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Abstract

We present a redundancy-enhanced framework001
for error correction of NER by incorporating re-002
lated sentences from the internet. Our key con-003
tribution is a Transformer-based refiner that in-004
tegrates additional information into pre-trained005
language model with minimal effort. We begin006
by forming a redundancy set composed of (i)007
related sentences to the target sentence, using a008
proposed retrieval pipeline, and (ii) their NER009
predictions from an external Named Entity tag-010
ger. We then construct this refiner by com-011
bining a pre-trained Transformer-based model012
with an NE-tag embedding layer, both of which013
are fine-tuned on the target sentences and their014
corresponding redundancy sets. Methodologi-015
cally, we propose a branch-and-conquer learn-016
ing paradigm, termed Incremental Learning,017
for accurate error correction. In particular, it018
delivers an error reduction of 4.48% and a new019
state-of-the-art performance of 61.43 micro-f1020
score on realistic WNUT17 dataset.021

1 Introduction022

In this study, we present a novel approach to er-023

ror correction in Named Entity Recognition (NER)024

by introducing a redundancy-enhanced framework025

that incorporates relevant sentences from the inter-026

net. The term ‘redundancy’ within the NER context027

refers to the phenomenon where the same Named028

Entity (NE) appears multiple times within a single029

paragraph, across different sections of a document,030

or within a collection of texts. This concept is031

exemplified in Table 1, where we illustrate redun-032

dancy through a real-world scenario. For instance,033

in a news article reporting an announcement by034

President Joe Biden, the NE ‘Joe Biden’ is not only035

mentioned in the main article but also redundantly036

appears in associated texts such as the transcript037

of the related press conference, comments on a038

Twitter post about the event, and a Wikipedia ar-039

ticle linked within the news piece. These various040

instances across different sources demonstrate the041

Table 1: Implicit and Explicit Redundancy. Both
implicit and explicit redundancy refer to the informa-
tion that “Joe Biden is a person NE”, with the explicit
one associated with explicit NE annotation ([span]type,
meaning the span and type of that NE).

Type Example

Implicit Redundancy
1. Biden made an announcement. (news article)
2. We are happy to have President (transcript of the press conference)
Biden here. (comments in the webpage)
3. Joe Biden is the U.S. president. (Wikipedia hyperlinked)

Explicit Redundancy
1. [Biden]person made an announcement.
2. We are happy to have [President
Biden]person here.
3. [Joe Biden]person is the U.S. president.

