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Abstract

Deep learning models have revolutionized medical imaging and diagnostics, yet
their opaque nature poses challenges for clinical adoption and trust. Amongst
approaches to improve model interpretability, concept-based explanations aim to
provide concise and human-understandable explanations of any arbitrary classifier.
However, such methods usually require a large amount of manually collected data
with concept annotation, which is often scarce in the medical domain. In this paper,
we propose Conceptual Counterfactual Explanations for Chest X-ray (CoCoX),
which leverages the joint embedding space of an existing vision-language model
(VLM) to explain black-box classifier outcomes without the need for annotated
datasets. Specifically, we utilize textual concepts derived from chest radiography
reports and a pre-trained chest radiography-based VLM to explain three common
cardiothoracic pathologies. We demonstrate that the explanations generated by our
method are semantically meaningful and faithful to underlying pathologies.

1 Introduction

Over the past decade, deep learning (DL) has achieved unprecedented performance in medical
imaging-based diagnosis (20). This success is partly attributed to the increasing availability of data
and the rapid development of deep neural network (DNN) technologies. Despite these impressive
results, DNNs have been criticized for their black-box nature, which has limited the adoption and
regulatory approval of medical imaging-based DNNs (19). The combination of lack of explainability
(challenging to interpret their inner workings) (27), lack of robustness (being easily fooled using
adversarial data) (32), bias (tendency to amplify inequalities that exist in data) (22), and the high
stakes nature of clinical applications (21; 31) prevents deployment of black-box models in clinical
practice. Explainable artificial intelligence (XAI) methods aim to tackle this by making the decisions
and processes of black-box systems understandable and interpretable to humans.

In the medical imaging field, heatmap-style explanations such as saliency maps have been extensively
studied to interpret the decisions made by a classifier (26; 25). However, simply highlighting the
relevant pixels that influence classifiers’ decisions does not answer why that region is important(7).
Additionally, previous work has shown that these methods are susceptible to adversarial attacks
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(33; 10), prone to confirmation bias (1; 4) and require domain expert’s intervention to interpret the
explanation leading to subjective bias (16).

On the other hand, concept-based explanation methods provide human-understandable and high-
level semantically meaningful explanations (16; 8). In natural images, a concept represents any
semantically meaningful attribute and is typically represented by words such as “stripes”, “smile”, etc.
To measure the importance of such concepts on the output of a black-box classifier, concept activation
vector (CAV) (16) was proposed. A CAV measures the direction of each concept in the embedding
space of a pre-trained classifier. Using CAVs, one can then calculate which concepts influenced the
output of a particular class. However, in order to train CAVs, one needs human-annotated concept
labels for images, which can be expensive and often infeasible. Another line of work aims to explain
pre-trained classifiers using counterfactual explanations (9; 29). In simple terms, counterfactual
explanation means identifying the feature perturbations required in input images to lead the pre-
trained model to a different output prediction. Few methods have explored this line of work in
medical imaging (3; 28). A key limitation of this approach is the need for subject matter experts
to evaluate and assign meaning to generated counterfactual images(3). Additionally, generating
counterfactual images requires training GAN-based methods that can capture latent representations
from the input data. Training these models can be expensive (14) and often infeasible due to limited
data availability in medical domains (5). While (15) introduced a natural language explanation (NLE)
dataset derived from MIMIC-CXR, which involved extracting explanations for different pathologies
from radiology reports and suggesting retraining black-box classifiers to align with these NLEs, we
propose a different approach. Our method focuses on explaining black-box classifiers without the
need for retraining by utilizing existing vision-language models (VLMs).

To tackle this challenge, we propose to develop a conceptual counterfactual explanation (CoCoX) that
combines the benefits of concept-based and counterfactual explanations. Specifically, we gathered
chest radiology-related natural language concepts from the PadChest dataset (6), which is annotated
by radiologists and mapped against the Unified Medical Language System (UMLS) database for
validity and augmented additional concepts by querying ChatGPT (23) for pathology-specific visual
attributes. We then leverage the joint embedding space of a pre-trained vision-language model (VLM)
to derive concept directions and create a concept bank. Next, we train simple projection models that
allow us to move from the black-box classifier’s latent space to VLM’s latent space. Finally, we
generate conceptual counterfactuals by learning perturbations in the direction of each concept in our
concept bank. In essence, we perturb the projected image embedding such that the black-box model’s
prediction changes to the target class, similar to a previous method CounTEX (17).

