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ABSTRACT

Multimodal LLMs (MLLMs) equip language models with visual capabilities by
aligning vision encoders with language models. Existing methods to enhance the
visual perception of MLLMs often involve designing more powerful vision en-
coders, which requires re-aligning these vision modules with the language model,
leading to expensive and time-consuming training processes. In this paper, we in-
troduce VisionFuse, a novel integration framework that efficiently utilizes multiple
vision encoders from off-the-shelf MLLMs to enhance visual perception without
requiring additional training. Our approach is motivated by the observation that
different MLLMs tend to focus on distinct regions of the same query and im-
age. Moreover, we find that the feature distributions of vision encoders within an
MLLM family, a group of MLLMs sharing the same pretrained LLM, are highly
aligned. Building on these insights, VisionFuse enriches the visual context by
concatenating the tokens generated by the vision encoders of selected MLLMs
within a family. By merging the parameters of language models from different
MLLMs, VisionFuse allows a single language model to align with various vision
encoders, significantly reducing deployment overhead. We conduct comprehen-
sive evaluations across multiple multimodal benchmarks using various MLLM
combinations, demonstrating substantial improvements in multimodal tasks. No-
tably, when integrating MiniGemini-8B and SLIME-8B, VisionFuse achieves an
average performance increase of over 4%.

1 INTRODUCTION

Multimodal LLMs (MLLMs) integrate vision encoders to Large Language Models (LLMs), allow-
ing them to tackle multimodal tasks with emergent capabilities (Liu et al., 2024c; Lin et al., 2024; Ye
et al., 2023). To handle complex and diverse multimodal tasks effectively, MLLMs require strong
visual perception capabilities. A common approach to improving MLLMs’ visual perception is de-
signing better vision encoders (Cha et al., 2024; Zhang et al., 2024; Shi et al., 2024). However, these
methods typically require aligning the vision encoders with the language model, which involves sig-
nificant training costs due to the need for multimodal instruction fine-tuning. For instance, aligning
10 vision encoders with a 7B language model using a data-efficient MLLM pipeline requires 3,840
NVIDIA A100 GPU hours, with an estimated cost of approximately $20,000 (Yang et al., 2024).
Moreover, even with substantial efforts, individual models may still exhibit limitations in their visual
perception capabilities.

Recognizing these limitations, it becomes clear that different models tend to excel in distinct aspects
of visual perception. For example, as illustrated in Figure 1, when asked the question, “What’s
the word on the right side?”, the models should focus on the entire word on the coin’s right side.
MGM (Li et al., 2024), however, concentrates more on the lower right portion of the coin, with
relatively less attention to the upper part. In contrast, SLIME (Zhang et al., 2024) directs more
attention to the upper part, causing it to miss the last letter ‘y’. While MGM successfully recognizes
the letter ‘y’, its recognition of the preceding letters is suboptimal. Due to the perceptual limitations
of both models, they provide incorrect answers in this text recognition task, yet demonstrate notable
differences in their visual perception. This observation underscores the potential for mitigating the
limitations of individual models by leveraging the complementary strengths of multiple models.
By integrating the encoders in these MLLMs, our method captures a more complete target region,
leading to accurate results.
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What’s the word on the right side? Bulgary.MGM Constabular.SLM Constabulary.Ours

Figure 1: Different MLLMs exhibit varying visual perception capabilities. We visualize the av-
erage cross-attention maps across all layers for two MLLMs - MGM and SLM, as well as for our
method that integrates these two models, using an example to observe which areas the models focus
on. It shows that our VisionFuse attention is more accurate, integrating the perceptual abilities of
both MGM and SLM. Here, “MGM” represents Mini-Gemini (Li et al., 2024), and “SLM” repre-
sents SLIME (Zhang et al., 2024).

To investigate this concept, ensemble learning has been proposed as an efficient means of lever-
aging the capabilities of different models without requiring additional training, by simply aggre-
gating the outputs (Jiang et al., 2023; Wan et al., 2024; Freitag et al., 2023). However, deploying
multiple full models and running inference on each one introduces inefficiencies in both memory
consumption and computational resources. Since vision encoders are generally smaller and less
resource-intensive than entire MLLMs, a viable alternative is to integrate multiple vision encoders
with a single language model. For example, Eagle (Shi et al., 2024) enhances MLLMs’ visual per-
ception by concatenating the encoded vision tokens from multiple encoders, but it necessitates a
resource-intensive two-stage multimodal instruction tuning process. While this approach reduces
computational overhead compared to ensemble learning, it still encounters the challenge of aligning
these encoders with a single language model, which often necessitates multimodal instruction tuning
and imposes considerable computational costs (Yang et al., 2024).

In this paper, we introduce VisionFuse, a novel framework designed to efficiently enhance the visual
perception capabilities of MLLMs, as illustrated in Figure 2. We define the MLLM family as a group
of models that share the same pre-trained language model. For example, both MiniGemini-8B (Li
et al., 2024) and SLIME-8B (Zhang et al., 2024) are trained using LLaMA-3-8B-Instruct (AI@Meta,
2024), and therefore belong to the same MLLM family. We first conduct a statistical analysis of
cross-attention to highlight variations in visual perception across different MLLMs, and then pro-
pose enhancing visual perception by integrating these models. Notably, we observe that vision
encoders within an MLLM family exhibit similar feature distributions, making their tokens more
compatible for combination. Therefore, we consider integrating these encoders to enhance percep-
tion. Furthermore, we find that merging language models within an MLLM family effectively aligns
them with different vision encoders, so prior to deployment, we merge language model parame-
ters from various MLLMs to achieve this alignment. During inference, we apply preprocessing
pipelines to the input visual data (e.g., slicing the image into local patches) consistent with those
used by individual MLLMs within the family, then feed the processed data into the vision encoders
and projectors from each MLLM to extract visual tokens. These tokens are then concatenated to
provide richer contextual information. VisionFuse effectively harnesses the visual perception capa-
bilities of multiple multimodal models, improving performance on multimodal tasks with minimal
additional inference overhead from the vision encoders.

We apply VisionFuse to different MLLM families, based on the pretrained language models includ-
ing Vicuna-v1.5 (Chiang et al., 2023) and LLaMA-3-8B-instruct (AI@Meta, 2024). Compared to
the individual model baselines, our approach demonstrates significant improvements across multi-
ple multimodal datasets. Furthermore, we visualize the cross-attention to intuitively show that the
model after integrating focuses on more relevant positions than the individual models.

In summary, our contributions are as follows:

• New insights in different MLLMs: We identify three key phenomena in various pretrained
MLLMs: (1) different models focus on distinct image regions for the same input, (2) vision en-
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Figure 2: Overview of VisionFuse. VisionFuse merges the language model parameters from differ-
ent MLLMs within a family to align the language model with multiple vision encoders. The input
image is processed through distinct preprocessing pipelines, consistent with those in MLLMs, as
well as vision encoders and projectors, to extract richer visual features. These features are then con-
catenated with text tokens and fed into the merged language model.

coders within an MLLM family exhibit more consistent features, and (3) merging language model
parameters is critical for aligning the language model with different vision encoders.

• A training-free method to enhance the perception capabilities of MLLM: We propose Vision-
Fuse, a simple yet effective method for integrating MLLMs, based on three key observations. By
merging language model parameters to align with different vision encoders and leveraging vision
encoders from multiple MLLMs within a family, VisionFuse enhances visual perception and im-
proves multimodal task performance with minimal deployment overhead. Extensive experiments
demonstrate that VisionFuse effectively enhances performance on multimodal tasks. Specifically,
in the integration of Mini-Gemini-8B and SLIME-8B, VisionFuse achieves a significant average
improvement of over 4% across multiple multimodal benchmarks without additional training.

