using a fixed threshold (set to 0.5) as the evaluation criterion for assigning rewards,
where positive pairs exceeding the threshold receive a reward of 1 and others receive 0. The re-
sults in Row 5 show that this approach is mainly beneficial for video tasks but provides limited
improvement for other modalities. We attribute this to the varying similarity distributions across
task categories, which make it difficult to define a single fixed threshold. Developing an adaptive
threshold for reward assignment may be a promising solution.

Impact of Reasoning-Driven Generative Table 3: Comparison of UME and UME-R1 using
Embedding Training on Discriminative only discriminative embeddings against DUME un-
Embeddings. While UME-R1 is primar- der the same training settings.

ily designed for reasoning-driven generative

embeddings, it also supports discriminative =~ Model Image Video VisDoc  ALL
embeddings. In this study, we investigate DUME 62.5 332 52.8 52.7
how the SFT stage and the RL stage affect UME 632107 344112 603175 557130

the performance of discriminative embed- UME-Rl 640715 3447112 603175 56.0133
dings. Table [3| reports the performance of
2B-parameter models DUME, UME (with-
out RL training), and UME-R1. Under the same training settings, introducing reasoning-driven
generative embeddings and the next-token prediction objective during the SFT stage improves the
overall score of discriminative embeddings across 78 tasks by 3 points. Notably, for visual docu-
ment tasks, the improvement reaches 7.5 points, likely due to the limited amount of such data in
the training set, suggesting that incorporating the generative embedding and the next-token predic-
tion objective provides richer supervisory signals. Furthermore, UME-R1 achieves an additional
0.4-point improvement over UME in the overall score. Although the RL stage only optimizes the
reasoning-driven generative embeddings, it does not compromise the performance of the discrimi-
native embeddings, indicating that the two types of embeddings do not conflict during training.

4.4 DEEP ANALYSIS

Potential of Reasoning-Driven Generative Embeddings for Inference-Time Scaling. One of
the key characteristics of generative reasoning models is their ability to scale at inference time,
meaning that performance can be improved by allocating more computing resources. Motivated
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Figure 3: pass@¥k curves of UME-2B and UME-7B across multiple datasets.

by this, we explore whether reasoning-driven generative embeddings possess similar potential for
inference-time scaling. To this end, we evaluate model coverage (pass@k) on four randomly se-
lected test sets from the image and video modalities, each containing 128 randomly sampled exam-
ples. Pass@k considers a problem solved if any of the £ sampled outputs is correct, thereby indicat-
ing the model’s ability to retrieve the correct result through multiple attempts. To reduce variance
in coverage estimation, we apply the unbiased estimation formula proposed by Brown et al.| (2024).
As illustrated in Figure 3] both UME-R1-2B and UME-R1-7B yield improved embedding represen-
tations through repeated sampling, underscoring that reasoning-driven generative embeddings also
hold strong promise for inference-time scaling. Appendix [H] presents visual illustrations of how
repeated sampling affects retrieval results.
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Figure 4: Comparison between DUME, DUME+Gen, and UME-R1. DUME+Gen denotes the ap-
proach in which an external model first generates reasoning and summaries, followed by DUME to
obtain the corresponding embeddings.

External-Enhanced Discriminative Embeddings vs. Self-Generated Generative Embeddings.
We further investigate an approach where an external reasoning model generates reasoning and
summaries, subsequently encoded by discriminative embedding model to obtain representations.
We evaluate whether this approach enhances performance and compare it with our proposed self-
generated method. Concretely, we evaluate the 2B model on previously extracted test set, employing
the 9B GLM-4.1V-Thinking (Hong et al[2025a) as the external reasoning model. As shown in Fig-
urefd] incorporating an external model can enhance discriminative embeddings on certain tasks, with
improvements of 19.7 and 3.9 observed on K700 and MSVD, respectively. However, this approach
may also degrade performance, exemplified by a 12.3-point drop on CIRR. Importantly, UME-R1
consistently outperforms DUME+Gen, indicating that self-generated reasoning and summaries are
more efficient and effective than even a stronger external model for producing high-quality embed-
ding representations.

5 RELATED WORK

5.1 MULTIMODAL LARGE LANGUAGE MODEL

Multimodal large language models (MLLMs) (OpenAlL 2023} [Liu et al, 2023}, [Chen et al., 2023},
et alll[2024}; [Wang et al.,[2024)) have achieved remarkable progress across a wide range of multimodal
understanding tasks. The emergence of Large Reasoning Models (LRMs), exemplified by GPT-40




Under review as a conference paper at ICLR 2026

(Hurst et al.,|2024) and DeepSeek-R1 (Guo et al.| [2025)), has catalyzed the development of various
strategies to elicit chain-of-thought (CoT) reasoning within MLLMs. Among the most prominent is
the use of reinforcement learning with verifiable reward signals to enhance visual reasoning (Zhou
et al.,|2025a}Zhan et al.| 2025} [Liu et al.,[2025b; |Shen et al.||2025a). However, to our knowledge, no
prior work has applied reinforcement learning with verifiable reward to embedding tasks, primarily
due to such tasks are non-generative and do not have definitive answers.

5.2 UNIVERSAL MULTIMODAL EMBEDDINGS

Universal multimodal embedding models aim to encode inputs of various modalities into vector rep-
resentations, facilitating a range of multimodal tasks such as image-text retrieval (Wu et al.| 2021}
Zhang et al} 2024a)), automatic evaluation (Hessel et al.||2021), and retrieval-augmented generation
(RAG) (Zhao et al.| [2023). Early vision-language models (VLMs) (Radford et al.| |2021} Jia et al.|
2021;|Zhai et al | [2023) primarily used a dual-encoder architecture and were trained with contrastive
learning on large-scale image—text datasets. Although these models exhibited strong representa-
tional capabilities, they still suffered from deficiencies such as poor understanding of interleaved
image—text inputs and a tendency to behave like bag-of-words (Yiiksekgoniil et al., 2023)).

To address these issues, VLM2Vec (Jiang et al., [2025) and MM-Embed (Lin et al.l [2025) con-
vert MLLMs into multimodal embedding models through contrastive learning, leveraging MLLMs’
strong multimodal understanding and inherent advantages in handling interleaved image—text inputs.
Given the limited scale of existing multimodal embedding datasets, MegaPairs (Zhou et al., [2025c])
and GME (Zhang et al.l 2025b) introduce automated data synthesis pipelines to generate large-scale
pairs, thereby further improving the performance of MLLM-based multimodal embedding models.
On the other hand, some works focus on negative sample selection or learning, for example, UniME
(Gu et al.| [20254)) filters out false negatives and easy negatives during training based on similar-
ity, while LLaVE (Lan et al., 2025) and QQMM (Xue et al |2025) estimate negative difficulty and
weight negatives accordingly. Furthermore, B3 (Thirukovalluru et al.,|2025) introduces a hard neg-
ative mining method that leverages community detection to construct training batches enriched with
in-batch negatives.