Given an input image, an actual prediction by a black-box model, the target prediction, and a concept
bank, our approach answers the question of how much should each concept be perturbed to change
the output from current prediction to the target prediction? To achieve this, we learn perturbation
weights for each concept in our concept bank, which serves as an importance score for each concept in
changing the target classifier output. We present CoCoX’s overall model architecture in Figure 1. The
main contributions of this paper are summarized as follows: 1) we propose a conceptual counterfactual
explanation method for chest radiography image classifiers that integrate the benefits of concept-based
explanations and counterfactual explanations, and 2) we conduct in-depth experimental analysis
to demonstrate that our proposed approach provides clinically relevant conceptual explanation for
several chest x-ray pathologies.

2 Method

Our proposed method can be divided into three stages: 1) Construction of concept bank, 2) Learning
Projector functions, and 3) Learning conceptual perturbations. We discuss each of these steps in more
detail below.

2.1 Constructing concept bank

We construct our concept bank (C) using natural language concepts derived from PadChest dataset
(6). First, for each textual concept xT , we generate a pair of text prompts composed of a neutral
sequence (tn) and a stimuli sequence (ts). The neutral sequence is fixed for all concepts with a generic
phrase “An image of chest xray with No Finding”, following the zero-shot prompt strategy
from the original CLIP paper (24). Stimuli sequence is generated using the phrase “An image of
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Figure 1: The overall architecture of CoCoX. We create the Concept Bank (C) by encoding natural
language concepts with a chest radiography pre-trained language encoder of a VLM. We then learn
Projector(in) and Projector(out) functions pin and pout using MLPs to transfer feature representation
between CLF latent space and VLM latent space. Additionally, we learn perturbation weights for each
concept in our concept bank, which serves as an importance score in changing the target classifier
output. Learnable parameters are highlighted in red arrows.

chest xray with {xT }”, for each concept xT . We then use the pair of prompts [tn, ts] to derive
the concept direction. First, the pair is tokenized and encoded using the pre-trained language encoder
(vT ), yielding the embedded prompt pair [vT (tn), vT (ts)]. Then, the direction of textual concept
c ∈ C can be obtained by taking the difference between these two embedded prompt pairs and
normalizing it to a unit vector, i.e.,

c =
vT (ts)− vT (tn)

||vT (ts)− vT (tn)||2
. (1)

We compute a textual concept c ∈ Rk for each stimulus to obtain our final concept bank C = {ci|i =
1, . . . , Nc}, where k is the embedding dimension of VLP and Nc is the number of concepts.

2.2 Learning projection functions

Since our goal is to operate on textual concepts encoded in VLM latent space, we need to learn the
projections pin and pout, that can move image embedding from classifier (CLF) latent space to VLM
latent space and vice versa. First, to train the pin function, we project the input embedding f(xI)
into VLM latent space resulting in the projected embedding pin(f(xI)). Next, we embed the same
image using the vision encoder vI of VLM to obtain vI(xI). Ideally, we want these two embeddings
to be close to each other, and hence, the pin is optimized to minimize this distance. Similarly, for
pout, we first project the VLM vision encoder’s embedding (vI(xI)) to classifier latent space using
pout, resulting in the projected embedding pout(vI(xI)). We also encode the same image using the
pre-trained classifier, which results in embedding f(xI). Again, pout is trained to minimize the
distance between these two embeddings. Finally, we want to account for the round-trip error that
minimizes the distance between embedding pout(pin(f(xI))) and f(xI). Taking all these three into
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Figure 2: Training paradigm for projection functions. Each ↔ indicates a distance minimization
problem. Total loss is a sum of all loss functions, Ltotal = Lin + Lout + Lcyc.

account, we get the following loss function,

Ltotal = Lin + Lout + Lcyc

= ||pin(f(xI))− vI(xI)||2 + ||pout(vI(xI))− f(xI)||2

+ ||pout(pin(f(xI)))− f(xI)||2
(2)

We pre-train Lin and Lout independently and fine-tune Ltotal for a few epochs. See Figure 2 for a
depiction of this training paradigm.

2.3 Learning conceptual perturbations

Once the concept bank is established and the projection functions are trained, we need to learn
concept-wise perturbation weight parameter w, such that the gap between perturbed prediction yp
and target prediction yt is minimized. Since we apply this perturbation in VLM latent space, we first
project our input image xI to VLM latent space using pin, apply learnable perturbation, project back
to classifier latent space using pout, and predict the output of perturbed embedding. We define this
output below

yp = g(pout(pin(f(xI)) +w · C)), (3)
where g is the classifier head of our pre-trained classifier. In order to optimize w, we introduce the
following constraints. First, the perturbed embedding should predict the target class yt. We propose
using cross-entropy loss between the perturbed and target classes, LCE = CE((yp, yt)). Next, we
introduce sparseness through L1 regularization ||w||1, and ensure that the perturbed embedding does
not deviate from image embedding using L2 regularization ||w||2. Our final loss Lfinal is a weighted
sum of these three loss functions

Lfinal = LCE + α||w||1 + β||w||2, (4)

where α and β are weighting parameters.

