
Adversarial Examples for k-Nearest Neighbor
Classifiers Based on Higher-Order Voronoi Diagrams

Chawin Sitawarin
UC Berkeley

chawins@eecs.berkeley.edu

Evgenios M. Kornaropoulos
George Mason University
evgenios@gmu.edu

Dawn Song
UC Berkeley

dawnsong@cs.berkeley.edu

David Wagner
UC Berkeley

daw@cs.berkeley.edu

Abstract

Adversarial examples are a widely studied phenomenon in machine learning models.
While most of the attention has been focused on neural networks, other practical
models also suffer from this issue. In this work, we propose an algorithm for
evaluating the adversarial robustness of k-nearest neighbor classification, i.e.,
finding a minimum-norm adversarial example. Diverging from previous proposals,
we propose the first geometric approach by performing a search that expands
outwards from a given input point. On a high level, the search radius expands to the
nearby higher-order Voronoi cells until we find a cell that classifies differently from
the input point. To scale the algorithm to a large k, we introduce approximation
steps that find perturbation with smaller norm, compared to the baselines, in a
variety of datasets. Furthermore, we analyze the structural properties of a dataset
where our approach outperforms the competition.

1 Introduction

It is well-known that machine learning models can easily be misled by maliciously crafted inputs,
called adversarial examples, which are generated by adding a tiny perturbation to test samples [Biggio
et al., 2013, Szegedy et al., 2013, Goodfellow et al., 2015]. Adversarial examples are often studied in
the context of neural networks, leaving the problem largely unexplored for other classifiers. The k-
nearest neighbor, or simply k-NN, classifier is a simple yet widely used model in various applications
such as data mining, recommendation, and anomaly detection systems where interpretability and
simplicity are preferred [Wu et al., 2008]. This non-parametric classifier does not require a training
phase and has a well-understood and elegant geometric foundation [Okabe et al., 1992]. k-NN is also
an active area of research with lots of developments in popular libraries like Google’s ScaNN [Guo
et al., 2020] and Facebook’s FAISS [Johnson et al., 2017]. In recent works [Papernot and McDaniel,
2018, Dubey et al., 2019, Sitawarin and Wagner, 2019b], k-NN is combined with neural networks to
enhance the robustness and the interpretability. Despite the importance of k-NN, there are only a
handful of works that study its robustness [Wang et al., 2018, Yang et al., 2020, Wang et al., 2019,
Sitawarin and Wagner, 2019a, 2020].

The first step towards evaluating the robustness of a classifier is to generate an adversarial example
that is close to a given test point, under some definition of closeness. In the case of k-NN where
k > 1, this problem is challenging as the computation involves high-dimensional polytopes that
satisfy a set of geometric properties, the so-called Voronoi cells.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

In this work, we propose the GeoAdEx algorithm for finding adversarial examples for k-NN classifiers.
GeoAdEx is the first algorithm that exploits the underpinning geometry of the k-NN classifier.
Specifically, our approach performs a principled search on the underlying high-order Voronoi diagram
by expanding the search radius around the test point until it finds an adversarial, or simply incorrect,
classification. The geometric foundation of GeoAdEx allows us to locate nearby adversarial cells that
the other attacks typically miss. GeoAdEx follows the footsteps of the work by Jordan et al. [2019]
who exploited the geometry of neural networks for verifying the outputs. Our algorithmic approach
stands in sharp contrast to previous attacks for k-NN [Yang et al., 2020, Wang et al., 2019] which
refine the exhaustive approach by heuristic-based filtering.

Furthermore, we introduce optimizations and approximations to the main algorithm, and as a result,
the experiments show that GeoAdEx discovers the smallest adversarial distance compared to all of the
baselines in the vast majority of our experiments for k ∈ {3, 5, 7}. GeoAdEx finds up to 25% smaller
mean adversarial distance compared to the second best attack. We note that one inherent shortcoming
of our geometric approach is the increased computation time, an aspect that can be further improved.

Finally, we present experiments that demonstrate that GeoAdEx performs significantly better when
points from different classes are “mixed" together, i.e., there is no clear separation between classes.
On a high level, such a setup generates a more intricate spatial tessellation with nearby cells that
alternate classes. In this challenging case, GeoAdEx performs up to 5× better than the baselines.

2 Background and Related Work

2.1 Background

Let X = (x1, . . . , xn) be a set of points from Rd, also called generators, and let Y = (y1, . . . , yn)
be the class of each point from a set of possible classes {1, . . . , c}. Let d(x, x′) denote a metric
between x, x′ ∈ Rd. Let Z(k)(X) be the set of all possible subsets consisting of k points from X ,
i.e., Z(k)(X) = {L(k)

1 , . . . , L
(k)
i , . . . , L

(k)
l }, where L(k)

i = {xi1, . . . , xik}, xij ∈ X and l =
(
n
k

)
.