2 RELATED WORK

Enhancing the visual perception of MLLMs. Existing multimodal large language models
(MLLMs) primarily enhance their visual perception by incorporating high-resolution inputs (Li
et al., 2024), employing optimized preprocessing methods to capture richer visual features (Liu
et al., 2024b; Zhang et al., 2024), and designing more effective vision modules (Zhang et al.,
2024; Cha et al., 2024; Ge et al., 2024). Specifically, LLaVA-Next (Liu et al., 2024b) segments
input images into local patches and uses high-quality data to train the MLLM. Mini-Gemini (Li
et al., 2024) uses CLIP (Radford et al., 2021) tokens as low-resolution queries to cross-attend to
another high-resolution vision encoder within co-located local windows. Honeybee (Cha et al.,
2024) introduces a locality-enhanced projector that balances token management flexibility with lo-
cal visual context preservation, improving both efficiency and performance in spatial understanding
tasks. ConvLLaVA (Ge et al., 2024) leverages a hierarchical ConvNeXt backbone to compress
high-resolution images into fewer visual tokens, enhancing efficiency while maintaining spatial un-
derstanding across diverse image resolutions. SliME (Zhang et al., 2024) refines visual adapters by
employing a mixture of experts for global features and compressing local image tokens with query
embeddings, improving both efficiency and performance in high-resolution tasks. Eagle (Shi et al.,
2024) explores the design space of multimodal LLMs by integrating multiple vision encoders with
different architectures and pretraining tasks, enhancing multimodal performance through efficient
fusion strategies like direct token concatenation. However, these approaches require extensive fine-
tuning to align the language model with the vision modules, leading to significant computational
costs. In contrast, our work aims to improve the visual perception of MLLMs more efficiently.

Model Merging. Model merging seeks to consolidate multiple parameter sets into a single model
without requiring retraining, providing a more memory-efficient and cost-effective alternative to
model ensembling by eliminating the need to store multiple checkpoints. Existing methods for
merging parameters of LLMs generally fall into two categories: merging with coefficients and pa-
rameter sparsification. Task Arithmetic (Ilharco et al., 2023) introduces task vectors to efficiently
edit pre-trained models by performing arithmetic operations on weight differences, enhancing task
performance without retraining. Regmean (Jin et al., 2022) computes a closed-form solution for
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the merging coefficients by minimizing the difference in activation values before and after merging.
SLERP (Shoemake, 1985) determines the merging coefficients for parameter addition based on the
angle between the model parameters. Methods like Ties-merging (Yadav et al., 2023) and DARE (Yu
et al., 2024) observe that the delta parameters of LLMs contain a significant amount of redundancy,
and propose reducing conflicts between different delta parameters through pruning. However, these
model merging methods are primarily designed for language or vision models to preserve the capa-
bilities of individual models across different downstream tasks. Our method aligns language models
with different vision encoders through model merging, which is significantly different from the mo-
tivations of existing model merging approaches.

3 MOTIVATION

In this section, we provide comprehensive visualizations and discussions from the following per-
spectives to clarify our motivation. The experiments are conducted using the following models:
SLIME-7B (Zhang et al., 2024) and MGM-7B (Li et al., 2024), both based on Vicuna-v1.5 (Chi-
ang et al., 2023), as well as SLIME-8B (Zhang et al., 2024) and MGM-8B (Li et al., 2024), which
are based on LLaMA-3-8B-Instruct (AI@Meta, 2024). We evaluate these models on the following
datasets: TextVQA (Singh et al., 2019), MME (Fu et al., 2024), and VQAv2 (Goyal et al., 2017a).
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Figure 3: Summary of our exploration and observations: (a) demonstrates that different MLLMs
focus on distinct image regions for the same visual and textual inputs; (b) reveals that vision encoders
within an MLLM family exhibit more similar feature distributions; and (c) highlights the importance
of merging language model parameters to align the language model with different vision encoders.

Observation 1: Different MLLMs attend to different regions for the same query and visual
input. To investigate the regions of focus for different MLLMs when given the same visual input
and query, we analyze SLIME-7B and MGM-7B using samples from TextVQA, MME, and VQAv2.
We calculate the average attention across all layers and the average Intersection over Union (IoU) of
the top p% regions (tokens) with the highest cross-attention. As shown in Figure 3a, even with the
same visual input and query, different models tend to focus on distinct regions, indicating notable
differences in visual perception capabilities across multimodal models. For instance, in the MME
dataset, the IoU of the top 5% of tokens with the highest cross-attention score is less than 10%. As
demonstrated in Figure 1, there are significant differences in the cross-attention between MGM and
SLIME when presented with the same image and text query. Thus, we propose leveraging these
differences to provide the language model with richer visual information.

Observation 2: Visual feature distributions of encoders within an MLLM family exhibit a
closer alignment. MLLMs align visual and textual features during multimodal instruction fine-
tuning, allowing visual features to serve as additional contextual information for textual input. Intu-
itively, vision encoders within an MLLM family should have more closely aligned visual features, as
they are aligned with the same pretrained language model. To validate this hypothesis, we randomly
select 100 samples from the TextVQA (Singh et al., 2019) dataset and visualize the distribution
of all visual tokens from different vision encoders using t-SNE (Van der Maaten & Hinton, 2008),
focusing on SLIME-7B, MGM-7B (Li et al., 2024), SLIME-8B, and MGM-8B. As illustrated in
Figure 3b, the feature distributions of vision encoders within the same MLLM family are relatively
similar, whereas those trained on different language models display more distinct distributions. This
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indicates that vision encoders within an MLLM family tend to generate more closely aligned visual
features, making them more compatible for integration within a shared context.

Observation 3: Merging language model parameters aligns the language model with different
vision encoders. Previous research on model merging (Ilharco et al., 2022; Yadav et al., 2023)
has primarily focused on combining delta parameters to enable a single LLM to inherit capabilities
from multiple fine-tuned models. This motivate us to explore whether merging the delta parameters
of the language model, relative to the pretrained language model in MLLMs, similarly facilitates
alignment between the language model and different vision encoders. Using SLIME-8B and MGM-
8B as examples, we calculate their delta parameters relative to LLaMA-3-8B-Instruct (Li et al.,
2023b) and merge them via linear interpolation, formalized as follows:

Θinterpolate = α · (ΘMGM −ΘLLaMA3) + (1− α) · (ΘSLIME −ΘLLaMA3) +ΘLLaMA3, (1)

where Θinterpolate represents the parameters after interpolation, ΘMGM, ΘSLIME, and ΘLLaMA3 repre-
sent the parameters of MGM-8B, SLIME-8B, and LLaMA-3-8B-Instruct, respectively. We evaluate
the performance of the merged delta parameters on TextVQA. As shown in Figure 3c, when α is
set to 0 or 1, the model corresponds to SLIME-8B or MGM-8B, respectively. However, when α is
closer to 0.5, the model achieves optimal performance by effectively utilizing both vision encoders.
This demonstrates that the delta parameters between an MLLM and its base model are the key fac-
tor enabling a single language model to align with different vision encoders. By merging language
models’ delta parameters from different MLLMs within a family, we can align a single language
model with multiple vision encoders.

4 METHODOLOGY

Inspired by our observations, we propose VisionFuse, a simple yet effective approach for efficiently
integrating different MLLMs to enhance visual perception. As illustrated in Figure 2, Vision-
Fuse first merges the language models and then utilizes various vision encoders to extract richer
features for the input image, which are subsequently fed into the merged LLM.

4.1 PRELIMINARIES

Notation: Let fΘ(x) represents the language model of an MLLM, where Θ denotes the parameters
of the language model. The input x is a sequence of tokens, comprising vision tokens V processed by
the modality-specific encoder and text tokens T generated from word embeddings. The parameters
of the pre-trained language model are denoted as Θpre.

Delta parameters. Delta parameters represent the changes in model parameters during fine-
tuning (Liu et al., 2024d). In MLLMs, the delta parameters for the language model during mul-
timodal fine-tuning are expressed as Θ−Θpre.

Main components of the MLLM. Existing MLLMs (Yin et al., 2023) typically consist of a
modality preprocessing module that processes input data (e.g., slicing images into local patches),
a modality-specific encoder that converts the data into features, a modality-specific projector that
maps the encoded visual features into the text space, and an LLM that performs cross-modal reason-
ing by integrating these tokens with text-based input. For a given set of M MLLMs, the language
model parameters of the i-th model are denoted as Θi, its preprocessing pipeline as Preprocessingi,
its vision encoder as Enci, and its vision projector as Proji.