redundancy of the NE ‘Joe Biden’, underscoring 042

the central theme of our study." 043

In this paper, we divide previous work that uses 044

redundant information explained above into two 045

categories: One-Stage approach and Two-Stage 046

approach, which implicitly and explicitly incorpo- 047

rate redundancy into their model, respectively. The 048

One-Stage approach, typified by BERT-NER, pro- 049

cesses multiple sentences in a single model to en- 050

hance context awareness as well as other methods 051

such as hand-crafted features, non-local feature ex- 052

tractors, and virtual memory usage. On the other 053

hand, the Two-Stage approach first extracts the 054

explicit NE information, i.e., the NE tags of the 055

given sentence, extracted by a vanilla NER at the 056

first stage. The second stage—an NE refiner—then 057

performs NE error correction, using broader and 058

non-local information, both text and NE predicted 059

labels (cf. Appendix D for more details). 060

This information-scarce problem manifests itself 061

as three challenges in practice for NER: 062

Context Dependency: Despite advancements in 063

language modeling, systems still struggle with 064

sentences where little contextual information is 065

provided to identify associated Named Entities 066

(NEs) (Wu et al., 2020; Li et al., 2020). 067

Uncommon Language Usage: These systems 068

have difficulty handling sentences that contain un- 069

common language uses, such as abbreviations, rare, 070

or unseen NEs, making recognition challenging 071

1



(Derczynski et al., 2017).072

Data Sparsity: The performance of machine073

learning models is highly dependent on the quality074

and quantity of the training data. In the case of075

uncommon or rare NEs, the models might not have076

enough examples during training to generalize well077

to these entities in unseen data.078

This paper presents a transformer-based refiner079

that can effectively incorporate supplementary in-080

formation into any pre-trained language model.081

The initial stage of this process involves the es-082

tablishment of a redundancy set, which includes083

sentences related to the target sentence and their084

corresponding NER predictions. These predictions085

are generated using an external NER tagger. The086

refiner is constructed by combining a pre-trained087

transformer-based model with an additional NE-tag088

embedding layer, which can take as input not only089

the tokens but also the tag predictions.090

Furthermore, we introduce a novel approach to091

learning called Incremental Learning. This ap-092

proach segments the task of error correction into093

distinct sub-tasks, focusing on two abilities to learn:094

(1) recognizing NEs (A1) and (2) making refine-095

ment by selecting related NEs and copying the pre-096

dictions (A2). By employing various text data aug-097

mentation methods for Incremental Learning, the098

model is enabled to progressively learn these sub-099

tasks through these two pre-training stages. Our100

empirical evaluations demonstrate the effectiveness101

of our approach. We observed a significant reduc-102

tion in errors and an improvement in the micro-f1103

score, surpassing the performance of the state-of-104

the-art models. These evaluations were conducted105

on the realistic WNUT17 dataset (Derczynski et al.,106

2017). The source code is shared in this GitHub107

repository 1.108

Contributions are as follows:109

• We propose to isolate the ability of error recov-110

ery (A2) and the ability of NER (A1) to facilitate111

effective training, where an explicit majority-112

voting approach and a transformer-based ap-113

proach are proposed, respectively.114

• We propose Incremental Learning and utilize115

Data Augmentation techniques to allow gradual116

learning with specific smaller and easier tasks117

for the refinement model.118

• We propose a pipeline that retrieves related sen-119

tences that are more beneficial for NER.120

1https://github.com/***

• We conduct experiments to show the superiority 121

of our proposed approach delivering the 61.43 F1 122

score and the 4.48% error recovery rate, showing 123

a 1.62% improvement compared to the previous 124

state-of-the-art. 125

2 Proposed Operational Flow 126

(1) Query Generator

black widow dresses up for London fashion week and party in style!

query:<sentence> query: black widow query: London fashion week

Sentence Group

Sent1

(2) Reference Sentences Retrieval 

…

(3) Reference Sentence Selector

Selected Sentence Group

if num
 of sents selected < L

(4) NE tagger

Sent1 SentnSent3 …
Local Sentence

Local Tags Tags1 Tags3

Refine?
No

(5) Refiner

New Local Tags

Non-local Sents

Sent3Sent2 Sentn

Sent1 …Sent3Sent2 Sentn

Tagsn

Local 
Tags

Redundancy Set

Yes

Local Sentence

Figure 1: Proposed Operational Flow. It consists of
six stages: (1) Query Generator, which takes in one sen-
tence and generates query texts, (2) Reference Sentences
Retrieval, which retrieves a number of sentences for
each generated query, (3) Reference Sentence Selector,
which selects the related reference sentences based on
the local sentence, (4) NE Tagger, which generates the
original NE predictions, and (5) Refiner, which will be
triggered if at least one non-local sentence is retrieved,
and will take in the token and tag sequence and outputs
the refined tags on the local sentence.

As shown in Figure 1, we propose a framework 127

with five modules: (1) Query Generator, generat- 128

ing queries from the sentence; (2) Reference Sen- 129

tences Retrieval, retrieving related sentences from 130

the given documents, Wikipedia, and the Internet, 131

separately; (3) Reference Sentence Selector, scor- 132

ing and selecting the valuable sentences; (4) NE 133

Tagger; and (5) Refiner, conducting refinement 134

with the help of the related reference sentences. 135

Each module will be further elaborated as follows. 136
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2.1 Query Generator137