We define as order-k Voronoi cell associated with L(k)
i the set V (L

(k)
i) that includes the points of Rd

that are closer to L(k)
i than any other k points of X . More formally:

V (L
(k)
i) =

{
p | max

x
{d(p, x)|x ∈ L(k)

i } ≤ min
x′
{d(p, x′)|x′ ∈ X \ L(k)

i }
}

With the term Voronoi facet, or simply facet, we refer to a boundary of an order-k Voronoi cell. We
define as bisector B{xa, xb} the set of points from Rd that are equidistant from xa ∈ X and xb ∈ X .
There is a tight connection between bisectors and facets. Every Voronoi facet is part of a bisector, but
not every bisector,

(
n
2

)
in total, includes a facet. We call the bisectors that do include a facet active

bisectors and those that do not inactive bisectors. We also note that an order-k Voronoi cell has at
most k(n− k) facets. The collection of order-k Voronoi cells for all L(k)

i is called order-k Voronoi
diagram. In this work, we assume the standard non-cocircularity assumption1 to avoid degenerate
cases. We only consider the Euclidean distance for the k-NN, i.e., d(xa, xb) = ‖xa − xb‖2.

Up to this point, we have not used the classes of the X . In this work, we focus on k-NN classifiers
that classify based on the majority (class) vote of the k-nearest points. We define as adversarial cell
with respect to (x, y) any order-k Voronoi cell that has different majority than label y. We denote
with A(x) the set of all adversarial cells with respect to (x, y). With the term adversarial facet with
respect to (x, y) we refer to a facet that belongs to a cell from A(x).

2.2 Related Work

Adversarial Robustness of k-NN Classifiers. Wang et al. [2018] study the robustness property of
k-NN classifiers from a theoretical perspective. The authors show that a k-NN classifier can be as
robust as the optimal Bayes classifier given a sufficiently large number of generators and k. Wang et al.
[2018] and Yang et al. [2020] also propose potential methods for improving the robustness of k-NN
by pruning away some of the “ambiguous” generators. Other works consider different alternatives for

1In practice this can be achieved by adding a small random noise on each generator to break potential
cocircularity between them.

2

enhancing the robustness of neural networks by combining them with k-NN. [Papernot and McDaniel,
2018, Sitawarin and Wagner, 2019b, Dubey et al., 2019]

Attacks on k-NN Classifiers. Sitawarin and Wagner [2019a, 2020] propose a method for finding
minimum-norm adversarial examples on k-NN and deep k-NN classifiers [Papernot and McDaniel,
2018]. Their method approximates a k-NN classifier with a soft differentiable function so adversarial
examples can be found via a gradient-based optimization algorithm. While the approach is efficient
and scalable to large k, it provides no guarantee for finding the nearest adversarial example and
overlooks the geometry of k-NN.

Yang et al. [2020] and Wang et al. [2019] take a similar approach for finding the adversarial example
closest to a given test x. Their method follows an exhaustive search by computing the distance
between x and all the Voronoi cells that have a different class from x. Both of them show that this
can be done exactly when k = 1 but does not scale well for k > 1. Consequently, they introduce
heuristics to improve the efficiency by choosing only a subset of the Voronoi cells. However, in the
process, they lose the optimality guarantee on the resulted adversarial example. More importantly,
the heuristics will miss an exponential number of cells as k increases.

Attacks Based on Geometric Insights. The problem of verifying or finding the nearest adversarial
examples in neural networks is an active research direction where solutions still do not scale to a
satisfactory degree [Huang et al., 2017, Katz et al., 2017, Tjeng et al., 2017, Wong and Kolter, 2018,
Weng et al., 2018, Cohen et al., 2019, Jordan et al., 2019]. Among these works, Jordan et al. [2019]
proposed an alternative for a ReLU network, using a geometric approach. Specifically, the authors
notice that piecewise linear networks partition the input space into numerous polytopes where points
of the same polytope are classified with the same label. Armed with this observation, they propose an
algorithm that iteratively searches through these polytopes that are further away from the test sample
until they find a polytope with a different label.

3 The GeoAdEx Algorithm

Objective. The goal of the algorithm is to find the smallest perturbation δ∗ that moves a test point
(x, y) to an adversarial cell. This objective can be expressed as the following optimization problem:

δ∗ = arg min
δ

‖δ‖22 (1)

s.t. x+ δ ∈ A(x)

We define as ε∗ optimal adversarial distance where ε∗ := ‖δ∗‖2. The norm of any other (non-optimal)
perturbation δ that misclassifies (x, y), i.e., x+ δ ∈ A(x), is simply called adversarial distance.

A First Approach. The constraint of the above formulation implies that x+ δ must be a member
of an adversarial cell from A(x). A simple approach to solve this minimization is to build a series of
optimization problems, one for each of the cells in A(x), and pick the solution with the minimum
adversarial distance. Unfortunately, this would require solving O(

(
n
k

)
) quadratic programs each of

which has k(n − k) constraints. While this complexity may be manageable when k = 1 and n is
small, it does not scale with k. On a high level, Yang et al. [2020] and Wang et al. [2019] take this
approach and additionally develop heuristics to scale to cases with k > 1.