4.2 ENSEMBLE OF DIFFERENT VISION ENCODERS

To leverage the visual perception capabilities of different MLLMs, an intuitive approach is to en-
semble multiple MLLMs and aggregate their predictions. However, due to the large number of
parameters in the language models, directly ensembling the entire MLLMs would result in signif-
icant computational overhead. Therefore, we explore whether it is feasible to integrate only the
vision encoders, which have relatively fewer parameters, and aggregate the outputs in a way that
feeds into the language model for inference.

In pre-trained MLLMs, the alignment between textual and visual inputs in the feature space allows
them to be treated as a unified sequence for input into the language model. As discussed in Obser-
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vation 2, visual features from MLLMs trained on the same language model are more closely aligned
in the feature space. Therefore, we directly aggregate the outputs of different vision encoders within
an MLLM family, treating them as distinct visual context information, which enables the language
model to obtain richer visual perception. Due to the varying lengths of vision tokens from different
MLLMs, we propose directly concatenating the vision tokens from these MLLMs. The process of
ensembling multiple vision encoders can be formalized as follows:

Vi = Proji(Enci(Preprocessingi(x))), (2)

VF = [V1;V2; . . . ;Vn], (3)

where [·; ·] denotes concatenation, and VF represents the integrated visual features.

4.3 MERGING LLMS FROM A FAMILY OF MLLMS

A single language model cannot directly align with multiple encoders from different MLLMs, as
they have not undergone alignment training. Retraining for such alignment would result in sub-
stantial computational costs. As discussed in Observation 3, merging language model parameters
within an MLLM family helps align a language model with different vision encoders. Therefore,
following the approach in (Ilharco et al., 2022), we merge these delta parameters to create a single
language model capable of interpreting visual tokens from multiple vision encoders. The merging
process can be formalized as follows:

Θmerged = Θpre + λ ·
M∑
i=1

(Θi −Θpre), (4)

where Θpre represents the parameters of the shared base model, and λ is a merging coefficient. The
prediction ŷ can then be generated as follows:

ŷ = f(VF , T ;Θmerged). (5)

Algorithm 1 Procedure of Inference for VisionFuse

Input: M MLLMs built upon the same pretrained language model with parameters Θpre, with
the i-th model having language model’s parameter Θi, vision encoder Enci and preprocessing
pipeline Preprocessingi, input image x, text input T .

Output: Prediction ŷ
1: Generate merged parameters Θmerged using Eq. (4). ▷ Merge language model parameters
2: for the i-th vision encoder from 1 to M do ▷ Extract visual features from different encoders
3: Extract visual features Vi using Eq.( 2).
4: end for
5: Generate VF using Eq.( 3).
6: return Prediction ŷ using Eq.( 5).

Complexity analysis. For training complexity, our VisionFuse is significantly more cost-effective
than existing methods. Existing MLLMs often require extensive training cost to achieve alignment
between the language model and vision encoders (Yang et al., 2024). Instead, our VisionFuse en-
hances the perception capabilities by concatenating tokens from different vision encoders and merg-
ing parameters of the language models from different MLLMs, with no additional training cost.

For inference complexity, our VisionFuse requires some additional cost to process the longer visual
tokens. Since the computational cost of the language model of MLLMs is significantly higher than
that of the vision encoder, we mainly analyze the computational cost of the language model for
different methods. The Floating Point Operations (FLOPs) in language model for i-th MLLM are
O
((

Li
Enc + Lt

)2)
, where Li

Enc represents the length of generated tokens from i-th MLLM’s vision
encoders, Lt represents the length of text tokens. Since our VisionFuse concatenates the tokens from
all M visual modules of MLLMs, it requires processing more tokens compared to a single MLLM.

Specifically, the FLOPs of VisionFuse are O

((∑M
i=1 L

i
Enc + Lt

)2
)

. To reduce the inference cost,
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one can use the token pruning method to remove the redundant visual tokens (Chen et al., 2024). We
analyze our method under different levels of sparsity and the results demonstrate that our method is
able to achieve better performance with lower FLOPs compared to a single model (see Table 5).

5 EXPERIMENTS

Implementation details. We conduct experiments across various MLLM combinations, including
(1) SLIME-7B (Zhang et al., 2024) and MGM-7B (Li et al., 2024) based on Vicuna-v1.5 (Chiang
et al., 2023), and (2) SliME-8B (Zhang et al., 2024) and MGM-8B (Li et al., 2024) based on Llama-
3-8B-Instruct (AI@Meta, 2024). We evaluate the performance of our approach on multiple multi-
modal datasets, including VQAT (TextVQA) (Singh et al., 2019), MMB (MMBench) (Liu et al.,
2023b), MMBC(MMBench-Chinese) (Liu et al., 2023b), MME (Fu et al., 2024), MMMU (Yue
et al., 2024), VQAv2 (Goyal et al., 2017b) and Vizwiz (Gurari et al., 2018).

Compared methods. We compare our method with the baselines and existing leading MLLMs,
including MobileVLM (Chu et al., 2023), Qwen-VL Bai et al. (2023), Qwen-VL-Chat Bai et al.
(2023), IDEFICS (Laurencon et al., 2023), LLaMA-VID (Li et al., 2023b), LLaVA-1.5 (Liu et al.,
2024a), VILA (Lin et al., 2024), Shika (Chen et al., 2023) and InstructBLIP (Dai et al., 2023).

Table 1: Comparison with leading methods on multimodal benchmarks. Results of VisionFuse are
marked in gray. VQAT : TextVQA; MMB: MMBench; MMBC : MMBench-Chinese; MMMUv,t:
validation and test set of MMMU; MMEP,C : Perception and Cognition in MME. Res. indicates
the resolution of the input. Percentages indicate the rate of improvement compared to the best
performance of the baselines.

Method LLM Res. VQAT VQAv2 Vizwiz MMEP MMEC MMB MMBC MMMUv MMMUt

MobileVLM MLLaMA 2.7B 336 47.5 - - 1289 - 59.6 - 26.2 -
InstructBLIP Vicuna-7B 224 50.1 - 34.5 - - - 36.0 - -
InstructBLIP Vicuna-13B 336 50.7 - 33.4 1213 - - - 25.6 -
Qwen-VL Qwen-7B 336 59.8 78.8 35.2 - - 66.0 - - -
Qwen-VL-Chat Qwen-7B 448 61.5 78.2 38.9 1488 - 68.0 - 35.9 32.2
Shikra Vicuna-13B 336 52.3 - - - - 59.2 - - -
IDEFICS-80B LLaMA-65B 224 30.9 - - - - 54.5 - - -
LLaMA-VID Vicuna-7B 336 - 79.3 54.2 1521 - 65.1 - - -
LLaMA-VID Vicuna-13B 336 - 80.0 54.3 1521 - 66.6 - - -
LLaVA-1.5 Vicuna-7B 336 53.5 78.5 50.0 - - 66.4 58.3 31.5 -
LLaVA-1.5 Vicuna-13B 336 63.2 80.0 53.6 1531 295 65.2 63.6 36.4 33.1
LLaVA-HD Vicuna-13B 336 62.5 81.8 57.5 1500 - 68.8 61.9 - -
MGM-8x7B Mixtral-8x7B 336 69.2 - - 1639 379 75.6 - 41.8 37.1

MGM-7B Vicuna-7B 336 65.2 80.4 52.1 1523 316 68.7 57.8 36.1 32.8
SliME-7B Vicuna-7B 336 64.4 80.3 53.7 1544 383 68.4 61.3 37.2 33.4

66.9 80.7 54.4 1563 394 69.6 62.5 37.8 33.6MGM-SliME-7B Vicuna-7B 336 +2.6% +0.4% +1.3% +1.2% +2.9% +1.3% +2.0% +1.6% +0.6%