Additionally, some studies explore how to preserve MLLMs’ generative strengths when converting
them from generative to discriminative models. VladVA (Ouali et al [2025) and CAFe (Yu et al.,
2025a) combine a contrastive objective with autoregressive language modeling to prevent catas-
trophic forgetting of the models’ generative abilities while enhancing their discriminative capabili-
ties. Moreover, |Ju & Lee| (2025) design hierarchical prompts to elicit powerful discriminative em-
beddings from generative models in a zero-shot manner. Despite these advances, existing MLLM-
based embedding models remain limited to producing discriminative embeddings and therefore do
not exploit MLLMs’ generative and reasoning capabilities. In contrast, UME-R1 can generate dis-
criminative or reasoning-driven generative embeddings on demand, demonstrating the substantial
potential of harnessing MLLMs’ reasoning power for embedding tasks.

6 CONCLUSION

In this work, we pioneer the exploration of reasoning-driven generative embeddings and propose
UME-R1, a universal multimodal embedding framework that unifies discriminative and reasoning-
driven generative embeddings. To support this, we construct an SFT dataset by augmenting existing
multimodal embedding benchmarks with reasoning and summaries produced by a thinking-capable
MLLM. Fine-tuning on this dataset enables the model to produce both embedding types. We further
apply reinforcement learning with a reward function that incorporates similarity gaps and ranking,
encouraging reasoning trajectories that enhance reasoning-driven generative embeddings. Experi-
ments on MMEB-V2, spanning 78 tasks across video, image, and visual document domains, show
that reasoning-driven generative embeddings yield significant gains over discriminative ones. Fi-
nally, oracle and inference-time analyses suggest that UME-R1 holds substantial headroom for fur-
ther improvement.

Our work highlights three promising directions for future research: 1) developing mechanisms that
allow the model to adaptively decide whether to produce discriminative or reasoning-driven gen-
erative embeddings based on the input; 2) constructing more challenging RL datasets or designing
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more effective RL training strategies to encourage the model to produce reasoning and summaries
that more conducive to embedding quality; and 3) exploring inference-time scaling techniques to
further enhance the quality of reasoning-driven generative embeddings. In general, UME-R1 estab-
lishes a new direction for reasoning-driven generative multimodal embeddings and lays a foundation
for future research.
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A USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we use Large Language Models (LLMs) solely to aid in writing
and polishing the text, including improving clarity, grammar, and readability. LLMs are not used
for generating scientific content, experimental design, analysis, or conclusions. All technical ideas,
experiments, and results reported in this paper are entirely the work of the authors.

B LIMITATIONS OF UME-R1

Although UME-R1 demonstrates that reasoning-driven generative embeddings exhibit stronger per-
formance and greater potential than discriminative embeddings, they incur higher training and in-
ference costs due to the generation of long CoT and summaries. However, this also opens a new
avenue for improving embedding performance beyond scaling model size, namely scaling compu-
tation. Moreover, while our oracle upper-bound analysis empirically shows the complementarity
between discriminative and reasoning-driven generative embeddings, designing a practical router to
select between the two in real-world applications remains an open problem. Finally, there is still
room for further performance improvement in our current RL setup, for example, by constructing
harder negative examples for RL training or scaling up the training instances.

C TRAINING AND INFERENCE COST

In this section, we discuss the training cost of UME-R1 as well as the inference overhead of
reasoning-driven generative embeddings compared to discriminative embeddings.

Under the same training configuration, DUME requires 1487 H20 GPU-hours for fine-tuning,
whereas UME-R1 incurs 2336 H20 GPU-hours in the SFT stage and 1344 H20 GPU-hours in the
RL stage.

Table 4: Comparison of inference speed between discriminative and reasoning-driven generative
embeddings across different datasets. The embedding type produced is indicated in parentheses.

Model CIRR FashIQ K700 MSVD

UME-RI1 (Generative) 1.48 samples/s 1.14 samples/s 0.50 samples/s 1.10 samples/s
UME-R1 (Discriminative) 20.0 samples/s 19.1 samples/s 1.59 samples/s  28.0 samples/s

As for inference cost, we evaluate inference speed on CIRR, FashionlQ, K700, and MSVD using
a single L40s GPU under the vLLM framework. The batch size is set to 8 for image modalities
and 4 for video modalities. As shown in Table ] reasoning-driven generative embeddings indeed
introduce a noticeably higher inference overhead, especially when the input token length is short.
The speed gap narrows as the input token length increases. Nevertheless, the stronger performance,
better interpretability, and the ability to scale computation to further enhance embedding quality
make the cost of reasoning-driven generative embeddings well justified.

D EXAMPLE OF DATA CONSTRUCTION
The prompt template for SFT CoT annotation is provided as follows:
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Prompt Template for Reasoning Annotation

{query/candidate}

The above input is a query/candidate for retrieval. Carefully examine and analyze the above
input (which may include text, images, videos, or any combination). Identify and describe the
key elements present in the input, such as the main topic, important entities, relationships,
context, and any notable features or details that contribute to the overall meaning. Finally,
synthesize your analysis and reflection into a single word or a concise sentence that best
captures the essence of the input for retrieval purposes. If the input is a phrase or word, the
summary is that word itself.

We present examples of our constructed cold-start dataset in Figures [3 [6l and [7] to illustrate the
typical query—target pairs it contains. For RL training, we sampled roughly equal numbers of in-
stances from each modality while ensuring a balanced numbers across different datasets within each
modality. In particular, for the image modality, pairs were drawn only from OK-VQA (Marino et al}