The GeoAdEx Approach. The core idea of GeoAdEx is to perform a principled geometric explo-
ration around the test point x. GeoAdEx processes order-k Voronoi cells à la breadth-first search until
it discovers an adversarial cell. Algorithm 1 provides a pseudocode of the main steps of GeoAdEx,
and Figure 1 illustrates some steps of GeoAdEx on a 3-NN classifier with two classes. In the fol-
lowing subsections, we explain these steps in detail and describe performance speedups as well as
approximation steps to scale the algorithm to k > 1.

3.1 Data Structures

We maintain a priority queue PQ as an auxiliary data structure that is defined for a given test
point (x, y). PQ tracks the progress made so far towards locating the optimal adversarial distance.

3

Figure 1: GeoAdEx on a Voronoi diagram for k = 3 in R2 with two classes. The color of each numbered
generator point shows its class, and the color of each cell indicates its classification outcome. The illustration
presents the step where GeoAdEx has processed the facets of V ({2, 5, 6}) and is transitioning to the next closest
cell V ({2, 3, 5}). The arrows indicate the facets that are inserted to the priority queue PQ. When GeoAdEx
terminates, it outputs the closest adversarial facet (orange line); this transition is indicated with the orange arrow,
and the orange triangle is the optimal adversarial example for x.

Algorithm 1: GeoAdEx Algorithm
Data: Test point (x, y)
Result: Adversarial distance ε

1 Initialize the smallest adversarial distance ε found so far as ε←∞;
2 Initialize PQ by inserting the facets of the order-k Voronoi cell that x falls into. Mark this cell as visited;
3 Call deleteMin from PQ until the returned facet is part of an unvisited order-k Voronoi cell. Initialize Ψ to

this unvisited Voronoi cell;
4 while Ψ is not an adversarial cell do
5 Find the set of facets Φ that comprise unvisited cell Ψ (Section 3.2);
6 Compute the distance between query point x and each of the facets in Φ (Section 3.3);
7 If (i) a facet from Φ is an adversarial facet, and (ii) the distance to this adversarial facet implies a

smaller norm than ε, then update ε;
8 Insert to PQ the facets in Φ with their distance if smaller than ε;
9 Call deleteMin from PQ until the returned facet is part of an unvisited order-k Voronoi cell. Update Ψ

to the new unvisited Voronoi cell;
10 end
11 If an adversarial facet is removed from PQ via deleteMin, the algorithm return the optimal adversarial

distance (see Lemma 1);
12 return ε;

Specifically, PQ performs the operations insert (resp. deleteMin) where the input (resp. output) is
a facet of the order-k Voronoi diagram of X . Every facet in PQ is accompanied by the distance
between the test point x and the facet. Priority is given to the facet with the minimum distance to
x. We also need to mark which Voronoi cells are processed. For that, we use a hash table (Python’s
native dictionary object) that has an entry for every order-k Voronoi cell that the algorithm has visited.
We refer to Voronoi cells that are part of the dictionary as visited and those that are not as unvisited.

3.2 Find Neighbors of a Voronoi Cell

Line 3 & 9 of Algorithm 1, GeoAdEx discovers an unvisited order-k Voronoi cell Ψ. In Line 5,
GeoAdEx needs to find the facets that comprise Ψ, which is equivalent to finding the Voronoi cells that
are neighboring with cell Ψ. We present three options for implementing the discovery of neighbors;
the choosing among them depends on the application, the size of the dataset, and the value of k.

4

(A) Neighbors via Order-k Voronoi Diagram. The exact computation of an order-k Voronoi
diagram in high dimensions constitutes a computationally challenging task. The cost of this option
amortizes when there is a large number of test points to be processed, and the dataset is fairly small in
size and dimension. However, it is highly unlikely to scale when k > 1 which is the goal of our work.

(B) Neighbors via Enumerating Bisectors. In this approach, one has to process a quadratic
number of bisectors that are potentially active with respect to the Voronoi cell Ψ (see the definition
from Section 2). Interestingly, we can filter out this set by only considering the bisectors whose
generator, exactly one of the two, also generates cell Ψ. Consequently, the task of finding the facets
of the current cell Ψ is reduced to testing the activeness of k(n− k) bisectors. Jumping ahead, this
step can be accomplished simultaneously with computing distance from x to each bisector so we
defer its analysis for Section 3.3. For comparison, the complexity of this step is O(poly(n, d, k))
without any speedups, and in the worst case, which is extremely unlikely in practice, it can be called
up to N times where N is the number of all cells (N is O(

(
n
k

)
)).

(C) Neighbors via Order-1 Voronoi Diagram. This approach is the middle ground between the
first two. That is, it still tests whether a bisector is active, much like (B), but it uses the Voronoi
diagram, much like (A), to reduce the number of bisectors to test. Given a Voronoi cell with k genera-
tors, e.g., V ({x1, . . . , xk−1, xk}), we know that its neighboring cells must have a set of generators
that differs by exactly one point, e.g., V ({x1, . . . , xk−1, xl}). We draw a connection between the
Voronoi diagrams of order 1 and k and show that the new point xl must be neighboring with at least
one of the order-1 cells V ({x1}), V ({x2}), . . . , V ({xk}). We formalize this in Theorem 1, and its
proof can be found in Appendix D.
Theorem 1. Let S = {x1, . . . , xk−1} ⊂ X be a set of k − 1 generators. Let xk, xl ∈ X be
two generators such that xk, xl /∈ S. If V (S ∪ {xk}) and V (S ∪ {xl}) are two neighboring
order-k Voronoi cells, then the order-1 Voronoi cell V ({xl}) is neighboring with at least one of the
V ({x1}), . . . , V ({xk−1}), V ({xk}).