MGM-8B LLaMA-3-8B-Instruct 336 67.6 81.0 50.9 1606 341 68.1 62.1 38.2 36.3
SliME-8B LLaMA-3-8B-Instruct 336 64.8 80.7 53.1 1578 337 73.2 69.8 40.8 37.2

70.0 82.1 60.9 1645 372 73.9 71.9 41.6 38.4MGM-SliME-8B LLaMA-3-8B-Instruct 336 +3.6% +1.4% +14.7% +2.4% +9.1% +1.0% +3.0% +2.0% +3.2%

MGM-8B-HD LLaMA-3-8B-Instruct 672 71.6 81.5 54.4 1532 357 70.6 65.2 37.0 36.5
SliME-8B LLaMA-3-8B-Instruct 336 64.8 80.7 53.1 1578 337 73.2 69.8 40.8 37.2

72.7 82.2 55.2 1600 364 75.1 70.8 41.8 37.4MGM-HD-SliME-8B LLaMA-3-8B-Instruct 672 +1.5% +0.9% +1.5% +1.4% +2.0% +2.5% +1.4% +2.5% +0.5%

Main results. We evaluate our method across several multimodal datasets and compare it against the
leading MLLMs, as detailed in Table 1. Without any additional training, our approach significantly
enhances performance over individual models by simply integrating vision encoders from the same
MLLM family. Notably, in the integration of MGM-8B and SLIME-8B, VisionFuse incurs only
a 3.4% increase in parameters due to the additional encoders employed, achieving a 4% relative
improvement compared to the optimal individual model. Furthermore, the performance is on par
with that of the MGM-8x7B model, which contains over six times more parameters, highlighting
the parameter efficiency of VisionFuse.

Effectiveness on different resolutions inputs. To further assess the effectiveness of our method
with varying image resolutions, we combine the high-resolution vision encoder from Mini-Gemini-
HD-8B with the low-resolution vision encoder from SLIME-8B. As demonstrated in Table 1, even
the low-resolution vision encoder can mitigate some of the limitations of the high-resolution encoder
by providing richer visual information to the language model. The performance after integration is
higher than that of either individual model. This suggests that even models utilizing high-resolution
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inputs may overlook critical regions, whereas the low-resolution vision encoder can help address
these gaps in visual perception.

Table 2: Ablation study on each component. We conduct ablation experiments on the merging
of MGM-8B and SLIME-8B. In this context, ‘V.E. of SLIME’ refers to using the vision encoder
from SLIME-8B, and ‘V.E. of MGM’ refers to using the vision encoder from MGM-8B. ‘SLIME’s
Param’ indicates the use of SLIME-8B as the language model, and ‘MGM’s Param’ indicates the
use of MGM-8B as the language model. When both ‘MGM’s Param’ and ‘SLIME’s Param’ are
selected, we merge the parameters of MGM-8B and SLIME-8B.

SLIME’s Param MGM’s Param V.E. of SLIME V.E. of MGM TextVQA MMEP MMEE GQA POPE
✓ ✓ ✓ ✓ 70.0 1645 372 64.3 85.8

✓ ✓ 67.6 1606 341 63.2 85.6
✓ ✓ 64.8 1578 337 63.9 84.9

✓ ✓ ✓ 66.4 1485 294 62.3 84.2
✓ ✓ ✓ 66.9 1590 355 62.5 84.6
✓ ✓ ✓ 65.9 1606 358 63.1 83.1
✓ ✓ ✓ 68.1 1628 348 63.5 82.9

Effectiveness of each component. To assess the effectiveness of each component of our method,
we perform ablation studies on several multimodal datasets, as shown in Table 2. The results demon-
strate that without merging the delta parameters, the language model fails to align with the vision
encoders from different MLLMs, leading to a decline in performance. On the other hand, merging
the delta parameters without incorporating features from multiple vision encoders results in moder-
ate improvements in multimodal tasks. However, these gains are limited by the absence of richer
visual information. Therefore, the substantial performance enhancement is largely attributed to the
inclusion of richer visual information.

MGM MGM×2
MGM×3

MGM×4
MGM+SLIME
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Figure 4: Comparision with
directly duplicating the visual
tokens of a single model.

Effectiveness of integrating different vision encoders. To further
assess the effectiveness of integrating different vision encoders, we
directly duplicate the vision encoder features of MGM-8B multiple
times (×2, ×3, and ×4) and compare the performance of integrat-
ing MGM-8B with SLIME-8B. As shown in Figure 4, simply du-
plicating MGM-8B’s visual tokens, despite providing the language
model with more visual token inputs, does not result in performance
improvement. This is because no additional visual information is
introduced, further underscoring the effectiveness of integrating vi-
sion encoders from different MLLMs.

Influence of different merge methods. To evaluate the impact of different model merging strategies
on our approach, we apply various methods for merging language models, as presented in Table 3.
Regardless of the strategy employed, our method consistently exhibits strong integration perfor-
mance, surpassing that of the individual models. Among the approaches tested, Task-Arch (Ilharco
et al., 2022) achieved the best results, leading us to adopt it ultimately.

Table 3: Evaluation of different model merging methods.

Merging Method TextVQA MMEP MMEE

Task-Arch (Ilharco et al., 2022) 70.0 1645 372
Average (Choshen et al., 2022) 70.0 1632 360
Ties-Merging (Yadav et al., 2023) 69.4 1626 352
DARE (Yu et al., 2024) 69.5 1632 352
SLERP (Shoemake, 1985) 70.0 1642 368

Table 4: Further evaluation using
GPT. We report the average score
evaluated by GPT-4o.

Method Average Score
MGM-8B 7.76
SLIME-8B 7.71

MGM-SLIME-8B 8.43(+8.6%)

Further exploration of the enhancement of visual information richness. Existing visual
question-answering datasets primarily focus on querying specific details. To further validate that
our method enables models to capture richer visual information, we construct a new dataset by ran-
domly sampling 100 images from the COCO (Lin et al., 2014) dataset. For each image, the text
prompt is: “Please describe this image in as much detail as possible.” We use the GPT-4o API to
score the model outputs based on the level of detail and accuracy (on a scale of 1-10), inputting
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both the image and the predictions from individual models and VisionFuse. As shown in Table 4,
our method, which integrates vision encoders from different multimodal models, generates more de-
tailed and accurate image descriptions. Compared to the individual models, our approach achieves
a relative improvement of 8.6%. In Figure 5, we present an example. Our method captures more
comprehensive image details compared to individual models. For instance, MGM mentions onions
and the location of the cutting board, while SLIME does not. Conversely, SLIME identifies spinach,
which MGM overlooks. The unique visual information captured by these individual models is effec-
tively combined when integrated using our method. Additional details of our evaluation and more
example responses are provided in Appendix A.1.

Please describe this image in as much detail as possible.

The image captures a variety of fresh produce and food items arranged on a wooden cutting board. 

The produce includes tomatoes, basil, mushrooms, and broccoli, while the food items consist of a 

block of cheese and a carton of eggs. The colors are vibrant, with the red of the tomatoes, the 

green of the basil and broccoli, and the white of the cheese and eggs. The mushrooms are in a 

clear plastic container, and the eggs are in a carton with a green netting. The cheese is wrapped in 

plastic, and the cutting board is placed on a tiled floor. The image conveys a sense of freshness 

and readiness for cooking.

The image captures a vibrant array of fresh produce and other items neatly arranged on a wooden 

cutting board. The produce includes a variety of vegetables such as broccoli, spinach, and 

tomatoes, as well as a bunch of green onions. There are also mushrooms and a bag of greens. In 

addition to the produce, there are two bottles of juice, a bag of cheese, and a bag of bread. The 

cutting board is placed on a white countertop, providing a stark contrast to the colorful items on it. 

The overall scene suggests a healthy and balanced meal in the making.

