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We consider the problem of stable recovery of sparse signals of the form

F(x) =
d∑

j=1

ajδ(x− xj), xj ∈ R, aj ∈ C,

from their spectral measurements, known in a bandwidth Ω with absolute error not exceeding ε > 0.
We consider the case when at most p � d nodes {xj} of F form a cluster whose extent is smaller than

the Rayleigh limit 1
Ω , while the rest of the nodes is well separated. Provided that ε � SRF−2p+1, where

SRF = (ΩΔ)−1 and Δ is the minimal separation between the nodes, we show that the minimax error rate
for reconstruction of the cluster nodes is of order 1

Ω SRF2p−1 ε, while for recovering the corresponding

amplitudes {aj} the rate is of the order SRF2p−1 ε. Moreover, the corresponding minimax rates for the
recovery of the non-clustered nodes and amplitudes are ε

Ω and ε, respectively. These results suggest that
stable super-resolution is possible in much more general situations than previously thought. Our numerical
experiments show that the well-known matrix pencil method achieves the above accuracy bounds.

Keywords: signal reconstruction; spike-trains; Fourier transform; Prony systems; sparsity; super-
resolution.

1. Introduction

1.1 Super-resolution of sparse signals

The problem of mathematical super-resolution (SR) is to extract the fine details of a signal from band-
limited and noisy measurements of its Fourier transform [41]. It is an inverse problem of great theoretical
and practical interest.

The specifics of SR highly depend on the type of prior information assumed about the signal
structure. Many theoretical and practical studies assume signals of compact support, in which case the
SR problem is equivalent to analytic continuation (equivalently, extrapolation) of the Fourier transform.
However, it can be shown that the spectrum of a compactly supported function can be extrapolated from
samples of accuracy ε by a factor that scales at most logarithmically with the signal-to-noise ratio 1

ε
, see

e.g. [9, 18, 34, 41] and the references therein. On the other hand, in recent years, considerable progress
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516 D. BATENKOV ET AL.

has been made in studying SR for sparse signals, which are frequently modeled as idealized spike-trains

F(x) =
d∑

j=1

ajδ(x− xj), xj ∈ R, (1.1)

where δ is the ubiquitous Dirac’s δ-distribution. This particular type of signals is widely used in the
literature, as it is believed to capture the essential difficulty of SR with sparse priors, see e.g. [21, 26].

Let F (F) denote the Fourier transform of F:

F (F)(s) =
∫ ∞

−∞
F(x)e−2π isxdx. (1.2)

Further, suppose that the spectral data are given as a function Φ satisfying, for some ε > 0 and Ω > 0,

|Φ(s)−F (F)(s)| � ε, s ∈ [−Ω , Ω]. (1.3)

The sparse SR problem reads as follows: given Φ as above, estimate the unknown parameters of F,
namely the amplitudes {aj} and the nodes {xj}.

If ε = 0, the problem can be solved exactly by a variety of parametric methods (Prony’s method etc.,
see e.g. [51. 54] and Subsection 1.2 below). For ε > 0, if f is any reconstruction algorithm receiving
Φ as an input and producing an estimate F′ = f (Φ) of the signal that satisfies (1.3), then, under an
appropriate definition of the distance ‖F−F′‖, it is of great interest to have a good estimate of the noise
amplification factor (or the problem condition number) K such that

‖F − F′‖ ≈ K ε. (1.4)

1.2 Rayleigh limit and minimal separation

It has been well established that the difficulty of sparse SR is directly related to the minimal separation
Δ = min1�i<j�d |xi − xj| or, more precisely, to the relationship between Δ and Ω .

Without any a priori information, the best attainable resolution from spectral data of bandwidth Ω

is of the order 1
Ω

, which is also known as the Rayleigh limit. Both classical methods of non-parametric
spectral estimation [54], as well as modern convex optimization-based methods, solve the problem under
some sort of a separation condition of the form Δ � c

Ω
[5, 17, 19–21, 27, 28, 35, 53, 55], and moreover,

these methods are generally considered to be stable.
On the other hand, the case Δ � 1

Ω
(and arbitrary signed/complex amplitudes {aj}) is much more

difficult (Fig. 1).
The sparse SR problem has appeared already in the work by R. Prony [51], where he devised

an algebraic scheme to recover the parameters {xj, aj} from 2d equispaced measurements of F (F),
assuming F is given by (1.1), and for arbitrary Δ > 0 and |aj| > 0 (see Proposition A.2 below).
Since then, Prony’s method and its various extensions and generalizations have been used extensively
in applied and pure mathematics and engineering ([4, 48–50, 54, 57] and the references therein). While
these methods provide exact recovery for ε = 0, the question of their stability (the magnitude of K in
(1.4)) becomes of essential interest. For instance, if it so happens that an estimate F′ =∑d

j=1 a′jδ(x−x′j)
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 517

Fig. 1. The Rayleigh limit. For a signal F(x) = ∑
j ajδ(x − xj), its low resolution version is given by FLow(x) =

F−1 (F (F) · χ[−Ω ,Ω]
) �∑

j ajsinc(Ω(x − xj)). FLow(x) will have peaks of width ≈ 1
Ω

, and therefore it will be increasingly

difficult to recover signals for which the minimal separation between the {xj}′s is much smaller than 1
Ω .

satisfies1 min1�j�d |x′j − xj| � Δ, then such F′ may be of little practical use in many applications
(because the inner structure of the sparse signal will be determined incorrectly).

The first work which examined the stability of SR in the sub-Rayleigh regime was by D. Donoho
[26]. The signal F was assumed to have an infinite number of spikes {xj}, constrained to a grid of
step size Δ, with less than one spike per unit interval on average, but whose local complexity was
constrained to have no more than d spikes per any interval of length d (such d is called the Rayleigh
index). It was shown that the worst-case 	2 error of such F (i.e. the 	2 norm of the coefficient sequence
of the difference) from continuous measurements with a band-limit Ω and perturbation of size ε (in L2
sense) scales like SRFαε, where SRF = 1

ΩΔ
> 1 is the so-called super-resolution factor, and α satisfies

2d − 1 � α � 2d + 1. In [24], the authors considered the case of d-sparse signals supported on a grid
and showed that the correct exponent should be α = 2d − 1 in this case. In another recent work [39],
the same scaling was shown to hold in the case of d-sparse signals and discrete Fourier measurements.

In the papers mentioned above, the error rate SRF2d−1ε is minimax, meaning that on one hand, it
is attained by a certain algorithm for all signals of interest, and on the other hand, there exist worst-
case examples for which no algorithm can achieve an essentially smaller error. It turns out that these
worst-case signals all have the structure of a cluster, where all the d nodes {xj} appear consecutively, i.e.
xj = x1 + (j − 1)Δ, j = 1, . . . , d. A natural question which arises is if it is a priori known that only a
subset of the d spikes can become clustered, can we have better reconstruction accuracy? In this paper,
we shall provide a positive answer to this question.

1.3 Main contributions

In this paper, we consider the case where the nodes {xj} can take arbitrary real values (the so-called
off-grid setting), while the amplitudes {aj} can be arbitrary complex scalars. We further assume that

exactly p nodes, xκ , . . . , xκ+p−1, form a small cluster of extent h � 1
Ω

and are approximately uniformly
distributed inside the cluster, while the rest of the nodes are well separated from the cluster and from
each other (see Definition 2.5 below). The approximate uniformity is expressed by the assumption that
the minimal separation between any two cluster nodes is bounded from below by Δ = τh for some fixed
0 < τ � 1. Under these p-clustered assumptions, we show in Theorem 2.8 that for small enough ε – and,
in particular, for ε � (ΩΔ)2p−1, the worst-case error rates of a minimax reconstruction algorithm (see

1 We use the symbols �,� and� to denote order equivalence, up to constants: A(t) � B(t) (or B(t) � A(t)), if and only if there
exists a positive constant c (depending on the specified parameters) such that A(t) � cB(t) for all specified values of t. A(t) � B(t)
if A(t) � B(t) and also B(t) � A(t).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/2/515/5820889 by W
ix Library user on 05 M

arch 2025



518 D. BATENKOV ET AL.

Definition 2.2 below), receiving Φ satisfying (1.3) as an input, and returning an estimate x′j = x′j(Φ),
a′j = a′j(Φ), satisfy

1. Non-cluster nodes:

max
j/∈{κ ,...,κ+p−1} |xj − x′j| �

ε

Ω
,

max
j/∈{κ ,...,κ+p−1} |aj − a′j| � ε.

2. Cluster nodes:

max
j∈{κ ,...,κ+p−1} |xj − x′j| �

ε

Ω
(ΩΔ)−2p+2 ,

max
j∈{κ ,...,κ+p−1} |aj − a′j| � ε (ΩΔ)−2p+1 .

The constants appearing in our bounds depend on p, d, a priori bounds on the magnitudes |aj|, and
additional geometric parameters, but neither on Δ nor on Ω .

Our results indicate, in particular, that the non-clustered nodes {xj}j/∈{κ ,...,κ+p−1} can be recovered
with much better accuracy than the cluster nodes. Let the SR factor be defined, as before, by SRF =
(ΩΔ)−1, then the condition number of the cluster nodes scales like SRF2p−1 in the SR regime SRF 	 1,
while the condition number of the non-cluster nodes does not depend on the SRF at all.

Our approach is to reduce the continuous measurements problem to a certain ‘Prony-type’ system
of 2d nonlinear equations, given by equispaced measurements of Φ(s) with a carefully chosen spacing
λ ≈ Ω , and analyze the sensitivity of this system to perturbations. The proofs involve techniques from
quantitative singularity theory and numerical analysis. Some of the tools, in particular the ‘decimation-
and-blowup’ technique, were previously developed in [1, 2, 6–8, 11–13]. The single-cluster case p = d
has been first analyzed in [7], while the lower bound (in a slightly less general formulation) has been
essentially shown in [1]. One of the main technical results, Lemma 5.7, has been first proven in [8].

Our numerical experiments in Section 3 show that the above bounds are attained by matrix pencil
(MP), a well-known, high-resolution algorithm [36, 37].

1.4 Related work and discussion

Our main results generalize several previously available bounds for both on-grid and off-grid SR [7, 24,
39], replacing the overall sparsity d with the ‘local’ sparsity p.2 Compared with previous works, we also
have an explicit control of the perturbation ε for which the stability bounds hold ε � C · (ΩΔ)2p−1.
So, given F satisfying the clustering assumptions and Ω , we can choose ε = c (ΩΔ)2p−1 such that F
can be accurately resolved and c does not depend on Ω , Δ. But this also means that given ε > 0, we
can choose Δ0 and Ω0 such that

(
Ω0Δ0

)2p−1 � ε
c , and for any F satisfying the clustering assumptions

with Δ = Δ0 and Ω = Ω0, the SR problem can be accurately solved. Therefore, fixing ε, our results

show that accurate recovery is possible for all SRF values up to
(

1
ε

) 1
2p−1

(but possibly also for higher

2 Our clustering model is distinct from Donoho’s model of sparse clumps on a grid [26], and so the two results cannot be
compared directly.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/2/515/5820889 by W
ix Library user on 05 M

arch 2025



SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 519

values of SRF). On the other hand, a similar argument using the lower bounds for the minimax error
shows that with perturbation of magnitude ε, no algorithm can resolve signals having a cluster of size

p and separation Δε � 1
Ω

ε
1

2p−1 , giving an upper bound for the attainable SRF values exactly matching
the lower bound above. To summarize, we obtain the best possible scaling of the attainable resolution
with clustered sparsity p and absolute perturbation ε:

SRF � 2p−1

√
1

ε
. (1.5)

This Hölder-type scaling is much more favorable compared with SR by analytic continuation under
the prior of compact signal support, where the bandwidth extrapolation factor scales only as a fractional
power of log 1

ε
, see e.g. [9] and the references therein. Also, note that the sparse SR problem enjoys

linear stability in ε (1.4), whereas analytic continuation exhibits stability of the form Error ≈ εγ , where
γ < 1 [9, 18].

Stable SR in the on-grid setting of [24, 26, 39] is closely related to the smallest singular value of
a certain class of Fourier-type matrices. Using the decimation technique (see also [22, 23]), in a recent
paper [8], we have derived novel estimates3 for this quantity under the partial clustering setting (compare
with [3, 15, 29, 38, 45]), and using these results, we have shown in the same paper that the asymptotic
scaling of the condition number for on-grid SR in this regime is SRF2p−1, matching the off-grid setting
of the present paper.

The question of providing rigorous performance guarantees for high-resolution algorithms such as
MP, MUSIC, ESPRIT and others, in the SR regime SRF > 1, is of current interest. In two very recent
works, [39, 40], the authors derive stability estimates for MUSIC and ESPRIT algorithms under similar
clustering assumptions, finite sampling and white Gaussian perturbation model. Their results suggest
that the corresponding noise amplification factors K for the nodes are of the order SRF2p−2 with
high probability. During the review of the present paper, the authors of [40] established near-optimality
of ESPRIT in the bounded noise model. In particular, they showed that ESPRIT is optimal up to a
factor of 1/Ω , i.e. |xj − x̃j| � (ΩΔ)−2p−2ε with discrete Fourier measurements, however, requiring

ε � (ΩΔ)4p−3/Ω . We also mention [16, 32], where the connection between perturbation of (square)
MP eigenvalues and the a priori distribution of these eigenvalues was established via potential theory.
It will be interesting to investigate the possibility to applying these methods to the analysis of MP in the
clustered setting.

Turning to other techniques, the special case of a single cluster can be solved with optimal accuracy
by polynomial homotopy methods, as described in [6]; however, in order to generalize this algorithm to
configurations with non-cluster nodes, we need to know the optimal decimation parameter λ. Nonlinear
least squares and related methods (e.g. Variable Projections [33, 47]) apparently provide an optimal
recovery rate; however, they generally require very accurate initialization. We hope that our methods
may help in analyzing these techniques as well and plan to pursue this line of research in the future.
For the case of positive point sources, stability rate SRF2p has been established for convex optimization
techniques in [46], see also a related preprint [25].

3 Estimates for the smallest singular value were independently obtained in [39] giving same asymptotic order but better absolute
constants. In [10], we have obtained optimal scalings of all the singular values by different techniques.
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520 D. BATENKOV ET AL.

1.5 Organization of the paper

In Section 2, we provide the necessary definitions and formulate the main results. In Section 3, we
present several numerical experiments confirming the optimality of the MP algorithm. The proof of
Theorem 2.6 (upper bound) is presented in Section 5. The proof of Theorem 2.7 (lower bound) is given
in Section 6.

2. Minimax bounds for clustered SR

2.1 Notation and preliminaries

We shall denote by Pd the parameter space of signals F with complex amplitudes and real, pairwise,
distinct and ordered nodes,

Pd =
{
(a, x) : a = (a1, . . . , ad) ∈ C

d, x = (x1, . . . , xd) ∈ R
d, x1 < x2 < . . . < xd

}
,

and identify signals F with their parameters (a, x) ∈ Pd. In particular, this induces a structure of a linear
space on Pd. Throughout this text, we will always use the maximum norm ‖ · ‖ = ‖ · ‖∞ on C

d, R
d

and Pd, where for F = (a, x) ∈ Pd

‖F‖ = max
(‖a‖∞, ‖x‖∞

)
.

We shall denote the orthogonal coordinate projections of a signal F to the j-th node and j-th
amplitude, respectively, by Px,j : Pd → R and Pa,j : Pd → C. We shall also denote the j-th component
of a vector v by vj.

Let L∞[−Ω , Ω] denote the space of bounded complex-valued functions defined on [−Ω , Ω] with
the norm ‖e‖ = max|s|�Ω |e(s)|.
Definition 2.1 Given Ω > 0 and U ⊆ Pd, we denote by F(Ω , U) the class of all admissible
reconstruction algorithms, i.e.

F(Ω , U) =
{
f : L∞ [−Ω , Ω] → U

}
.

Definition 2.2 Let U ⊂ Pd. We consider the minimax error rate in estimating a signal F ∈ U 4 from
Ω-bandlimited data as in (1.3), with measurement error ε > 0:

E (ε, U, Ω) = inf
f∈F(Ω ,U)

sup
F∈U

sup
‖e‖�ε

‖F − f (F (F)+ e) ‖.

4 To ensure the minimax error rate is finite, depending on the noise level, we impose constraints on U ⊂ Pd , namely lower
and upper bounds on the magnitude of the amplitudes and the separation of the nodes. We will specify these constraints exactly
in the statements of the accuracy bounds.
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 521

Similarly, the minimax errors of estimating the individual nodes, respectively, the amplitudes of
F ∈ U are defined by

E x,j(ε, U, Ω) = inf
f∈F(Ω ,U)

sup
F∈U

sup
‖e‖�ε

∣∣∣Px,j(F)− Px,j (f (F (F)+ e))
∣∣∣ ,

E a,j(ε, U, Ω) = inf
f∈F(Ω ,U)

sup
F∈U

sup
‖e‖�ε

∣∣∣Pa,j(F)− Pa,j (f(F (F)+ e))
∣∣∣ .

Let a signal F ∈ Pd be fixed. We define the ε-error set Eε,Ω(F) as the following pre-image.