With this insight, we can narrow down significantly the number of bisectors considered in ap-
proach (B). More formally, let nb(x′) denote the set of generators of order-1 Voronoi cells that
neighbor with V {x′}. Let Ψ be the Voronoi cell V ({x1, . . . , xk}). By Theorem 1, it is enough
to consider the bisectors between z ∈ {x1, . . . , xk} and z′ ∈

(⋃k
i=1 nb(xi)

)
− {x1, . . . , xk}.

Hence, the total number of bisectors we need to test is at most k · |
⋃k
i=1 nb(xi)|. Assuming that

` := maxi|nb(xi)|, the number of bisectors cannot exceed k2`. Hence, approach (C) is much faster
than approach (B) when k2`� n. In this work, we use approach (B) for the k = 1 case. However, in
order to scale to large datasets and k > 1, we propose some approximations steps that are rooted in
approach (C) later in Section 3.5.2.

3.3 Computing Distance & Testing Activeness

Now we describe Line 6 of Algorithm 1, i.e. how to compute the distance between a point x and a
facet. Then, expanding on this process, we detail how to test the activeness of bisectors.

Distance computation. A Voronoi cell is a polytope that can also be described as an intersection
of halfspaces: {z | Az ≤ b}. A bisector can be described as a hyperplane: {z | 〈z, â〉 = b̂}. The
corresponding facet needs to both be part of the polytope and satisfy the equation of the hyperplane.
Thus, the shortest distance from x to a facet is given by the square root of the optimum of the
following quadratic program:

min
z

‖z − x‖22 (2)

s.t. Az ≤ b and 〈z, â〉 = b̂

This problem can be solved by any off-the-shelf solver, but in Appendix F, we describe a faster
method also used by Wang et al. [2019].

Testing Bisector Activeness. Assuming that {z | Az ≤ b} 6= ∅, the bisector 〈z, â〉 = b̂ is active
if and only if Eqn. (2) is feasible since their intersection has to be non-empty. In case this problem

5

is infeasible, the bisector is inactive. From duality theory, we know that Eqn. (2), i.e. the primal, is
feasible if and only if the dual objective is unbounded since the dual problem is always feasible in
this case. Checking the unboundedness can be accomplished as we are solving Eqn. (2) in its dual
form so we can combine the steps of “distance computation" and “testing activeness" into a single
function that either returns the distance or indicates that the bisector is inactive.

3.4 Optimality of GeoAdEx

Here, we formally state two lemmas that together prove the output optimality of GeoAdEx. The next
lemma is straightforward as it is a direct consequence of Lemma C.2 from Jordan et al. [2019]. For
completion, we prove it in Appendix D.
Lemma 1 (Correctness of GeoAdEx). Provided no time limit, GeoAdEx terminates when it finds
the optimal adversarial examples or equivalently, one of the solutions of Eqn. (1).

The next lemma states that if GeoAdEx terminates early, i.e. in case we enforce a time limit for
performance purposes (see Section 3.5.2), it can still guarantee a lower bound to ε∗. Specifically, the
distance to x from the most recent facet deleted from PQ serves as a lower bound to ε∗.
Lemma 2 (Lower bound guarantee). If GeoAdEx terminates early, the distance from test point x
to the last deleted facet from PQ is a lower bound to the optimal adversarial distance ε∗.

We note that if GeoAdEx terminates early, then ε serves as an upper bound of ε∗. None of the previous
approaches on adversarial examples for k-NN provide both an upper and lower bound guarantee.

3.5 Towards Scaling GeoAdEx

For simplicity, in Algorithm 1, we present the main algorithmic steps that need to be performed to
compute the optimal adversarial distance using the geometric structure of the problem. In this section
we delve into details on how to accelerate the performance of GeoAdEx by performance optimization
and approximation steps.

3.5.1 Optimizing Computation Time

We introduce four performance optimizations that significantly speed up GeoAdEx. We present the
two most important ones here and the rest in Appendix E.

(I) Pruning Distant Facets. Given any adversarial distance, e.g., the intermediate result ε from
Algorithm 1, we know that any facet that is more than ε afar from x is not the facet associated with
the optimal adversarial distance, i.e., ε acts as an upper bound that is refined during the execution.
Hence, we can safely filter out these facets, and it is unnecessary to compute their distance to x,
test activeness, or insert them to PQ. This technique can be used both before and during the facet
distance computation (Section 3.3). A benefit of our principled geometric approach is that we can
apply geometric arguments to eliminate redundant computation on Voronoi cells that are far away.

(II) Rethinking the Initialization of ε. Recall that Line 1 of Algorithm 1 initializes ε to∞. Given
the upgraded role of ε in the previous paragraph, it is clear that a non-simplistic initialization
would filter out more unnecessary computation early on and scale the overall performance. For our
experiments, we run Sitawarin and Wagner [2020] to initialize ε since it yields a reasonable ε and is
faster than the other attacks.