The image captures a vibrant array of fresh produce and food items meticulously arranged on a 

wooden cutting board. Dominating the scene are six ripe red tomatoes, their glossy skins 

reflecting the light. Nestled next to them are two onions, their papery white skins contrasting 

with the tomatoes' vivid red. A bunch of fresh basil leaves adds a touch of green to the scene, 

their aromatic scent almost palpable. A bunch of broccoli, its dark green florets tightly 

packed, lies next to the basil. Its presence adds a healthy and nutritious element to the 

assortment. A bunch of mushrooms, their earthy brown caps and stems, are also part of this 

culinary tableau. A bag of spinach, its leaves a deep green, is placed next to the mushrooms. 

The spinach's rich color suggests it's fresh and ready to be used in a delicious salad or 

cooked dish. A bag of corn, its golden kernels peeking out from the bag, completes the 

assortment. In addition to the fresh produce, there are two containers of food. One container 

holds a creamy white substance, possibly cheese or yogurt, while the other contains a red 

sauce, perhaps marinara or salsa. These containers add a savory element to the scene, hinting at 

the delicious meals that could be created with these ingredients. The cutting board is placed on 

a tiled floor, providing a clean and hygienic surface for food preparation. The overall scene 

suggests a kitchen setting, ready for the preparation of a healthy and delicious meal.

MGM

SLIME

Ours

Input Image

MGM

SLIME

Ours

Query

Figure 5: Qualitative comparison between individual models and our method, focusing on the rich-
ness of visual information. “MGM” refers to “MGM-8B”, and “SLIME” refers to “SLIME-8B.” We
also visualize the average cross-attention across all layers and highlight the sections in the output of
our method that provide more detailed information compared to the individual models.
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Figure 6: Comparisons of
concatenating and adding.

Discussions of concatenating and adding vision tokens. The
length of visual tokens in existing MLLMs varies due to differ-
ences in vision encoders, preprocessing techniques, and other fac-
tors, making direct fusion through summation challenging. To
address this, VisionFuse concatenates features from different vi-
sion encoders, effectively handling inconsistent visual token lengths
and providing a more flexible and adaptable aggregation method.
To further explore the differences between adding and concate-
nating visual tokens, we conduct experiments using MGM-8B
and SLIME-8B. Notably, SLIME captures additional local fea-
tures through local patches, while its global features share the same
length as MGM’s. We employ two methods for feature summation:
(A) Add Global, which averages the global features from both models, and (B) Interpolate-Add,
which interpolates MGM-8B’s token sequence to match SLIME-8B’s length before averaging. Our
comparative analysis on TextVQA, shown in Figure 6, indicates that both addition methods under-
perform compared to concatenation, due to information loss from simplistic averaging. Developing
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a more efficient strategy for fusing visual tokens across different MLLMs remains a subject for
future research.
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Figure 7: Performance of in-
tegrating MLLMs from dif-
ferent families.

Importance of integrating MLLMs within a family. To assess
the importance of integrating MLLMs within the same family, we
evaluate the performance of integrating MLLMs across different
families. Our experiments are conducted using VILA-8B, which is
based on LLaMA-3-8B, and MGM-8B, which is based on LLaMA-
3-8B-Instruct. Parameter merging follows Eq. 4. The parameters of
LLaMA-3-8B are employed as Θpre for both VILA-8B and MGM-
8B, with performance evaluated on TextVQA. As shown in Fig-
ure 7, integrating VILA-8B and MGM-8B leads to a significant per-
formance decline, whereas combining MGM-8B with SLIME-8B
results in an improvement. These findings suggest that integrating
MLLMs from different families is challenging due to substantial variations in their delta parameters.

Discussion of efficiency. As mentioned in Section 4, the increase in FLOPs for VisionFuse primarily
arises from the increased length of visual tokens. To mitigate the significant rise in inference cost
caused by extended visual sequences, a simple approach is to prune the token sequence. FastV (Chen
et al., 2024) identifies substantial redundancy in visual tokens starting from the 3rd layer. Inspired
by this, we use the integration of MGM-8B and SLIME-8B as a case study to explore the extent
of redundancy in visual tokens after integrating multiple MLLMs, and we compare the FLOPs and
inference time. As shown in Table 5, after pruning 50% vision tokens starting from the 3rd layer,
the FLOPs of VisionFuse are reduced to levels below those of both MGM-8B and SLIME-8B, while
maintaining superior performance compared to the individual models.

Table 5: The comparison of FLOPs and inference time under different token pruning ratios. The
results of VisionFuse are marked in gray. We report the average FLOPs and inference time (second)
per sample on the TextVQA and MME datasets. “Sparsity” refers to the pruning rate of vision
tokens, where 0% indicates no sparsity. “Params” indicates the number of parameters. We evaluate
the inference time on a single NVIDIA A800 GPU.

Method Sparsity Res. TextVQA MMEP MMEE Params FLOPs Inference Time
MGM-8B 0% 336 67.6 1606 341 8.6B 22.73T 0.2395
MGM-8B 30% 336 66.5 1536 306 8.6B 9.14T 0.2354
MGM-8B 50% 336 65.5 1529 316 8.6B 7.54T 0.2292

SliME-8B 0% 336 64.8 1578 337 8.4B 79.04T 0.3586
SliME-8B 30% 336 64.4 1584 337 8.4B 18.71T 0.3370
SliME-8B 50% 336 63.4 1579 335 8.4B 14.86T 0.2800

MGM-SliME-8B 0% 336 70.0 1645 372 8.9B 141.56T 0.4171
MGM-SliME-8B 30% 336 69.8 1649 368 8.9B 27.18T 0.4080
MGM-SliME-8B 50% 336 69.8 1637 370 8.9B 21.54T 0.3624
MGM-SliME-8B 70% 336 68.5 1597 351 8.9B 16.03T 0.3359

6 CONCLUSION AND FUTURE WORK

This paper investigates the differences in visual perception capabilities among various MLLMs and
proposes a new paradigm for efficiently enhancing the perceptual abilities of MLLMs. The ap-
proach offers a simple yet effective MLLM integration strategy that requires no additional training,
leveraging the distinct visual perception strengths of different MLLMs to improve performance on
multimodal tasks. Overall, VisionFuse significantly enhances the perceptual abilities of individual
MLLMs with minimal additional deployment overhead.

Our current analysis focuses on two MLLMs. However, when attempting to integrate more MLLMs,
a direct concatenation of visual sequences results in excessively long visual token sequences, causing
discrepancies that the sequence length is much longer than that in the training phase and a subsequent
decline in performance. Detailed results are provided in Appendix C.1. Future work will explore
methods for efficiently incorporating additional MLLMs while reducing the length of visual tokens,
such as employing token merging strategies across different MLLMs or utilizing rapid fine-tuning
techniques to adapt to longer input sequences.
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A DETAILS OF EXPERIMENTAL SETTINGS

A.1 DETAILS OF EVALUATION IN TABLE 4

For each example, we include both the image and the outputs from multiple models with the same
prompt. The images are provided as URLs in the GPT-4o API. GPT-4o then returns a JSON object
containing the scores for all models. The prompt is as follows:

Next, I will provide you with descriptions of an image generated
by multiple models. Please evaluate these descriptions based
on the level of detail and accuracy, and assign a score
ranging from 1 to 10. Finally, your output only contains a
JSON object, where each item is the model name and its
corresponding score.

model A: ......

model B: ......

model C: ......

A.2 SEARCHING DETAILS FOR THE HYPER-PARAMETERS OF MERGING METHODS

Table 6 shows the searching range of the parameters of several merging methods in Table 3.

Table 6: Searched ranges of hyperparameters.