[2019), ChartQA 2022), CIRR 2021), A-OKVQA (Marino et al.,[2019), and
Visual7W (Zhu et al.| [2016)), as the tasks in the other image datasets are relatively simple.
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Query:
Given an image, find a similar everyday image with the described changes: Shows a similar dog touching
noses with a smaller light brown and white dog. <disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence.
Finally, use the <gen emb> tag to represent the entire input.
<think>So, let\'s analyze the input. The query is asking for a similar everyday image with a dog touching
noses with a smaller light brown and white dog. First, identify key elements: main topic is a dog image with
interaction (nose touching) with a smaller dog of specific colors (light brown and white). Important entities:
dogs, touching noses, smaller light brown and white dog. Relationships: interaction between two dogs, one
larger (similar to original dog maybe), one smaller with light brown and white. Context: everyday image, so a
normal scene, not a special setting. Notable features: size difference, color of the smaller dog, the action of
touching noses. Now, synthesize into a concise sentence for retrieval purposes. Maybe something like "Dog
touching noses with smaller light brown and white dog in everyday setting" or a shorter version. Wait, the
task says a single word or concise sentence. Let\'s make it concise. "Dog interacting with smaller light brown
and white dog by nose touching" or even shorter. Hmm. Let\'s check the original image: the first image is a
white dog on a leash. The query is for similar image (so maybe same type setting, park maybe) with two dogs,
larger dog (similar to original maybe) touching noses with smaller light brown and white one. So the essence
is finding an image of a dog (probably similar to first dog or same context) touching noses with a smaller,
light brown and white dog. So the summary could be a sentence that captures the key elements: "Dog
touching nose with smaller light brown and white dog." But need to make sure it\'s concise. Alternatively,
"Similar image of dog touching noses with smaller light brown and white dog." Wait, the original input is a
query for retrieval, so the output should be a concise summary. Let me think again. The input is a query
asking for an image of a dog touching noses with a smaller light brown and white dog (similar to an everyday
image). So key elements: dog, touch noses, smaller, light brown and white, everyday image. So the summary
could be "dog touching nose with smaller light brown and white dog" or a brief description. Since it\'s a
retrieval query, maybe "similar dog touching smaller light brown and white dog with noses". But need to be
concise. Let\'s go with "dog touching noses with smaller light brown and white dog" as that captures all key
elements. </think><answer>dog touching noses with smaller light brown and white dog\n<gen_emb>
Target:
Represent the given image. <disc_emb>
Represent the above input text, images, videos, or any combination of the three as embeddings. First output
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence.
Finally, use the <gen emb> tag to represent the entire input.
<think>So, let's analyze the image. There are two dogs touching noses, one white and fluffy, the other tan
and white (like a corgi). The setting is a grassy area. The main elements are the two dogs interacting, their
breeds/color, and the outdoor environment. So the key elements are the interaction between the two dogs,
their appearance, and the grassy background. The essence would be two dogs touching noses in a grassy
area. </think><answer>Two dogs nose-to-nose on grass\n(Interpreting the image: two dogs, one white fluffy
breed and one tan/white corgi-like, touching noses in a grassy setting. Syncretized essence for retrieval: two
\dogs nose-to-nose on grass.)\n<gen_emb> /

Figure 5: Example from the constructed cold-start dataset (Case 1). The orange part represents
the original data, the blue part denotes the added prompt, the black part indicates the reasoning
content, and the green part shows the summary. orange segments correspond to the original data,
blue segments represent the added prompts, black segments capture the reasoning process, and green
segments provide the summaries.
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Query:

Represent the above input text, images, videos, or any combination of the three as embeddings. First output
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence.
Finally, use the <gen emb> tag to represent the entire input.

<think>So, let\'s look at the image. The question is asking for the Account Name. In the document, under
"Account" it has "Janeto\'s Super Market" written. So we need to extract that. The key element here is the
account name, which is clearly labeled next to "Account". </think><answer>Janeto\'s Super
Market\n<gen _emb>

Target:

Represent the above input text, images, videos, or any combination of the three as embeddings. First output
the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence.
Finally, use the <gen emb> tag to represent the entire input.

<think>So, let\'s analyze the input. The input says "Janeto\'s Super Market" as a candidate for retrieval. I
need to identify key elements:\n\nMain topic: Janeto\'s Super Market (which is likely a store name).
Important entities: "Janeto\'s" ( Likely a business name, super market as the type). Relationships: It\'s a
business (super market) owned or named "Janeto\'s". Context: This seems to be a name for a supermarket
business. Notable features: It\'s presented as a candidate for retrieval, so it\'s a name that might be used for
identification.\n\nSynthesize this into a single word or concise sentence. The main essence is a supermarket
business named Janeto\'s. So the summary would be the business name, or a concise description. But since
the task says "single word or concise sentence", "Janeto\'s Super Market" is the key, but maybe shorter.
Alternatively, "Janeto\'s Supermarket" as the essence. Wait, the input is "Janeto\'s Super Market" (with an
apostrophe), so the essence is the supermarket with that name. </think><answer>Janeto\'s Super Market
(essence: supermarket named Janeto\'s)\n(Concise summary for retrieval: "Janeto\'s super market" or

\ Janeto\'s Super Market") \n<gen _emb>

/

Figure 6: Example from the constructed cold-start dataset (Case 2).
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972
973
974
975
976
977
978
979 soso ossen
980
981
982 Query:
983 Find a video that contains the following visual content: This video captures the heart-pounding moment of
984 an airplane, with a visibly blue and white body probably belonging to a commercial airline, flying at a low
985 altitude over an overhead green sign. The sign reads "Jodo Pessoa" in white capital letters, it appears to be
naming a city or a specific area. It\'s made of reflective material allowing high visibility even in darker
986 conditions. This particular sign is prominently installed on metal pillars with a series of lights to illuminate it,
987 suggesting it is likely situated near a busy motorway or highway. As the airplane ascends, its undercarriage is
988 still visible, highlighting that it has likely just taken off from a nearby airport. We do not have clear visibility
989 of the airplane\'s livery or any markings that could identify the specific airline or model of the plane. The sky
990 is clear, with scarce, fluffy clouds scattered, suggesting good weather conditions. No other objects or
991 subjects are visible in the video other than the stationary overhead sign and the airplane making its
ascent. <disc_emb>
992 Represent the above input text, images, videos, or any combination of the three as embeddings. First output
993 the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence.
994 Finally, use the <gen emb> tag to represent the entire input.
995 <think>So, let\'s analyze the input. The user is looking for a specific video with a detailed description of the
996 visual content. Let\'s break down the key elements:\n\nMain topic: A video capturing an airplane
097 (commercial, blue and white) flying low over a "Jodo Pessoa" sign. \n\nImportant entities: \n- Airplane:
blue/white, low altitude takeoff, undercarriage visible, livery/terms unclear.\n- Sign: "Jodo Pessoa" (white
aoe letters, green background, reflective, on metal pillars with lights), near motorway/highway.\n- Context: clear
999 sky, low cloud, no other objects.\n\nRelationships: Airplane is flying over the sign which is near a motorway.
1000 The sign\'s purpose is to name a city/area, the airplane is ascending (justice takeoff). \n\nNotable features:
1001 Color of airplane, visibility of sign, sky conditions, absence of other objects.\n\nSynthesize into a concise
1002 summary. The essence is video of commercial airplane flying low over "Jodo Pessoa" sign near motorway
1003 with clear sky. </think><answer>Commercial airplane flies low over "Jodo Pessoa" sign near motorway,
1004 clear sky.\n<gen emb>
1005 Target:
Understand the content of the provided video.<disc_emb>
1006 Represent the above input text, images, videos, or any combination of the three as embeddings. First output
1007 the thinking process in <think> </think> tags and then summarize the entire input in a word or sentence.
1008 Finally, use the <gen_emb> tag to represent the entire input.
1009 <think>Got it, let\'s analyze the input. The user provided multiple images (though text describes them as
1010 video frames maybe) showing green highway signs with "Jodo Pessoa" and airplanes in some. Let\'s identify
1011 key elements: green highway signs, Jodo Pessoa as a place name, airplanes (aviation elements), the signs\'
structure (metal frames), sky, trees, etc. The main topic is highway signs for Jodo Pessoa with airplanes
1012 (maybe an airport area). Important entities: "Jodo Pessoa" signs, airplanes, highway infrastructure.
1013 Relationships: signs are for directing to Jodo Pessoa, airplanes indicate proximity to an airport. Context:
1014 outdoor setting, clear sky, urban/airport infrastructure. Notable features: repeated green sign with Jodo
1015 Pessoa, airplanes flying above signs. \n\nSynthesize into a single word or concise sentence. The core is
1016 highway signs for Jodo Pessoa with airplanes, so maybe "Jodo Pessoa highway signs with airplanes" but
1017 make it concise. Or "Jodo Pessoa highway signage with aircraft". But need to capture essence. Alternatively,
"Jodo Pessoa highway signs and airplanes”. </think><answer>Jodo Pessoa highway signs with
12:2 aircraft\n(Condensed to capture the key elements: the main subject "Jodo Pessoa" on highway signs plus the
included aircraft.)\n<gen_emb>
1020 /
1021
1022 Figure 7: Example from the constructed cold-start dataset (Case 3).
1023
1024
1025
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E DETAILED SCORES OF MMEB-V?2