Definition 2.3 The error set Eε,Ω(F) ⊂ Pd is the set consisting of all the signals F′ ∈ Pd with

∣∣F (F′)(s)−F (F)(s)
∣∣ � ε, s ∈ [−Ω , Ω].

We will denote by Ex,j
ε (F) = Ex,j

ε,Ω(F) and Ea,j
ε (F) = Ea,j

ε,Ω(F) the projections of the error set onto
the individual nodes and the amplitudes components, respectively:

Ex,j
ε,Ω(F) =

{
x′j ∈ R :

(
a′, x′

) ∈ Eε,Ω(F)
}
≡ Px,jEε,Ω(F),

Ea,j
ε,Ω(F) =

{
a′j ∈ C :

(
a′, x′

) ∈ Eε,Ω(F)
}
≡ Pa,jEε,Ω(F).

(2.1)

For any subset V of a normed vector space with norm ‖ · ‖, the diameter of V is

diam(V) = sup
v′,v′′∈V

‖v′ − v′′‖.

The minimax errors are directly linked to the diameter of the corresponding projections of the error set
by the following easy computation, which is standard in the theory of optimal recovery [42–44] (see
also [24, 26, 39]).

Proposition 2.4 For U ⊂ Pd, Ω > 0, 1 � j � d and ε > 0 we have

1

2
sup

F: E 1
2 ε,Ω

(F)⊆U
diam

(
E 1

2 ε,Ω(F)
)
� E (ε, U, Ω) � sup

F∈U
diam

(
E2ε,Ω(F)) (2.2)

1

2
sup

F: E 1
2 ε,Ω

(F)⊆U
diam

(
Ex,j

1
2 ε,Ω

(F)
)
� E x,j(ε, U, Ω) � sup

F∈U
diam

(
Ex,j

2ε,Ω(F)) (2.3)

1

2
sup

F: E 1
2 ε,Ω

(F)⊆U
diam

(
Ea,j

1
2 ε,Ω

(F)
)
� E a,j(ε, U, Ω) � sup

F∈U
diam

(
Ea,j

2ε,Ω(F)) (2.4)

Proof. We shall prove (2.2), the proof in the other cases is identical. We omit Ω from the following to
reduce clutter.
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522 D. BATENKOV ET AL.

Upper bound Let ε > 0. For any Φ ∈ L∞[−Ω , Ω], let

B (ε, Φ) = {F ∈ U : ‖F (F)−Φ‖ � ε} .

Consider an oracle estimator fε ∈ F(Ω , U) defined as

fε(Φ) =
{

any element ofB(ε, Φ) if B(ε, Φ) �= ∅,

F0 else,

where F0 is an arbitrary element of U. Now let F ∈ U and Φ = F (F) + e where
‖e‖ � ε. Then, by definition F ∈ B(ε, Φ). Put F′ = fε(Φ), thus

∥∥F (F′)−Φ
∥∥ � ε,

and therefore

‖F (F′)−F (F)‖ � ‖F (F′)−Φ‖ + ‖Φ −F (F)‖ = 2ε.

We conclude that F′ ∈ E2ε(F) and consequently E (ε, U, Ω) � ‖F − F′‖ �
diam

(
E2ε(F)

)
.

Lower bound For the lower bound, let F ∈ U such that E 1
2 ε

(F) ⊆ U. Let ξ > 0 small enough be fixed.

There exist F1, F2 ∈ E 1
2 ε

(F) with ‖F1 − F2‖ = diam
(
E 1

2 ε
(F)
) − ξ . Let Φ = F (F),

and let F′ = f(Φ) be the output of a certain estimator f corresponding to the input Φ.
We have

∥∥Φ − F (F1)
∥∥,
∥∥Φ − F (F2)

∥∥ � ε. Consequently, there exist perturbation
functions e1, e2 satisfying ‖e1‖, ‖e2‖ � ε, while also

F (F′) = Φ = F (F1)+ e1 = F (F2)+ e2.

By definition of the minimax error, we therefore have

E (ε, U, Ω) = inf
f

sup
‖e‖<ε,F∈U

‖F − f(F (F)+ e)‖

� inf
f

max
(
‖F1 − F′‖, ‖F2 − F′‖

)
� inf

f

1

2

{
‖F1 − F′‖ + ‖F2 − F′‖

}
� 1

2
‖F1 − F2‖

= 1

2
diam

(
E 1

2 ε
(F)
)
− ξ

2
.

The lower bound follows by letting ξ → 0. �
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 523

Fig. 2. A sketch of a uniform (p, h, T , τ , η)-clustered configuration x = (x1, . . . , xd) as in Definition 2.5.

2.2 Uniform estimates of minimax error for clustered configurations

The main goal of this paper is to estimate E (ε, U, Ω) (in fact its component-wise analogues
E x,j (ε, U, Ω) and E a,j (ε, U, Ω)) where U ⊂ Pd are certain compact subsets of Pd containing signals
with p � d nodes forming a small, approximately uniform, cluster. In order to have explicit bounds, we
describe such sets U by additional parameters T , h, τ , η, m, M as follows.

Definition 2.5 (Uniform cluster configuration, Fig. 2). Given 0 < τ , η � 1 and 0 < h � T , a node
vector x = (x1, . . . , xd) ∈ R

d is said to form a (p, h, T , τ , η)-clustered configuration, if there exists a
subset of p nodes xc = {xκ , . . . , xκ+p−1} ⊂ x, p � 2, which satisfies the following conditions:

1. for each xj, xk ∈ xc, j �= k,

τh � |xj − xk| � h;

2. for x	 ∈ x \ xc and xj ∈ x, 	 �= j,

ηT � |x	 − xj| � T .

Our first main result provides an upper bound on diam
(
Eε,Ω(F)

)
, and its coordinate projections, for

any signal F forming a clustered configuration as above.

Theorem 2.6 (Upper bound) Let F = (a, x) ∈ Pd, such that x forms a (p, h, T , τ , η)-clustered
configuration and 0 < m � ‖a‖. Then, there exist positive constants C1, . . . , C5, depending only on
d, p, m, such that for each C4

ηT � Ω � C5
h and ε � C3(Ωτh)2p−1, it holds that:

diam(Ex,j
ε,Ω(F)) � C1

Ω
ε ×

{
(Ωτh)−2p+2, xj ∈ xc,

1, xj ∈ x\xc;

diam(Ea,j
ε,Ω(F)) � C2ε ×

{
(Ωτh)−2p+1, xj ∈ xc,

1, xj ∈ x\xc.

Remark 2.1 Our main focus is to investigate the error rates of the SR problem as the cluster size
becomes small. Fixing the parameters p, d, m, the range of admissible Ω in Theorem 2.6, C4

ηT � Ω � C5
h ,

is non-empty for a sufficiently small cluster size h. Furthermore, we comment here that the constants
C4, C5 actually only depend on d.

The above estimates are order optimal, as our next main theorem shows. For simplicity and without
loss of generality, in the results below, we assume that the index κ is fixed.
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Theorem 2.7 (Lower bound) Let m � M, 2 � p � d, τ � 1
p−1 , η < 1

d , T > 0 be fixed. There exist
positive constants C′1 . . . , C′5, depending only on d, p, m, M, such that for every Ω , h satisfying h � C′4T
and Ωh � C′5 there exists F = (a, x) ∈ Pd, with x forming a (p, h, T , τ , η)-clustered configuration,
and with 0 < m � ‖a‖ � M < ∞, such that for certain indices j1, j2 ∈ {κ , . . . , κ + p− 1} and every
ε � C′3(Ωτh)2p−1, it holds that:

diam(Ex,j
ε,Ω(F)) �

C′1
Ω

ε ×
{

(Ωτh)−2p+2, ifj = j1,

1, ∀j /∈ {κ , . . . , κ + p− 1} ;

diam(Ea,j
ε,Ω(F)) � C′2ε ×

{
(Ωτh)−2p+1, ifj = j2,

1, ∀j /∈ {κ , . . . , κ + p− 1} .

Remark 2.2 The lower bounds for the quantities diam(Ex,j
ε,Ω(F)) were shown in (1) to hold for any

signal F with real amplitudes; however, at the expense of the implicit dependence of the constants on
the separation parameter τ . While bounding diam(Eε,Ω(F)) (and its projections) for all signals F is an
interesting question in its own right, in this paper, we use these to bound the minimax error rate, and
therefore, it is sufficient to show that there exist certain signals with large enough Eε,Ω(F). As it turns
out, it is possible to obtain a more accurate geometric description of these sets, which in turn can be used
for reducing reconstruction error if additional a priori information is available. Work in this direction
was started in (2) and we intend to provide further details of these developments in a future work.

Combining Theorems 2.6 and 2.7 with Proposition 2.4, we obtain optimal rates for the minimax
error E and its projections as follows.

Theorem 2.8 Let m < M, 2 � p � d, τ < 1
2(p−1)

, η < 1
2d , T > 0 be fixed. There exist constants

c1, c2, c3, depending only on d, p, m, M such that for all c1
ηT � Ω � c2

h and ε � c3(Ωτh)2p−1, the
minimax error rates for the set

U : = U(p, d, h, τ , η, T , m, M)

= {(a, x) ∈ Pd : 0 < m � ‖a‖ � M < ∞, x forms a(p, h, T , τ , η)-clustered configuration
}

,

satisfy the following:

1. For the non-cluster nodes:

∀j /∈ {κ , . . . , κ + p− 1} :

{
E x,j(ε, U, Ω) � ε

Ω
,

E a,j(ε, U, Ω) � ε.

2. For the cluster nodes:

max
j=κ ,...,κ+p−1

E x,j(ε, U, Ω) � ε

Ω
(Ωτh)−2p+2,

max
j=κ ,...,κ+p−1

E a,j(ε, U, Ω) � ε(Ωτh)−2p+1.
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 525

The proportionality constants in the above statements depend only on d, p, m, M.

Proof. Let C3, C′3, C4, C′4, C5, C′5 be the constants from Theorems 2.6 and 2.7. Put c1 = C4 and
c2 = min

(
C5, C′5, C4C′4

)
. Let c1

ηT � Ω � c2
h , and ε � c3(Ωτh)2p−1, where c3 � min(C3, C′3) will

be determined below. It is immediately verified that Ω , h and ε as above satisfy the conditions of both
Theorems 2.6 and 2.7.

Upper bound Directly follows from the upper bounds in Theorem 2.6 and Proposition 2.4.

Lower bound Denote Uε =
{

F ∈ U : E 1
2 ε,Ω(F) ⊆ U

}
. To prove the lower bounds on E , it is sufficient

to show that there exists an F ∈ Uε �= ∅ such that the conclusions of Theorem 2.7 are
satisfied for this F.

It is not difficult to see that for any choice of the parameters as above, the set U
has a non-empty interior, and furthermore, that one can choose m′, M′ satisfying
m < m′ < M′ < M, and also T ′ = 0.99T , τ ′ = 2τ and η′ = 2η, such that

U′ = U(p, d, h, τ ′, η′, T ′, m′, M′) ⊂ U, ∂U′ ∩ ∂U = ∅.

By construction, there exist positive constants C̃1, C̃2, independent of Ω , h and τ , η, such
that

inf
u∈∂U,u′∈∂U′

∣∣∣Px,j(u)− Px,j(u
′)
∣∣∣ � C̃1 ×

{
τh, xj ∈ xc,

ηT , xj ∈ x \ xc;

inf
u∈∂U,u′∈∂U′

∣∣∣Pa,j(u)− Pa,j(u
′)
∣∣∣ � C̃2.

(2.5)

Now, we use the fact that ε < c3(Ωτh)2p−1. Applying Theorem 2.6 to an arbitrary signal
F′ ∈ U′ and using the conditions 1

Ω
� ηT

c1
and Ωτh � Ωh � c2, we obtain that

diam

(
Ex,j

1
2 ε

(F′)
)
�
{

C1c3
2 τh, xj ∈ xc,

C1c3
2Ω

(Ωτh)2p−1 � C1c3
2c1

c2p−1
2 ηT , xj ∈ x \ xc;

diam

(
Ea,j

1
2 ε

(F′)
)
�
{

C2c3
2 , xj ∈ xc,

C2c3
2 c2p−1

2 , xj ∈ x \ xc.

(2.6)

Now we set c3 = min(C3, C′3, C′′3) where

C′′3 = min(1, c1)×min(1, c−2p+1
2 )×min

(
2C̃1

C1
,

2C̃2

C2

)
.

Combining (2.5) and (2.6), we obtain that F′ ∈ Uε . Since F′ ∈ U′ was arbitrary, we
conclude that U′ ⊆ Uε . Since clearly U′ �= ∅, applying Proposition 2.4 and Theorem
2.7 finishes the proof. �
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3. Numerical optimality of MP algorithm

The main theoretical result of this paper, Theorem 2.8, establishes the best possible scalings for the SR
problem with clustered nodes. In this section, we provide some numerical evidence5 that a certain SR
algorithm, the MP method [36, 37], attains these performance bounds.

Our choice of MP is fairly arbitrary, as we believe that many high-resolution algorithms have similar
behavior in the regime SRF 	 1.

Throughout this section, we replace Ω by N, so that the spectral data is sampled with unit spacing.

3.1 The MP method

Algorithm 3.1 The Matrix Pencil algorithm

Input: Model order d
Input: Sequence {m̃k}, k = 0, 1, . . . , N − 1 where N > 2d, of the form (3.1)
Input: pencil parameter d + 1 � L � N − d
Output: Estimates for the nodes {xj} and amplitudes {aj} as in (3.1)

1. Compute the matrices A = H̃↑, B = H̃↓;

2. Compute the truncated Singular Value Decomposition (SVD) of A, B of order d:

A = U1Σ1VH
1 , B = U2Σ2VH

2 ,

where U1, U2, V1, V2 are L× d and Σ1, Σ2 are d × d ;

3. Generate the reduced pencil

A′ = UH
2 U1Σ1VH

1 V2, B′ = Σ2

where A′, B′ are d × d;

4. Compute the generalized eigenvalues z̃j of the reduced pencil (A′, B′), and put {x̃j} =
1

2π
{� z̃j}, j = 1, . . . , d;

5. Compute ãj by solving the linear least squares problem

ã = arg min
a∈Cd

‖m̃− Ṽa‖2,

where Ṽ = Ṽ(x̃) is the Vandermonde matrix Ṽ =
[
exp

(
2πıx̃jk

)]j=1,...,d

k=0,...,N−1
;

6. return the estimated x̃j and ãj.

5 The source code for reproducing the figures in this section is publicly available at https://github.com/batenkov-group/iai-
code.
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Algorithm 3.2 The worst-case perturbation signal

Input: Signal F = (a, x) ∈ Pd with a = a(2) and cluster nodes xc = (x1, . . . , xp)

Input: Noise level ε

Output: The perturbed signal Fε

1. Compute the cluster center μ = x1+xp
2 and put x̃c = xc − μ ;

2. Construct the moment vector of the centered cluster: g =
(∑p

j=1 ajx̃
k
j

)
k=0,1,...,2p−1

∈ R
2p ;

3. Construct the vector g′ to be equal to g except the last entry: g′k = gk for k = 0, 1, . . . , 2p− 2 and
g′2p−1 = g2p−1 + ε ;

4. Solve the Prony problem of order p with the data g′ (for ε small enough, a unique solution always
exists – see Proposition A.3 and (13)), obtaining a signal F′ = (a′, x′) ∈ Pp ;

5. Move the cluster nodes back and put

Fε(x) =
d∑

j=p+1

ajδ(x− xj)+
p∑

j=1

a′jδ(x− (x′j + μ));

return the signal Fε .

Let F = (a, x) ∈ Pd as in (1.1) with xj ∈
[
− 1

2 , 1
2

]
. Given the noisy Fourier measurements

m̃k = F (F)(−k)︸ ︷︷ ︸
=mk

+nk (3.1)

=
d∑

j=1

aj exp(2πıxjk)+ nk, k = 0, 1, . . . , N − 1, N > 2d, (3.2)

the MP method estimates F̃ = (ã, x̃
)

as follows. Consider the Hankel matrix

H =

⎡⎢⎢⎢⎣
m0 m1 . . . mN−L−1
m1 m2 . . . mN−L
...

. . .
. . .

...
mL mL+1 . . . . . . mN−1

⎤⎥⎥⎥⎦ ∈ C
(L+1)×(N−L), (3.3)

and further let H↑ = H[0 : L − 1, :] and H↓ = H[1 : L, :] be the L × (N − L) matrix obtained from H
by deleting the last (respectively, the first) row. Then, it turns out that that the numbers zj = exp(2πıxj)

are the d non-zero generalized eigenvalues (i.e. rank-reducing numbers) of the pencil H↓ − zH↑. If we
now construct the noisy matrices A = H̃↑, B = H̃↓ from the available data {m̃k}k=0,...,N−1, we could
apparently just solve the generalized eigenvalue problem with A, B. However, if L > d, then the pencil
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528 D. BATENKOV ET AL.

B − zA is close to being singular, and so an additional step of low-rank approximation is required. We
summarize the MP method in Algorithm 1, and the interested reader is referred to the widely available
literature on the subject (e.g. [36, 37, 45, 54], and the references therein) for further details. Note that
there exist numerous variants of MP, but, again, we believe the particular details to be immaterial for
our discussion.