Method Search Ranges of Hyperparameters
Task Arithmetic (Ilharco et al., 2022) Scaling term: [0.1, 0.3, 0.5, 0.7, 0.9, 1.0]

TIES-Merging (Yadav et al., 2023) Scaling term: [0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
Ratio of retain parameters: [0.1, 0.2, 0.3]

DARE (Yu et al., 2024) Scaling term: [0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
Drop rate: [0.1, 0.3, 0.5, 0.7, 0.9]
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B ADDITIONAL RELATED WORK

Multimodal Large Language Models. MLLMs integrate vision encoders into large language mod-
els, enabling them to handle multimodal tasks. Early models such as Flamingo (Alayrac et al.,
2022) encode images and feed them into the attention layers of the language model, while Blip-
2 (Li et al., 2023a) employs Q-Former to encode images into features, which are then input into
the language model. Subsequent works (Liu et al., 2024c; 2023a; Lu et al., 2023; Zhang et al.,
2023; Zhao et al., 2023; Zhu et al., 2023) enhance the multimodal understanding capabilities of lan-
guage models through instruction fine-tuning on multimodal datasets. Further research has focused
on optimizing encoder designs, extracting richer visual information, and expanding the models to
handle additional modalities. For example, Eagle (Shi et al., 2024), Mini-Gemini (Li et al., 2024),
SLIME (Zhang et al., 2024), and LLaVA-next (Liu et al., 2024b) introduce additional vision en-
coders and employ preprocessing techniques such as cropping and interpolation to handle longer
visual input sequences, thereby enriching the visual information available to the language model.
Honeybee (Cha et al., 2024) introduces a locality-enhanced visual projector to better bridge pre-
trained vision encoders with large language models. Recent works (Lin et al., 2023; Xu et al., 2024;
Han et al., 2024) also explore enabling language models to understand a wider range of modalities.

C DISCUSSIONS AND LIMITATIONS

Although the proposed VisionFuse enhances visual perception capabilities by effectively integrat-
ing the vision encoders of different models through the concatenation of visual tokens, excessively
long token sequences can introduce challenges. In Section C.1, we discuss this issue in detail. In
Section C.2, we further discuss the underlying solution to alleviate this limitation.

C.1 IMPACT OF THE TOKEN SEQUENCE LENGTH
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Figure 8: Exploration of the impact of sequence length: (a) demonstrates the significant performance
degradation caused by visual sequences that are excessively long and inconsistent with the training
phase; (b) provides statistics on text sequence lengths in the TextVQA dataset; and (c) presents the
average length of visual sequences during testing on TextVQA for the three models.

In this part, we investigate the impact of the token sequence length on the model performance. We
progressively increase the number of random visual tokens and show the results of MGM-7B (a sin-
gle MLLM) and our VisionFuse (integration of MGM-7B and SLIME-7B). As shown in Figure 8a,
a significant decline in model performance is observed when the length of visual tokens exceeds a
certain threshold. This decline can be attributed to the mismatch between the shorter token lengths
used during training and the longer ones encounter during inference.

To verify the above conclusion, we also analyze the number of input text and visual tokens for MGM-
7B during training and inference on the TextVQA dataset. As illustrated in Figure 8b, the majority
of samples contain between 0 and 100 text tokens. During training, the visual token sequence
length for both models is capped at 4096, meaning that the models are not exposed to sequences
longer than this during multimodal fine-tuning. This limitation leeds to degraded performance when
longer sequences are encountered during testing. As shown in Figure 8c, the total visual token
length for MGM-7B, SLIME-7B, and LLaVA-Next-7B exceeds 4096, which surpasses the sequence
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length encounters during training. Consequently, all three MLLMs may not learn how to handle the
longer token sequences, resulting in a marked performance decline when encountering these token
sequences after the integration of these MLLMs, as illustrated in Table 7.

C.2 EXPLORATION OF INTEGRATING MORE MODELS THROUGH TOKEN PRUNING
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Figure 9: Exploration of redundancy in visual tokens: (a) and (b) examine the redundancy of visual
tokens in SLIME-7B and LLaVA-Next-7B across the TextVQA and MME datasets. (c) investigates
the effect of randomly dropping tokens on performance after integrating these two models.

To address the issue of inconsistency between training and testing caused by excessively long input
sequences, one straightforward solution is to fine-tune the model with longer visual input sequences.
As shown in Table 7, the 8B models, having been trained on longer token sequences, demonstrate
significant performance gains with the direct integration of the three MLLMs. However, training on
longer sequences comes with considerable computational costs. To mitigate this challenge more ef-
ficiently, we investigate the possibility of directly reducing the token sequence length before LLM’s
inference. Previous work on token pruning suggests that visual features in MLLMs exhibit sub-
stantial redundancy (Bolya et al., 2022; Chen et al., 2024), indicating that pruning redundant tokens
could be a feasible solution. In the following, we assess the effectiveness of token pruning in miti-
gating the negative impact of inconsistent sequence lengths between training and testing, using the
integration of MGM-7B, LLaVA-Next-7B, and SLIME-7B as case studies.

It is worth noting that both SLIME-7B and LLaVA-Next-7B enhance visual representations by incor-
porating a large number of local features through additional augmentations, resulting in significantly
longer visual sequences compared to MGM-7B. We therefore assess the impact of randomly drop-
ping visual tokens on the performance of these two models and explore the extent of redundancy in
their local features. Specifically, we test two strategies on the TextVQA and MME datasets: (1) ran-
domly dropping a specified number of tokens from the entire set of visual tokens, and (2) randomly
dropping a specified number of tokens exclusively from the local features. As shown in Figures 9a
and 9b, randomly dropping SLIME-7B’s visual tokens leads to a substantial performance decrease,
whereas removing fewer than 500 visual tokens exclusively from the local features does not result
in a significant performance loss. This indicates that SLIME-7B’s local features exhibit consider-
able redundancy. In contrast, random token pruning from either the full token set or just the local
features in LLaVA-Next-7B results in a notable performance decline. Based on these observations,
we recommend pruning more visual tokens in SLIME-7B while limiting the number of tokens drop
in LLaVA-Next-7B.

We implement a strategy of randomly dropping visual tokens to reduce the token sequence length,
enabling the language model to accommodate a larger number of visual tokens from different mod-
els. We first conduct experiments on the TextVQA dataset by integrating the MGM-7B, SLIME-7B,
and LLaVA-Next-7B models. As shown in Figure 9c, performance improves when a certain number
of tokens are dropped, after which further pruning may lead to a decline in performance. Ultimately,
when approximately 1000 tokens are dropped, the performance of the three-model integration sur-
passes that of the two-model integration. Additionally, as presented in Table 7, random pruning of
1000 tokens leads to a notable improvement in overall performance. However, different MLLMs
exhibit varying degrees of token sparsity, making it inconvenient to test each one before integration.
We leave the design of a more efficient cross-model token fusion/pruning strategy for future work.
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Table 7: Comparison with leading methods on multimodal benchmarks. Our results are marked
in gray. VQAT : TextVQA; MMB: MMBench; MMMUv,t: validation and test set of MMMU;
MMEP,C : Perception and Cognition in MME. Res. indicates the resolution of the input image.
Percentages indicate the rate of improvement compared to the best performance of the baseline. *
denotes randomly dropping 1000 vision tokens.

Method LLM Res. VQAT MMEP MMEE MMB MMMUv MMMUt

MobileVLMI MLLaMA 2.7B 336 47.5 1289 - 59.6 26.2 -
InstructBLIP Vicuna-7B 224 50.1 - - 36.0 - -
InstructBLIP Vicuna-13B 336 50.7 1213 - - 25.6 -
Qwen-VL Qwen-7B 336 59.8 - - 66.0 - -
Qwen-VL-Chat Qwen-7B 448 61.5 1488 - 68.0 35.9 32.2
Shikra Vicuna-13B 336 52.3 - - 59.2 - -
IDEFICS-80B LLaMA-65B 224 30.9 - - 54.5 - -
LLaMA-VID Vicuna-7B 336 - 1521 - - - -
LLaMA-VID Vicuna-13B 336 - 1521 - 66.6 - -
LLaVA-1.5 Vicuna-7B 336 53.5 - - 66.4 31.5 -
LLaVA-1.5 Vicuna-13B 336 63.2 1531 295 65.2 36.4 33.1
LLaVA-HD Vicuna-13B 336 62.5 1500 - 68.8 - -
MGM-8x7B Mixtral-8x7B 336 69.2 1639 379 75.6 41.8 37.1

