
A Survey on Multimodal Large Language Models

Abstract—In recent years, Multimodal Large Language Models
(MLLMs) have gradually become an important research direc-
tion in the field of artificial intelligence. Traditional unimodal
language models primarily rely on textual data, and although
they are capable of handling language tasks, their performance
is limited when dealing with non-text data such as images and
audio. MLLMs integrate various forms of data, such as text,
images, audio, and video, significantly improving performance
in multimodal tasks, including visual-language understanding,
cross-modal reasoning, and vision-based generation tasks. These
models provide a more comprehensive ability to understand
and reason with information, driving the diverse application of
intelligent systems. This paper first reviews the basic architecture
of current MLLM research, providing a detailed introduction to
the model training strategies (pre-training, instruction-tuning,
and alignment tuning) and data processing methods, while also
exploring common evaluation criteria for multimodal tasks.
Next, the paper discusses the potential for expanding MLLMs,
including how to optimize models to tackle more complex tasks
such as multimodal reasoning, unsupervised learning, and cross-
modal reasoning. Additionally, we analyze key challenges in
current MLLM research, focusing on issues like modality fusion
and techniques for mitigating multimodal hallucination. Finally,
the paper looks ahead to future research directions for MLLMs,
proposing potential breakthroughs in technology.

Index Terms—Multimodal, Large Language Models, Vision-
Language Models

I. INTRODUCTION

In the real world, information exists not only as text but
also in multimodal forms including images, audio, and video.
Traditional language models primarily rely on textual data for
training, enabling them to understand and generate linguistic
information to a certain extent. However, their limited capacity
for processing other modalities such as visual and auditory
information often hinders comprehensive understanding of
cross-modal correlations and latent value in multimodal con-
texts. To address this limitation, researchers have recently
proposed Multimodal Large Language Models (MLLMs),
whose core objective is to establish intermodal connections
and enable joint reasoning across textual, visual, and auditory
information by fusing data from multiple modalities. Built
upon Large Language Models (LLMs) as their foundation,
MLLMs demonstrate the capability to process, reason with,
and output information from diverse modalities. Their devel-
opment not only significantly enhances model performance
in multimodal tasks but also extends our understanding of
information processing from unimodal to complex multimodal
scenarios, thereby improving intelligent systems’ generaliza-
tion capabilities and application potential.

As an emerging research frontier, multimodal large language
models have achieved notable progress in recent years, yet
numerous challenges remain unaddressed for practical imple-

mentation. A primary challenge lies in developing effective
cross-modal fusion mechanisms that ensure seamless interac-
tion and information flow between modalities, which is an
ongoing research difficulty. Additionally, model performance
is constrained by the inherent complexity and diversity of mul-
timodal data, coupled with limited availability of high-quality
training datasets. Current multimodal models also suffer from
weak interpretability, with opaque decision-making processes
and reasoning rationales that hinder their reliable deployment
in real-world applications. Despite these challenges, systematic
surveys comprehensively analyzing the evolution, technical
obstacles, and future directions of MLLMs remain relatively
scarce.

To address these research gaps, this paper conducts a
systematic literature review analyzing landmark studies in
multimodal large language models from both domestic and
international sources. Through comprehensive analysis of ex-
isting research, we construct a holistic knowledge frame-
work to facilitate comparative understanding of different ap-
proaches, identify critical technological advancements, and
highlight unresolved issues. Our survey focuses on key aspects
including model architectures, training strategies (e.g. pretrain-
ing, instruction fine-tuning, and alignment fine-tuning), data
processing methodologies, and evaluation protocols, ensuring
theoretical rigor while providing references for subsequent
research.

The paper first presents the fundamental architecture of
MLLMs, detailing their core structures, training paradigms,
data processing techniques, and standardized evaluation met-
rics. Subsequently, we discuss potential improvements and
extensions of current MLLMs, emphasizing strategies to miti-
gate multimodal hallucination during complex task execution,
thereby enhancing model robustness and trustworthiness. Fi-
nally, based on a comprehensive analysis of existing research,
we systematically examine the key challenges in MLLM
development, including effective modality fusion, data diver-
sity requirements, and model interpretability. Additionally, we
propose future research directions to advance this critical field.