3.2 Experimental setup

3.2.1 Clustered node configurations In our experiments presented below, we constructed (p, h, T , τ ,
η)-clustered configurations with

τ = 1

p− 1
, T = π , η = π − h

π(d − p+ 1)
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 529

Fig. 3. The error amplification factors. Algorithm 3 was executed 100 times with p = 2, d = 3, scheme S1 and varying h, N, ε.
For cluster nodes j = 1, 2, the node error amplification factors Kx,j (left panel) scale like SRF2p−2, while the amplitude error

amplification factors Ka,j (right panel) scale like SRF2p−1. For the non-cluster node j = 3, both error amplification factors are
bounded by a constant.

as follows:

1. The cluster nodes xc = (x1, . . . , xp) where xj = (j− 1) ·Δ and Δ = h
p−1 for j = 1, . . . , p.

2. The non-cluster nodes were chosen to be

xp+j = (p− 1)Δ+ j · π − (p− 1)Δ

d − p+ 1
, j = 1, . . . , d − p.

3.2.2 Choice of signal and perturbation Two different schemes were tested:

S1 A generic signal with complex amplitude vector a(1) = (
ı0, ı1, ı2, . . .

) ∈ C
d and a bounded

random perturbation sequence {nk}, uniformly distributed in [−ε, ε].

S2 Worst-case scenario in accordance with the construction of Section 6 (and in particular of
Theorem 6.2): a real amplitude vector a(2) = (1,−1, 1, . . . , ) ∈ R

d and the perturbed Fourier
coefficient sequence {m̃k} of the particular signal Fε = (a′, x′) ∈ Pd constructed according to
Algorithm 2:

m̃k = F (Fε)(−k) =
d∑

j=1

a′j exp(2πıx′jk), k = 0, . . . , N − 1.

3.3 Results

3.3.1 Error amplification factors In the first set of experiments, we measured the actual error
amplification factors Kx,j, Ka,j as in Algorithm 3 (recall also (1.4)), choosing ε, N, h randomly
from a pre-defined numerical range. The results are presented in Figs 3 and 4 for the testing
schemes S1 and S2, accordingly. The scalings of Theorem 2.8, in particular the dependence on SRF,
are confirmed.
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530 D. BATENKOV ET AL.

Fig. 4. Same setup as in Fig. 3, scheme S2. Comparing with Fig. 3, the variance of the factors corresponding to the cluster nodes
is much smaller than for the case of random perturbations, indicating that the construction is indeed worst-case.

Fig. 5. Phase transition for successful recovery, random bounded perturbations (scheme S1) with d = 4 and p = 2, 3. Each
experiment is represented by either a blue triangle (if the recovery was successful, i.e. Succj == True, ∀j = 1, . . . , d as returned

by Algorithm 3) or a red circle otherwise. The relationship εcrit ≈ SRF1−2p for the critical value of ε is confirmed.

3.3.2 Noise threshold for successful recovery In the second set of experiments, we investigated the
noise threshold ε � SRF1−2p for successful recovery, as predicted by the theory. We have performed
15000 random experiments with scheme S1 (the randomness was in the choice of h, N, ε and the noise
sequence {nk}) according to Algorithm 3, recording the success/failure result of each such experiment.
The results for d = 4 and p = 2, 3 are presented in Fig. 5, and the theoretical scaling above is confirmed
for the MP method.

Although not covered by our current theory, it is of interest to establish the recovery threshold for
every node separately. In Fig. 6, we can see that for a non-cluster node, the threshold is approximately
constant (i.e. does not depend on the SRF) – even though Theorem 2.6 requires ε � SRF1−2p.

4. Normalization

In the intermediate claims, instead of considering a general signal F = (a, x) ∈ Pd, we shall usually

assume that the node vector x = (x1, . . . , xd) is normalized to the interval
[
− 1

2 , 1
2

]
and centered around

the origin, i.e. xd = −x1. Let us briefly argue how to obtain the general result from this special case.
Let us define the scale and shift transformations on Pd.
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 531

Fig. 6. Phase transition for successful recovery of a non-cluster node. Comparing with Fig. 5, the threshold is approximately
constant εcrit ≈ const. Here, p = 2, d = 8, scheme S1, plotted is the successful recovery of the node at index j = 6.

Definition 4.1 For F =∑d
j=1 ajδ(x− xj) ∈ Pd and α ∈ R, we define SHα : Pd → Pd as follows:

SHα(F)(x) =
d∑

j=1

ajδ(x− (xj − α)).

Definition 4.2 For F =∑d
j=1 ajδ(x− xj) ∈ Pd and T > 0, we define SCT : Pd → Pd as follows:

SCT(F)(x) =
d∑

j=1

ajδ

(
x− xj

T

)
.

By the shift property of the Fourier transform, for any ε, Ω > 0, we have that

SHα(Eε,Ω(F)) = Eε,Ω(SHα(F)). (4.1)

By the scale property of the Fourier transform, we have that for any ε > 0,

SCT(Eε,Ω(F)) = Eε,ΩT(SCT(F)). (4.2)

Thus, we have the following.

Proposition 4.3 Let F = (a, x) ∈ Pd, α ∈ R and T > 0. Then , for any ε > 0 and 1 � j � d we have

diam(Ex,j
ε,Ω(F)) = Tdiam

(
Ex,j

ε,ΩT

(
SCT

(
SHα(F)

)))
(4.3)

diam(Ea,j
ε,Ω(F)) = diam

(
Ea,j

ε,ΩT

(
SCT

(
SHα(F)

)))
(4.4)
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5. Upper bounds

5.1 Overview of the proof

The proof of Theorem 2.6, presented in the next subsections and some of the appendices, is somewhat
technical. In order to help the reader, we provide an overview of the essential ideas and steps.

The main object of the study, the error set Eε,Ω(F) ⊂ Pd, is the pre-image of an (infinite
dimensional) ε-cube in the data space, under the Fourier transform mapping F (recall (1.2) and
Definition 2.3). However, it is not obvious how to obtain quantitative estimates on F−1 directly. Thus,
we replace F with certain finite-dimensional sampled versions of it, denoted FMλ : Pd → C

2d, where
the sampling parameter λ defines the rate at which 2d equispaced samples of F (F) are taken. The pre-
images of ε-cubes under FMλ define the corresponding λ-error sets Eε,(λ) ⊂ Pd, and in fact, the original
Eε,Ω(F) is contained in the intersection of all the Eε,(λ). Thus, it is sufficient to bound the diameter of a
single such Eε,(λ∗) (see remark in the next paragraph) with a carefully chosen λ∗ so that the result will
be as small as possible. Such quantitative estimates are obtained by careful analysis of the row-wise
norms of the Jacobian matrix of FM−1

λ∗ and applying the so-called quantitative inverse function theorem
(Theorem B.1). Using these estimates, the optimal λ∗ is shown to be on the order of Ω , from which the
upper bounds of Theorem 2.6 follow.

An additional technical complication arises from the fact that FM−1
λ defines a multivalued mapping,

and the full pre-image Eε,(λ) contains multiple copies of a certain ‘basic’ set A = Aε,λ. However, when
considering the intersection of all Eε,(λ)s, the non-zero shifts for certain different λs do not intersect,
and therefore, eventually only the diameter of the basic set A needs to be estimated.

Below is a brief description of the different intermediate results and the organization of the remainder
of Section 5.

1. In Subsection 5.2, we formally define the λ-decimated maps FMλ, the corresponding error sets
Eε,(λ), and provide quantitative estimates on the Jacobian of FM−1

λ in Proposition 5.3 (proved in
Appendix C). These bounds essentially depend on the ‘effective separation’ of each node in x
from its neighbors, after a blowup by a factor of λ.

2. In Subsection 5.3, we show that for a signal F = (a, x), there exists a certain range of admissible
λs, denoted by Λ(x), for which the effective separation (see previous item) between the nodes in
xc is of the order of Ωh, while for the rest of the nodes, it is bounded from below by a constant
independent of Ω , h. These estimates are proved in Proposition 5.8.

3. In Subsection 5.4, we study in detail the geometry of the error sets Eε,(λ) for λ ∈ Λ(x). First,

we consider (in Subsection 5.4.1) the local inverses FM−1
λ . For each λ ∈ Λ(x), we show that the

local inverse exists in a neighborhood V of radius R ≈ (Ωh)2p−1 around FMλ(F) and provide
estimates on the Lipschitz constants of FM−1

λ on V and the diameter of FM−1
λ (V). The main

bounds to that effect are proved in Proposition 5.14, using the previously established general
estimates from Proposition 5.3 and the quantitative inverse function theorem (Theorem B.1).

4. Next, denoting A = AR,λ = FM−1
λ (V), we show in Proposition 5.16 that the set Eε,(λ) is a union

of certain copies of A, where each such copy is obtained by shifting the nodes in A by an integer
multiple of λ−1 and/or by permuting them.

5. In Subsection 5.5, we complete the proof. At this point, we consider the entire set Λ(x). The main
technical step, Proposition 5.17 (proved in Appendix F), establishes that for a certain λ∗ ∈ Λ(x)

and all possible permutations π and shifts 	 ∈ Z\{0}, there exists a particular λ̄ = λ̄(π , 	) ∈ Λ(x)
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such that the intersection between π -permutation and 	-shift of AR,λ∗ and the entire error set
ER,(λ̄) is empty. From this fact, it immediately follows that the original error set Eε,Ω(F) with
ε = R is contained in AR,λ∗ (Proposition 5.18). The proof is finished by invoking the previously
established estimates on the diameter of AR,λ∗ and its projections.

Remark 5.1 We expect that the tools developed throughout the proof will also be useful to calculate
the minimal finite sampling rate required to achieve the minimax error rate stated in Theorem 2.6.

5.2 λ-decimation maps

For the purpose of the following analysis, we extend the space of signals Pd to include signals with
complex nodes and denote the extended space by P̄d,

P̄d =
{
(a, x) : a = (a1, . . . , ad) ∈ C

d, x = (x1, . . . , xd) ∈ C
d
}

.

We will be considering specific sets of exactly 2d samples of the Fourier transform, made at constant
rate λ as follows.

Definition 5.1 For λ > 0, we define the map FMλ : P̄d
∼= C

2d → C
2d by

FMλ((a, x)) = μ = (μ0, . . . , μ2d−1

)
, μk =

d∑
j=1

aje
2π ixjλk, k = 0, . . . , 2d − 1.

We call such map a λ-decimation map.
For λ > 0 and ε > 0, we define the corresponding error set Eε,(λ) as follows.

Definition 5.2 The error set Eε,(λ)(F) ⊂ Pd is the set consisting of all the signals F′ ∈ Pd with

∥∥FMλ(F
′)− FMλ(F)

∥∥ � ε.

Similarly, we denote by Ea,j
ε,(λ)(F), Ex,j

ε,(λ)(F) the projection of the error set Eε,(λ)(F) onto the
corresponding amplitudes and the nodes components (compare (2.1)).

Now, consider the given spectrum F (F)(s), s ∈ [−Ω , Ω]. Clearly for each λ � Ω
2d−1 , we have that

Eε,Ω(F) ⊆ Eε,(λ)(F) giving

Eε,Ω(F) ⊆
⋂

λ∈(0, Ω
2d−1 ]

Eε,(λ)(F). (5.1)

Hence, to prove the upper bounds in Theorem 2.6, we shall show that there exists a certain subset

S ⊆
(

0, Ω
2d−1

]
such that for each λ ∈ S, diam

(
Eε,(λ)(F)

)
can be effectively controlled.

In the next proposition, we derive a uniform bound on the norms of the inverse Jacobian of FMλ

near a signal with clustered nodes. The bounds explicitly depend on the distances between the so-called
mapped nodes zj(λ) = e2π iλxj .
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Proposition 5.3 (Uniform Jacobian bounds). Let F = (a, x) ∈ P̄d, a = (a1, . . . , ad), x = (x1, . . . , xd)

and for λ > 0 let z1 = e2π iλx1 , . . . , zd = e2π iλxd . Suppose that for each j = 1, . . . , d, we have 0 < m
2 �

|aj| and 1
2 � |zj| � 2 for some m > 0.

Further assume that for η̃, h̃ with 1 � η̃ � h̃, and xc = {xκ , . . . , xκ+p−1} ⊂ x, p � 2, the nodes
z1, . . . , zd satisfy:

1. For each xj, xk ∈ xc, j �= k, we have that |zj − zk| � h̃.

2. For each x	 ∈ x \ xc and xj ∈ x, 	 �= j, we have that |z	 − zj| � η̃.

Then the Jacobian matrix of FMλ at F, denoted by Jλ(F), is non-degenerate. Furthermore, write the

inverse Jacobian matrix J−1
λ (F) in the following block form J−1

λ (F) =
[

A
B̃

]
, where A, B̃ are d × 2d.

Then, the 	1 norms of the rows of the blocks A, B̃ are bounded as follows:

2d∑
k=1

|Aj,k| � K1(η̃, d, p), xj ∈ x \ xc, (5.2)

2d∑
k=1

|B̃j,k| � K2(m, η̃, d, p)
1

λ
, xj ∈ x \ xc, (5.3)

2d∑
k=1

|Aj,k| � K3(η̃, d, p)h̃−2p+1, xj ∈ xc, (5.4)

2d∑
k=1

|B̃j,k| � K4(m, η̃, d, p)
1

λ
h̃−2p+2, xj ∈ xc, (5.5)

where K1(·, . . . , ·), K2(·, . . . , ·), K3(·, .., , ·), K4(·, . . . , ·) are constants depending only on the parameters
inside the brackets.

The proof of Proposition 5.3 is given in Appendix C.

5.3 The existence of an admissible decimation

In this section, we shall prove the existence of a certain blowup factors λ, such that the mapped nodes
{e2π iλxj} (see Proposition 5.3 above) attain ‘good’ separation properties. This result will later be used
to show that for any such λ, the corresponding inverse λ-decimation map FM−1

λ will have the smallest
possible coordinatewise Lipschitz constants with respect to Ω , h (up to constants) (see Proposition 5.3).

Definition 5.4 For each x ∈ R and a > 0, consider the operation mod
(− a

2 , a
2

]
defined as

x mod
(
−a

2
,

a

2

]
= x− ka,

where k is the unique integer such that x− ka ∈ (− a
2 , a

2

]
. Using this notation, the principal value of the

complex argument function is defined as

Arg(reiθ ) = θ mod (−π , π ],
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 535

for each θ ∈ R and r > 0.

Definition 5.5 For α, β ∈ C \ {0}, we define the angular distance between α, β as

� (α, β) =
∣∣∣∣Arg

(
α

β

)∣∣∣∣ = ∣∣∣∣(Arg(α)− Arg(β)) mod (−π , π ]

∣∣∣∣,
where for z ∈ C \ {0}, Arg(z) ∈ (−π , π ] is the principal value of the argument of z.

Lemma 5.6 For |x| = |y| = 1, we have

2

π
� (x, y) � |x− y| � � (x, y). (5.6)

Proof. First,

|x− y| =
∣∣∣∣1− x

y

∣∣∣∣ = 2 sin

∣∣∣∣12Arg
x

y

∣∣∣∣ = 2 sin

∣∣∣∣ � (x, y)

2

∣∣∣∣ .
Then, use the fact that for any |θ | � π

2 we have

2

π
|θ | � sin |θ | � |θ |.

�
Let F = (a, x) ∈ Pd such that the node vector x = (x1, . . . , xd) forms a (p, h, T , τ , η)-clustered

configuration, with xc = {xκ , xκ+1, . . . , xκ+p−1}. According to Proposition 5.3, the norms of the rows

of the inverse Jacobian J−1
λ (F) essentially depend on the minimal distance between the mapped nodes

zj(λ) = e2π iλxj . After a blowup by a factor of λ � 1
2h , the pairwise angular distances � (·, ·) (and hence

the euclidean distances) between the mapped cluster nodes zκ , . . . , zκ+p−1 are now of order λh.
On the other hand, the non-cluster nodes are at distance larger than ηT 	 h. Therefore, after the

blowup by λ, the non-cluster nodes z1, . . . , zκ−1, zκ+p, . . . , zd may in principle be located anywhere on
the unit circle. For example, any of these mapped non-cluster nodes might coincide with, or be very
close to, a certain mapped cluster node, or yet another mapped non-cluster node.

While this situation might occur for some values of λ, we will now show that there exist certain
sets of λs for which this does not happen. We shall require the following key estimate concerning the
pairwise angular distance between any two mapped nodes.

Lemma 5.7 (A uniform blowup of two nodes). Let xj, xk ∈ R, xj �= xk, and let Δ = |xj − xk|. Consider

the following blowups zj = zj(λ) = e2π iλxj , zk = zk(λ) = e2π iλxk . Then for 0 � α � π and an interval
I = [a, b] ⊂ R, the set

Σα
j,k(I) =

{
λ ∈ I : �

(
zj(λ), zk(λ)

)
� α

}
(5.7)

is a union of N intervals I1, . . . , IN with �|I|Δ� � N � �|I|Δ� + 1, and

|Ij| �
α

π

1

Δ
, j = 1, . . . , N.
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Proof. For each λ ∈ I we have

� (zj(λ), zk(λ)) =
∣∣∣∣Arg

(
zj(λ)

zk(λ)

)∣∣∣∣ = ∣∣∣Arg(e2π iλΔ)

∣∣∣ . (5.8)

By equation (5.8) we have

{
λ ∈ I : �

(
zj(λ), zk(λ)

)
� α

}
={

λ ∈ I :
∣∣∣Arg(e2π iλΔ)

∣∣∣ � α
}
=

{λ ∈ I : |2πλΔ mod (−π , π ]| � α} =
{λ ∈ I : −α � (2πλΔ mod (−π , π ]) � α} ={

λ ∈ I : − α

2π

1

Δ
�
(

λ mod

(
− 1

2Δ
,

1

2Δ

])
� α

2π

1

Δ

}
.