This tagger converts the local sentence into a list138

of queries, and then pass it to the next module. For139

example, two spans ‘black widow’ and ‘london140

fashion week’ are identified in Figure 1. We will141

train a mention detector to identify such spans. Af-142

ter detecting all spans in the given/local sentence,143

we additionally invoke a query with each span in144

addition to the original local sentence as a specific145

query. Therefore, a sentence with M spans will146

issue total M+1 different queries (including the147

query with the whole sentence). For example, the148

sentence in Figure 1 will issue three queries: ‘black149

widow’, ‘london fashion week’ and the one from150

the entire sentence. Formally,151

Q = QG(s) = {s} ∪MD(s) (2.1)152

where QG represents the module of Query Gener-153

ation, s means the local sentence, MD represents154

a mention detector giving a set of mentions, and155

Q represents the set of all queries generated. The156

implementation is based on transformer framework,157

and for more details please refer to Appendix I.158

2.2 Reference Sentences Retrieval159

In each query turn, the given query will be sent to160

Google Search Engine2 to crawl over all websites161

on the Internet. We take the title and the snippet162

of the first 100 (if any) returned results, which163

provides abundant reference sentences related to164

the local sentence. Formally,165

NS = RSR(q1) ∪ · · · ∪ RSR(qM+1),∀qi ∈ Q
(2.2)166

where RSR represents the module of Reference Sen-167

tences Retrieval, NS represents the set of all related168

sentences, (i.e., non-local sentences), retrieved for169

all queries qi in Q. In addition, we adopt a recur-170

sive retrieval3 whic aims to retrieve at least one171

sentence to maintain an adequate level of redun-172

dancy. This strategy is particularly useful when the173

next module, Section 2.3, is overly selective. The174

implementation details are included in Appendix I.175

2.3 Reference Sentence Selector176

As the third module in the entire system, it serves a177

pivotal role, as illustrated in Figure 1. This module178

operates as a selective filter, determining which sen-179

tences from the preceding module are retained and180

2https://www.google.com
3By default, Search Engine can only provide a fixed num-

ber of Top-N results for each query in one “page”. To ensure
enough level of redundancy, we will navigate to the following
pages to obtain more results, which is termed as “recursive
retrieval” in our work.

forwarded to the subsequent modules Sections 2.4 181

and 2.5 for recovery. More specifically, it takes 182

as input the local sentence and each non-local sen- 183

tence, and determines which non-local sentences 184

should be retained. Formally, a specification of this 185

module would be: 186

RSS(s, ns) ∈ {keep, discard}
NS′ = {ns ∈ NS | RSS(s, ns) = keep},

(2.3) 187

where RSS represents a model that performs 188

such a function to output either the decision “keep” 189

or “discard” based on the local sentence s, and 190

one non-local sentence ns. Only the non-local sen- 191

tences with “keep” decision will be kept and passed 192

(denoted as NS′) to the next module. Note that we 193

specifically build this module with high precision to 194

have high-quality non-local sentences. In addition, 195

combined with the recursive retrieval mentioned 196

in the last module, Section 2.2, a number of high- 197

quality non-local sentences could be expected. The 198

module is implemented in transformer framework, 199

and please refer to Appendix I for more details. 200

2.4 Name Entity Tagger 201

In order to collect redundant NE information, an 202

NE tagger is required to identify NEs for both the 203

local and non-local sentences so that correlated 204

NEs from the non-local sentences may help to re- 205

cover potential errors in the local NEs. Note that 206

this module corresponds to the vanilla NER ability, 207

A1, as mentioned in Section 1. Formally, 208

TS = {NT(s)}, ∀s ∈ S (2.4) 209210

TNS′ = {NT(ns′)}, ∀ns′ ∈ NS′ (2.5) 211

where NT is the NE tagger, which outputs the tags 212

of each token, TS and TNS′, of the local sentence 213

S and filtered non-local sentences NS′, respectively. 214

The implementation details are included in Ap- 215

pendix I. 216

2.5 Refiner 217

Refiner is a key module in the whole system to 218

perform recovery action based on the local sen- 219

tence and the reference sentences. This module 220

will be triggered if at least one non-local sentence 221

is selected from Reference Sentence Retrieval or 222

no action will be performed otherwise. Formally, 223

it can be represented as 224

RD = {S,TS,NS′,TNS′} (2.6) 225

TS′ = RF(RD) (2.7) 226

where RD is the formed redundancy set by the lo- 227

cal sentence S and the selected non-local sentences 228

NS′ and their corresponding tag predictions TS 229
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and TNS′ respectively. RF is a model which pre-230