Table 5: The detailed results of the baselines and UME-R1 the full MMEB-v2 benchmark. We
only include the best version of each series of previous models in the table. Numbers in parentheses
represent the task count for each category.

‘ColPalivl.} GME-7B  LamRA-Qwen2.5-VL VLM2Vec-7B VLM2Vec-V2.0 CAFe-7B DUME-2B DUME-7B  UME-R1-2B  UME-R1-7B

Avg - All (78 tasks) | 4.4 57.8 47.4 33 58.0 60.6 52.7 55.9 60.1 64.5
Avg - Image (36 tasks, Hit@1) 349 56.0 524 65.5 64.9 67.6 62.5 66.4 66.6 71.3
Avg - Video (18 tasks, Hit@1) 282 384 33.6 337 34.6 424 332 294 422 41.5
Avg - Visdoc (24 tasks, NDCG@5) 71.0 jo5%2 50.2 46.4 65.4 63.9 52.8 60.3 63.9 67.1
1-CLS (10) 403 577 517 62.7 62.9 63.6 593 64.2 64.8 67.1
I-QA (10) 115 347 34.1 56.9 56.3 61.7 54.9 57.0 62.8 69.2
I-RET (12) 48.1 71.2 66.9 69.4 69.5 69.1 66.3 70.8 67.6 71.9
1-VG (4) 403 59.3 56.7 822 773 87.6 78.0 81.8 712 849
V-CLS (5) 26.7 374 329 39.1 393 35.8 377 329 443 48.6
V-QA (5) 37.8 50.4 42.6 30.0 343 58.7 46.6 47.4 51.0 60.7
V-RET (5) 21.6 284 232 29.0 28.8 344 17.1 8.6 329 382
V-MR (3) 255 37.0 372 38.9 36.8 395 30.0 28.0 39.7 39.3
VD-Vidore-V1 (10) 83.6 89.4 56.3 56.9 75.7 70.7 67.6 67.1 724 7560
VD-Vidore-V2 (4) 52.0 55.6 333 9.4 45.1 49.6 433 352 46.2 50.5
'VD-VisRAG (6) 81.1 85.0 582 59.1 79.6 79.5 47.1 82.6 79.2 83.7
VD-00D (4) 43.1 44.4 40.1 38.1 39.6 38.1 33.8 349 372 37.6
ImageNet-1K 424 64.6 58.9 80.1 80.8 773 74.6 76.6 753 80.4
N24News 255 50.5 29.8 79.7 729 83.2 69.7 71.2 81.1 823
HatefulMemes 50.6 53.6 513 69.7 56.3 8.7 65.3 79.6 75.2 79.0
VOC2007 69.8 80.3 78.7 80.7 85.0 89.8 68.9 85.5 80.0 90.8
SUN397 56.1 69.5 66.5 774 71.0 79.9 714 74.6 79.4 80.3
Place365 275 39.1 374 374 359 45.0 41.0 41.9 42.6 46.8
ImageNet-A 14.9 41.2 36.3 58.1 47.4 55.2 413 48.6 50.4 539
ImageNet-R 64.6 839 77.0 739 89.3 88.0 90.7 88.8 88.7 90.1
ObjectNet 45.6 69.0 59.4 40.1 65.2 225 46.2 44.8 52.0 423
Country211 6.0 24.8 217 29.8 252 16.7 239 24.7 234 25.0
OK-VQA 94 332 399 56.8 515 67.3 56.8 61.6 62.4 71.7
A-OKVQA 6.6 21.0 34.1 47.3 43.6 63.8 46.9 514 51.1 587
DocVQA 11.3 41.4 37.1 89.7 90.1 79.2 86.0 86.3 92.2 93.8
InfographicsVQA 50 203 237 60.0 58.8 533 59.2 62.3 67.7 79.2
ChartQA 57 17.8 15.0 56.9 47.4 48.8 39.1 49.8 64.9 75.1
Visual7TW 6.1 222 24.6 527 529 525 46.9 52.1 54.1 552
ScienceQA 16.3 28.0 313 382 65.4 38.7 45.5 42.7 537
VizWiz 27.6 39.0 32.0 433 43.8 42.0 443 46.8 51.6
GQA 8.3 76.9 574 64.9 65.7 60.2 46.9 67.3 69.3
TextVQA 18.8 46.8 46.1 722 76.8 73.9 69.9 78.6 835
VisDial 412 60.8 62.5 827 82.7 75.9 75.7 76.6 80.7
CIRR 8.2 549 44.7 575 60.4 52.0 516 53.7 553
VisualNews_t2i 50.1 79.7 70.1 745 69.5 71.2 76.9 7.7 76.8
VisualNews_i2t 47.6 83.6 742 78.2 79.4 725 82.3 74.2 82.0
MSCOCO_t2i 592 71.2 65.7 75.3 75.4 74.5 771 75.1 78.3
MSCOCO-i2t 49.9 577 71.1 71.4 73.1 68.3 71.2 68.9 71.4
NIGHTS 65.5 67.6 64.4 68.6 66.7 67.5 69.6 67.2 68.1
WebQA 53.8 91.4 85.7 90.6 89.3 90.2 90.3 90.0 90.9
FashionlQ 59 37.8 334 19.5 39.0 11.5 20.5 17.1 234
‘Wiki-SS-NQ 80.5 78.2 67.0 66.9 61.2 60.0 70.6 62.0 725
OVEN 50.0 75.1 84.8 643 60.8 65.2 70.5 66.9 71.4
EDIS 64.7 96.0 78.7 84.1 71.3 86.5 92.8 88.0 92.0
MSCOCO 36.7 314 36.0 67.1 84.7 68.1 72.3 69.5 727
RefCOCO 64.5 60.9 57.1 87.1 89.4 85.1 86.8 83.3 91.4
RefCOCO-Matching 39 78.4 82.6 85.8 83.0 89.3 85.1 84.4 91.1
Visual7W-Pointing 56.1 66.5 512 69.2 93.2 69.5 83.1 715 84.2
K700 234 39.7 32.1 38.0 40.1 227 273 35.8 42.8
SmthSmthV2 25.1 30.6 253 42.8 358 37.7 25.1 44.1 50.4