The last set above can be written as I ∩ Sα where

Sα =
{
λ ∈ R : − α

2π

1

Δ
�
(

λ mod

(
− 1

2Δ
,

1

2Δ

])
� α

2π

1

Δ

}
. (5.9)

Define the interval Iα =
[
− α

2π
1
Δ

, α
2π

1
Δ

]
. Then the set Sα is a union of intervals of length α

π
1
Δ

as follows

Sα =
⋃
	∈Z

(
Iα + 	

Δ

)
=
⋃
	∈Z

{
λ+ 	

Δ
: λ ∈ Iα

}
.

The intersection of Sα with any interval I is then a union of �|I|Δ� � N � �|I|Δ� + 1 intervals of
length smaller or equal to α

π
1
Δ

. This concludes the proof of Lemma 5.7. �
Now, we state and prove the main result of this subsection.

Proposition 5.8 Let F = (a, x) ∈ Pd, x = (x1, . . . , xd) ⊂ [− 1
2 , 1

2 ], such that x forms a (p, h, 1, τ , η)-
clustered configuration with xc = {xκ , xκ+1, . . . , xκ+p−1}.

Let Ω � 2d−1
2 · 1

h . For each λ > 0 let z1(λ) = e2π iλx1 , . . . , zd(λ) = e2π iλxd .

Then, each interval I ⊂
[

1
2

Ω
2d−1 , Ω

2d−1

]
of length |I| = 1

η
contains a sub-interval I′ ⊂ I of length

|I′| � (2d2η)−1 such that for each λ ∈ I′:
1. For all x	 ∈ x \ xc and xj ∈ x, xj �= x	,

� (z	(λ), zj(λ)) � 1

d2 . (5.10)
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 537

2. For all xj, xk ∈ xc, xk �= xj,

� (zj(λ), zk(λ)) � 2πλτh � πτ

2d − 1
Ωh. (5.11)

Proof. Let us first prove that assertion (5.11) holds for any 1
2

Ω
2d−1 � λ � Ω

2d−1 .
Let xj, xk, j > k be two cluster nodes. The angular distance between the mapped cluster nodes

zj = zj(λ) = e2π iλxj , zk = zk(λ) = e2π iλxk , is

� (zj, zk) =
∣∣∣Arg(e2π iλ(xj−xk))

∣∣∣ .
By assumption Ωh � 2d−1

2 , then λ � 1
2h and then 0 � 2πλ(xj − xk) � 2πλh � π . With this, we

have

� (zj, zk) = 2πλ(xj − xk) � 2πλτh.

By assumption λ � 1
2

Ω
2d−1 . Then, � (zj, zk) � πτ

2d−1Ωh. This concludes the proof of assertion (5.11).
Using Lemma 5.7, we now prove that assertion (5.10) holds for any interval I = [a, b] ⊂ R of length

|I| = 1
η

. Let I be such an interval. For each 0 < α � π , consider the set

Σα(I) =
{
λ ∈ I : ∃x	 ∈ x \ xc s.t. min

1�j�d,j �=	

� (z	(λ), zj(λ)) � α

}
.

We then have

Σα(I) =
⋃

x	∈x\xc

⋃
xj �=x	

Σα
	,j(I),

where Σα
	,j are given by (5.7). By Lemma 5.7, each Σα

	,j(I) above is a union of at most �|I|η� + 1 = 2

intervals, the length of each interval is at most α
π

1
η

. Therefore, Σα(I) is a union of at most K = (d2)2 =
d(d − 1) intervals. Moreover, let ν denote the Lebesgue measure on R, then

ν(Σα(I)) � K
α

π

1

η
� d(d − 1)

α

π

1

η
� d2α

1

2η
. (5.12)

Put α′ = 1
d2 then by (5.12)

ν(Σα′(I)) � 1

2η
. (5.13)

Now, consider the complement set of Σα′(I) with respect to I,

(Σα′(I))c =
{
λ ∈ I : ∀x	 ∈ x \ xc, min

1�j�d,j �=	

� (z	(λ), zj(λ)) >
1

d2

}
.
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By (5.13)

ν
(
(Σα′(I))c) � |I| − 1

2η
= 1

η
− 1

2η
= 1

2η
. (5.14)

In addition, since Σα′(I) is a union of at most K = d(d − 1) intervals, then
(
Σα′(I)

)c is a union of at
most

L = K + 1 = d(d − 1)+ 1 � d2 (5.15)

intervals. Using (5.14) and (5.15), the average size of these intervals is bounded as follows:

ν
(
(Σα′(I))c

)
L

� 1

d2

1

2η
.

We therefore conclude that
(
Σα′(I)

)c contains an interval of length greater than or equal to 1
d2

1
2η

. This
proves assertion (5.10) of Proposition 5.8. �

5.4 Error sets of admissible decimation maps

Throughout this section, we fix a signal F = (a, x) ∈ Pd, a = (a1, . . . , ad), x = (x1, . . . , xd) ⊂[
− 1

2 , 1
2

]
, such that x forms a (p, h, 1, τ , η)-clustered configuration, with xc = {xκ , xκ+1, . . . , xκ+p−1}

and ‖a‖ � m > 0. We also fix Ω > 0 such that Ωh � 1
20d .

Proposition 5.8 demonstrated the existence of certain λ-decimation maps which achieve good
separation of the non-cluster nodes. We define the set Λ(x) to consist of all such admissible λs, as
follows.

Definition 5.9 (Admissible blowup factors). For each F = (a, x) ∈ Pd, x = (x1, . . . , xd), such that
x forms a (p, h, 1, τ , η)-clustered configuration and zj = zj(λ) = e2π iλxj , j = 1, . . . , d and Ω > 0,

we define the set of admissible blowup factors Λ(x) = ΛΩ ,d(x) as the set of all λ ∈
[

1
2

Ω
2d−1 , Ω

2d−1

]
satisfying:

1. For all 	 �= j such that x	 ∈ x \ xc and xj ∈ x,

� (z	(λ), zj(λ)) � 1

d2 . (5.16)

2. For all j �= k such that xj, xk ∈ xc

� (zj(λ), zk(λ)) � 2πλτh � π

2d − 1
Ωτh. (5.17)

5.4.1 The local geometry of admissible decimation maps The next result gives an explicit description
of a neighborhood around F where the map FMλ is injective (and, therefore, we can speak about a local
inverse).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/2/515/5820889 by W
ix Library user on 05 M

arch 2025



SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 539

Definition 5.10 For each α, β > 0 we denote by Hα,β(F) the closed polydisc

Hα,β(F) = {(a′, x′) ∈ P̄d ‖a′ − a‖ � α, ‖x′ − x‖ � β
}

,

and by Ho
α,β(F) the interior of Hα,β(F).

The following is proved in Appendix D.

Proposition 5.11 (One-to-one). For each λ ∈ Λ(x) the map FMλ is injective in the open polydisc
U = Ho

m, τh
2π

(F) ⊂ P̄d.

Next, we can estimate the Lipschitz constants of the inverse map FM−1
λ , using the previously

established general bounds in Proposition 5.3.

Proposition 5.12 Let H = H m
2 , τh

4π
(F) ⊂ U = Ho

m, τh
2π

(F). Then, for each F′ ∈ H:

1. The Jacobian matrix of FMλ at F′, denoted by Jλ(F
′), is non-degenerate.

2. Put J−1
λ (F′) =

[
A
B̃

]
, where A, B̃ are d× 2d. Then, the 	1 norms of the rows of the blocks A, B̃ are

bounded as follows:

2d∑
k=1

|Aj,k| � C̃, xj ∈ x \ xc, (5.18)

2d∑
k=1

|B̃j,k| � C̃
1

Ω
, xj ∈ x \ xc, (5.19)

2d∑
k=1

|Aj,k| � C̃(Ωτh)−2p+1, xj ∈ xc, (5.20)

2d∑
k=1

|B̃j,k| � C̃
1

Ω
(Ωτh)−2p+2, xj ∈ xc, (5.21)

where C̃ = C̃(m, d, p) is a constant depending only on d, m, p.

Proof. Let F′ = (a′, x′) ∈ H, a′ = (a′1, . . . , a′d), x′ = (x′1, . . . , x′d). Let z′j = z′j(λ) = e2π iλx′j , and let

zj = zj(λ) = e2π iλxj , j = 1, . . . , d.
By the integral mean value theorem, for each j = 1, . . . , d,

|z′j − zj| =
∣∣∣e2π iλx′j − e2π iλxj

∣∣∣ � λτh.

Let 	 �= j such that x	 ∈ x \ xc and xj ∈ x. Since λ ∈ Λ(x),

� (z	, zj) �
1

d2 .
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Then by (5.6)

|z	 − zj| �
2

πd2 .

We get that

|z′	 − z′j| � |z	 − zj| − |z′	 − z	| − |z′j − zj| � |z	 − zj| − 2λτh � 2

πd2 − 2λτh.

With Ωh � 1
20d and λ � Ω

2d−1 by assumption, we have that 2λτh � 1
3πd2 then

|z′	 − z′j| �
2

πd2 − 2λτh � 2

πd2 −
1

3πd2 � 1

2d2 .

We conclude that for each 	 �= j such that x	 ∈ x \ xc and xj ∈ x

|z′	 − z′j| �
1

2d2 . (5.22)

Let j �= k such that xj, xk ∈ xc. λ ∈ Λ(x) then

� (zj, zk) � 2πλτh.

Then by (5.6)

|zj − zk| � 4λτh.

With a similar argument as above, we get that

|z′j − z′k| � |zj − zk| − 2λτh � 2λτh.

Using λ ∈ Λ(x) ⇒ λ � Ω
2(2d−1)

, we conclude that for each j �= k such that xj, xk ∈ xc

|z′j − z′k| � 2λτh � 1

2d − 1
Ωτh. (5.23)

Now, using (5.22) and (5.23), we invoke Proposition 5.3 with h̃ = 1
2d−1Ωτh and η̃ = 1

2d2 , and as a
result, prove Proposition 5.12 with

C̃ = (2d − 1)2p−1 max

[
K1

(
1

2d2 , d, p

)
, K2

(
m,

1

2d2 , d, p

)
,

K3

(
1

2d2
, d, p

)
, K4

(
m,

1

2d2
, d, p

)]
.

�
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Definition 5.13 For v ∈ C
d and r > 0, we denote by Qr(v) the closed cube of radius r centered at v:

Qr(v) = Qr,d(v) =
{

u ∈ C
d : ‖u− v‖ � r

}
.

Proposition 5.14 Let U = Ho
m, τh

2π

(F) and H = H m
2 , τh

4π
(F) ⊂ U. Let λ ∈ Λ(x) and let μλ = FMλ(F),

then there exists a constant C̃3 = C̃3(m, d, p) such that for R = C̃3(Ωτh)2p−1,

FMλ(H) ⊇ QR(μλ).

Furthermore for Vλ = FMλ(U) let

FM−1
λ : Vλ → U

be the local inverse of FMλ, i.e. for all F′ ∈ U we have FM−1
λ (FMλ(F

′)) = F′. For each 1 � j � d, let
Pa,j, Px,j : P̄d → C be the projections onto the jth amplitude and the jth node coordinates, respectively.

Then FM−1
λ is Lipschitz on QR(μλ) with the following bounds:

∣∣∣Px,jFM−1
λ (μ′)− Px,jFM−1

λ (μ′′)
∣∣∣ � C̃1

1

Ω
‖μ′′ − μ′‖ ×

{
1 xj ∈ x \ xc

(Ωτh)−2p+2 xj ∈ xc ,

∣∣∣Pa,jFM−1
λ (μ′)− Pa,jFM−1

λ (μ′′)
∣∣∣ � C̃2‖μ′′ − μ′‖ ×

{
1 xj ∈ x \ xc

(Ωτh)−2p+1 xj ∈ xc ,

for each μ′′, μ′ ∈ QR(μλ), where C̃1 = C̃1(m, d, p), C̃2 = C̃2(m, d, p) are constants depending only on
d, m, p and C̃1C̃3 � 1.

Proof. By Proposition 5.11, FMλ is injective in the open neighborhood U of the polydisc H =
H m

2 , τh
4π

(F). In addition, for each F′ ∈ H the inverse Jacobian norm bounds derived in Proposition 5.12

apply. Finally, one can verify (using a similar argument as in the proof of Proposition 5.12 ) that Jλ(F
′)

is non-degenerate for each F′ ∈ U. We can therefore invoke Theorem B.1 with U, H and f = FMλ and
the bounds (5.18), (5.19), (5.20), (5.21) and conclude that Proposition 5.14 holds with C̃1 = C̃2 = C̃

and C̃3 = min
(

m
2C̃

, 1
4π C̃

)
. �

5.4.2 The global geometry of admissible decimation maps In this subsection, we give a global
description of the geometry of the error set Eε,(λ)(F) for any λ ∈ Λ(x) and for ε � R where

R = C̃3(Ωτh)2p−1, and C̃3 is as specified in Proposition 5.14.
For each λ ∈ Λ(x) let μλ = FMλ(F), and put

Aε,λ(F) = FM−1
λ

(
Qε(μλ)

)⋂
Pd, (5.24)

where FM−1
λ : Vλ → U is the local inverse of FMλ on U.

Observe that Aε,λ(F) ⊂ Eε,(λ)(F). The analysis of this subsection will reveal that globally Eε,(λ)(F)

is made from certain periodic repetitions of the set Aε,λ(F) and its permutations.
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Consider the following example.

Example 5.15 Let F(x) = δ(x− 1
10 )+ δ(x− 2

10 ), and let λ = 10
3 . Applying FMλ on F, we get that

FMλ(F) = (2, e
2π
3 i + e−

2π
3 i, e−

2π
3 i + e

2π
3 i, 2) = (2,−1,−1, 2).

If we set F = (a, x) with a = (a1, a2) = (1, 1) and x = (x1, x2) = ( 1
10 , 2

10 ), then clearly the signal
F′ = (a, x′), x′ = (x2, x1) = ( 2

10 , 1
10 ), that is attained by permuting the nodes of the signal F, satisfies

that FMλ(F) = FMλ(F
′). Observe that F′ /∈ P2 since its nodes are not in ascending order (a condition

that was posed on Pd to avoid redundant solutions). However, the signal F′′ = (a, x′′) with x′′ =
x′ − 1

λ
(1, 0) = x′ − 3

10 (1, 0) = (− 1
10 , 1

10 ), is in P2 and it holds that FMλ(F) = FMλ(F
′′).

One can verify that the set of signals G ∈ P2, which satisfies FMλ(G) = FMλ(F) is given by

{
G = (a, y) ∈ P2 : y = x+ 1

λ
(n1, n2), n1, n2 ∈ Z

}⋃
{

G = (a, y) ∈ P2 : y = x′ + 1

λ
(n1, n2), n1, n2 ∈ Z

}
.

In order to formalize the statement regarding the global structure of Eε,(λ)(F), which is essentially
a generalization of the example above, we require some notation regarding permutation and shift
operations.

We denote the set of permutations of d elements by

Π = Πd ⊂ {π : {1, . . . , d} → {1, . . . , d}} .

For a vector x = (x1, . . . , xd) ∈ C
d and a permutation π , we denote by xπ the vector attained by

permuting the coordinates of x according to π

xπ = (xπ(1), . . . , xπ(d)).

For a set A ⊆ Pd and a permutation π ∈ Πd, we denote by Aπ the set attained from A by permuting
the nodes and amplitudes of each signal in A according to π

Aπ = {(aπ , xπ ) : (a, x) ∈ A
}

.

The following proposition gives a description of the global geometry of Eε,(λ)(F). Its proof is
presented in Appendix E.

Proposition 5.16 For each λ ∈ Λ(x) and ε � R

Eε,(λ)(F) =
⎛⎝ ⋃

π∈Πd

⋃
�∈Zd

Aπ
ε,λ(F)+ 1

λ
�

⎞⎠⋂Pd.
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5.5 Proof of the upper bound

Fix F = (a, x) ∈ Pd, a = (a1, . . . , ad), x = (x1, . . . , xd) ⊂
[
− 1

2 , 1
2

]
, such that x forms a (p, h, 1, τ , η)-

clustered configuration with xc = {xκ , xκ+1, . . . , xκ+p−1}, and ‖a‖ � m > 0.
Consider the set of the admissible blowup factors Λ(x) (see Definition 5.9). By the analysis of

Section 5.4, under the assumption that Ωh � 1
20d , the following assertions hold:

1. By Proposition 5.11, there exists a neighborhood U of F such that for each λ ∈ Λ(x), FMλ is
one-to-one on U.

2. By Proposition 5.14, there exists a constant C̃3 = C̃3(m, d, p) such for each λ ∈ Λ(x), Vλ =
FMλ(U) contains a cube QR(μλ), where μλ = FMλ(F) and R = C̃3(Ωτh)2p−1.