II. ARCHITECTURE

A typical Multimodal Large Language Model (MLLM)
comprises three core modules: a pre-trained modality encoder,
a pre-trained LLM, and a modality interface to connect them.
Certain architectures may additionally incorporate a generator
module to synthesize non-textual outputs such as images or
video frames. Fundamentally, the LLM serves as the cognitive
engine of the MLLM architecture, analogous to the human
brain’s reasoning system, responsible for cross-modal under-
standing and logical inference. In most implementations, the



LLM component remains pretrained and kept frozen during
multimodal adaptation, thereby preserving its acquired lin-
guistic capabilities without further parameter updates under
multimodal inputs.

The multimodal encoder operates by projecting diverse
modality inputs into a unified embedding space. For visual pro-
cessing, standard implementations employ Vision Transform-
ers (ViTs) from frameworks like CLIP [1], which effectively
map image content into vector representations congruent with
linguistic expressions. These encoders transform input images
or other modality-specific data into high-dimensional embed-
dings, enabling joint processing across modalities within a
shared semantic space. However, inherent disparities between
multimodal encoders (e.g. CLIP’s tokenizers and pretraining
schemas) and LLMs create semantic gaps in cross-modal
alignment. Consequently, the critical role of the multimodal
interface lies in translating encoder-generated embeddings
into LLM-compatible textual representations. This conversion
necessitates not only geometric alignment in the embedding
space but also preservation of cross-modal semantic consis-
tency to ensure the LLM can reliably leverage these represen-
tations for reasoning and generation tasks.

Fig. 1. An illustrative diagram of a typical MLLM architecture, consisting of
an encoder, a connector, and an LLM. An optional generator can be appended
to the LLM to generate additional modalities (e.g. images, audio) beyond text.

A. Modality encoder
A modality encoder serves as a projection module that

transforms raw data from heterogeneous modalities (e.g. im-
ages, audio, video) into structured, semantically meaningful
embeddings within a unified latent space. By bridging the
”modality gap,” these encoders enable Large Language Models
(LLMs) to process non-linguistic inputs via their pretrained
text-centric architectures.

a) Image Encoders: Vision Transformers (ViTs) and
their derivatives dominate image encoding. ViTs partition
images into fixed-size patches, linearly projected into token
sequences processed through self-attention layers, effectively
capturing global visual relationships. CLIP-ViT [1], an exten-
sion of ViT, is co-trained with a text encoder via contrastive
learning on image-text pairs, aligning visual and textual em-
beddings in a shared space. This dual-training strategy empow-
ers CLIP-ViT to generate image representations semantically
congruent with linguistic contexts, making it a cornerstone for
vision-language integration in many MLLMs.

b) Audio Encoders: Transformer-based models like
Wav2Vec 2.0 [2] and CLAP (Contrastive Language-Audio Pre-
training) [3] are state-of-the-art. Unlike CNNs for spectrogram
processing, Wav2Vec 2.0 operates directly on raw waveforms
using self-supervised learning. It masks segments of audio
signals and trains the model to predict latent representations,
learning robust acoustic features. For multimodal alignment,
CLAP extends CLIP’s paradigm to audio, jointly training
audio and text encoders via contrastive loss on audio-caption
pairs, thereby mapping audio signals to language-compatible
embeddings.

c) Video Encoders: Video encoding demands modeling
spatiotemporal dynamics. The TimeSformer [4] architecture
adapts ViTs for video by factorizing self-attention into spatial
and temporal dimensions, capturing both intra-frame features
and inter-frame motion. For efficiency, VideoMAE [5] ap-
plies masked autoencoding to spatiotemporal patches, recon-
structing corrupted video content during pretraining. These
approaches enable holistic video representation learning while
maintaining compatibility with transformer-based MLLMs.

B. Pre-trained LLM

Large Language Models (LLMs) serve as the cognitive
core of Multimodal Large Language Models (MLLMs). This
enables MLLMs to inherit critical LLM capabilities such as
zero-shot generalization, few-shot learning, chain-of-thought
reasoning, and instruction-following abilities. In practice, fine-
tuning pre-trained LLMs is typically more efficient and prac-
tical for MLLM development, rather than training LLMs
from scratch. During pre-training, LLMs acquire extensive
world knowledge through unsupervised learning on massive
text corpora, resulting in robust generalization and reasoning
capabilities.

Among mainstream publicly available LLMs, Decoder-Only
architectures dominate due to their superior generative ca-
pacity, particularly suited for tasks requiring autoregressive
text generation. Representative open-source LLMs such as the
LLaMA [6] and Vicuna [7] families heavily rely on English-
centric training corpora, which limits their multilingual compe-
tence—especially under non-English scenarios (e.g. Chinese).
In contrast, the Qwen [8] series exemplifies a bilingual LLM
explicitly optimized for both English and Chinese, demonstrat-
ing enhanced potential in multilingual applications.