MGM-7B Vicuna-7B 336 65.2 1523 316 68.7 36.1 32.8
SliME-7B Vicuna-7B 336 64.4 1544 383 68.4 37.2 33.4
LLaVA-Next-7B Vicuna-7B 336 61.9 1519 334 65.6 30.7 30.5
MGM-SliME-7B Vicuna-7B 336 66.9 (+2.6%) 1563 (+1.2%) 394 (+2.8%) 69.6 (+1.3%) 37.8 (+1.6%) 33.6 (+0.6%)
MGM-SliME-LLaVA-7B Vicuna-7B 336 20.1 (-69.2%) 1220 (-21.0%) 268 (-30.2%) 60.7 (-13.2%) 29.9 (-20.9%) 21.2 (-38.0%)
MGM-SliME-LLaVA-7B∗ Vicuna-7B 336 67.4 (+3.4%) 1570 (+1.7%) 397 (+3.7%) 70.2 (+2.2%) 37.8 (+1.6%) 33.9 (+1.5%)

MGM-8B LLaMA-3-8B-Instruct 336 67.6 1606 341 68.1 38.2 36.3
SliME-8B LLaMA-3-8B-Instruct 336 64.8 1578 337 73.2 40.8 37.2
LLaVA-Next-8B LLaMA-3-8B-Instruct 336 64.6 1604 318 72.1 40.7 37.0
MGM-SliME-8B LLaMA-3-8B-Instruct 336 70.0 (+3.6%) 1645 (+2.4%) 372 (+8.3%) 73.9 (+1.0%) 41.6 (+2.0%) 38.4 (+3.2%)
MGM-SliME-LLaVA-8B LLaMA-3-8B-Instruct 336 70.9 (+4.9%) 1660 (+3.4%) 369 (+8.2%) 75.1 (+2.6%) 41.7 (+2.2%) 38.7 (+4.0%)

D PERFORMANCE ON INTEGRATION OF MLLMS FROM DIFFERENT FAMILIES

To further evaluate the performance of VisionFuse on MLLMs from different families, we conduct
experiments with MGM-7B, MGM-8B (Li et al., 2024), VILA-7B, and VILA-8B (Lin et al., 2024),
as shown in Table 8. Vicuna-v1.5 is trained on LLaMA-2-7B, and LLaMA-3-8B-Instruct shares the
same architecture as LLaMA-3-8B, meaning they have the same structure but different parameters.
For merging the language model of MGM-7B and VILA-7B, we compute the delta parameters
based on LLaMA-2-7B, and for merging the language model of VILA-8B and MGM-8B, we use
delta parameters based on LLaMA-3-8B. Notably, the delta parameters differences between MGM-
7B and VILA-7B are larger compared to those between MGM-7B and SLIME-7B, and similarly, the
delta parameters differences between MGM-8B and VILA-8B are larger compared to those between
MGM-8B and SLIME-8B. While improvements are achieved on some datasets, there is a significant
performance drop on others. This is attributed to the substantial differences in delta parameters,
resulting in a significant alignment error between the merged language model and the individual
vision encoders.

Table 8: Merging multimodal large language models from different families.

Method LLM TextVQA MMEP MMEE GQA POPE MMMUv

MGM-7B Vicuna-v1.5 65.2 1523 316 64.5 84.1 36.1
VILA-7B LLaMA-2-7B 64.4 1533 293 62.3 85.5 35.2
MGM-VILA-7B LLaMA-2-7B 68.6 (+5.2%) 1534 (+0.0%) 298 (-5.7%) 63.4 (-1.7%) 84.9 (-0.7%) 35.3 (-2.2%)

MGM-8B LLaMA-3-8B-Instruct 67.6 1606 341 64.3 85.8 38.2
VILA-8B LLaMA-3-8B 66.3 1577 326 61.9 84.4 36.9
MGM-VILA-8B LLaMA-3-8B 33.0 (-51.2%) 1496 (-6.8%) 349 (+2.3%) 50.3 (-21.8%) 83.9 (-2.2%) 33.2 (-13.1%)

E MORE VISUALIZATIONS

We provide additional samples and visualizations to further demonstrate the effectiveness of our
method. We visualize the average cross-attention across all layers of the model before and after
integration. ‘MGM’ refers to MGM-8B, and ‘SLIME’ refers to SLIME-8B.

In Figure 10, it can be observed that after integrating multiple MLLMs using our method, the model
captures more information and attends to a wider range of target regions. For example, in the
left sample, the task is to count the number of pictures on the wall. Each model fails to detect
all the pictures, resulting in an incorrect answer. However, after integrating multiple MLLMs using
VisionFuse, the model successfully attends to all the pictures and provides an accurate answer. In the
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right sample, individual models tend to focus on only a portion of the sign, leading to incomplete
answers. In contrast, VisionFuse enables the model to attend to a more comprehensive region,
resulting in a more accurate response.

In Figure 11, we visualize two examples from the TextVQA dataset. The target texts in these exam-
ples are extremely small, requiring the model to possess strong fine-grained perception capabilities
for accurate recognition. While both MGM-8B and SLIME-8B identify the target regions, neither is
able to provide the correct answers. In contrast, our method, which concatenates visual tokens from
both models, significantly enhances the model’s fine-grained perception, enabling it to correctly
identify the results.

In Figure 12, we present two examples from the VQAv2 dataset. Although both MGM-8B and
SLIME-8B successfully attend to the target regions, neither could correctly identify the color of
the target object. Interestingly, the colors perceived by the two models are complementary to the
actual target colors. After integrating the two models, our method is able to accurately recognize the
correct color.

In Figure 13, MGM focuses on the overall layout of the room, mentioning the white appliances in the
kitchenette and the presence of a child near the door, while SLIME emphasizes the cozy atmosphere
of the kitchen and living room, describing the natural light and hinting at additional rooms beyond
the door. Our method, however, not only retains the overall layout but also highlights key details,
such as the red ketchup bottle, the blue mustard bottle, and the presence of a woman and child,
adding life and richness to the scene.

In Figure 14, MGM describes the kitchen, noting the blender, the soup’s greenish-yellow color,
and objects like a cutting board and a plastic bag in the background. SLIME, on the other hand,
focuses on vibrant details, mentioning objects like a red pepper, a green bottle, and a white bowl.
Our method captures all these elements while adding further details, such as the smoothie being
green—suggesting it may be made from leafy greens—and the contrast between the wooden coun-
tertop and the white blender, enriching the contextual understanding of the scene.

In Figure 15, MGM highlights the modern architecture of the train station, focusing on the glass
roof that lets in natural light and the presence of travelers with luggage, reflecting a busy travel
period. SLIME provides more specificity by identifying the station as Saint Pancras in London and
emphasizing the constant flow of passengers. Our method combines these insights and adds further
details, such as the gray tiles reflecting light, the French sign directing passengers to the exit, and
the two visible trains in the background, one white and one blue, adding depth and vibrancy to the
depiction of the station.

In Figure 16, MGM describes the cozy living room, focusing on the reddish-brown walls, the ar-
rangement of the furniture, and the natural lighting that creates a homely atmosphere. SLIME shifts
the focus slightly, noting a gray couch, a vibrant red wall, and a cat lounging on the couch, while
also emphasizing the warmth from the natural light. Our method integrates these elements and adds
more specific details, such as the orange wall complementing the white ceiling, the remote control
on the coffee table, suggesting an upcoming TV session, and the cat perches on the left side of the
couch. This combined description provides a more comprehensive and balanced portrayal of the
room’s inviting and comfortable ambiance.
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How many pictures on the wall?

There are five pictures.MGM There are six pictures.SLM

There are seven pictures.Ours What does the sign say? Water&light power! autographsOurs

Power! autographsMGM Water and light. autographsSLM

Figure 10: Enhancement of the perception regions.

What letters are on the hat?

G.MGM Gi.SLM

SF.Ours What's the authors initials? J.L.Ours

J.K.MGM G.F.SLM

Figure 11: Enhancement of fine-grained perception

What color is the tags?

Blue.MGM Red.SLM

Blue and pink.Ours What color is his necktie?