dicts new refinement tags, TS′, for the tokens of231

the local sentence. These refinement predictions232

are based on the information given in the whole233

redundancy set RD. Specifically, this is related to234

the model learning of the recovery ability, A2 as235

mentioned in Section 1. More details are included236

in Sections 3.2 and 4.237

3 Proposed Framework for Refinement238

This section explains the implementation of the239

module Refiner introduced in Section 2.5. Specif-240

ically, we explain the two types: (1) Majority-241

Voting Approach, and (2) transformer-Based Ap-242

proach. For other implementation details of mod-243

ules in Sections 2.1 to 2.3, please refer to Ap-244

pendix I.245

3.1 Majority-Voting Refiner (ReMV)246

In our work, we have developed a rule-based refiner247

employing a majority voting algorithm, drawing248

inspiration from the approach by Yangarber and249

Jokipii (2005), yet tailored for NER tasks. The250

core mechanism of this refiner involves creating a251

‘redundancy set’ by clustering NEs from a target252

sentence along with its related sentences. This253

clustering hinges on the detection of shared content254

words.255

The crucial aspect of this refiner is its label-256

ing methodology. For each unique NE identified257

within a cluster, labels are assigned through a ma-258

jority voting process. We explore two variations259

of this refiner: the standard ReMV, which assigns260

unique NE types as labels, and the enhanced ReMV261

(+span), where labels consist of unique combina-262

tions of spans and NE types.263

Furthermore, we introduce an ‘oracle method’264

(Oracle), which represents the theoretical max-265

imum performance one could achieve with this266

approach. This method is based on the ReMV267

(+span) variant but differs in its use of ‘pseudo268

gold’ reference sentences. These sentences are des-269

ignated as ‘keep’ during the benchmark generation270

process, aligning with a weakly supervised learning271

approach.272

For an in-depth understanding of this process,273

including its algorithmic foundations, please refer274

to Algorithm 1 for detailed pseudo code.275

3.2 Transformer-Based Refiner (ReTRF)276

The transformer-Based Refiner, ReTRF, is a277

masked sequence tagger inspired by the architec-278

ture proposed by Wang et al. (2021). It consists of279

a transformer encoder layer, a classification layer,280

and a CRF layer. The transformer encoder itself 281

comprises a pre-trained embedding layer (including 282

word and positional embeddings) and a multi-head 283

self-attention block. Unique to our approach is the 284

addition of a custom, trainable embedding layer 285

for NE tag embeddings. These embeddings, which 286

represent NE tags as d-dimensional vectors, are 287

combined with the original embeddings to enhance 288

the model’s understanding of NE contexts. 289

ReTRF processes two primary inputs. The first 290

is a concatenated token sequence, structured as 291

Concat([s; ⟨SEP⟩ ;ns1;ns2; . . .]), where ’⟨SEP⟩’ 292

marks the end of the local token sequence, and 293

nsi ∈ NS′ represents non-local sentences. The 294

second input is a corresponding tag sequence, 295

formatted similarly, and also using the ’⟨SEP⟩’ 296

symbol to separate the concatenated sentences as 297

Concat([ts; ⟨SEP⟩ ; tns1; tns2; . . .]). Both inputs 298

are converted to embeddings via a lookup matrix. 299

The embeddings (including both transformer and 300

tag embeddings) are then summed at each sequence 301

position and fed into the transformer Encoder. 302

The refinement process culminates with the gen- 303

eration of refined tag predictions by the last layer of 304

the module. During fine-tuning, a loss is calculated 305

based on benchmarks in the refinement dataset (re- 306

fer to Appendix G for more details), and gradients 307

are propagated accordingly. 308

To facilitate efficient training and fine-tuning, we 309

ensure a robust initialization of the tag embeddings. 310

Rather than starting from a random initialization, 311

we pre-train the tag embeddings on a simple NE 312

tagging task (as depicted in Figure 2). The weight 313

matrix of the last classification linear layer of the 314

NE tagger, which aligns with the shape of the NE 315

tag embedding lookup matrix, serves as the basis 316

for this pre-training (both shaped as N tag embed- 317

dings with dimension d, where N represents the 318

total number of possible NE tags, and d signifies 319

the embedding dimension). 320

4 Proposed Data Augmentation and 321

Incremental Learning for Refinement 322

This paper presents an approach to creating an NER 323

error recovery dataset, crucial for training and eval- 324

uating our refinement model. Based on the N-fold 325

cross-validation method by Krishnan and Manning 326

(2006), we generate a dataset that includes NER 327

tags predicted by a first-stage NE tagger and ground 328

truth tags, as shown in Appendix G. 329