3.5.2 Acceleration via Approximations

As mentioned in Section 3.2, approach (C) for finding the neighbors of an order-k Voronoi cell still
requires the knowledge of the first-order cells. This can be obtained by either computing the entire
order-1 Voronoi diagram or enumerating all possible facets of order-1 cells. Nonetheless, first-order
cells in a high-dimension dataset may have a large number of neighbors, and building a Voronoi
diagram can easily become a bottleneck in high-dimensions. In this case, approach (C) is no better
than approach (B) of Section 3.2. To scale to large and high-dimension datasets, we introduce some
approximations. Here, we propose the approximate version of GeoAdEx built upon the relationship
between order-1 and order-k neighbors from Theorem 1.

6

Description. To circumvent the expensive (in high dimensions) computation of the order-1 neigh-
bors, we approximate approach (C) of Section 3.2. Specifically, instead of operating on the neighbors
of the order-1 cell V {xi}, we operate on a subset of m points chosen from the entire set of X
according to a fast heuristic. In other words, nb(xi) is (roughly) approximated by a new subset of
fixed size m denoted as ñbm(xi). For cell V {x1, . . . , xk} and a given generator xi of this cell, we
select from X the m closest points to xi that are not in {x1, . . . , xk}. Mathematically, we define
ñbm(xi) as:

ñbm(xi) =
{
xj ∈ X | d(xi, xj) ≤ d(xi, xπ(m))

}
\ {x1, . . . , xk}

where xπ(m) is the m-th nearest neighbor of xi. With the above heuristic we guarantee that for each
cell, we only have to compute the distance (and test activeness) for at most k2m facets and, thus,
sidestep the computation of the first order Voronoi diagram in high dimensions. Each subsequent
optimization problem has at most k2m constraints. Finding m nearest points to a single point xi is
a well studied problem and can be approximately solved very fast [Johnson et al., 2017, Aumüller
et al., 2017, Andoni et al., 2018].

Limitations due to Approximation. Due to the above approximation, it is possible that some of
the true order-1 neighbors are not included in

⋃k
i=1 ñbm(xi). Hence, some active facets and cells

may be missed completely2. This leads to two limitations. The first limitation is that we can no
longer guarantee the optimality of GeoAdEx through Lemmas 1 and 2. In other words, we cannot
conclude whether the adversarial distance returned by the approximate version of GeoAdEx is the
optimal adversarial distance (or its lower bound).

The second limitation is that the approximation may affect the correctness of the distance computation.
Recall that in the exact version of GeoAdEx, we have shown that it is possible to replace the bisectors
in the constraint of the optimization problem in Eqn. (2) with bisectors between {x1, . . . , xk} and⋃k
i=1 nb(xi). But with the approximation, the new feasible set in Eqn. (2) becomes a superset of the

one in the exact version. Consequently, the steps in Section 3.3 may falsely label an inactive bisector
as active or return smaller distance than the true value.

Addressing Limitations. The first limitation is inherent to the deployment of heuristics to boost
performance; a similar issue appears in Sitawarin and Wagner [2020] as well as the approximate
version of Yang et al. [2020] and Wang et al. [2019]. It is difficult to avoid without increasing the
runtime significantly. However, the second limitation can be addressed, and we do so by using the
full set of bisectors when computing the distance and testing the activeness of adversarial facets like
in the exact version. This incurs only a small computational cost. We do not need to do the same for
non-adversarial cells since their distance and activeness do not affect the correctness of GeoAdEx.

4 Experiments

We compare GeoAdEx to all of the previously proposed attacks on k-NN classifiers, namely Sitawarin
and Wagner [2020], Yang et al. [2020], and Wang et al. [2019]. The attacks are evaluated on seven
datasets most of which were used in the experiments by Yang et al. [2020]. Namely, we evaluate the
attacks in that following datasets: Australian, Covtype, Diabetes, Fourclass, and fmnist06 (a two-class
subset, ‘0’ and ‘6’, of Fashion-MNIST). Additionally, we also evaluate on Gaussian and Letters
datasets which have more classes and data points. More details on the datasets and the computational
setup are included in Appendix A.

4.1 Main Findings

Table 1 compares the proposed GeoAdEx attack against the three baselines with respect to the mean
perturbation norm. Interestingly, GeoAdEx outperforms the other baselines on all of the seven
datasets for k = 3, 5 and on four of them for k = 7. In the three remaining datasets, Sitawarin and

2Depending on the dataset and m, the chance of this happening may not be high for two reasons: (i) For a
large k,

⋃k
i=1 ñbm(xi) becomes a large set and is likely to cover most, if not entire,

⋃k
i=1 nb(xi). (ii) Even if

we miss some cells as neighbors of a particular order-k cell, they may still be picked up by the other cells.