Notably, scaling LLM parameters has proven instrumental
for performance gains, analogous to increasing input resolu-
tion. Specifically, Liu et al. [9] demonstrated that expanding
model parameters from 7B to 13B yields comprehensive per-
formance improvements across multiple standard benchmarks.
This scaling enhances not only NLP task accuracy but also
contextual understanding, text fluency, and problem-solving
versatility. As LLMs grow larger, they capture richer linguistic
patterns and contextual nuances, thereby achieving stronger
generalization. Consequently, parameter scaling remains piv-
otal for advancing LLM capabilities.



C. Modality interface

The modality interface serves as the critical bridge between
raw non-linguistic data (e.g. images, audio) and the textual
processing framework of large language models (LLMs). Its
primary role is to project heterogeneous modality-specific
features into a unified embedding space that aligns with
the LLM’s linguistic understanding, enabling seamless multi-
modal reasoning. Two dominant methodologies have emerged:
learnable neural connectors and expert-driven language
conversion.

a) Learnable connectors: This approach introduces
lightweight trainable adapter networks to align multimodal
embeddings with LLM token spaces. A prevalent strategy
employs learnable query tokens paired with attention-based
architectures to extract cross-modal semantic relationships.
For example, BLIP-2 [10] introduces a Transformer-based Q-
Former, where a set of initialized query tokens interacts with
visual features via self-attention and cross-attention layers.
During pretraining, frozen pretrained encoders (e.g. CLIP-ViT
for images and OPT for text) provide initial visual and textual
representations. The Q-Former, initialized with randomly sam-
pled query tokens, iteratively refines these queries via cross-
attention layers to identify semantically relevant regions in
visual features. In the alignment phase, the model optimizes a
contrastive loss that minimizes the distance between learned
visual queries and their corresponding textual embeddings,
effectively creating a shared vision-language latent space. This
approach balances flexibility and efficiency, as the frozen
pretrained vision and language encoders retain their domain
expertise, while the lightweight Q-Former handles cross-modal
alignment with minimal trainable parameters.

Fig. 2. An illustration of the BLIP-2 architecture, composed of a vision
encoder, the Q-Former (a query-based Transformer), and a decoder-based
LLM (e.g. OPT). A fully-connected layer bridges the Q-Former’s output
dimension to the LLM’s input space, enabling efficient cross-modal alignment
while keeping both the encoder and LLM frozen.

In contrast, linear projection methods offer a computa-
tionally frugal solution by mapping raw multimodal features
directly to LLM spaces via fully connected layers. LLaVA
[11] exemplifies this paradigm, employing a single linear
MLP to transform CLIP-extracted image features into vectors
that match the dimension of the LLM’s text embeddings.
Although less expressive than attention-based mechanisms,
this method achieves remarkable efficiency and simplicity,
enabling seamless integration of visual and textual tokens for
multimodal prompts.

b) Expert-driven language conversion: Here, domain-
specific expert models (e.g. image-to-text captioners) first con-

vert non-text data into linguistic descriptions. The generated
text is then fed directly to the LLM. For instance, PaLI [12]
leverages an image captioning model to transform visual inputs
into textual prompts that guide LLM reasoning. This method
bypasses direct feature alignment but depends on the accuracy
of intermediate linguistic representations.

III. TRAINING STRATEGY

Multimodal Large Language Models (MLLMs) generally
undergo three primary training stages: pretraining, instruction
tuning, and alignment tuning. Each stage addresses distinct ob-
jectives and employs different data types, enabling progressive
optimization of cross-modal capabilities. This section delves
into the goals, data requirements, and characteristics of each
stage, followed by a discussion of their synergistic effects on
model performance.