An example of the generated data by Kr- 330

ishnan and Manning (2006) is shown in the 331
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Figure 2: Proposed transformer-Based Refiner. This refiner features a pre-trained transformer embedding layer,
an encoder layer, a classification layer, and a CRF layer (Lafferty et al., 2001). It processes token and tag sequences
derived from concatenated local and selected non-local sentences. The architecture initializes tag embeddings using
the last classification layer of a trained NE tagger, enhancing parameter initialization. The transformer and tag
embedding lookup matrices transform the token and tag sequence into corresponding embeddings, respectively.
Notably, Ei and Ti represent the i-th token and tag embedding in the local sentence, while Ejk and Tjk denote the
k-th token and tag embedding in the j-th non-local sentence. Summed token and tag embeddings are input to the
transformer Encoder for final sentence refinement, with non-local sentence positions masked during loss calculation.
⟨original_example⟩ row of Table 2, which332

shows the local sentence “let‘s go!! black widow!”333

with original NE predictions of “black widow” as334

a non-entity and “black widow” as a person in335

WNUT17 benchmark, and three retrieved non-local336

sentences and their NE predictions.337

While Krishnan and Manning (2006) provides a338

foundational method for generating training data,339

our study enhances this with data augmentation and340

Incremental Learning. We break down the recovery341

ability into three sub-abilities: copying local pre-342

dictions (A21), copying non-local predictions (A22),343

and matching/selecting related non-local sentences344

(A23). Training data for each sub-ability are gener-345

ated and used sequentially in the curriculum (A21346

→A22 →A23).347

The integration of Incremental Learning is piv-348

otal, addressing the challenge of combining richly349

informed pre-trained token embeddings with newly350

trained tag embeddings. This phased approach pre-351

vents the model from over-relying on token em-352

beddings, ensuring a balanced utilization of both353

embeddings. Without Incremental Learning, our354

experiments show that tag embeddings remain un-355

derutilized, leading the model to function more as356

an additional NE tagger rather than a refinement357

tool.358

Local Predictions Copying (A21) The model359

learns to retain the original predictions from the360

local scope when no non-local references are avail-361

able, essentially mirroring the existing local predic-362

tions without modification. Data for this sub-ability 363

are generated by excluding non-local sentences to 364

focus on retaining original predictions. To prevent 365

over-reliance on textual embeddings and diversify 366

learning, examples with modified NE types are also 367

created. This is foundational for refinement as it 368

prevents the model from arbitrarily generating new 369

tags, which would signify a re-implementation of 370

NER rather than refinement or majority voting. 371

Non-local Predictions Copying (A22) The ob- 372

jective of A22 is to train the model to effectively 373

copy predictions from the non-local scope, under 374

the assumption that these non-local sentences are 375

accurate. This phase is crucial as it teaches the 376

model to utilize external references, a skill not 377

addressed in A21. For A22, we specifically se- 378

lect ‘helpful’ non-local sentences that contain gold 379

NEs in their predicted NE tags (e.g., the sentence 380

“[black widow]person is a female character”, since it 381

has the gold NE “[black widow]person”). By focus- 382

ing on these reliable sentences, the model learns 383

to copy non-local predictions, a step that is dis- 384

tinctly different from A21’s focus on local predic- 385

tions. This stage prepares the model for the sub- 386

sequent and more complex task of matching and 387

selecting the appropriate non-local sentences for 388

final prediction in A23. Similarly, more examples 389

can be created by altering the type of the predicted 390

local NEs. 391

Matching and Selecting (A23) A23 represents 392

a critical advancement in our Incremental Learn- 393
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Table 2: Stages of Incremental Learning in NER Refinement. This table presents the stages A21, A22, and A23
using the example “black widow dressed up for london fashion week and party in style”. A21 is centered on learning
to copy the local predictions by removing the non-local context, thereby focusing the model’s attention on the local
sentence’s NE predictions. A22 shifts the focus to learning from ‘helpful’ non-local predictions, training the model
to effectively utilize accurate non-local NE information. Finally, A23 advances to the complex task of matching and
selecting relevant ones from both ‘helpful’ and ‘unhelpful’ non-local sentences for a comprehensive and refined
error recovery.