For each λ ∈ Λ(x) consider the local inverse FM−1
λ : Vλ → U and let (as above)

AR,λ(F) = FM−1
λ (QR(μλ))

⋂
Pd.

The following intermediate claim is proved in Appendix F.

Proposition 5.17 There exist positive constants K9 and K10 � 1
20d depending only on d, such that

for K9
η

� Ω � K10
h the following holds. There exists λ ∈ Λ(x) such that for each pair (π , �) ∈

Πd ×
(
Z

d \ {0}), there exists λπ ,� ∈ Λ(x) for which

(
Aπ

R,λ(F)+ 1

λ
�

)⋂
ER,(λπ ,�)

(F) = ∅. (5.25)

With a bit of additional work, we obtain the main geometric result regarding the error set Eε,Ω(F).

Proposition 5.18 Let Ω as in Proposition 5.17, then there exists λ ∈ Λ(x) such that

ER,Ω(F) ⊂ AR,λ(F). (5.26)

Proof. Using Proposition 5.17 fix λ∗ ∈ Λ(x) which satisfies (5.25). We will prove that λ∗ satisfies
(5.26).

For each λ ∈ Λ(x), we have the following result due to Proposition 5.16:

ER,(λ)(F) ⊂
⋃

π∈Πd

⋃
�∈Zd

(
Aπ

R,λ(F)+ 1

λ
�

)
. (5.27)

Putting ε = R in (5.1), we obtain

ER,Ω(F) ⊆
⋂

λ∈(0, Ω
2d−1 ]

ER,(λ)(F). (5.28)

We then obtain (5.26) from (5.25), (5.27) and (5.28) by algebra of sets calculation as follows:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/2/515/5820889 by W
ix Library user on 05 M

arch 2025



544 D. BATENKOV ET AL.

First by (5.28)

ER,Ω(F) ⊆
⋂

λ∈(0, Ω
2d−1 ]

ER,(λ)(F) = ER,(λ∗)(F) ∩
⎛⎜⎝ ⋂

λ∈(0, Ω
2d−1 ]

ER,(λ)(F)

⎞⎟⎠ . (5.29)

By (5.27)

ER,(λ∗)(F) ⊂
⋃

π∈Πd ,�∈Zd

(
Aπ

R,λ∗(F)+ 1

λ∗
�

)
. (5.30)

Then by (5.29) and (5.30)

ER,Ω(F) ⊆
⎛⎝ ⋃

π∈Πd ,�∈Zd

Aπ
R,λ∗(F)+ 1

λ∗
�

⎞⎠ ∩
⎛⎜⎝ ⋂

λ∈(0, Ω
2d−1 ]

ER,(λ)(F)

⎞⎟⎠ . (5.31)

For each pair (π , �) ∈ Πd ×
(
Z

d \ {0}), let λπ ,� ∈ Λ(x) be the value asserted by Proposition 5.17,
i.e. satisfying (5.25) for λ = λ∗. By this and by (5.31) we have

ER,�(F) ⊂
⎛⎝ ⋃

π∈�d

Aπ
R,λ∗(F)

⎞⎠⋃⎛⎝ ⋃
(π ,�)∈�d×(Zd\{0})

{(
Aπ

R,λ∗(F)+ 1

λ∗
�

)⋂
ER,(λπ ,�)

(F)

}⎞⎠
=
⋃

π∈�d

Aπ
R,λ∗(F).

(5.32)

By definition ER,Ω(F) ⊂ Pd where we assume a canonical ascending order of the nodes. Then, we
conclude from (5.32) that ER,Ω(F) ⊂ AR,λ∗(F) which proves (5.26) for λ = λ∗. �

We have everything in place to estimate the diameter of the set Eε,Ω(F) and its projections.

Proposition 5.19 Let F = (a, x) ∈ Pd, x ⊂
[
− 1

2 , 1
2

]
, such that x forms a (p, h, 1, τ , η)-clustered

configuration and ‖a‖ � m > 0. Then, there exist positive constants C1, . . . , C5, depending only on
d, p, m, such that for each C4

η
� Ω � C5

h and ε � C3(Ωτh)2p−1, it holds that:

diam(Ex,j
ε,Ω(F)) �

{
C1

1
Ω

(Ωτh)−2p+2ε, xj ∈ xc,

C1
1
Ω

ε, xj ∈ x \ xc,

diam(Ea,j
ε,Ω(F)) �

{
C2(Ωτh)−2p+1ε, xj ∈ xc,

C2ε, xj ∈ x \ xc.

Proof. Let Ω be such that K9
η

� Ω � K10
h , where K9 = K9(d), K10 = K10(d) are the constants specified

in Proposition 5.17. Let ε � C̃3(Ωτh)2p−1 = R, where C̃3 = C̃3(m, d, p) is as specified in Proposition
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5.14. Let F′ ∈ Eε,Ω(F) with F′ = (a′, x′). Using Proposition 5.18 fix λ∗ ∈ Λ(x) which satisfies (5.26),
and put μ∗ = FMλ∗(F). Consequently

F′ ∈ AR,λ∗(F) = FM−1
λ∗ (QR(μ∗)) ∩Pd.

Put μ′ = FMλ∗(F
′). By Proposition 5.14, there exist constants C̃1 = C̃1(m, d, p), C̃2 = C̃2(m, d, p)

such that

|xj − x′j| = ‖Px,jFM−1
λ∗ (μ∗)− Px,jFM−1

λ∗ (μ′)‖ �
{

C̃1
1
Ω

(Ωh)−2p+2ε, xj ∈ xc,

C̃1
1
Ω

ε, xj ∈ x \ xc.

|aj − a′j| = ‖Pa,jFM−1
λ∗ (μ∗)− Pa,jFM−1

λ∗ (μ′)‖ �
{

C̃2(Ωh)−2p+1ε, xj ∈ xc

C̃2ε, xj ∈ x \ xc.

Since F′ was an arbitrary signal in Eε,Ω(F), we repeat the above argument with F′′ ∈ Eε,Ω(F) and

consequently prove Proposition 5.19 with C1 = 2C̃1, C2 = 2C̃2, C3 = C̃3, C4 = K9 and C5 = K10. �
We are now in a position to prove Theorem 2.6, essentially by combining Proposition 5.19 with

Proposition 4.3.

Proof of Theorem 2.6 Let F = (a, x) ∈ Pd such that x forms a (p, h, T , τ , η)-clustered configuration
and ‖a‖ � m > 0. Let C4

ηT � Ω � C5
h where C4 = C4(d, p, m), C5 = C5(d, p, m) are the constants

specified in Proposition 5.19.
Put α = (x1 + xd)/2. The signal SCT(SHα(F)) = (a, x̃), x̃ = (x̃1, . . . , x̃d), x̃1 = x1−α

T , . . . , x̃d =
xd−α

T is normalized such that x̃1, . . . , x̃d ∈ [− 1
2 , 1

2 ]. The node vector x̃ forms a (p, h
T , 1, τ , η)-clustered

configuration. Applying Proposition 5.19 for F̃ = SCT(SHα(F)), h̃ = h
T , Ω̃ = ΩT � C4

η
and Ω̃ h̃ =

Ωh � C5, we conclude that there exist constants C1, C2, C3, depending only on d, p, m, such that for
any ε � C3(Ωτh)2p−1

diam
(
Ex,j

ε,ΩT(SCT(SHα(F)))
)
�
{

C1
1

ΩT (Ωτh)−2p+2ε, xj ∈ xc,

C1
1

ΩT ε, xj ∈ x \ xc,

diam
(
Ea,j

ε,ΩT(SCT(SHα(F)))
)
�
{

C2(Ωτh)−2p+1ε, xj ∈ xc,

C2ε, xj ∈ x \ xc.

Applying Proposition 4.3, we conclude the proof Theorem 2.6. �

6. Lower bounds

In this section all the constants c1, . . . , k1, . . . , K1, . . . are unrelated to those of the previous section.
The main technical result we need is the following.

Proposition 6.1 Let F = (a, x) ∈ Pd, such that x forms a (p, h, 1, τ , η)-clustered configuration, with
cluster nodes xc = (x1, . . . , xp

)
(according to Definition 2.5), and with a ∈ R

d satisfying m � ‖a‖ � M.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/2/515/5820889 by W
ix Library user on 05 M

arch 2025



546 D. BATENKOV ET AL.

Then, there exist constants c1, k1, k2, depending only on (d, τ , m, M), such that for all ε <

c1(Ωh)2p−1 and Ωh � 2, there exists a signal Fε ∈ Pd satisfying, for some j1, j2 ∈ {1, . . . , p},∣∣∣Px,j1

(
Fε

)− Px,j1 (F)

∣∣∣ � k1

Ω
(Ωh)−2p+2 ε, (6.1)∣∣∣Pa,j2

(
Fε

)− Pa,j2 (F)

∣∣∣ � k2 (Ωh)−2p+1 ε, (6.2)∣∣F (
Fε

)
(s)−F (F)(s)

∣∣ � ε, |s| � Ω . (6.3)

Assuming validity of Proposition 6.1, let us prove Theorem 2.7.

Proof of Theorem 2.7 Let a ∈ R
d be any real amplitude vector satisfying m � ‖a‖ � M. Let Ω , h

satisfy Ωh � 2, and choose x to be the configuration with cluster nodes

xc =
(

x1 = 0, x1 = τh, . . . , xp = (p− 1)τh
)

,

with the rest of the nodes equally spaced in ((p− 1)τh, 1). Now, denote h′ = (p− 1)τh and τ ′ = 1
p−1 .

Clearly, x is a (p, h′, 1, τ ′, η)-clustered configuration for all sufficiently small h (for instance, h < 1
d <

1 − η(d − p + 1)). Now, we apply Proposition 6.1 with the signal F = (a, x). Since τ ′ does not
depend on τ , and therefore, the constants c1, k1, k2 depend only on d, p, m, M, we conclude that for
ε < c1(p− 1)2p−1(Ωτh)2p−1 and Ωh < 2

(p−1)τ
, there exist j1, j2 ∈ {1, . . . , p} such that

diam(Ex,j1
ε,Ω(F)) � k1

Ω
(p− 1)−2p+2ε(Ωτh)−2p+2,

diam(Ea,j2
ε,Ω(F)) � k2ε(p− 1)−2p+1(Ωτh)−2p+1.

Now, we consider the case of a non-cluster node, xj ∈ x \ xc. Let F = (a, x) be the signal above.
Decompose F as follows:

F(x) = ajδ(x− xj)+
∑
	 �=j

a	δ(x− x	)︸ ︷︷ ︸
Fo

.

Now, let ε be fixed. Define a′j = aj + ε
2 and x′j = xj + ε

4πΩM . Put F′j(x) = a′jδ(x − x′j) + Fo(x). For
|s| � Ω , the difference between the Fourier transforms of F and F′j satisfies∣∣∣F (F)(s)−F (F′j)(s)

∣∣∣ = ∣∣∣aje
2π ixjs − a′je

2π ix′js
∣∣∣

�
∣∣∣aje

2π ixjs
(

1− e2π i ε
4πΩM s

)∣∣∣+ ∣∣∣a′j − aj

∣∣∣
� ε

2
+ ε

2
= ε.

Since the constants do not depend on τ at all, and the above construction of F′j can be repeated for each
j /∈ {κ , . . . , κ + p− 1}, the proof of the non-cluster node case is finished.
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Again, the case of general T follows by rescaling and applying Proposition 4.3 (as was done in the
proof of Theorem 2.6).

This finishes the proof of Theorem 2.7 with C′1 = max
(

k1
(p−1)2p−2 , 1

4πM

)
, C′2 = max

(
1
2 , k2

(p−1)2p−1

)
,

C′3 = c1(p− 1)2p−1, C′4 = 1
d and C′5 = 2. �

In the rest of this section, we prove Proposition 6.1.
We start by stating the following result which has been shown in (2, Theorems 4.1 and 4.2).

Theorem 6.2 Given the parameters 0 < h � 2, 0 < τ � 1, 0 < m � M < ∞, let the signal
F = (a, x) ∈ Pd with a ∈ R

d form a single uniform cluster as follows:

• (centered) xd = −x1;

• (uniform) for 1 � j < k � d we have

τh �
∣∣∣xj − xk

∣∣∣ � h;

• m � ‖aj‖ � M.

Then, there exist constants K1, . . . , K5 depending only on (d, τ , m, M) such that for every ε < K5h2d−1,
there exists a signal Fε = (b, y) ∈ Pd such that

1. mk (F) = mk

(
Fε

)
for k = 0, 1, . . . , 2d − 2, where mk are given by (A1);

2. m2d−1

(
Fε

) = m2d−1 (F)+ ε;

3. K1h−2d+2ε � ‖x− y‖ � K2h−2d+2ε;

4. K3h−2d+1ε � ‖b− a‖ � K4h−2d+1ε.

Proof of Proposition 6.1 Define Fc and Fnc to be the cluster and the non-cluster part of F
correspondingly, i.e.

Fc =
∑
xj∈xc

ajδ(x− xj),

Fnc =
∑

xj∈x\xc

ajδ(x− xj).

Without loss of generality, suppose that Fc is centered, i.e. x1 + xp = 0. Next, define a blowup of Fc by
Ω as follows:

Fc
(Ω) = SC 1

Ω

(
Fc) = ∑

xj∈xc

ajδ(x−Ωxj). (6.4)

Put d̃ = p, h̃ = Ωh, and let c1 = K5

(
d̃, τ , m, M

)
as in Theorem 6.2. Let ε � c1 (Ωh)2p−1. Now,

we apply Theorem 6.2 with parameters d̃, h̃, τ , m, M, ε̃ = c2ε and the signal Fc
(Ω), where c2 � 1

will be determined below. We obtain a signal Gc
(Ω),ε such that the following hold for the difference
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H = Gc
(Ω),ε − Fc

(Ω):

mk (H) = 0, k = 0, 1, . . . , 2p− 2, (6.5)

m2p−1 (H) = ε̃; (6.6)

while also, for some j1, j2 ∈ {1, . . . , p}
∣∣∣Px,j1

(
Gc

(Ω),ε

)
− Px,j1

(
Fc

(Ω)

)∣∣∣ � K1 (Ωh)−2p+2 ε̃, (6.7)∣∣∣Px,j

(
Gc

(Ω),ε

)
− Px,j

(
Fc

(Ω)

)∣∣∣ � K2 (Ωh)−2p+2 ε̃, j = 1, . . . , p, (6.8)∣∣∣Pa,j2

(
Gc

(Ω),ε

)
− Pa,j2

(
Fc

(Ω)

)∣∣∣ � K3 (Ωh)−2p+1 ε̃. (6.9)

Now put

Fc
(Ω),ε = SCΩ

(
Gc

(Ω),ε

)
.

Applying the inverse blowup to the above inequalities, we obtain in fact that

∣∣∣Px,j1

(
Fc

(Ω),ε

)
− Px,j1

(
Fc)∣∣∣ � K1

Ω
(Ωh)−2p+2 ε̃, (6.10)∣∣∣Pa,j2

(
Fc

(Ω),ε

)
− Pa,j2

(
Fc)∣∣∣ � K3 (Ωh)−2p+1 ε̃. (6.11)

From the above definitions, we have HΩ = SCΩ(H) = Fc
(Ω),ε − Fc. Let us now show that there is a

choice of c3 such that ∣∣F (
HΩ

)
(s)
∣∣ � ε, |s| � Ω . (6.12)

Put ω = s/Ω , then

F
(
HΩ

)
(s) = F (H) (ω) .

Now, we employ the fact that the Fourier transform of a spike train has Taylor series coefficients
precisely equal to its algebraic moments (see (1, Proposition 3.1)):

F (H)(ω) =
∞∑

k=0

1

k!
mk (H) (−2πıω)k . (6.13)

Next, we apply the following easy corollary of the Turán’s First Theorem [56, Theorem 6.1],
appearing in [14, Theorem 3.1], using the recurrence relation satisfied by the moments of H according
to Proposition A.2.
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Theorem 6.3 Let H =∑2p
j=1 βjδ(x− tj), and put R = minj=1,...,2p

∣∣∣tj∣∣∣−1 > 0. Then, for all k � 2p, we

have the so-called Taylor domination property

∣∣mk(H)
∣∣Rk �

(
2ek

2p

)2p

max
	=0,1,...,2p−1

∣∣m	 (H)
∣∣R	. (6.14)

Proposition 6.4 The constant R in Theorem 6.3 satisfies R � C4, where C4 does not depend on Ω , h.

Proof. Recall that H = Gc
(Ω),ε − Fc

(Ω). The nodes of Fc
(Ω) are, by construction, inside the interval[−Ωh

2 , Ωh
2

]
. The nodes of Gc

(Ω),ε , by (6.8), satisfy

∣∣∣Px,j

(
Gc

(Ω),ε

)∣∣∣ � Ωh

2
+ K2 (Ωh)−2p+2 ε̃

� Ωh

2
+ K2 (Ωh)−2p+2 c1 (Ωh)2p−1

= (Ωh)

(
c1K2 +

1

2

)
.