3 Experiments

In this section, we describe experimental details, including datasets, implementation, and metrics. We
also present the quantitative and qualitative results, comparing the explanations generated by CoCoX
against clinical literature and an existing baseline.

3.1 Datasets

Imaging datasets: We used two large-scale chest x-ray image datasets in our experiments. First, we
used the CheXpert dataset (12) to train our pathology backbone classifiers. Following the previous
work (3), we trained for three different pathologies, Cardiomegaly, Atelectasis, and Pleural Effusion.
Next, to train our projector models, we used the MIMIC-CXR dataset (13).
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Concept bank: To create our concept bank C, we started with the radiological findings annotated in
the PadChest dataset (6). This yielded 174 natural language concepts. Next, we queried ChatGPT (23)
with prompt “What visual attributes are seen in pathology chest xray?” for each of
the pathologies and augmented our concept library yielding a total of 192 concepts1. It is important
to note the ease of augmenting additional concepts to the library. CoCoX allows the addition/removal
of textual concepts, unlike other concept-based explanation methods that need annotated images. We
then proceed with Eq. 1 to create the concept bank.

3.2 Implementation details

Backbone classifiers and VLM: We implemented three different architectures for our backbone
image classifiers. Specifically, we chose DenseNet121, ResNet34, and VLM+Linear for our ex-
periments. For VLM+Linear based architecture, we just added a linear layer on top of our VLM
vision encoder (ViT-B/32). Unlike the other two architectures, the VLM-based one does not require
separate projector models since are already operating in VLM latent space. Each model was trained
for pathologies using the CheXpert dataset for a maximum of 50 epochs with early stopping. For our
VLM, we used CheXzero model (30).

Projectors: We used a simple 2-layer multi-layer perceptron (MLP) to implement pin and pout
functions. Both these models comprised of (512, 512) hidden units and were trained with the MIMIC-
CXR dataset for a maximum of 50 epochs with early stopping to minimize the loss function in
Equation 2. A batch size of 64 was used for all the experiments.

Conceptual perturbation: The weight parameter w is optimized to minimize the loss Lfinal (see
Eq. 4). Parameters α and β are set to 0.1 for all experiments following (17). We used stochastic
gradient descent (SGD) with momentum and a learning rate of 10−2 for a maximum of 100 steps.
We stopped training early if the prediction of input image changes to the desired target class. This
weight parameter serves as an importance score for each concept in changing the output of the black
box classifier to the target output.

3.3 Results and Evaluation

For each of the three pathologies, Cardiomegaly, Pleural Effusion, and Atelectasis, we optimize the
perturbations to change a “No Finding” image to corresponding pathology finding. To verify that the
proposed approach works as intended, we conducted an experiment where we included the pathology
name as one of the concepts in our concept bank. After perturbing 100 random example images from
each pathology to the target class using our VLM + Linear model, we found that the pathology name
was top@1 concept for 99% of Cardiomegaly, 100% of Pleural Effusion and 98% of Atelectasis
cases. The corresponding pathology name is removed from the concept bank for the next set of
experiments.

We present random images for each pathology and corresponding top 5 conceptual counterfactuals
generated by our model for VLM + Linear and DenseNet121 model in Figure 3. For each pathology,
the emerging top concepts represent the main features of each disease. For instance, the top con-
cepts in converting a “No Finding” image to “Cardiomegaly” are increased cardiac diameter,
increased cardio-thorasic ratio, correspond to prominent features in Cardiomegaly(2). For
Pleural Effusion, our method picks up relevant features such as increased opacity in lower
lungs, fluid accumulation in the top 5 concepts(18). In essence, these concepts had the most
impact when added to input images to change from “No Finding” to a pathology finding. Similarly, it
is also relevant to analyze conceptual counterfactuals for changing pathology input to “No Finding”
output. We present this result in Figure S1 for all pathologies. Additionally, we observe alignment
between top concepts chosen by DenseNet121 and VLM+Linear model, demonstrating the efficacy
of our approach on various model architectures.