Goal Data Augmentation Local NE predictions Non-local sentences and their predictions Generated Benchmarks

A21
Remove All NLCs [black widow]non-entity ⟨all_removed⟩ [black widow]non-entity
Change Local Type [black widow]group ⟨all_removed⟩ [black widow]group

A22
Sample One Helpful NLC [black widow]non-entity (1) [black widow]person is a female character [black widow]person

Change Local Type [black widow]group (1) [black widow]person is a female character [black widow]person

A23 ⟨original_example⟩ [black widow]non-entity

(1) [black widow]person is a female character
(2) [black widow]creative-work is a film

(3) [black widow]person fights with hulk
[black widow]person

ing framework, building upon the foundations laid394

by A21 and A22. While A22 focuses on learning395

to replicate predictions from exclusively ’helpful’396

non-local sentences (by removing unhelpful ones),397

A23 requires the model to discern and select the398

’helpful’ sentences from a mix that includes both399

helpful and unhelpful non-local sentences. This400

step is crucial as it mirrors real-world scenarios401

where the model must navigate and evaluate a va-402

riety of non-local information to refine its predic-403

tions.404

5 Experimental Studies405

Datasets. In the field of NER, there are many dif-406

ferent datasets which differ in domains, languages,407

the types of entity and the granularity of entity408

types. We will evaluate our proposed approaches409

on the WNUT17 dataset (Derczynski et al., 2017)410
4. WNUT17 is adopted because the SOTA sys-411