Since Ωh � 2 by assumption, this concludes the proof with C4 = 1

2
(

c1K2+ 1
2

) .
�

Therefore, by (6.14), (6.5) and (6.6) we have for k � 2p

∣∣mk (H)
∣∣ � (

e

p

)2p

k2pR2p−1−kε̃

� C5C2p−1−k
4 k2pε̃.

Now, plugging this into (6.13) we obtain

|F (H) (ω)| � ε̃ |2πω| 2p−1

(2p− 1)!
+ C5C2p−1

4 ε̃
∑
k�2p

(
2π |ω|

C4

)k k2p

k!
.

Put ζ = 2π |ω|
C4

, then, since |ω| � 1,

|F (H) (ω)| � C6ε̃
∑

k�2p−1

ζ k k2p

k!

� C7ε̃.

We can therefore choose c2 = min
(

1, 1
C7

)
to ensure that

|F (H) (ω)| � ε, |ω| � 1,
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which shows (6.12).
Finally, construct the signal Fε = Fnc + Fc

(Ω),ε . Combining (6.12), together with (6.10) and (6.11)
finishes the proof of Proposition 6.1 with k1 = K1 and k2 = K3. �
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A. Algebraic Prony system

The so-called Prony system of equations relates the parameters of the signal F as in (1.1) and its
algebraic moments

mk (F) =
∫

F(x)xkdx =
d∑

j=1

ajx
k
j , k = 0, 1, . . . , . (A.1)

Extending the above to arbitrary complex nodes and amplitudes, we define the Prony map PM :
C

2d → C
2d as follows:

PMk(a1, . . . , ad, w1, . . . , wd) =
d∑

j=1

ajw
k
j , k = 0, 1, . . . , 2d − 1. (A.2)
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Now, consider the system of equations defined by PM, i.e. with unknowns
{

aj, zj

}d

j=1
∈ C

2d and a

given right-hand side μ = (μ0, . . . , μ2d−1) ∈ C
2d,

PMk

(
a1, . . . , ad, z1, . . . , zd

) = μk, k = 0, 1, . . . , 2d − 1. (A.3)

The following fact can be found in the literature about Prony systems and Padé approximation (see e.g.
(13) Propositions 3.2 and 3.3).

Proposition A.1 If a solution (a1, . . . , ad, z1, . . . , zd) to System (A.3) exists with aj �= 0, j = 1, . . . , d
and for 1 � j < k � d, zj �= zk, it is unique up to a permutation of the nodes {zj} and corresponding
amplitudes {aj}.

Clearly, the definition of PMk is valid for arbitrary integer k ∈ N. The next fact is very well known,
and it is the basis of Prony’s method of solving (A.3).

Proposition A.2 Let the sequence ν = {νk

}
k∈N be given by

νk = PMk

(
a1, . . . , ad, z1, . . . , zd

)
.

Then, each consecutive d + 1 elements of ν satisfy the following linear recurrence relation:

d∑
	=0

νk+	c	 = 0, (A.4)

where the constants
{
c	

}d
	=0 are the coefficients of the (monic) polynomial with roots

{
z1, . . . , zd

}
(the

‘Prony polynomial’), i.e.

Q(z) =
d∏

j=1

(
z− zj

)
≡

d∑
	=0

c	z	. (A.5)

Proof. Let k ∈ N, then

d∑
	=0

νk+	c	 =
d∑

	=0

c	

d∑
j=1

ajz
k+	
j

=
d∑

j=1

ajz
k
j Q(zj) = 0.

�
Proposition A.3 (Prony’s method). Let there be given the algebraic moments {mk(F)}2d−1

k=0 of the signal
F = (a, x) where the nodes of x are pairwise distinct and ‖a‖ > 0. Then, the parameters (a, x) can be
recovered exactly by the following procedure:

1. Construct the d × (d + 1) Hankel matrix H =
[
mi+j

]0�j�d

0�i�d−1
.

2. Find a non-zero vector c in the null-space of H.

3. Find xj to be the roots of the Prony polynomial (A.5), whose coefficient vector is c.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/2/515/5820889 by W
ix Library user on 05 M

arch 2025



554 D. BATENKOV ET AL.

4. Find the amplitudes a by solving the linear system Va = m, where V is the Vandermonde matrix

V =
[
xk

j

]j=1,...,d

k=0,...,d−1
.

Proof. See e.g. [13]. �

B. Quantitative Inverse Function Theorem

Here, we prove a certain quantitative version of the inverse function theorem, which applies to
holomorphic mappings Cd → C

d (here d is a generic parameter).
For a ∈ C

d and r1, . . . , rd > 0, let Hr1,...,rd
(a) ⊂ C

d be the closed polydisc centered at a,

Hr1,...,rd
(a) = {x ∈ C

d : |xj − aj| � rj, for allj = 1, . . . , d}.
For j = 1, . . . , d, we denote by Pj : Cd → C the orthogonal projection onto the jth coordinate. With

some abuse of notation, we will also treat Pj as the d × d matrix representing this projection.
Finally, recall Definition 5.13 of the hypercube Qr.
Theorem B.1 Let U ⊆ C

d be open. Let f : U → C
d be a holomorphic injection with an invertible

Jacobian J(x), for all x ∈ U. For a ∈ U and r1, . . . , rd > 0, let H(a) = Hr1,...,rd
(a) ⊂ U be such that for

all x ∈ H(a),
d∑

k=1

|J−1
j,k (x)| � αj, j = 1, . . . , d.

Put b = f (a) and f (U) = V . Then:

1. For R = min( r1
α1

, . . . , rd
αd

), QR(b) ⊆ f (H(a)) and f−1 : V → U is holomorphic in an open
neighborhood of QR(b).

2. For each j = 1, . . . , d, f−1
j = Pjf

−1 : QR(b) → C
d is Lipschitz on QR(b) with

|f−1
j (y′′)− f−1

j (y′)| � αj‖y′′ − y′‖,

for each y′, y′′ ∈ QR(b).

Proof. First, we show that f (U) = V is open and f−1 is holomorphic and provides a homeomorphism
between U and V .

By assumption f : U → V is an injection, then f−1 : V → U is well defined. By assumption, f is
continuously differentiable with non-degenerate Jacobians J(x) for all x ∈ U. Then, by the inverse
function theorem V is open and f−1 is continuously differentiable on V . We conclude that f is a
biholomorphism between U and V .6

We now show that for R = min( r1
α1

, . . . , rd
αd

), QR(b) ⊆ f (H(a)). f is a homeomorphism between U
and V; hence, S = f (H(a)) is a compact subset of V . We take QR′(b) ⊆ S as the maximal cube centered
at b that is contained in S.

6 It is an interesting fact that the condition that f has non-degenerate Jacobians on U can be dropped. Contrary to a real version
of Theorem B.1 where this condition is necessary, it is true that if f is holomorphic and an injection on the open set U then f is
biholomorphism between U and f (U) (see e.g. (52), discussion at page 23).
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Then, there exists a point p such that p ∈ ∂S ∩ ∂QR′(b). Put h = p − b. f−1 is continuously
differentiable on V ⊃ QR′(b), we can therefore apply the mean value theorem in integral form and
obtain (here, the integral is applied to each component of the inverse Jacobian matrix)

f−1(b+ h)− f−1(b) =
(∫ 1

0
J−1(b+ th)dt

)
h.

Then, for each coordinate j = 1, . . . , d,

f−1
j (b+ h)− f−1

j (b) =
(∫ 1

0
PjJ

−1(b+ th)dt

)
h. (B.1)

f is a homeomorphism between U and V hence f−1 maps the boundary of S into boundary of f−1(S) =
Qr(a). Therefore, there exists a coordinate ĵ ∈ {1, . . . , d} such that∣∣∣f−1

ĵ
(b+ h)− f−1

ĵ
(b)

∣∣∣ = rĵ.

Then, by equation (B.1)

rĵ =
∣∣∣f−1

ĵ
(b+ h)− f−1

ĵ
(b)

∣∣∣ = ∣∣∣∣(∫ 1

0
PĵJ

−1(b+ th)dt

)
h

∣∣∣∣ � αĵ‖h‖ = αĵR
′.

Hence, R′ �
rĵ
αĵ

� min( r1
α1

, . . . , rd
αd

) = R. We get that

QR(b) ⊆ QR′(b) ⊆ S = f (H(a)).

Since we already argued that V ⊃ f (H(a)) ⊇ QR(b) is open, then clearly f−1 is holomorphic in an
open neighborhood of QR(b). This proves item (1) of Theorem B.1.

The second item of the Theorem is proved with a similar argument: let y′′, y′ ∈ QR(b) and put
h′ = y′′ − y′. Applying again the mean value theorem∣∣∣f−1

j (y′ + h′)− f−1
j (y′)

∣∣∣ = ∣∣∣∣(∫ 1

0
PjJ

−1(y′ + th′)dt

)
h′
∣∣∣∣ � αj‖h′‖.

This proves item (2) of the Theorem. �

C. Norm bounds on the inverse Jacobian matrix

Let F = (a, x) ∈ P̄d, a = (a1, . . . , xd), x = (x1, . . . , xd). Put zj = zj(λ) = e2π iλxj , j = 1, . . . , d. By
direct computation, the Jacobian matrix J = Jλ(F) = Jλ(a, x), of FMλ at F is given by

Jλ(a, x) =

⎡⎢⎢⎢⎢⎣
1 .. 1 0 .. 0
z1 .. zd 1 .. 1
z2
1 .. z2

d 2z1 .. 2zd
...

. . .
...

...
. . .

...
z2d−1
1 .. z2d−1

d (2d − 1)z2d−2
1 .. (2d − 1)z2d−2

d

⎤⎥⎥⎥⎥⎦
[

Id 0
0 D

]
, (C.1)

where D is a d × d diagonal matrix, Dj,j = aj2π iλzj, j = 1, . . . , d, and Id is the d × d identity matrix.
Denote the left-hand matrix in the factorization (C.1) by U2d = U2d(z1, . . . , zd). The matrix U2d is

an instance of a confluent Vandermonde matrix, whose inverses have been extensively studied in [7, 30,
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31]. In particular, the elements of U−1
2d can be constructed using the coefficients of polynomials from an

appropriate Hermite interpolation scheme. Consequently, we have the following result due to [31].

Theorem C.1 (Gautschi [31]; equations (3.10), (3.12)). For z1, . . . , zd ∈ C pairwise distinct, put

U−1
2d (z1, . . . , zd) =

[
A
B

]
,

where A, B are d × 2d. Then, we have the following upper bounds on the 1-norm of the rows of the
blocks A, B

2d∑
k=1

|Aj,k| � (1+ 2(1+ |zj|)|Δj|)Γj, j = 1, .., d, (C.2)

2d∑
k=1

|Bj,k| � (1+ |zj|)Γj, j = 1, .., d, (C.3)

where

Δj =
d∑

	=1,	 �=j

1

|zj − z	|
, Γj =

⎛⎝ d∏
	=1,	 �=j

1+ |z	|
|zj − z	|

⎞⎠2

.

Proof. Proof of Proposition 5.3 By the factorization (C.1)

Jλ(F) = U2d(z1, . . . , zd)

[
Id 0
0 D

]
,

where z1 = e2π iλx1 , . . . , zd = e2π iλxd and D = D(z1, . . . , zd) is the d × d diagonal matrix, Dj,j =
aj2π iλzj, j = 1, . . . , d.

By assumption, the mapped nodes {zj} are pairwise distinct, and so it immediately follows that Jλ(F)

is non-degenerate.

Put U−1
2d = U−1

2d (z1, . . . , zd) =
[

A
B

]
, where A, B are d × 2d. Put B̃ = D−1B. Then

J−1
λ (F) =

[
A
B̃

]
. (C.4)

By Theorem C.1

2d∑
k=1

|Aj,k| � (1+ 2(1+ |zj|)|Δj|)Γj, j = 1, .., d, (C.5)

2d∑
k=1

|Bj,k| � (1+ |zj|)Γj, j = 1, .., d, (C.6)

where

Δj =
d∑

	=1,	 �=j

1

|zj − z	|
, Γj =

⎛⎝ d∏
	=1,	 �=j

1+ |z	|
|zj − z	|

⎞⎠2

.
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Non-cluster node Let 	 be such that x	 ∈ x \ xc.

By assumptions we have

|z	 − zj| � η̃, ∀x	 ∈ x \ xc, xj ∈ x, 	 �= j.

Then we obtain

Δ	 =
d∑

j=1,j �=	

1

|z	 − zj|
� d − 1

η̃
= K5(η̃, d), (C.7)

while

Γ	 =
⎛⎝ d∏

j=1,j �=	

1+ |zj|
|z	 − zj|

⎞⎠2

�

⎛⎝3d−1
d∏

j=1,j �=	

1

|z	 − zj|

⎞⎠2

�

⎛⎜⎝3d−1 η̃−d+1(
� d−p

2 �!
)2

⎞⎟⎠
2

=
⎛⎜⎝(3

η̃

)d−1 1(
� d−p

2 �!
)2

⎞⎟⎠
2

=K6(η̃, d, p).

(C.8)

Inserting equations (C.7) and (C.8) into (C.5) and (C.6), we get

2d∑
k=1

|A	,k| � (1+ 2(1+ |z	|)|Δ	|)Γ	 � (1+ 6K5)K6 = K1(η̃, d, p), (C.9)

and
2d∑

k=1

|B	,k| � (1+ |z	|)Γ	 � 3K6 = K7(η̃, d, p), (C.10)

for each 	 such that x	 ∈ x \ xc.

Now, we are ready to bound the norms of rows of the blocks A, B̃ for each non-cluster node
index.

For the block A, such bound is given in equation (C.9).

For the block B̃, we have, using equation C.10,

2d∑
k=1

|B̃	,k| =
2d∑

k=1

|(a	2π iλzl)
−1||B	,k| �

2K7

πm

1

λ
= K2(m, η̃, d, p)

1

λ
, (C.11)

for each 	 such that x	 ∈ x \ xc.

This completes the proof of equations (5.2) and (5.3) of Proposition 5.3.
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Cluster node

We now bound the norm of each row of J−1
λ (F) at an index corresponding to a cluster node.

By assumptions

|zj − zk| � h̃, ∀xj, xk,∈ xc, j �= k,

|zj − z	| � η̃, ∀xj ∈ xc, x	 ∈ x \ xc.

Then, for each j such that xj ∈ xc

Δj =
d∑

	=1,	 �=j

1

|zj − z	|
� d − 1

h̃
, (C.12)

while

Γj =
⎛⎝ d∏

	=1,	 �=j

1+ |z	|
|zj − z	|

⎞⎠2

�

⎛⎝3d−1
d∏

	=1,	 �=j

1

|zj − z	|

⎞⎠2

�

⎛⎜⎝3d−1 η̃−d+ph̃−p+1(
� d−p

2 �!
)2

⎞⎟⎠
2

=K8(η̃, d, p)h̃−2p+2,

(C.13)

where K8(η̃, d, p) =
(

3d−1 η̃−d+p(
� d−p

2 �!
)2

)2

.

Inserting equations (C.12) and (C.13) into (C.5) and (C.6), we get

2d∑
k=1

|Aj,k| � (1+ 2(1+ |zj|)|Δj|)Γj � 7(d − 1)K8h̃−2p+1

= K3(η̃, d, p)h̃−2p+1,

(C.14)

2d∑
k=1

|Bj,k| � (1+ |zj|)Γj � 3K8h̃−2p+2

= K9(η̃, d, p)h̃−2p+2,

(C.15)

for each j such that xj ∈ xc.

We now bound the norms of rows of the blocks A, B̃ for each cluster node index.

For the block A, the bound was given in equation (C.14).
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 559

For the block B̃, we have, using equation C.15,

2d∑
k=1

|B̃j,k| =
2d∑

k=1

|(aj2π iλzj)
−1||Bj,k| �

2K9

πm

1

λ
h̃−2p+2

= K4(η̃, d, p, m)
1

λ
h̃−2p+2,

(C.16)

for each j such that xj ∈ xc.

This completes the proof of equations (5.4) and (5.5) of Proposition 5.3. �

D. Proof of Proposition 5.11

Proof. Let the map g = gλ : P̄d � C
2d → C

2d be defined as

gk(a1, . . . , ad, x1, . . . , xd) = ak, k = 1, . . . , d, (D.1)

gd+k(a1, . . . , ad, x1, . . . , xd) = e2π iλxk , k = 1, . . . , d.

Consider the definition of the Prony map PM from (A.2). We thus have

FMλ = PM ◦ gλ. (D.2)

Put
W = gλ(H

o
m, τh

2π

(F)) = gλ(U).

We will show that gλ is injective on U and that PM is injective on W.
First, we show that PM is injective on W.
Proposition A.1 gives sufficient conditions for PM to be one-to-one on a subset of C2d, the next

Proposition asserts that these conditions hold for W.