HMDBS51 24.8 479 338 40.9 46.9 534 42.6 544 583
UCF101 49.4 54.7 53.0 60.0 39.6 55.7 48.8 67.2 70.0
Breakfast 10.9 143 20.1 14.8 16.6 18.9 20.8 20.1 215
MVBench 337 46.6 37.6 337 48.9 48.8 474 49.9 582
Video-MME 30.6 39.2 35.1 30.7 46.0 39.2 40.2 41.7 47.3
NEXTQA 352 53.6 44.9 20.9 62.4 55.2 48.6 59.9 69.6
EgoSchema 384 46.8 47.0 340 60.0 232 50.4 454 524
ActivityNetQA 513 65.6 485 523 76.0 66.7 50.2 57.8 76.0
DiDeMo 22.8 264 228 30.4 37.8 16.9 0.10 324 40.0
MSR-VTT 17.6 31.8 250 283 36.5 16.2 0.10 343 389
MSVD 45.4 49.7 41.9 46.7 48.1 56.4 349 28.8 55.4 60.8
VATEX 16.7 249 18.7 255 26.5 320 111 138 29.9 326
YouCook2 53 9.1 75 9.0 10.6 9.5 0.06 0.00 127 18.5
QVHighlight 199 59.5 60.9 577 49.4 58.4 403 294 575 54.9
Charades-STA 29.0 14.0 18.8 19.8 20.2 18.7 16.1 158 204 219
MomentSeeker 27.6 374 31.8 393 40.8 41.4 337 388 41.2 41.1
ViDoRe_arxivqa 81.7 86.9 53.0 60.2 80.6 733 68.7 66.6 739 73.6
ViDoRe_docvqa 56.6 575 254 347 449 383 33.6 358 379 41.1
ViDoRe_infovqa 84.9 91.6 723 70.4 83.7 80.6 74.5 72.8 76.2 80.8
ViDoRe_tabfquad 86.9 94.6 66.1 782 89.2 80.7 783 89.2 86.1 90.2
ViDoRe- tatdga 70.9 74.1 259 27.6 43.8 37.8 353 385 40.6 46.7
'ViDoRe_shiftproject 75.1 96.8 273 38.6 60.8 52.0 61.8 61.9 66.8 65.0
ViDoRe_artificial iintelligence 95.7 99.6 72.0 67.7 88.5 86.0 743 69.3 859 89.5
ViDoRe_energy 94.7 95.3 65.2 60.4 86.5 84.8 8.4 68.4 83.3 85.7
'ViDoRe_government_reports 93.6 98.8 722 61.8 85.0 85.0 83.0 83.1 82.6 89.8
ViDoRe_healthcare_industry 95.9 99.3 83.8 69.9 922 88.4 88.2 849 90.8 943
ViDoRe_esg_reports_human_labeled_v2 513 63.4 33.0 6.8 45.6 50.7 48.0 40.4 50.2 50.4
ViDoRe. _lectures_v! ili 54.7 49.5 359 5.1 443 50.9 39.8 374 46.2 50.7
ViDoRe_economics_reports_v2_multilingual 49.0 542 319 139 43.0 543 44.1 29.6 45.7 57.8
ViDoRe_esg_reports_v2_multilingual 529 554 325 11.9 46.6 423 41.1 335 42.7 432
VisRAG_ArxivQA 80.9 87.4 377 52.6 76.9 74.0 358 71.3 74.3 80.5
VisRAG_ChartQA 723 86.1 68.2 577 837 82.7 472 834 86.0 85.0
VisRAG_MP-DocVQA 82.0 89.7 72.0 60.6 88.1 75.1 353 83.8 75.6 83.4
VisRAG SlideVQA 85.1 92.6 71.1 54.7 84.1 87.6 61.3 915 87.1 915
VisRAG InfoVQA 835 88.6 67.9 66.0 823 87.9 64.7 88.2 84.4 89.2
VisRAG_PlotQA 79.3 76.5 56.4 62.7 75.9 69.4 385 71.3 68.0 727
ViDoSeck-page 38.1 326 10.7 163 29.1 225 20.0 20.2 212 21.3
ViDoSeek-doc 87.5 90.3 63.9 69.4 79.0 73.8 69.5 732 75.9 753
MMLongBench-page 27.1 36.9 0.5 0.4 15.8 13.3 10.4 103 119 123
MMLongBench-doc 80.4 852 514 28.8 63.0 42.6 354 36.0 39.7 41.3
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F MMEB-V1 BENCHMARK SCORES

Since MMEB-V1 has been widely adopted in prior work, in this section we also report the perfor-
mance of UME-R1 alongside other baseline models on MMEB-V 1. The results in Table [¢|demon-
strate that UME-R1 achieves the best overall score among models of the same size.

Table 6: Results on the MMEB-V1 benchmark, which comprises a total of 36 image embedding
tasks. IND represents the in-distribution dataset, and OOD represents the out-of-distribution dataset.
In UnilR, the FF and SF subscripts under CLIP or BLIP represent feature-level fusion and score-
level fusion, respectively. CAFe-V1 indicates that the model is trained solely on the MMEB-V 1
training data (contains only image data), whereas CAFe-V2 denotes that the model is trained on
the MMEB-V?2 training data. The best results are marked in bold, and the second-best results are
underlined.