Blue and pale blue.MGM Yellow.SLM

Blue and yellow.Ours

Figure 12: Enhancement of colors perception
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Please describe this image in as much detail as possible.

The image is a photograph of a hotel room that includes a kitchenette and a living area. The 

kitchenette is equipped with white appliances, including a refrigerator, microwave, and stove. The 

countertops are a light color, and the cabinets are white. The living area features a beige sofa and 

a coffee table with a glass top. There is a dining table with four chairs, and a child is standing near 

the door, possibly exiting the room. The room is well-lit, with natural light coming from the 

ceiling fixture and the door. The walls are painted in a light color, and there are no visible texts or 

distinctive brands in the image. The style of the room suggests a functional and comfortable space 

designed for travelers.

The image captures a cozy and inviting living space. Dominating the scene is a kitchen, 

characterized by white cabinets and a white refrigerator. The kitchen is equipped with a sink and a 

stove, ready for culinary adventures. Adjacent to the kitchen, a dining area unfolds with a wooden 

table and chairs, offering a space for meals and conversations. A comfortable couch and a chair 

are positioned in the living room, providing a spot for relaxation. The room is bathed in natural 

light, streaming in from a window. A door leads to a hallway, hinting at more rooms beyond. The 

overall atmosphere is one of warmth and homeliness.

The image captures a cozy and inviting hotel room. Dominating the space is a kitchenette, 

equipped with a white refrigerator, a white stove, and a white sink. The kitchenette is neatly 

arranged, with the refrigerator on the left, the stove in the middle, and the sink on the right. 

Adjacent to the kitchenette is a dining area, featuring a wooden table accompanied by four chairs. 

The table is set with a red bottle of ketchup and a blue bottle of mustard, ready for use. The 

living area is furnished with a beige sofa and two matching armchairs, providing a comfortable 

space for relaxation. A wooden coffee table sits in the center of the living area, offering a surface 

for placing items. A woman and a child are present in the room, adding a touch of life to the 

scene. The woman is standing near the kitchenette, while the child is walking towards the 

door. Their presence suggests that the room is currently in use. The walls of the room are 

painted in a soothing light beige color, complementing the beige carpet underfoot. The 

overall layout and decor of the room suggest a well-maintained and welcoming environment.
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Figure 13: A sample for detailed descriptions.

Please describe this image in as much detail as possible.

The image shows a blender filled with a greenish-yellow liquid, which appears to be a pureed 

soup or sauce. The blender is placed on a kitchen counter, and there are various kitchen items in 

the background, including a cutting board with tomatoes and a plastic bag. The blender is a white 

Oster brand, and the lid is on top. The background suggests a home kitchen setting with a focus on 

food preparation.

The image captures a moment in a kitchen where a blender, filled with a vibrant yellow soup, is 

placed on a wooden countertop. The blender, with its white lid and base, stands out against the 

backdrop of the kitchen. The countertop is not just a stage for the blender, but also a home to other 

kitchen items. A red pepper, a green bottle, and a white bowl are scattered around the blender, 

adding a splash of color to the scene. The perspective of the image is from the side of the blender, 

giving a clear view of the soup inside and the surrounding kitchen items. The image does not 

contain any discernible text. The relative positions of the objects suggest a well-used and 

functional kitchen space.

The image captures a moment in a kitchen where a blender, filled with a green smoothie, is placed 

on a wooden countertop. The blender, which is white and has a blue label on the front, is the main 

focus of the image. The smoothie inside the blender is a vibrant green color, suggesting it 

might be made from leafy greens or other green ingredients. The countertop on which the 

blender sits is made of wood and provides a warm contrast to the cool white of the blender. 

In the background, there are various kitchen items scattered around, including a cutting 

board, a knife, and a bowl. These items suggest that the kitchen is in use and that someone 

might have been preparing a meal or a snack. The image does not contain any text or discernible 

actions. The relative positions of the objects suggest a typical kitchen scene with the blender in 

the foreground and the other items in the background. The image does not provide any 

information about the time of day or the specific location within the kitchen.
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Figure 14: A sample for detailed descriptions.
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Please describe this image in as much detail as possible.

The image captures a bustling scene at a train station. The architecture is modern, with a glass and 

steel roof that allows natural light to flood the space. The floor is tiled, and there are signs 

indicating directions and safety information. The station is well-lit, with artificial lighting 

complementing the natural light. The presence of people with luggage suggests the photo was 

taken during a time of travel, possibly morning or evening rush hours. The overall atmosphere is 

one of organized activity, with individuals going about their journeys.

The image captures the bustling atmosphere of the Saint-Pancras railway station in London, UK. 

The viewer's perspective is from the platform, looking towards the entrance of the station. The 

station itself is a marvel of modern architecture, characterized by a large glass roof that allows 

natural light to flood the space. The platform is a hive of activity, with people moving about, some 

carrying luggage, indicating the constant flow of travelers. The image is a snapshot of the daily 

life at this iconic landmark, encapsulating the rhythm and pace of urban life.

The image captures a bustling scene at a train station. The station is architecturally striking with a 

glass roof that allows natural light to flood the space. The floor, made of gray tiles, reflects the 

light, adding to the brightness of the station. On the left side of the image, a sign in French 

instructs passengers to "Sortie", indicating the exit. The sign is white with black text and is 

affixed to a gray metal pillar. In the background, two trains are visible. One is white and the 

other is blue, both adding a splash of color to the otherwise neutral tones of the station. The 

station is filled with people, some of whom are carrying luggage, suggesting they are either 

arriving or departing. The precise locations of these individuals are not discernible from the image. 

Overall, the image provides a snapshot of a typical day at a train station, with passengers moving 

about and trains arriving and departing.
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Figure 15: A sample for detailed descriptions.

Please describe this image in as much detail as possible.

The image depicts a cozy living room with a warm color scheme. The walls are painted in a 

reddish-brown hue, complementing the wooden furniture. A large, patterned sofa with multiple 

cushions is the central piece of furniture, accompanied by a matching armchair. A wooden coffee 

table sits in front of the sofa, holding a remote control and a small tray with a teapot and cups, 

suggesting a setting for tea or coffee. The room is well-lit, with natural light coming from a 

window adorned with a sheer curtain. Decorative items, including a vase with flowers and framed 

pictures, add to the room's homely atmosphere. The floor is covered with a patterned rug, and the 

overall style of the room is traditional with a touch of modern comfort.

The image captures a cozy living room scene. Dominating the space is a gray couch, adorned with 

a blue and red throw pillow. The couch is positioned in front of a vibrant red wall, which is 

punctuated by a painting of a flower. A wooden coffee table sits in front of the couch, hosting a 

green bowl and a remote control. A cat, the room's resident, is comfortably sprawled on the couch. 

The room is bathed in natural light streaming in through a window, adding to the warm and 

inviting atmosphere.

The image captures a cozy living room bathed in warm hues. Dominating the scene is a large 

couch, adorned with a vibrant quilt that bursts with colors. The couch is positioned against a 

wall painted in a soothing shade of orange, which is complemented by a white ceiling. To the 

right of the couch, a coffee table takes center stage. It's a hub of activity with a remote control and 

a bowl of chips resting on its surface. The image captures a cozy living room bathed in warm hues. 

Dominating the scene is a large couch, adorned with a vibrant quilt that bursts with colors. The 

couch is positioned against a wall painted in a soothing shade of orange, which is complemented 

by a white ceiling. To the right of the couch, a coffee table takes center stage. It's a study in 

contrasts with its black top and wooden base. A remote control rests on it, perhaps indicating a 

recent or upcoming television viewing session. On the left side of the couch, a cat has found its 

perch on a gray armchair. The armchair is accented with a colorful throw pillow, adding a touch of 

whimsy to the scene. The room is further enhanced by the presence of several framed pictures and 

plants, lending an air of homeliness and personal touch. The precise arrangement of these 

elements creates a harmonious balance within the space, making it an inviting and 

comfortable living area.
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Figure 16: A sample for detailed descriptions.
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