Proposition D.1 Let λ ∈ Λ(x). Then for each v′, v′′ ∈ W = gλ(H
o
m, τh

2π

(F)) = gλ(U), with v′ = (a′, z′),
a′ = (a′1, . . . , a′d), z′ = (z′1, . . . , z′d), v′′ = (a′′, z′′), a′′ = (a′′1, . . . , a′′d), z′′ = (z′′1, . . . , z′′d) and v′ �= v′′, it
holds that:

1. a′j �= 0 for j = 1, . . . , d.

2. z′j �= z′k for each 1 � j < k � d.

3. z′j �= z′′k for all 1 � j < k � d.

Proof. Let λ ∈ Λ(x) and let v′, v′′ ∈ gλ(H
o
m, τh

2π

(F)) as specified in Proposition D.1.

The first assertion is apparent from the fact that ‖a′ − a‖ < m and the assumption that |aj| � m for
j = 1, . . . , d.

We now prove assertions 2 and 3.
Let z = (z1, . . . , zd), with z1 = e2π iλx1 , . . . , zd = e2π iλxd .
As a first step, we argue that for each pair of mapped nodes zj, zk, 1 � j < k � d,

|zj − zk| � 4λτh, 1 � j < k � d. (D.3)
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560 D. BATENKOV ET AL.

Indeed, with the assumption that Ωh � 1
20d we have that

π

2
>

1

d2 > 2πλτh. (D.4)

By (D.4) and since λ ∈ Λ(x)
� (zj, zk) � 2πλτh. (D.5)

Then by (D.4), (D.5) and (5.6)

|zj − zk| � 4λτh.

Next, we claim that

W ⊂ Ho
m,2λτh(a, z) =

{
(a′, z′) ∈ C

2d ‖a′ − a‖ < m, ‖z′ − z‖ < 2λτh
}

. (D.6)

Let (a′′′, x′′′) ∈ Ho
m, τh

2π

(F). To show (D.6), we need to verify that gλ(a
′′′, x′′′) ∈ Ho

m,2λτh(a, z). For this

purpose, put gλ(a
′′′, x′′′) = (a′′′, z′′′), z′′′ = (e2π iλx′′′1 , . . . , e2π iλx′′′d ). Then, using the integral mean value

bound, for any j = 1, . . . , d,∣∣∣e2π iλx′′′j − e2π iλxj

∣∣∣ � max
c∈{xj+t(x′′′j −xj):t∈[0,1]}

∣∣∣∣ d

dx
e2π iλx

∣∣∣
c

∣∣∣∣ τh

2π

� λτheλh

< 2λτh,

where in the last step, we used the assumption Ωh � 1
20d and the fact that λ � Ω

2d−1 , which then implies
that eλh < 2. This in turn proves (D.6).

We now prove assertion 2.
Let 1 � j < k � d and assume by contradiction that z′j = z′k. By (D.6), (a′, z′) ∈ Ho

m,2λτh(a, z) then
|zj − z′j| < 2λτh and |zk − z′j| = |zk − z′k| < 2λτh. Then

|zj − zk| � |zj − z′j| + |zk − z′j| < 4λτh,

which is a contradiction to (D.3).
Finally, we prove assertion 3.
Assume by contradiction that for 1 � j < k � d, z′j = z′′k . By (D.6) |zj − z′j| < 2λτh. By assumption

|zk − z′j| = |zk − z′′k | then by (D.6) |zk − z′j| < 2λτh. Using these

|zj − zk| � |zj − z′j| + |zk − z′j| < 4λτh,

which is a contradiction to (D.3).
This completes the proof of Proposition D.1. �
Now, by Propositions D.1 and A.1 we have that PM is injective on W.
We now show that gλ is injective on U.

Proposition D.2 For each λ > 0, the map gλ is injective in the polydisc Ho
m, 1

2λ

(F).

Proof. Let (a′, x′), (a′′, x′′) ∈ Ho
m, 1

2λ

(F) such that g(a′′, x′′) = g(a′, x′). We will show that (a′, x′) =
(a′′, x′′).
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 561

For the amplitudes coordinates k = 1, . . . , d, gk(a1, . . . , ad, x1, . . . , xd) = ak therefore a′′ = a′.
For coordinates d + 1, . . . , 2d,

gd+j(a1, . . . , ad, x1, . . . , xd) = gd+j(xj) = e2π iλxj , j = 1, . . . , d.

Fix a certain 1 � j � d and set x′j = α′j + β ′j i, α′j , β ′j ∈ R. The set of complex numbers w = α + βi such

that gd+j(w) = gd+j(x
′
j) = e2π iλx′j is equal to

Sj =
{
α + βi : β = β ′j , α = α′j +

	

λ
, ∀	 ∈ Z

}
.

Since (a′, x′), (a′′, x′′) ∈ Ho
m, 1

2λ

(F) implies that |x′j − x′′j | < 1
λ

then x′′j = x′j and because j was chosen

arbitrarily we have x′′ = x′. �
By assumption λ � Ω

2d−1 and Ωh � 1
20d then 1

λ
> h. Using the former, U = Ho

m, τh
2π

(F) ⊂ Ho
m, 1

2λ

(F)

then by Proposition D.2 gλ is injective on U.
We have shown that gλ is injective on U and that PM is injective on W = gλ(U) then by (D.2) FMλ

is injective on U.
This completes the proof of Proposition 5.11. �

E. Proof of Proposition 5.16

Proof. First, observe that if F′ ∈ Pd is of the form F′ = (a′π , x′π )+ 1
λ
�, with π ∈ Πd and � ∈ Z

d, and
(a′, x′) ∈ Aε,λ(F) then

FMλ(F
′) = FMλ

((
a′π , x′π + 1

λ
�

))

=
d∑

j=1

a′π(j)e
2π iλ(x′

π(j)+
�j
λ

)

=
d∑

j=1

a′π(j)e
2π iλx′

π(j)

=
d∑

j=1

a′je
2π iλx′j

= FMλ

(
(a′, x′)

)
.

Since by definition of Aε,λ(F) (see equation (5.24) ), (a′, x′) ∈ Aε,λ(F) implies that (a′, x′) ∈ Eε,(λ)(F),
then the above shows that

Eε,(λ)(F) ⊇
⎛⎝ ⋃

π∈Πd

⋃
�∈Zd

Aπ
ε,λ(F)+ 1

λ
�

⎞⎠⋂Pd.
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562 D. BATENKOV ET AL.

For the other direction, let F′ = (a′, y′) ∈ Eε,(λ)(F) with a′ = (a′1, . . . , a′d) and y′ = (y′1, . . . , y′d).
Put μ′ = FMλ(F

′), then μ′ ∈ Qε(μλ) (with μλ = FMλ(F) as above).
By definition of the set Aε,λ(F), there exists a signal F′′ ∈ Aε,λ(F) such that FMλ(F

′′) = μ′, and put
F′′ = (a′′, x′′) with a′′ = (a′′1, . . . , a′′d) and x′′ = (x′′1, . . . , x′′d).

Recall that by (D.2) (see (A.2) and (D.1))

FMλ = PM ◦ gλ.

Put gλ(F
′′) = (a′′, z′′) with z′′ = (z′′1, . . . , z′′d), z′′j = e2π iλx′′j for j = 1, . . . , d. By Proposition D.1

each point in W = gλ(U) has non-vanishing amplitudes and pairwise distinct nodes. We have that
F′′ ∈ Aε,λ(F) ⊆ U and hence (a′′, z′′) satisfies the above properties. Then, by Proposition A.1, the set
of all solutions to the equation PM ((a, z)) = μ′ is given by{

(a′′π , z′′π ) : π ∈ Πd

}
. (E.1)

By (E.1) there exists π ∈ Πd such that

gλ(F
′) = gλ

(
(a′, y′)

) = (a′′π , z′′π ).

Finally, since x′′1, . . . , x′′d are real, the set of all solutions to the equation gλ ((a, x)) = (a′′π , z′′π ) is
given by {

(a′′π , x′′π + 1

λ
�) : � ∈ Z

d
}

.

By the above, F′ is of the form
(

a′′π , x′′π + 1
λ
�
)

for some π ∈ Πd and � ∈ Z
d.

This concludes the proof of Proposition 5.16. �

F. Proof of Proposition 5.17

Within the course of the proof, we will make appropriate assumptions of the form C′
η

� Ω � C′′
h , with

C′, C′′ being constants depending only on d, for which some arguments of the proof hold. It is to be
understood that K9 is the maximum of the constants C′ and K10 is the minimum of the constants C′′.

Assume that Ω � 2(2d−1)
η

. Then, the length of the interval
[

1
2

Ω
2d−1 , Ω

2d−1

]
is larger than 1

η
and by

Proposition 5.8 there exists an interval I ⊆
[

1
2

Ω
2d−1 , 1

2
Ω

2d−1 + 1
η

]
such that

I ⊂ Λ(x), |I| = (2d2η)−1. (F.1)

Fix

I1 = [λ1, λ1 + (2d2η)−1] ⊆ Λ(x) ∩
[

1

2

Ω

2d − 1
,

1

2

Ω

2d − 1
+ 1

η

]

to be the sub-interval of Λ(x)∩
[

1
2

Ω
2d−1 , 1

2
Ω

2d−1 + 1
η

]
with the minimal starting point λ1 which satisfies

(F.1). We will show that there exists λ ∈ I1 that satisfies (5.25).
We require the following intermediate results.
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 563

As in Section 5.3, we denote by ν the Lebesgue measure on R.

Lemma F.1 Let 1
2 � a < 1 and I = [a, 1]. Then, for each ε, α, c ∈ R such that 0 < α � 1,

0 < ε � 1
100α and |c| � 8 ε

α|I| , it holds that

ν
( {x ∈ I : ∃k ∈ Z such that |kx− c| � ε} ) < α|I|.

Lemma F.2 Consider the interval [a, b] ⊂ (0,∞) and let S ⊆ [a, b] be a union of N disjoint sub-
intervals S =⋃N

i=1[ai, bi]. Set I−1 = [ 1
b , 1

a ] and S−1 =⋃N
i=1[ 1

bi
, 1

ai
]. Then

ν(S)

ν(I)
� b

a

ν(S−1)

ν(I−1)
.

Proposition F.3 There exists constants K11, K12 depending only on d such that for K11
η

� Ω � K12
h

the following holds. For each 3h < |c| � η
6 , there exists an interval I ⊂ Λ(x) of length |I| = (2d2η)−1

such that for all λ ∈ I and for all k ∈ Z ∣∣∣∣c− k

λ

∣∣∣∣ > 3h. (F.2)

We now complete the proof of Proposition 5.17 using the claims above and provide their proofs
thereafter.

Step 1:
First, it is shown, using Lemma F.1 and Lemma F.2, that there exists λ∗ ∈ I1 such that for all pair of

distinct nodes i, j with not both xi, xj in xc, it holds that∣∣∣xi − xj +
n

λ∗
∣∣∣ > (32d4)−1 1

λ1
, for alln ∈ Z. (F.3)

Put

I−1
1 =

[
1

λ1 + (d22η)−1
,

1

λ1

]
, Ĩ−1

1 = λ1I−1
1 =

[
λ1

λ1 + (d22η)−1
, 1

]
.

Fix any distinct indices i, j such that not both xi, xj are in xc. Put ci,j = xi − xj and observe that under
the cluster assumption

|ci,j| � η. (F.4)

Put I = Ĩ−1
1 , c = ci,jλ1, ε = (32d4)−1 and α = 1

d2 . We now validate that under appropriate assumptions
on the size of Ω , we have that I, c, ε, α satisfy the conditions of Lemma F.1. Put a as the left end point
of the interval I then with Ω � 2

ηd we have that a � 1
2 . With d � 2 by assumption we have that

ε = 1
32d4 < 1

100d2 . With Ω � 2
ηd we have that

|I| = |Ĩ−1
1 | � (4d2ηλ1)

−1. (F.5)

Now, with (F.4) and (F.5), we have that |c| � 8 ε
α|I| . Having validated the conditions of Lemma F.1 hold

for I, c, ε, α we now invoke it and get that

ν
( {

t ∈ Ĩ−1
1 : ∃k ∈ Z such that

∣∣∣kt − ci,jλ1

∣∣∣ � (32d4)−1
} )

<
1

d2
|Ĩ−1

1 |.
Then

ν
( {

t ∈ I−1
1 : ∃k ∈ Z such that

∣∣∣kt − ci,j

∣∣∣ � (32d4)−1 1

λ1

} )
<

1

d2 |I−1
1 |.
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Now, we apply Lemma F.2 and conclude from the above that

ν
( {

λ ∈ I1 : ∃k ∈ Z such that

∣∣∣∣ kλ − ci,j

∣∣∣∣ � (32d4)−1 1

λ1

} )
<

2

d2
|I1|. (F.6)

Define the set

E =
⋃

1�i<j�d
¬(xi∈xc∧xj∈xc)

{
λ ∈ I1 : ∃k ∈ Z such that

∣∣∣∣ kλ − ci,j

∣∣∣∣ � (32d4)−1 1

λ1

}
.

Then, using (F.6) and the union bound

ν
(
E
)

<

(
d

2

)
2

d2 |I1| < |I1|. (F.7)

We conclude from (F.7) that there exists λ∗ ∈ I1 which satisfies (F.3).
Step 2:
Now, we show that in fact λ∗ satisfies (5.25), i.e. it satisfies the condition of Proposition 5.17.
Let (π̃ , �̃) ∈ Πd × (Zd \ {0}). We will show that there exists λ

π̃ ,�̃ ∈ Λ(x) such that for all π ∈ Πd

and for all � ∈ Z
d (

Aπ̃
R,λ∗(F)+ 1

λ∗
�̃

)
∩
(

Aπ
R,λ

π̃ ,�̃
(F)+ 1

λ
π̃ ,�̃

�

)
= ∅. (F.8)

Proposition 5.17 will then follow by Proposition 5.16.
We can assume without loss of generality that π̃ = id. Accordingly, we put Aπ̃

R,λ∗(F) = AR,λ∗(F),

and we will prove that there exists λ
�̃
∈ Λ(x) such that for all π ∈ Πd and for all � ∈ Z

d(
AR,λ∗(F)+ 1

λ∗
�̃

)
∩
(

Aπ
R,λ

�̃
(F)+ 1

λ
�̃

�

)
= ∅. (F.9)

Fix i such that �̃i �= 0 and set n = �̃i. Assume that xi ∈ xc, and one can verify that the case where
xi ∈ x \ xc is proved using a similar argument to the one that is given below.

In the cases considered below, we will use the following fact about the ‘radius’ of the set AR,λ(F) for
each λ ∈ Λ(x), established in Proposition 5.14. For each F′ = (a′, x′) ∈ AR,λ(F) with x′ = (x′1, . . . , x′d),∣∣∣x′j − xj

∣∣∣ � C̃1
1

Ω
(Ωτh)−2p+2R � h, j = 1, . . . , d. (F.10)

We consider the following mutually exclusive and collectively exhaustive cases:
Case 1: n

λ∗ � η
6 .

Put c = n
λ∗ . Then, under the assumption of this case and with Ω � d

3h we have that 3h < |c| � η
6 .

We can therefore apply Proposition F.3 for c and (under appropriate further assumptions on Ω) get that
there exists an interval I2 ⊂ Λ(x) of length |I2| = (2d2η)−1, such that for all λ ∈ I2 and for all k ∈ Z it
holds that ∣∣∣∣c− k

λ

∣∣∣∣ = ∣∣∣∣ n

λ∗
− k

λ

∣∣∣∣ > 3h. (F.11)

Put

I2 = [λ2, λ2 + (d22η)−1], I−1
2 =

[
1

λ2 + (d22η)−1
,

1

λ2

]
, Ĩ−1

2 = λ2I−1
2 .
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SUPER-RESOLUTION OF NEAR-COLLIDING POINT SOURCES 565

Let 1 � j � d be any index such that xj ∈ x \ xc. Put cj = (xi + n
λ∗ − xj). Then

|cj| = |xi +
n

λ∗
− xj| � |xi − xj| −

n

λ∗
� η − n

λ∗
� η − η

6
� 5

6
η, (F.12)

where in the second inequality, we used the fact that xj is a non-cluster node, and in the third inequality,
we used the assumption of case 1.

Put I = I−1
2 , c = cjλ2, ε = 2hλ2 and α = 1

2d . By (F.12) we have that |c| � 5
6ηλ2. Using the former,

one can validate that there exists positive constants C′(d), C′′(d) such that if C′(d)
η

� Ω � C′′(d)
h , then

I, c, ε, α meet the conditions of Lemma F.1. We then invoke Lemma F.1 and get that

ν
( {

t ∈ Ĩ−1
2 : ∃k ∈ Z such that

∣∣∣kt − cjλ2

∣∣∣ � 2hλ2

} )
<

1

2d
|Ĩ−1

2 |.
Then

ν
( {

t ∈ I−1
2 : ∃k ∈ Z such that

∣∣∣kt − cj

∣∣∣ � 2h
} )

<
1

2d
|I−1

2 |.
By the above and using Lemma (F.2)

ν
( {

λ ∈ I2 : ∃k ∈ Z such that

∣∣∣∣ kλ − cj

∣∣∣∣ � 2h

} )
<

1

d
|I2|. (F.13)

Define the set

E =
⋃

1�j�d,
xj /∈xc

{
λ ∈ I2 : ∃k ∈ Z such that

∣∣∣∣ kλ − cj

∣∣∣∣ � 2h

}
.