Model Per Meta-Task Score Average Score
Classification VQA Retrieval Grounding IND OOD Overall
# of Datasets 10 10 12 4 20 16 36
Baseline Models
CLIP (Radford et al.|[2021) 42.8 9.1 53.0 51.8 37.1 387 37.8
BLIP2 (Li et al.|[2023) 27.0 42 33.9 47.0 253 251 25.2
SigLIP (Zhai et al.||2023) 40.3 8.4 31.6 59.5 323  38.0 34.8
OpenCLIP (Cherti et al.|[2023) 47.8 10.9 523 533 393 402 39.7
UnilR (BLIPg ) (Wei et al.|[2024) 42.1 15.0 60.1 62.2 447 404 42.8
UnilR (CLIPgr) (Wei et al.|[2024) 443 16.2 61.8 65.3 47.1 417 44.7
Magiclens (Zhang et al.|[2024b) 38.8 8.3 354 26.0 31.0 237 27.8
MLLM-based Baseline Models
E5-V (Jiang et al.|[2024) 21.8 4.9 11.5 19.0 149 115 133
VLM2Vec (Qwen2-VL-2B) (Jiang et al.|[2025) 59.0 494 65.4 73.4 66.0 52.6 60.1
VLM2Vec (Qwen2-VL-7B) (Jiang et al.|[2025) 62.6 57.8 69.9 81.7 722 578 65.8
VLM2Vec-V2 (Qwen2-VL-7B) (Jiang et al.|[2025) 62.9 56.3 69.5 77.3 68.8 599 64.9
MMRet-7B (Zhou et al.|2025b) 56.0 57.4 69.9 83.6 68.0 59.1 64.1
CAFe-V1-7B (Yu et al.||2025a) 65.2 65.6 70.0 91.2 758 624 69.8
CAFe-V2-7B (Yu et al.|[2025a) 63.6 61.7 69.1 87.6 72.8  61.1 67.6
mmES5-11B (Chen et al.|[2025a) 67.6 62.8 70.9 89.7 723 66.7 69.8
LLaVE-2B (Lan et al.|[2025) 62.1 60.2 65.2 84.9 694 598 65.2
LLaVE-7B (Lan et al.|2025) 65.7 65.4 70.9 91.9 750 644 70.3
UniME-4B (Gu et al.|2025b) 54.8 55.9 64.5 81.8 682 527 64.2
UniME-7B (Gu et al.|2025b) 66.8 66.6 70.6 90.9 746 658 70.7
Ours
UME-R1-2B 64.8 62.8 67.6 77.2 71.5  60.4 66.6
UME-R1-7B 67.1 69.2 71.9 84.9 76.1 65.1 71.3
Oracle
UME-RI1-2B 67.6 67.5 71.2 80.1 753  63.8 70.2
UME-RI-7B 69.1 73.2 74.8 874 792 679 74.2
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G COMPARATIVE EXAMPLES OF REASONING-DRIVEN GENERATIVE AND
DISCRIMINATIVE EMBEDDINGS

Figures [8] [0] [I0] and [TT] present several comparative examples of reasoning-driven generative and
discriminative embeddings. It can be observed that reasoning-driven generative embeddings are ca-
pable of producing effective reasoning and summaries, thereby facilitating the generation of higher-
quality embeddings. For example, as shown in Figure [§] UME-RI1 first engages in reasoning. The
intermediate thought process includes: “Wait, I think the key is that the food in question is the hot
dog ... so the name of the food not white is the hot dog.” As a result, the final summary directly
produces “hot dog”, yielding a higher-quality embedding and enabling correct retrieval results.

- ™
- Query:

Represent the given

image with the Target:

following question: mmmy  The food is a

What is the name of hot dog.

the food that is not

white?

UME-R1:

<image>Represent the given image with the following question: What is the name of
the food that is not white?<disc_emb>

Represent the above input text, images, videos, or any combination of the three as
embeddings. First output the thinking process in <think> </think> tags and then
summarize the entire input in a word or sentence. Finally, use the <gen_emb> tag to
represent the entire input.

<think>So, let's analyze the input. The question is asking for the food name that's not
white. Looking at the image, the food is on a white plate with a hot dog (let's check).
Wait, the plate is white, but the food—wait, no, the food is a hot dog with toppings,
but let's confirm. Wait, the image shows a hot dog on a bun, which is a common food
item. But wait, the question is "the food that is not white". Let's check the bread or
bun, which is white? Wait, the bun is probably white. Wait, no, the food's main body The food is a Q
might be... Wait, the food in question could be a hot dog. But the plate is white. Wait, == hot dog.
the question is asking for the food name that's not white. So identify the food item.
The food in the image is a hot dog (with toppings like mustard, ketchup), but the bun
is white, the meat is maybe red or brown...

Hmm. Alternatively, maybe the food is "sausage" but that's not. Wait, [ think the key
is that the food in question is the hot dog (as the food item, not the bun or the
sausage), so the name of the food not white is the hot dog. So the final summary is
the food that's not white, so "hot dog".</think><answer>hot dog<gen emb>

DUME:
<image>Represent the given image with the following question: What is the name of The food is a g
the food that is not white?<disc_emb> bread.

%

Figure 8: A comparison of reasoning-driven generative and discriminative embeddings is shown
(Case 1). Green highlights denote content that positively impacts retrieval performance. UME-
R1 demonstrates the results of reasoning-driven generative embeddings, while DUME is trained
using standard discriminative contrastive learning. In this example, UME-R1 produces “hot dog”
directly during both the reasoning and summarization steps, which helps generate a higher-quality
embedding.
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Query:

Find an image to

match the fashion

. Target:
image and style note: Rersaiiis

Is white and less
revealing and is white
and same length all
around bottom.

given image.

A

UME-R1:

<image>Find an image to match the fashion image and style note: Is white and less
revealing and is white and same length all around bottom. <disc_emb>

Represent the above input text, images, videos, or any combination of the three as
embeddings. First output the thinking process in <think> </think> tags and then
summarize the entire input in a word or sentence. Finally, use the <gen_emb> tag to
represent the entire input.

<think>Got it, let's analyze the input. The query is asking to find a fashion image that
matches two conditions: white and less revealing (so maybe more sleeveless or
shorter, or more fitting), and white and same length all around the bottom. Wait, but
the image provided is a black sleeveless dress with a high-low hem. Let's break down
the key elements. The main topic is fashion retrieval, specifically looking for a dress.
The important entities are "white" (color), "less revealing" (style), "sleeveless"
(fashion style), "same length all around bottom" (design element, maybe hem). The
context is fashion design. Now, the image shows a black sleeveless dress, possibly
more form-fitting or shorter. The relationship is between the image (black dress) and
the required style. So the essence is finding a white sleeveless dress without sleeves
but same length all around the bottom. But the summary needs to be a single word or
concise sentence. Maybe "fashion sleeveless white dress". Wait, let's check again.
The input is a retrieval query asking for a fashion image similar to the provided one
(black sleeveless dress) with two conditions: white (less revealing style), white and
same length bottom/around. So the key elements are fashion image with white
sleeveless dress, same length all around the bottom. So the summary could be "white
sleeveless dress" or "fashion white sleeveless dress". But need a concise sentence.
Wait, the user says "synthesize into a single word or a concise sentence". Let's see the
image is a black sleeveless dress, so the core is a sleeveless white dress. So the
summary is "sleeveless white dress".</think><answer>sleeveless white
dress<gen_emb>

DUME:
<image>Find an image to match the fashion image and style note: Is white and less
revealing and is white and same length all around bottom. <disc_emb>

-

9,

o
J

Figure 9: A comparison of reasoning-driven generative and discriminative embeddings is shown

(Case 2). In this example, UME-RI1 reasons and summarizes that it needs to

find a white sleeveless

dress with a skirt length matching the provided image, whereas DUME retrieves results based only
on the input image and instruction, which do not fully satisfy the requirements.
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Query: Recognize the category of the video content.

l

Target: doing nails

UME-R1:
<video>Recognize the category of the video content. <disc_emb>

First output the thinking process in <think> </think> tags and then summarize the entire input
in a word or sentence. Finally, use the <gen_emb> tag to represent the entire input.