A. Pretraining

Pretraining serves as the foundational stage for MLLMs,
aiming to align heterogeneous modalities (e.g. vision and lan-
guage) and establish robust cross-modal representations. Typ-
ically, MLLMs integrate a pretrained language model (LLM)
and a multimodal encoder (e.g. a vision encoder during image-
text prtraining), both of which remain frozen during this phase.
While the LLM excels at text understanding and reasoning,
and the vision encoder captures rich visual features, aligning
their latent spaces is critical for enabling joint multimodal
understanding. The primary objective of pretraining is to
optimize lightweight multimodal connectors that bridge these
frozen modules, facilitating cross-modal interaction without
compromising their pretrained knowledge.

a) Strategy: A widely adopted pretraining strategy in-
volves freezing both the vision encoder and LLM while
training only the connector. A common training objective is to
minimize the cross-entropy loss, enabling the model to autore-
gressively generate accurate textual descriptions (e.g., image
captions) conditioned on visual inputs. Recent studies, how-
ever, have explored partial unfreezing of the vision encoder
to refine image-text alignment. For instance, the ShareGPT-
4V model [13] demonstrated that selectively unfreezing the
vision encoder while leveraging high-quality caption data
significantly improves multimodal alignment, yielding more
accurate and coherent text outputs.

b) Data: This stage primarily relies on large-scale
image-text pairs, where natural language descriptions are asso-
ciated with corresponding images, audio, or videos. Two types
of data are commonly utilized: coarse-grained and fine-grained
pairs. Coarse-grained data is typically scraped from the web,
offering vast scale and diversity at the cost of noise. These
datasets often suffer from mismatched or inaccurate image-
text pairs, with captions being brief and imprecise. In contrast,
fine-grained data features longer, detailed descriptions that
enable precise alignment between modalities. Such data is
often human-annotated or synthesized by powerful MLLMs
(e.g. GPT-4V). For example, using high-quality, small-scale



MLLM-generated captions to train a compact caption genera-
tor, which is then scaled up to produce large, refined datasets.
While fine-grained data enhances cross-modal understanding,
its creation requires expensive commercial MLLMs, resulting
in limited dataset sizes.

B. Instruction tuning

Instruction tuning refines MLLMs to interpret and execute
diverse tasks specified via natural language instructions. This
phase significantly enhances zero-shot generalization by ex-
posing models to a broad spectrum of tasks during training.

a) Strategy: Instruction samples typically consist of a
task instruction paired with multimodal input-output pairs.
For instance, in Visual Question Answering (VQA) [14], an
instruction may be formulated as “Answer the question: How
many objects are present in the image?” The input can include
images, text, or their combination, while the output is the task-
specific response.

Formally, an instruction-based sample is represented as a
triplet (I,X, Y ), where:

• I: Task instruction (natural language description).
• X: Multimodal input (e.g., image, text, or their fusion).
• Y : Ground-truth response.

The MLLM predicts an answer Ŷ based on I and X , param-
eterized by θ :

Ŷ = fθ(I,X) (1)

where the training objective minimizes the autoregressive
generation loss:

L = −
T∑

t=1

logPθ (yt | y<t, I,X) (2)

Here, T denotes the response length, and yt is the t-th token
in Y . This objective maximizes the likelihood of generating
the ground-truth tokens incrementally.

b) Data: Instruction datasets demand flexible formats
and task diversity, posing challenges in data collection.
Three primary approaches are adopted: data adaptation, self-
instruction, and data blending.

• Data Adaptation: Existing datasets (e.g. VQA) are re-
formatted into instruction-answer pairs. Instructions are
generated manually or semi-automatically via LLMs (e.g.
GPT-4) using seed templates. For tasks with short an-
swers, strategies include enforcing output length con-
straints or augmenting contextual information.

• Self-Instruction: LLMs synthesize new instructions to ad-
dress specialized needs (e.g. multi-turn dialogue). For ex-
ample, LLaVA converts images into textual descriptions
and employs GPT-4 to generate multimodal instruction
datasets. Similar approaches are adopted in MiniGPT-
4 and ChatBridge [15]. Recent advancements leverage
powerful MLLMs like GPT-4V to automate high-quality
data generation.

• Data Blending: Combining multimodal and language-
only data improves dialogue fluency and instruction-
following. LaVIN [16] randomly samples from both

data types during training.In contrast, MultiInstruct [17]
explores hybrid strategies, such as mixed tuning, which
involves random blending, and sequential tuning, where
language data is followed by multimodal data.

C. Alignment tuning

Alignment tuning is critical for adapting MLLMs to human
preferences, particularly in reducing hallucinations (e.g. gen-
erating unsupported visual claims). Two dominant approaches
are Reinforcement Learning from Human Feedback (RLHF)
and Direct Preference Optimization (DPO), which we detail
below.

a) Reinforcement Learning from Human Feedback
(RLHF): RLHF [18] aligns models with human preferences
via three stages:

• Supervised Fine-tuning (SFT): Initializes a policy model
using labeled data or pretrained instruction-tuned models.
This stage is optional if the base model already exhibits
instruction-following capabilities.