7

Table 1: Mean norm of the adversarial perturbations on 100 random test points across datasets (lower is better).
We report the numbers averaged over 10 runs with random training and test splits. The error, highlighted in gray,
is the 95%-confidence interval. The numbers in parentheses is the ratio of the mean perturbation norm found
by GeoAdEx over that of the best baseline. The smallest mean perturbation norm among the attacks for each
dataset and each k is bolded.

k Attacks Australian Covtype Diabetes Fourclass Gaussian Letters fmnist06

S&W .4242 .1931 .1055 .1079 .0442 .1128 .1554
±.0201 ±.0148 ±.0068 ±.0039 ±.0028 ±.0049 ±.0121

Yang et al. .4658 .2385 .1392 .1209 .1138 .1370 .1773
±.0258 ±.0101 ±.0077 ±.0055 ±.0023 ±.0046 ±.0043

Wang et al. .4466 .2134 .1164 .1117 .0825 .1218 .1643
±.0205 ±.0170 ±.0052 ±.0039 ±.0030 ±.0050 ±.0047

GeoAdEx .3646 .1448 .0786 .1073 .0426 .1091 .1509
±.0250 ±.0116 ±.0042 ±.0045 ±.0015 ±.0066 ±.0076

3

(.8595) (.7499) (.7450) (.9944) (.9638) (.9672) (.9710)

S&W .4748 .2281 .1215 .1087 .0463 .1134 .1648
±.0199 ±.0121 ±.0060 ±.0052 ±.0030 ±.0064 ±.0093

Yang et al. .5524 .3047 .1824 .1309 .1776 .1503 .2087
±.0141 ±.0161 ±.0068 ±.0043 ±.0031 ±.0048 ±.0059

Wang et al. ..5110 .2613 .1382 .1127 .1195 .1298 .1877
±.0147 ±.0110 ±.0056 ±.0054 ±.0047 ±.0055 ±.0088

GeoAdEx .4608 .1856 .1021 .1066 .0401 .1130 .1632
±.0175 ±.0218 ±.0065 ±.0048 ±.0023 ±.0021 ±.0075

5

(.9705) (.8137) (.8403) (.9981) (.8661) (.9965) (.9903)

S&W .5110 .2528 .1259 .1129 .0463 .1127 .1662
±.0145 ±.0211 ±.0089 ±.0043 ±.0022 ±.0049 ±.0051

Yang et al. .6010 .3335 .2005 .1403 .2204 .1637 .2328
±.0140 ±.0245 ±.0097 ±.0053 ±.0021 ±.0035 ±.0057

Wang et al. ..5410 .3078 .1631 .1182 .1570 .1395 .2010
±.0181 ±.0145 ±.0083 ±.0051 ±.0017 ±.0034 ±.0056

GeoAdEx .5134 .2153 .1202 .1109 .0425 .1151 .1692
±.0149 ±.0174 ±.0049 ±.0019 ±.0033 ±.0065 ±.0055

7

(1.0047) (.8517) (.9547) (.9822) (.9081) (1.0213) (1.0181)

Wagner [2020] performs best and is narrowly better than GeoAdEx. GeoAdEx performs notably well
on datasets Gaussian and Covtype with up to 25% smaller perturbation norm than the second best
attack. On average, GeoAdEx reduces the perturbation norm by 11%, 8%, and 4% for k = 3, 5, 7,
respectively. Since the results of the exact attacks for k = 1 are not the main focus of this work, they
appear in Appendix B.1.

We report that while our attack finds an adversarial distance that is closer to the optimal compared to
the baselines, its main limitation is the runtime. In some cases, the runtime of GeoAdEx can be an
order of magnitude larger than the second best attack. This is discussed in more detail in Section 4.3.

It is also important to note that each of the proposed attacks (including GeoAdEx) performs better
when the underlying data present certain structural properties. As a result, there is no single attack,
so far, that performs universally better across all datasets. In Section 4.2, we explore the property of
datasets that make our attack superior.

4.2 Advantages of a Geometric Search

Intuitively, GeoAdEx is based on a search that expands outwards from the original test point. As
a result, it performs significantly better than the baselines when there exists an adversarial cell in
relatively close proximity to the given test point. In other words, GeoAdEx performs really well
on datasets when the class-conditioned distributions are closer or present significant “overlap.” In
this case, GeoAdEx is less likely to miss small adversarial cells that are close to the test point as
confirmed by the main experiment. We verify this hypothesis in the following experiment where we
control the closeness of classes and study the performance of GeoAdEx compared to the baselines.

8

(a) Gaussian (k = 5) (b) Real datasets (k = 3)

Figure 2: Mean perturbation norm found by the attacks as a function of the class closeness (lower is better).

(a) Australian (b) Covtype (c) Diabetes

Figure 3: Mean adversarial distance vs. total runtime for GeoAdEx and all the baselines with different choices
of hyperparameters on (a) Australian, (b) Covtype, and (c) Diabetes. Each point represents a single run with a
unique set of hyperparameters. For a given runtime, an attack with the lowest mean adversarial distance is the
best. GeoAdEx utilizes the extra runtime better and outperforms the baselines.