<think>So, let's analyze the input. The video shows a nail tutorial where someone is painting a
pink design on a nail using a brush. The text "Passeuma base sobre o adesivo" is present,
likely part of the instructions. The key elements are nail art demonstration, using a base and
adhesives, hands applying polish/paint on a nail. The essence is a nail art process
demonstration. So the concise summary would be about nail art
tutorial.</think><answer>Nail art tutorial demonstration<gen_emb>

DUME:

<video>Recognize the category of the video content. <disc_emb>

.

Represent the above input text, images, videos, or any combination of the three as embeddings.

m=m) doing nails O

- fly tying

o

v

Figure 10: A comparison of reasoning-driven generative and discriminative embeddings is shown
(Case 3). In this example, UME-R1 summarizes the video as a “Nail art tutorial demonstration,”

providing crucial information for correct retrieval.

Query: Recognize the category of the video content.

l

Target: news anchoring

UME-R1:

<video>Recognize the category of the video content. <disc_emb>

First output the thinking process in <think> </think> tags and then summarize the entire input
in a word or sentence. Finally, use the <gen_emb> tag to represent the entire input.
<think>So, let's analyze the input. The image shows a news studio with two women (reporters)
sitting at a desk, a backdrop with "WUFT 5 NEWS" and "WUFTS5" branding, holding papers
and notebooks, so the key elements are a news studio, two news presenters, studio setup with
logos, so the main topic is a news broadcast scene. The key elements include the studio setting
(news anchor set), the people (two news anchors), the network (WUFT 5 News), and the
presentation materials. The essence is a news studio presentation. So the concise sentence
would be "News studio broadcast with two journalists."</think><answer>News studio
broadcast with two journalists (analysis: the image shows a studio with two women at desks,
wearing professional attire, holding documents, under the "WUFT 5 NEWS" and "WUFTS"
branding, indicating a news broadcast setting. Key elements include the news studio
environment, the presenters, their attire, and the media branding, so the essence is a news
studio broadcast featuring two journalists.)<gen emb>

DUME:
<video>Recognize the category of the video content. <disc_emb>

-

Represent the above input text, images, videos, or any combination of the three as embeddings.

news
anchoring

presenting
=) weather
forecast

o

o

/

Figure 11: A comparison of reasoning-driven generative and discriminative embeddings is shown
(Case 4). In this example, UME-R1 identifies key elements such as “WUFT 5 News” during rea-

soning, preventing an incorrect retrieval as a weather forecast.

24



Under review as a conference paper at ICLR 2026

H EXAMPLE OF REPEATED SAMPLING

Figures [12] [13] and [[4] illustrate the impact of different samplings on the reasoning and summa-
rization of reasoning-driven generative embeddings. Interestingly, we observe that for correctly
retrieved examples, the generated reasoning and summaries tend to be more effective. This sug-
gests that reasoning-driven generative embeddings offer a more interpretable approach, potentially
allowing the quality of embeddings to be assessed through the generated reasoning and summaries.

~

Query:
Represent the )
given image with ¥zzggi fo is on
the following —)

. . the left of the
question: Which image
side of the photo &

is the knife on?

Reasoning 1:

<think>So, let's analyze the input. The question is "Which side of the photo is the knife on?"
First, look at the image. In the left side of the photo, near the utensils, there's a knife. Wait, the
image shows utensils on a table, and the knife is on the left side? Wait, the image has various
utensils: there's a knife or a similar tool near the left edge. Let me check again. The left side of
the photo has utensils, probably the knife is on the left side? Wait, the utensils (fork, knife

maybe) are on the left table area. So the key is identifying which side of the photo the knife is. The knife is
The image shows utensils, with the knife on the left side of the table. Then, the question is =) on the left Q
asking which side of the photo the knife is, so the answer would be left side (or maybe right? of the image

Wait, no, wait. Wait, in the image, the utensils are arranged on the left and right. The knife
might be on the left side? Wait, no, let's check the image. The table has utensils: a fork, a knife
maybe, and the spoon. The knife is on the left side of the dining table area, as the utensils are
spread out. So the key element is the location of the knife's position. The question is about
identifying the side of the photo where the knife is. So synthesizing, the answer would be "left
side" or maybe "left" since the knife is on the left side of the photo's table surface. Wait, the
image has the utensils on the left, so the knife is on the left side.</think><answer>left
side<gen_emb>

Reasoning 2:

<think>So, let's analyze the input. The question is asking which side of the photo the knife is The napkin
on. First, look at the image: there's a knife maybe on the right side? Wait, let's check. The is to the

image shows a plate with food, a bowl, and a knife near the right edge. But the key is "which =~ m=— °
side". So the knife is on the right side of the photo. Now, the task is to synthesize into a single
word or concise sentence. The essence is identifying the knife's
position.</think><answer>right<gen emb>

right of the
plate.

Reasoning 3:

<think>So, let's analyze the input. The question is "Which side of the photo is the knife on?"
Wait, first, look at the image. Wait, the image shows a plate with food, a bowl of what might
be scrambled eggs or a dish, and there's a fork and knife. Wait, the knife is near the plate,
maybe on the left or right? Wait, the key is to find the knife's position. The image has a knife is to the

and fork on the right of the plate. So need to identify which side. Let's check the image: the — right of the 0
utensils are on the right side of the plate. Wait, the fork is on the left side of the plate, the knife plate.

is on the right, next to the bowl of food. So the answer would be right, but the question is

"Which side of the photo is the knife on?" So the knife is on the right

side.</think><answer>right<gen emb>

The napkin

/

Figure 12: An example showing how repeated sampling leads to variations in model-generated
reasoning and summaries, resulting in different retrieval outcomes (Case 1). The green segments
indicate correct reasoning or summaries, while the red segments highlight incorrect ones. It can
be observed that in correctly retrieved examples, the summaries are more accurate. For instance,
when the summary is “left side,” the retrieval results include “left of,” whereas when the summary
is “right,” the retrieval results include “right of.”
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Query:
'y Find an image to
match the fashion

i Target:
§ image and style R N
N note: Is a black — epresent the
dress with a shade given image.
of grey and is
\WE similar in black.

Reasoning 1:
<think>Got it, let's analyze the input. The query is about finding a black dress with a shade of
grey (similar to a black) that's like the one provided. Let's break down the key elements:

- Main topic: Fashion dress (specifically a dress, which is a clothing item)

- Important entities: Black dress, shade of grey, similar in black

- Relationship: The query is asking for a dress that matches a style (like the original dress) but

with a specific color scheme (black and grey, similar to the original).