• Reward Modeling: Trains a reward model to score candi-
date responses based on human preference data. Given
a multimodal input (e.g. image-text pair) and two re-
sponses, the model assigns higher rewards to favorable
outputs.

• Reinforcement Learning: Optimizes the policy model via
Proximal Policy Optimization (PPO), while constraining
divergence from the initial policy using a KL divergence
penalty [19].
b) Direct Preference Optimization (DPO): DPO [23]

bypasses explicit reward modeling by directly learning from
pairwise human preferences via binary classification loss. This
approach reduces computational complexity and hallucination
rates. Variants like RLHF-V [20] refine this process by col-
lecting fine-grained (e.g. segment-level) preference data and
optimizing with DPO.

Alignment tuning relies on high-quality pairwise compari-
son datasets where humans rank model responses. Due to high
annotation costs, datasets are typically small but meticulously
curated (Table 1). Common modalities include image (I) and
text (T ) inputs.

TABLE I
A SUMMARY OF DATASETS FOR ALIGNMENT-TUNING. FOR INPUT/OUTPUT

MODALITIES

Dataset Sample Modality Source
LLaVA-RLHF [21] 10K I + T → T Human

RLHF-V [20] 5.7K I + T → T Human
VLFeedback [22] 380K I + T → T GPT-4V

IV. EVALUATION

Evaluation is a critical component of MLLM development,
offering actionable feedback for optimization and enabling
systematic comparison across models. Unlike traditional mul-
timodal models, which are often task-specific, MLLMs are



inherently general-purpose, necessitating comprehensive eval-
uation frameworks to assess their broad capabilities. Addition-
ally, MLLMs exhibit emerging abilities (e.g. OCR-free mathe-
matical reasoning), demanding novel evaluation protocols. We
categorize existing approaches into the following dimensions:

A. Task-Specific Benchmarks

These benchmarks focus on classical multimodal tasks:
• Visual Question Answering (VQA): Accuracy on datasets

like VQA-v2 and OK-VQA [23] measures visual ground-
ing and commonsense reasoning.

• Image Captioning: Metrics such as CIDEr [24] and
BLEU-4 evaluate fluency and relevance of generated
descriptions.

• Cross-Modal Retrieval: Precision@K on datasets like
COCO quantifies alignment between modalities.

B. General Capability Assessment

To evaluate broader abilities inherent to MLLMs:
• Open-Ended Generation: Tools like GPT-4 as a judge

score creativity and coherence in open scenarios (e.g.
story generation from images).

• In-Context Learning: Performance on few-shot tasks us-
ing benchmarks like MMBench [25] tests adaptability to
new instructions.

• Multimodal Dialogue: Metrics for multi-turn interaction
(e.g. relevance, consistency) are evaluated using datasets
such as VisDial.

C. Emerging Ability Evaluation

Novel protocols address unique MLLM capabilities:
• OCR-Free Reasoning: Math-focused benchmarks (e.g.

MathVista, TabMWP [26]) assess symbolic and numeri-
cal reasoning without explicit text detection.

• Hallucination Suppression: The POPE benchmark quan-
tifies hallucination rates in object existence verification
tasks.

V. MULTIMODAL HALLUCINATION

Multimodal hallucinations refer to incongruences between
generated text and visual input. These can include incorrect
object recognition, attribute misdescription, or flawed rela-
tional reasoning. Such hallucinations severely degrade the per-
formance and trustworthiness of Multimodal Large Language
Models (MLLMs). Therefore, addressing these hallucinations
is critical for enhancing model robustness and reliability. This
can be achieved through three strategies: pre-rectification,
process rectification, and post-rectification.

A. Pre-correction

Pre-correction mitigates hallucinations by optimizing train-
ing data and fine-tuning strategies. This involves augmenting
standard datasets with adversarially crafted negative samples,
such as image-text pairs with deliberate inconsistencies (e.g.,
mismatched object attributes), to strengthen the model’s cross-
modal alignment. Frameworks like LRV-Instruction [27] fur-
ther enhance grounding through negative semantic instructions

(e.g. ”Avoid excessive reasoning or associations when describ-
ing images.”), directing the model to prioritize factual fidelity.
Similarly, LLaVA-RLHF [21] employs reinforcement learning
from human feedback (RLHF) to align outputs with human
preferences, reducing over-imaginative outputs in complex
multimodal reasoning tasks. These data-driven approaches
strengthen cross-modal fidelity by training models to prioritize
visual evidence over unwarranted inferences.