Experiments with Class Closeness. Given a dataset with c class-conditioned data distributions
D1, . . . , Dc, we can compute the minimum KL-divergence between a pair of distributions Di and
Dj : KLD(Di||Dj). Now we define as class closeness of a given data distribution as the average
of the above set of minima, i.e., 1

c

∑c
i=1 minj KLD(Di||Dj). The smaller the class closeness, the

closer their distributions are and, consequently the larger the degree of “mixing” between Voronoi
cells of different classes. For each dataset, we record the associated class closeness and the ratio of
the mean perturbation norm of each baseline over that of GeoAdEx.

First, we confirm this hypothesis on synthetic datasets where each of the two classes is generated
by a Gaussian distributions, i.e., D1, D2, in R20. Note that for Gaussian, KL-divergence can be
analytically computed as the closed form exists. In this case, Figure 2a shows that GeoAdEx
significantly outperforms all the baselines by a larger margin when the class closeness is small. That
is, for datasets that are challenging to classify, GeoAdEx outperforms the competition.

Furthermore, we revisit the real datasets from Table 1 and re-interpret the results under the lens of
their class closeness. Since the true data distributions of these datasets are unknown, we approximate
the KL-divergence via data samples using the estimator in Equation (5) from Wang et al. [2009].
Indeed, Figure 2b shows that the datasets on which GeoAdEx clearly outperforms Yang et al. [2020]
and Wang et al. [2019], are the ones with small class closeness (e.g., Diabetes, Gaussian).

4.3 Runtime Comparisons

Runtimes of the experiments in Table 1 are reported in Table 4. Through the choice of hyperparam-
eters, we attempt to control the runtime of each algorithm to roughly be within the same order of
magnitude, but this has proven difficult given that we do not wish to fine-tune the hyperparameters
specifically per dataset. To better compare the algorithms under a similar set of runtimes, we repeat
the experiments with different sets of hyperparameters chosen at certain intervals and plot the mean
adversarial distance vs. the total runtime for each experiment in Figure 3.

9

For each algorithm, we started with its default hyperparameters and adjusted them (either linearly
or exponentially) in the direction that should find smaller adversarial perturbations with a longer
runtime. Each point on the curves represents an experiment with one set of hyperparameters. One
way to read the plot is to fix a particular runtime and compare the mean adversarial distance from
each line. This experiment is expensive so we only run it for the first three datasets from Table 1.

For Australian and Diabetes, in a regime with very short runtime (∼100s total or ∼1s per sample),
there is at least one baseline that is both faster and finds smaller adversarial perturbation than
GeoAdEx. However, with longer runtimes, our GeoAdEx outperforms all the baselines by a large
margin (10%, 15% and 20% improvement over the second best for Australian, Covtype, and Diabetes,
respectively). In most settings, the baselines do not benefit much, if at all, from the increased runtime.
Conversely, GeoAdEx always finds smaller adversarial distances given a longer time limit. More
details and discussions of this experiment are in Appendix B.2.

Effect of the initialization attack. The initialization of ε with Sitawarin and Wagner [2020] attack,
as described in the performance optimization (II), also improves the total runtime of GeoAdEx.
Depending on the dataset, the runtime reduction range from 2% to 75%. In the interest of space,
ablation study and analysis of the initialization attack is included in Appendix B.3.

5 Discussion & Open Problems

GeoAdEx has been shown to be successful in discovering adversarial examples for k-NN classifiers
with k ≥ 1. Compared to the baselines, it finds adversarial examples with a considerably smaller
perturbation norm on most of the commonly tested datasets.

The main limitation of GeoAdEx is its runtime, particularly in the short-runtime regime. Sitawarin
and Wagner [2020] is always the fastest, generally followed by Wang et al. [2019], Yang et al. [2020],
and then GeoAdEx. However, in the long-runtime regime, our GeoAdEx outperforms the baselines
by a large margin given the same runtime. GeoAdEx utilizes a longer runtime by expanding the
search radius while the baselines search more cells without a particular order or prioritization. As a
result, the adversarial distance found by Sitawarin and Wagner [2020], Yang et al. [2020], and Wang
et al. [2019] typically does not improve much further with more computation.

We note that compared to the geometric approach by Jordan et al. [2019], our experiments were
run on a significantly larger scale. Specifically, Jordan et al. [2019] was tested on neural networks
with only up to 70 ReLUs, which are much smaller than typical networks used in practice. This is
equivalent to Voronoi cells with only 70 neighbors/facets in our setting. GeoAdEx was tested on
datasets with over ten thousand generator points and k up to 7, which results in a substantially larger
number of polytopes to search through.

GeoAdEx has shown convincing results with our new geometric take on the problem, but there is room
for improvement in terms of efficiency. Additional speedups can be introduced via parallelization,
GPU utilization, and a faster optimization technique. A more sophisticated heuristic for determining
the order-1 neighbors can also be used. Furthermore, geometric properties of a high-order Voronoi
diagram may be better exploited to save unnecessary computation on non-adversarial cells. For
instance, multiple neighboring non-adversarial cells may be combined and approximated as a single
large cell if we can guarantee that there is no adversarial cell inside this new polytope. This would
remove a large number of distance computations surrounding the given test point, which is the main
bottleneck of GeoAdEx. Additionally, GeoAdEx can also be extended to other space-partitioning
classifiers such as decision trees and random forests.