In order to validate that the generated conceptual counterfactuals are clinically relevant, we compare
our method against CheXplaining in Style (3). The authors used conditional StyleGAN (14) based
architecture to generate counterfactual images for three chest x-ray pathologies. In their evaluation,
the radiologists first listed the primary features and possible secondary findings they rely on while
diagnosing each disease. Then, the authors perturbed ten random “No Finding” samples to generate

1See Supplementary Section 2 for an example query and response
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Figure 3: Conceptual counterfactual generated by CoCoX. The input image into the model for
each pathology is shown under the heading Input (“No Finding”). The target image presented under
Target (“Pathology”) is a representative image labeled positive for the corresponding pathology. The
concept importance scores for the top 5 concepts are visualized with blue-green for the DenseNet-121
model and orange-purple for VLM + Linear. These concepts had the most impact when added to
input images to change from “No Finding” to a pathology finding.

Table 1: Comparison of recall (R) at k concepts to radiologists’ evaluation.

Pathology Finding DenseNet121 VLM + Linear ResNet34
R@5 R@10 R@5 R@10 R@5 R@10

Cardiomegaly Primary(1) 0.97 1.00 1.00 1.00 0.98 1.00
Secondary(4) 0.35 0.48 0.50 0.50 0.32 0.52

Pleural Effusion Primary(2) 0.46 0.78 0.50 1.00 0.43 0.81
Secondary(3) 0.17 0.29 0.33 0.33 0.19 0.25

Atelectasis Primary(2) 0.55 0.69 0.50 0.85 0.48 0.73
Secondary(3) 0.26 0.61 0.33 0.66 0.21 0.59

counterfactual images, which radiologists evaluated and annotated for the presence or absence of
primary and secondary features. However, the authors did not present the fraction (out of ten) of
counterfactuals that contained these features. In our experiment, we first verified if the features relied
on by radiologists were already in our concept bank. If a feature was absent, we appended that to
our concept bank. Next, we calculate the overlap between features identified by radiologists and
concepts identified by our approach. We use the recall@k measure typically used in recommender
systems evaluation. Recall@k measures the fraction of ground-truth concepts (i.e., radiologists’
list) present in top@k predictions made by our model. We present mean recall@k results for all
three models in Table 1 using 1000 images, where we separate the scores by primary and secondary
findings2. We also list the number of primary and secondary features annotated by radiologists within
the parentheses for each pathology. Table 1 shows that our model can recall the primary findings for
all three pathologies with high recall scores. Recall@k measure penalizes more when the ground
truth list is extensive, which is the case for secondary features. Hence, we observe a lower recall@5
values for secondary features. Additionally, concepts such as “Older patients” in the secondary list for
Cardiomegaly and Atelectasis are non-visual attributes and, hence, challenging to generate conceptual
counterfactuals. We bold the highest score in each row.

2see Supplementary Table S1 for the list of primary and secondary findings
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Finally, we demonstrate that our model generates conceptual counterfactuals faster than (3). Our
model using VLM+Linear generated explanations for 99% of input images (n=600 images) in under
30 seconds, whereas CheXplaining in Style takes 5 minutes to create explanations with an average of
94% coverage.

4 Conclusions

In order to improve the explainability of black-box medical-image classifiers, we explored the chest
x-ray domain and investigated conceptual counterfactual explanations that combine concept-based
and counterfactual explanations. Our approach highlights important concepts that contribute to
changing an image from “No Finding” to a pathology finding and vice-versa. We created a concept
bank using radiological findings from the PadChest (6) dataset and augmented additional concepts by
querying ChatGPT (23). Next, to generate conceptual counterfactual explanations, we manipulate
the latent embedding of input image with perturbations, such that the classifier’s output changes to
target class. We found that the top concepts generated by our method are relevant to the underlying
pathology and align with radiologists’ evaluation. While we have qualitatively demonstrated clinical
relevance by aligning with radiologists’ assessments, we plan to explore standardized metrics like
expert consensus scores, and counterfactual faithfulness in future iterations.

With the proliferation of vision-language models (30; 11), our method can easily be extended to
studying black-box classifiers in other medical imaging domains. This extension would involve the
careful curation of domain-specific concepts tailored to the target medical imaging modality. For
instance, in MRI or CT scans, concepts related to soft tissue abnormalities or bone structure could
be incorporated into the concept bank. Additionally, training the CoCoX modules on these curated
concepts allows us to generate useful conceptual counterfactual explanations for various medical
conditions beyond chest X-rays. We leave this for future work, along with exploring ways to improve
concept bank creation.
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