- Context: It's a retrieval query for an image of a dress with these color and style attributes. —
- Notable features: The original image shows a yellow dress, so the target dress should be a

black dress (or similar color family) with a grey-like shade, matching the style.

Now, synthesize this into a concise sentence or single word for retrieval. The essence is about
finding a dress similar to the one provided but in black and grey colors.</think><answer>A
black dress with grey shade similar to the one shown.<gen_emb>

Reasoning 2:

<think>Got it, let's analyze the input. The user is asking to find a black dress (shade of grey)

similar in color to a given one? Wait, first, the input mentions "a black dress with a shade of 4
grey and is similar in black." Wait, maybe a black dress is being asked for, and the context

involves finding a similar black dress? Wait, let's check the key elements. Main topic: fashion

(clothing, dresses) retrieval. Important entities: dress (style note), black, grey shade, similar in °
black. Context is about finding a similar black-dress. Notable features: the request for a black i

dress with a grey-like tone (shading) and similar black. Now, the task is to summarize into a

concise idea for retrieval. The core is identifying a black dress similar in color, so the summary

would capture that they're looking for a black (with grey tone) dress similar in

color.</think><answer>A query to find a black dress with a grey - toned shade identical in

color to a given black dress. Summary: Find a black dress similar in color to

another.<gen_emb>

Reasoning 3:

<think>Got it, let's analyze the input. The query is asking to find a black dress with a shade of

grey, similar to a given one. Wait, no—wait, the input says "is a black dress with a shade of =
grey and is similar in black." Wait, first, the main topic is a fashion item, specifically a dress.
Important entities: black dress, shade of grey (so a light or darker shade of grey), similar in

black (meaning the dress has a greyish shade, maybe matching). Context is about matching a

specific dress (with those color attributes and style similarity). The process is to identify key —) °
elements: the object is a dress, its color (black, with grey shade), and the task is to find a similar

one (so same style, color-related). Then, synthesize into a concise sentence for retrieval. Wait,

the input is about retrieving a dress similar in color and style to a black dress with grey shade.

So key elements: dress, black, shade of grey, similar. Then, the summary should capture that.

Maybe "black dress with grey shade similar".</think><answer>A black dress with a greyish

Q]zl(ic (similar in black) for retrieval. <gen_emb> /

Figure 13: An example showing how repeated sampling leads to variations in model-generated rea-
soning and summaries, resulting in different retrieval outcomes (Case 2). In this example, correctly
retrieved cases are able to reason and summarize that the item needs to match the original style,
whereas in incorrectly retrieved cases, the reasoning and summarization only consider the color.
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Query: Recognize the category of the video content.

l

Target: plastering

Reasoning 1:

<think>So, let's analyze the input. The input is a description of a video clip with a toddler in

sandals holding a trowel (or similar tool) with a bucket, working near a wall. Key elements:

child (toddler), activity (using tools for wall work), setting (indoor, possibly construction or

repair), actions (holding trowel, moving near wall). The main topic is a child working with

tools for construction. To capture the essence, a concise phrase would be "toddler doing

construction work" or similar. Wait, the video shows a toddler using a tool near a wall, so the

key elements are the child, tool, and construction-related action. So a concise summary could

be "toddler constructing with tools" or "child doing construction work". But need a single )
word or concise sentence. Let's check: main topic is a child (infant/toddler) engaging in == plastering Q
construction or repair, using a tool near a wall....

So the final summary should capture the main action: a toddler using a tool for construction.

So "toddler constructing” or "child doing construction work". I think "toddler construction" is

a concise way, or "child working on wall". Wait, let's check the video: the toddler has a bucket

and a tool (trowel) near a wall. So the action is related to building or fixing a wall. So the best

summary is a sentence that captures the child's action. "Toddlers working on wall with tool"

but maybe too long. The question says "single word or concise sentence". So "toddler

construction" works, or "child building" but "toddler" is specific. So "toddler constructing"

might be good.</think><answer>Toddler constructing with a tool near a wall (Summary for

retrieval: "toddler constructing with tool" or similar, capturing the key elements of a toddler,

tool, and construction work)<gen_emb>

Reasoning 2:

<think>So, let's analyze the input. The input is a description of a video clip showing a child

playing with a broom in a room. Key elements: main topic is a child playing with a broom,

important entities are a young child, a broom, an indoor setting (with concrete wall, some moving
items on the floor), actions like sweeping or playing with the broom. Context is a domestic = hild e
environment, possibly home play. Notable features: the child's activity with the broom, the

setting. So the essence is about a child playing with a broom in a room.</think><answer>A

child playing with a broom indoors (essence: a child playing with a broom in a

room)<gen_emb>

Reasoning 3:

<think> So, let's analyze the input. The input says to recognize the category of the video

content. The video shows a child using a shovel to dig (or maybe play with sand/mud), with

another child and a construction worker in the background. The key elements are a child

engaged in digging with a shovel, another child watching, and an adult assisting. The context moving

is likely a playful or instructional activity, maybe in a casual setting (like a home or child °
construction site). So the main topic is a child playing with a shovel, and the context is a

simple activity with others around. The essence would be a child digging with a

shovel.</think><answer>A child using a shovel to dig at a location with other people.

<gen_emb>

/

Figure 14: An example showing how repeated sampling leads to variations in model-generated
reasoning and summaries, resulting in different retrieval outcomes (Case 3). In this example, only
Reasoning Path 1 correctly identifies that the video depicts a child building, leading to the correct
retrieval, while the other reasoning paths mainly focus on “playing.”
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I REWARD AND COMPLETION LENGTH VISUALIZATION

In this section, we present visualizations in Figures T3] and [I6] illustrating the evolution of reward
and completion length throughout training. We observe that for both the 2B and 7B models, the
lowest reward value increases as training progresses. However, unlike other tasks, our reward does
not exhibit a strictly increasing trend. This is because our RL dataset consists of data from multiple
modalities and sources, and follows the VLM2Vec-V2 strategy of using data from the same source
within each batch to avoid overly trivial negatives. Due to substantial differences in similarity and
difficulty across datasets, the rewards vary considerably between batches: rewards are relatively
high when the batch is easier, but lower when the batch is more challenging. Consequently, the
reward curve does not follow a strictly monotonic upward trajectory. In addition, we observe that
the completion length of the 2B model decreases as training progresses. This trend is consistent
with the findings of |Chen et al.| (2025c), [Chen et al|(2025b), and [Peng et al.| (2025)) on small-scale
MLLMs. A possible explanation is that the reasoning capacity of the 2B model is limited, and
excessively long reasoning may even impair its performance.
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Figure 15: Evolution of reward and generated completion length of UME-R1-2B during training.
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Figure 16: Evolution of reward and generated completion length of UME-R1-7B during training.
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