6 Conclusion

We propose GeoAdEx, an algorithm based on geometric insights for finding adversarial examples on
k-NN classifiers. We leverage the structural properties of higher-order Voronoi diagrams to propose
efficient approximations and speedup the final algorithm. While GeoAdEx typically requires a higher
computational cost, it significantly outperforms the baselines in most of the datasets. Finally, for
the case where there is no clear separation between the classes (a typical characteristic of real data)
GeoAdEx significantly outperforms the competition.

10

Acknowledgement

The first author of this paper was supported by the Hewlett Foundation through the Center for
Long-Term Cybersecurity (CLTC) and by generous gifts from Open Philanthropy and Google Cloud
Research Credits program with the award GCP19980904.

The second and third authors were supported by the Center for Long-Term Cybersecurity (CLTC),
the Berkeley Deep Drive project, NSF grant TWC-1518899, and Open Philanthropy.

References
A. Andoni, P. Indyk, and I. Razenshteyn. Approximate nearest neighbor search in high dimensions. arXiv

preprint arXiv:1806.09823, 7, 2018.

M. Aumüller, E. Bernhardsson, and A. Faithfull. Ann-benchmarks: A benchmarking tool for approximate
nearest neighbor algorithms. In International Conference on Similarity Search and Applications, pages 34–49.
Springer, 2017.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli. Evasion attacks
against machine learning at test time. In H. Blockeel, K. Kersting, S. Nijssen, and F. Železný, editors, Machine
Learning and Knowledge Discovery in Databases, pages 387–402, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN 978-3-642-40994-3.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, USA, 2004. ISBN
0521833787.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent
Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm.

J. M. Cohen, E. Rosenfeld, and J. Z. Kolter. Certified adversarial robustness via randomized smoothing. arXiv
preprint arXiv:1902.02918, 2019.

A. Dubey, L. van der Maaten, Z. Yalniz, Y. Li, and D. K. Mahajan. Defense against adversarial images using
web-scale nearest-neighbor search. CoRR, abs/1903.01612, 2019.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and S. Kumar. Accelerating large-scale inference
with anisotropic vector quantization. In International Conference on Machine Learning, 2020.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural networks. In R. Majumdar
and V. Kunčak, editors, Computer Aided Verification, pages 3–29, Cham, 2017. Springer International
Publishing.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. arXiv preprint arXiv:1702.08734,
2017.

M. Jordan, J. Lewis, and A. G. Dimakis. Provable certificates for adversarial examples: Fitting a ball in the
union of polytopes. In Advances in Neural Information Processing Systems, pages 14082–14092, 2019.

G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient SMT solver for
verifying deep neural networks. CoRR, abs/1702.01135, 2017. URL http://arxiv.org/abs/1702.01135.

A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams.
John Wiley & Sons, Inc., USA, 1992. ISBN 0471934305.

N. Papernot and P. D. McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and robust deep
learning. CoRR, abs/1803.04765, 2018. URL http://arxiv.org/abs/1803.04765.

C. Sitawarin and D. Wagner. On the robustness of deep k-nearest neighbors. volume abs/1903.08333, 2019a.
URL http://arxiv.org/abs/1903.08333.

C. Sitawarin and D. Wagner. Defending against adversarial examples with k-nearest neighbor. arXiv preprint
arXiv:1906.09525, 2019b.

C. Sitawarin and D. Wagner. Minimum-norm adversarial examples on knn and knn-based models. ArXiv,
abs/2003.06559, 2020.

11

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. CoRR, abs/1312.6199, 2013. URL http://arxiv.org/abs/1312.6199.

V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed integer programming.
arXiv preprint arXiv:1711.07356, 2017.

L. Wang, X. Liu, J. Yi, Z.-H. Zhou, and C.-J. Hsieh. Evaluating the robustness of nearest neighbor classifiers: A
primal-dual perspective. arXiv preprint arXiv:1906.03972, 2019.

Q. Wang, S. R. Kulkarni, and S. Verdu. Divergence estimation for multidimensional densities via k-nearest-
neighbor distances. IEEE Transactions on Information Theory, 55(5):2392–2405, 2009.

Y. Wang, S. Jha, and K. Chaudhuri. Analyzing the robustness of nearest neighbors to adversarial examples.
In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 5133–5142, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/wang18c.html.

T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S. Dhillon, and L. Daniel. Towards fast
computation of certified robustness for relu networks. arXiv preprint arXiv:1804.09699, 2018.

E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer adversarial polytope.
volume 80 of Proceedings of Machine Learning Research, pages 5286–5295, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/wong18a.html.

X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu,
Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. Top 10 algorithms in data mining. Knowledge and
Information Systems, 14(1):1–37, Jan. 2008. ISSN 0219-3116. doi: 10.1007/s10115-007-0114-2.

Y.-Y. Yang, C. Rashtchian, Y. Wang, and K. Chaudhuri. Robustness for non-parametric classification: A generic
attack and defense. In International Conference on Artificial Intelligence and Statistics, pages 941–951.
PMLR, 2020.

12