B. In-process correction

In-process correction strategies alleviate hallucination gen-
eration by improving model architectures and inference pro-
cesses. These methods identify the root causes of hallucina-
tions and design corresponding adjustment mechanisms. For
instance, HallE-Switch [28] analyzes the sources of object
existence hallucinations and proposes that hallucination gen-
eration is closely related to the inherent knowledge reasoning
in LLMs rather than solely the visual encoder’s output. By
introducing continuous control factors, it effectively constrains
hallucination generation during inference, thereby reducing
over-speculation. Additionally, VCD (Visual Contrastive De-
coding) [29] suggests prioritizing reliance on visual infor-
mation over potential inferences from the language model
when image content undergoes noise processing, effectively
mitigating hallucinations caused by linguistic interference.
HACL [30] optimizes visual and linguistic embedding spaces
by employing contrastive learning to enhance cross-modal rep-
resentation similarity, enabling the model to better distinguish
real content from hallucinated content.

C. Post-correction

Post-correction methods correct hallucinations in gener-
ated text through specific mechanisms after model inference.
These methods typically integrate expert models to supplement
image contextual information and iteratively adjust model-
generated descriptions. Woodpecker [31] proposes a general
hallucination correction framework that revises erroneous de-
scriptions by stepwise examination of intermediate results at
each reasoning stage. A key strength of this method lies in
its interpretability, allowing researchers to clearly trace and
understand the causes of hallucinations and perform correc-
tions by augmenting image context. Similarly, LURE [32]
trains specialized revisers to regenerate descriptions for high-
uncertainty objects, ensuring the final output is more accurate
and trustworthy.

VI. CHALLENGES AND FUTURE DIRECTIONS

As a cutting-edge technology in artificial intelligence, Mul-
timodal Large Language Models (MLLMs) have demonstrated
significant potential in various application scenarios. However,
they still face a series of challenges that limit their widespread
adoption and in-depth development in real-world applications.

A. Limitations in Long Context Processing

Current MLLMs exhibit notable difficulties in processing
information with long temporal spans and extended contextual



dependencies. This is particularly evident in tasks such as
video understanding or the analysis of lengthy documents
interleaved with images and text, where models often under-
perform. Although recent advancements, including extended
context windows and efficient memory mechanisms, have par-
tially addressed these challenges, most models still struggle to
handle the complex interactions of massive multimodal infor-
mation. Therefore, designing models capable of efficiently pro-
cessing long-span, multimodal interleaved information while
balancing computational efficiency with performance remains
a critical direction for future research.

B. Effectiveness of Modality Fusion

A core challenge in multimodal learning lies in effectively
fusing information from heterogeneous modalities. While ex-
isting models can partially handle mappings between images
and text, their performance degrades significantly when faced
with more complex modality combinations (e.g. image-audio
pairs or long videos containing diverse information). Differ-
ent modalities exhibit distinct data structures and semantic
representations, making it inherently difficult to design a
unified representation that effectively captures and integrates
multimodal signals. Future research may prioritize developing
efficient cross-modal alignment mechanisms, attention archi-
tectures, and deep fusion methods to enhance the synergy of
multimodal information.

C. Security and Defensive Mechanisms

Like generic Large Language Models (LLMs), MLLMs are
vulnerable to security threats. Carefully designed adversarial
attacks can mislead models to generate inappropriate, biased,
or harmful content. Furthermore, since MLLMs integrate
multiple data modalities, their attack surfaces are broader,
potentially making them prime targets for malicious actors.
Consequently, constructing models with enhanced robustness
and security to prevent misuse or exploitation has become an
urgent priority. Beyond improving security guarantees, future
research must also ensure that models provide accurate and
reliable judgments and responses in complex real-world tasks.

VII. CONCLUSION

This paper provides a comprehensive review of the devel-
opment of Multimodal Large Language Models (MLLMs) and
offers an in-depth analysis of current research advancements
and challenges. By detailing the architectural frameworks,
training strategies, data processing techniques, and evaluation
standards of MLLMs, we establish a systematic foundation for
understanding their capabilities and limitations. Furthermore,
we identify critical shortcomings in current models when han-
dling complex tasks, particularly multimodal hallucinations,
and emphasize the urgent need to enhance model robustness
and trustworthiness. We hope this survey will serve as a
valuable reference for both academia and industry, fostering
advancements and novel insights in MLLM research while
inspiring broader interdisciplinary contributions to the field.
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