Using the union bound and (F.13)
ν(E) < |I2|. (F.14)

We conclude from the above that there exists λ ∈ I2 such that for any non-cluster node xj and for any
k ∈ Z ∣∣∣∣xi +

n

λ∗
− xj −

k

λ

∣∣∣∣ > 2h.

On the other hand, we have that for all k ∈ Z (see (F.11))∣∣∣∣ n

λ∗
− k

λ

∣∣∣∣ > 3h.

Fix λ
�̃
= λ. Then, using the above, for any π ∈ Πd and any k ∈ Z, if xπ(i) is a cluster node then∣∣∣∣xi +

n

λ∗
− xπ(i) −

k

λ
�̃

∣∣∣∣ � ∣∣∣∣ n

λ∗
− k

λ
�̃

∣∣∣∣− ∣∣xi − xπ(i)

∣∣ > 3h− h = 2h, (F.15)

and if xπ(i) is a non-cluster node then∣∣∣∣xi +
n

λ∗
− xπ(i) −

k

λ
�̃

∣∣∣∣ > 2h. (F.16)

Now by combining (F.10), (F.15) and (F.16), we get that λ
�̃

satisfies (F.9). This completes the proof
of case 1.

Case 2: n
λ∗ >

η
6 and ∀y ∈ x \ xc : |xi + n

λ∗ − y| > η
6 .

We show that in this case, there exists λ ∈ I1 such that λ
�̃
= λ satisfies (F.9).
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Put (as above)

I−1
1 =

[
1

λ1 + (d22η)−1
,

1

λ1

]
, Ĩ−1

1 = λ1I−1
1 =

[
λ1

λ1 + (d22η)−1
, 1

]
.

Put I = Ĩ−1
1 , c = n

λ∗ λ1, ε = 3hλ1 and α = 1
4 . By the assumptions of this case, we have n

λ∗ >
η
6 , then

c = n
λ∗ λ1 >

η
6 λ1. Using the former, one can validate that there exist positive constants C′(d), C′′(d) such

that if C′(d)
η

� Ω � C′′(d)
h , then I, c, ε, α meet the conditions of Lemma F.1. We then invoke Lemma F.1

and get that

ν
( {

t ∈ Ĩ−1
1 : ∃k ∈ Z such that

∣∣∣kt − n

λ∗
λ1

∣∣∣ � 3hλ1

} )
<

1

4
|Ĩ−1

1 |.
Then

ν
( {

t ∈ I−1
1 : ∃k ∈ Z such that

∣∣∣kt − n

λ∗
∣∣∣ � 3h

} )
<

1

4
|I−1

1 |.
By the above and using Lemma (F.2)

ν
( {

λ ∈ I1 : ∃k ∈ Z such that

∣∣∣∣ kλ − n

λ∗

∣∣∣∣ � 3h

} )
<

1

2
|I1|. (F.17)

Now, for any index j such that xj is a non-cluster node put cj = xi + n
λ∗ − xj. Put I = Ĩ−1

1 , c = cjλ1,

ε = 2hλ1 and α = 1
4d . Then, by the assumptions of this case |c| >

η
6 λ1 and with this one can validate

that there exist positive constants C′(d), C′′(d) such that if C′(d)
η

� Ω � C′′(d)
h , then I, c, ε, α meet the

conditions of Lemma F.1. Invoking it and using Lemma (F.2) we have that

ν
( {

λ ∈ I1 : ∃k ∈ Z such that

∣∣∣∣ kλ − cj

∣∣∣∣ � 2h

} )
<

1

2d
|I1|. (F.18)

Define the set

E =
⋃

1�j�d,
xj /∈xc

{
λ ∈ I1 : ∃k ∈ Z such that

∣∣∣∣ kλ − cj

∣∣∣∣ � 2h

}
.

Using the union bound and (F.18)

ν(E) <
1

2
|I1|. (F.19)

Now, combining (F.17) and (F.19), we get that there exists λ ∈ I1 such that for all k ∈ Z∣∣∣∣ kλ − n

λ∗

∣∣∣∣ > 3h,∣∣∣∣xi +
n

λ∗
− xj −

k

λ

∣∣∣∣ > 2h, ∀xj ∈ x \ xc.

Finally, setting λ
�̃
= λ we get from the above and (F.10) that λ

�̃
satisfies (F.9).

Case 3: n
λ∗ >

η
6 and ∃y ∈ x \ xc : |xi + n

λ∗ − y| � η
6 .

First, we note that since the non-cluster nodes are each separated from any other node by at least
η, there can be at most one node y ∈ x \ xc such that |xi + n

λ∗ − y| � η
6 . Therefore, let j be the index

of the non-cluster node for which we have |xi + n
λ∗ − xj| � η

6 . By the choice of λ∗, we also have that
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|xi + n
λ∗ − xj| > (32d4)−1 1

λ1
(see (F.3)). We conclude that

(32d4)−1 1

λ1
� |xi +

n

λ∗
− xj| �

η

6
,

and for Ω � 1
96d3h

we then have that

3h < |xi +
n

λ∗
− xj| �

η

6
.

We now invoke Proposition F.3 and get that there exists an interval I3 ∈ Λ(x) of length |I3| =
(2d2η)−1 such that for all λ ∈ I3 and for all k ∈ Z∣∣∣∣xi +

n

λ∗
− xj −

k

λ

∣∣∣∣ > 3h. (F.20)

Put

I3 = [λ3, λ3 + (2d2η)−1], I−1
3 =

[
1

λ3 + (d22η)−1 ,
1

λ3

]
, Ĩ−1

3 = λ3I−1
3 .

For each index 1 � 	 � d, 	 �= j put c	 = xi + n
λ∗ − x	 and note that

|c	| = |xi +
n

λ∗
− xj + xj − x	| � |xj − x	| − |xi +

n

λ∗
− xj| �

5

6
η.

Put I = Ĩ−1
3 , c = c	λ3, ε = 2hλ3 and α = 1

2d . Then, with the above |c| � 5
6ηλ3 and then following

similar computations as in the previous cases (see cases 1, 2), one can validate that I, c, ε, α meet the
conditions of Lemma F.1 for C′

η
� Ω � C′′

h where C′, C′′ are constants depending only on d. Invoking
Lemma F.1 with I, c, ε, α we get that

ν
( {

t ∈ Ĩ−1
3 : ∃k ∈ Z such that

∣∣kt − c	λ3

∣∣ � 2hλ3

} )
<

1

2d
|Ĩ−1

3 |.
Then

ν
( {

t ∈ I−1
3 : ∃k ∈ Z such that

∣∣kt − c	

∣∣ � 2h
} )

<
1

2d
|I−1

3 |.
By the above and using Lemma (F.2)

ν
( {

λ ∈ I3 : ∃k ∈ Z such that

∣∣∣∣ kλ − c	

∣∣∣∣ � 2h

} )
<

1

d
|I3|. (F.21)

Define the set

E =
⋃

1�	�d, 	 �=j

{
λ ∈ I3 : ∃k ∈ Z such that

∣∣∣∣ kλ − c	

∣∣∣∣ � 2h

}
.

Using the union bound and (F.21)
ν(E) < |I3|.

We conclude from the above that there exists λ ∈ I3 such that for all k ∈ Z and for any index 1 � 	 �
d, 	 �= j, ∣∣∣∣xi +

n

λ∗
− x	 −

k

λ

∣∣∣∣ > 2h. (F.22)
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Put λ
�̃
= λ. Recall that I3 satisfies (F.20). Then, with (F.20) and (F.22) λ

�̃
satisfies that for all k ∈ Z and

for any index 1 � 	 � d ∣∣∣∣xi +
n

λ∗
− x	 −

k

λ
�̃

∣∣∣∣ > 2h.

Using the above and (F.10), we get that that λ
�̃

satisfies (F.9). �
We now prove the intermediate claims: Lemma F.1, Lemma F.2 and Proposition F.3.

Proof of Lemma F.1. Let a, ε, α, c and I = [a, 1] as specified in Lemma F.1. Without loss of generality,
we assume that c > 0, consequently it is sufficient to prove that

ν
( {x ∈ I : ∃k ∈ N such that |kx− c| � ε} ) < α|I|.

If 0 < c < 2 then one can verify that

ν
( {x ∈ I : ∃k ∈ N such that |kx− c| � ε} ) � 2ε.

Then, under this condition and with the assumption that c � 8 ε
α|I| , we have that 2ε < α|I|, therefore

ν
( {x ∈ I : ∃k ∈ N such that |kx− c| � ε} ) � 2ε < α|I|.

We now prove the case c � 2.
Let N ∈ N be the unique integer such that

c

�c� + N
� a <

c

�c� + N − 1
. (F.23)

Then

ν
( {x ∈ I : ∃k ∈ Z such that |kx− c| � ε} ) � N∑

k=0

2ε

�c� + k
= 2ε

N∑
k=0

1

�c� + k
. (F.24)

If N � 2 then with c � 8 ε
α|I|

2ε

N∑
k=0

1

�c� + k
� 2ε

2∑
k=0

1

�c� + k
< 8

ε

c
� α|I|.

Combining (F.24) with the above proves the claim for this case.
We are left to prove the case N � 3, c � 2.
For Hn the nth partial sum of the Harmonic series we have that

log(n)+ γ < Hn < log(n+ 1)+ γ ,

where log is the base 2 logarithm. Then

2ε

N∑
k=0

1

�c� + k
� 2ε (log(�c� + N + 1)− log(�c� − 1))

= 2ε log

(�c� + N + 1

�c� − 1

)
= 2ε log

(
1+ N + 2

�c� − 1

)
.

(F.25)
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Using (F.23) and since by assumption a � 1
2 we have that

N � �c� + 2. (F.26)

Then by (F.23) and (F.26) (and assuming N � 3, c � 2)

|I| = 1− a � N − 2

�c� + N − 1
� N − 2

2�c� + 1
� 1

5

(N + 2)

2�c� + 1
� 1

25

(N + 2)

�c� − 1
. (F.27)

Inserting (F.27) into (F.25) and using the assumption that 100ε � α

2ε log

(
1+ N + 2

�c� − 1

)
� 2ε log (1+ 25|I|)

= 2ε log(e) ln (1+ 25|I|)
< 100ε|I|
� α|I|,

(F.28)

which then proves the claim using (F.24) and (F.25).
This completes the proof of Lemma F.1. �

Proof of Lemma F.2. For any sub-interval [c, d] ⊆ I we have that

ν ([c, d])

ν(I)
= d − c

b− a
= cd

ab

1
c − 1

d
1
a − 1

b

� b

a

ν(
[

1
d , 1

c

]
)

ν(I−1)
. (F.29)

Using the above

ν(S)

ν(I)
=
∑

i

ν([ai, bi])

ν(I)
� b

a

∑
i

ν([ 1
bi

, 1
ai

])

ν(I−1)
= b

a
ν(S−1).

This completes the proof of Lemma F.2. �
Proof of Proposition F.3. Without loss of generality, assume that c > 0 and put T = cλ1.

We will use the following inequality repeatably below. For each k � 0 and 0 � α � λ1 we have

kα

2λ2
1

� k

(
1

λ1
− 1

λ1 + α

)
� kα

λ2
1

. (F.30)

Put β = T − �T� and consider the following cases:
Case 1: 1

8 � β � 7
8 .

We show that in this case I = I1 ⊂ Λ(x) satisfies (F.2) provided that Ωh < d
96 and Ω � 4

dη
. To see

this, recall that I1 = [λ1, λ1+ (2d2η)−1]. Put λ(α) = λ1+α, 0 � α � (2d2η)−1. We have that for each
integer k � �T� ∣∣∣∣c− k

λ(α)

∣∣∣∣ = T

λ1
− k

λ(α)
� β

λ1
� 1

8λ1
.
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On the other hand, for each integer k � !T"∣∣∣∣c− k

λ(α)

∣∣∣∣ � k − T

λ1
− k

(
1

λ1
− 1

λ(α)

)

� k − T

λ1
− kα

λ2
1

= (k − T)

(
1

λ1
− α

λ2
1

)
− Tα

λ2
1

� (1− β)

(
1

λ1
− α

λ2
1

)
− Tα

λ2
1

� 1

8

(
1

λ1
− α

λ2
1

)
− Tα

λ2
1

,

(F.31)

where in the second inequality, we used (F.30). Using Ω � 4
dη
⇒ α

λ1
� 1

2 , T
λ1

� η
6 and Ωh < d

96 we
have that

1

8

(
1

λ1
− α

λ2
1

)
− Tα

λ2
1

� 1

16λ1
− 1

32λ1
= 1

32λ1
> 3h.

We conclude from the above that for 1
8 � β � 7

8 (and under the assumptions on Ω and Ωh) I = I1 ⊂
Λ(x) satisfies (F.2).
Case 2: β � 1

8 .
First, if �T� = 0 we show that I = I1 ⊂ Λ(x) satisfies (F.2) for Ωh � d

8 . For k = 0∣∣∣∣c− k

λ

∣∣∣∣ = c > 3h.

For k > 0 and λ ∈ I1∣∣∣∣c− k

λ

∣∣∣∣ = ∣∣∣∣ β

λ1
− k

λ

∣∣∣∣ � 1

λ
− β

λ1
� 1

2λ1
− 1

8λ1
= 3

8λ1
> 3h,

where in the last inequality, we used the assumption that Ωh � d
8 .

Now, assume that �T� > 0 and consider the next inequalities

T

(
1

λ1
− 1

λ(α)

)
> 3h, (F.32)

�T�
(

1

λ1
− 1

λ(α)

)
<

1

4λ1
. (F.33)

We show that if for 0 � α � λ1, λ(α) satisfies both (F.32) and (F.33) then λ(α) satisfies (F2), provided
that Ωh � d

24 .
For any integer k � �T� we have, using (F.32), that

T

λ1
− k

λ(α)
� T

(
1

λ1
− 1

λ(α)

)
> 3h.
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For any integer k > �T�
k

λ(α)
− T

λ1
� �T�

λ(α)
− T

λ1
+ 1

λ(α)

� −�T�
(

1

λ1
− 1

λ(α)

)
− β

λ1
+ 1

λ(α)

> − 1

4λ1
− β

λ1
+ 1

λ(α)

� − 3

8λ1
+ 1

2λ1

� 1

8λ1

� 3h,

where in the third inequality, we used (F.33), in the fourth inequality, we used both β � 1
8 and 0 � α �

λ1, and in the last inequality, we used Ωh � d
24 .

We then conclude that when Ωh is small enough, each λ(α) with 0 � α � λ1 which satisfies
both (F.32) and (F.33) satisfies (F.2). We now solve (F.32) and (F.33) for α. By (F.30) Tα

2λ2
1

> 3h ⇒
T
(

1
λ1
− 1

λ(α)

)
> 3h, then each 0 � α � λ1 such that

α >
6λ2

1h

T

satisfies (F.32). By (F.30) �T�α
λ2

1
< 1

4λ1
⇒ �T�

(
1
λ1
− 1

λ(α)

)
< 1

4λ1
, then each 0 � α � λ1 such that

α <
λ1

4�T� ,

satisfies (F.33).
We conclude from the above that for

α ∈
(

6λ2
1h

T
,

λ1

4�T�

)
= I3,

λ(α) satisfies (F.2).

Now, we recall that by Proposition 5.8, every interval I′ ⊂
[

1
2

Ω
2d−1 , Ω

2d−1

]
of size 1

η
contains a sub-

interval I of size (2d2η)−1 such that I ⊂ Λ(x). Put I4 = λ1 + I3 and I5 = I4 ∩
[

1
2

Ω
2d−1 , Ω

2d−1

]
. We will

now validate that |I5| > 1
η

for Ωh < d
72 . To prove that, we show that

λ1 +
6λ2

1h

T
+ 1

η
< min

(
λ1 +

λ1

4�T� ,
Ω

2d − 1

)
.
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First, we show that λ1 + 6λ2
1h

T + 1
η

< λ1 + λ1
4�T� :

λ1

4�T� −
6λ2

1h

T
� λ1

T

(
1

4
− 6λ1h

)
� 6

η

(
1

4
− 6λ1h

)
>

1

η
,

where in the penultimate inequality, we used the proposition assumption that η
6 � c = T

λ1
, and in the

last inequality, we used Ωh < d
72 . Next, we show that λ1 + 6λ2

1h
T + 1

η
< Ω

2d−1 for Ω >
5(2d−1)

η
and

Ωh < d
72 :

λ1 +
6λ2

1h

T
+ 1

η
� λ1

(
1+ 6λ1h

)+ 1

η
� 13

12
λ1 +

1

η

� 13

12

(
Ω

2(2d − 1)
+ 1

η

)
+ 1

η
<

Ω

2d − 1
.

We conclude that |I5| > 1
η

and I5 ⊂
[

1
2

Ω
2d−1 , Ω

2d−1

]
then by Proposition 5.8 I5 contains a sub-interval I

of size (2d2η)−1 such that I ⊂ Λ(x). Since by construction I5 satisfies (F2), this completes the proof of
the case β � 1

8 of Proposition (F.3).
We are left to prove the case 7

8 � β. This case is proved similarly to the case β � 1
8 . We therefore

omit the proof of this case. �
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