tem (Wang et al., 2021) still gives poor perfor-412

mances due to noisy texts, rare entities and the413

intentional data mismatch created by different cre-414

ation time (see Appendix H). We would like to415

see how well our NER error recovery performs416

on this noisier dataset, especially focusing on the417

problem of rare entities. This dataset consists of418

5,678 sentences in total, with a roughly 3:1:1 split419

for the training, development, and test set. For420

more detailed statistics of the dataset, please refer421

to Appendix H.422

Baselines and Oracle Method. To validate the423

effectiveness of our model, we show baseline meth-424

ods and our model in three categories: the ordinary425

NER (MO), method incorporating implicit (MI)426

and explicit redundancy (ME). The result of no427

context in the work of Wang et al. (2021) are in-428

4https://huggingface.co/datasets/wnut_17

cluded for readers’ reference, corresponding to the 429

vanilla model without any external context in MO. 430

Two other results in the paper, CLNER and 431

CLNER (+CL) are also presented in MI, the latter 432

of which is the best setting in their work by us- 433

ing cooperative learning and also the SOTA perfor- 434

mance on WNUT17. Note that Wang et al. (2021) 435

set up their experiment by adding the development 436

set to the training set to improve the performance. 437

However, in order to have a fair ground and a devel- 438

opment set to tune hyperparameters in our experi- 439

ment, we only use the training set. The experiment 440

no context and CLNER in Wang et al. (2021) are 441

also reproduced under this setting instead. 442

Evaluation Metrics. The micro-f1 score: 443
2×precision×recall

precision+recall is used to evaluate the perfor- 444

mance of NER. To further understand how our 445

error recovery methods perform compared to the 446

other methods, the error recovery ratio ER (%): 447
fM−fB
1−fB

, where fM is the f-1 score of the method M, 448

and fB is the f1 score of the baseline method, i.e., 449

no context. 450

Setup In the Query Generator’s mention detec- 451

tor, recall is prioritized over precision to generate a 452

sufficient number of queries for retrieval. This in- 453

volves adjusting the threshold for binary decisions 454

based on the best f2-score in the development set. 455

For training Reference Sentence Selector, the 456

benchmark for each non-local sentence in each re- 457

dundancy set is required. This is achieved by using 458

the same clustering algorithm as in Majority-Voting 459

Refiner (see Section 2.5). Subsequently, a bench- 460

mark of “keep” will be assigned if the sentence has 461

any gold NE (i.e., the NE benchmarks of the target 462

sentence) and “discard” otherwise. Note that since 463
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Table 3: Performance of the Development and the Test Set of WNUT17. Three categories are the ordinary NER
(MO), method incorporating implicit (MI) and explicit redundancy (ME). Three experiment results, no context,
CLNER, CLNER (+CL), from the paper of (Wang et al., 2021) are shown, which represents an ordinary NER,
the model with external sentences, and the model with the best setting respectively. The micro f1 score (F1) and
the error recovery rate (ER) to the original predictions (no context) is computed, respectively. CLNER (w/ Our
Sents) refers to the method of (Wang et al., 2021) along with taking as input the selected and retrieved sentences
from our system. ReMV and ReMV (+span) refers to the majority-voting based method without and with span
correction function (cf. Algorithm 1). ReTRF refers to the transformer-based model. Oracle refers to the top-line
performance obtained by using ReMV (+span) with only the "pseudo gold" reference sentences (i.e., annotated as
“keep” automatically in our benchmark generation algorithm). ReTRF (-A21), and ReTRF (-A21-A22) denotes the
ablation experiment of removing the first and both stages of A21 and A22 from the proposed Incremental Learning
technique, respectively. ReMV (-RSS) represents the ablation experiment of removing the module RSS from ReMV
and thus keeping all sentences. An average performance of five experiments was reported.

Type Method
Development Set Test Set

F1 (%) ER (%) ER
EROracle

(%) F1 (%) ER (%) ER
EROracle

(%)

MO no context by Wang et al. (2021) N/A — — 57.86 — —
no context 69.09 0.00 0.00 59.62 0.00 0.00

MI CLNER by Wang et al. (2021) N/A — — 60.20 1.44 4.87
CLNER (+CL) by Wang et al. (2021) N/A — — 60.45 2.06 6.97

CLNER (w/ Our Sents) 69.90 2.62 6.40 60.96 3.32 11.26

ME

ReMV 70.27 3.82 9.33 60.42 1.98 6.72
ReMV (-RSS) 61.53 -24.46 -59.72 57.32 -5.7 -19.34
ReMV (+span) 68.80 -0.94 -2.29 60.70 2.67 9.06

ReTRF 71.82 8.83 21.56 61.43 4.48 15.20
ReTRF (-A22) 71.35 7.31 17.85 60.99 3.39 11.50

ReTRF (-A21-A22) 70.50 4.56 11.13 60.04 1.04 3.53
Oracle 81.75 40.96 100 71.52 29.47 100

the precision of this module is more significant than464

recall (see Section 2.3), we put more weights on465

the precision in the loss calculation and the model466

selection during training. Please see Appendix I467

for more details.468

The N-fold cross validation in the training data469

generation for Refiner uses a canonical N of 5.470

In order to prevent overfitting, early stopping is471

conducted for all training experiments of all mod-472

ules in the system by selecting the model with the473

best micro-f1 score on the development set. See474

Appendix J for more training details.475

5.1 Results476

This section details the experimental outcomes pre-477

sented in Table 3. The baseline model no context478

achieved f1 scores of 69.09 and 59.62 on the devel-479

opment and test sets, respectively. Conversely, the480

CLNER (w/ Our Sents) experiment, which inputs481

sentences selected by the first three modules into482

CLNER, showcases enhanced performance with483

an F1 score of 60.96 and an error recovery rate of484

3.32%. This improvement underscores the supe-485

rior quality of sentence selection by our system,486

attributed to the efficacy of the Query Generator487

and Reference Sentence Selector. For a detailed488

comparison between our retrieval system and that489

of Wang et al. (2021), refer to Appendix K.490

In our study, we included the Oracle perfor-491

mance metrics in our comparative analysis. The ex- 492

periment demonstrated that Oracle achieved scores 493

of 81.75 and 71.52 on the development and test sets, 494

respectively, with corresponding recovery ratios 495

of 40.96% and 29.47%. This serves as a bench- 496

mark for the potential upper-bound performance 497

in the refinement stage and indicates the propor- 498

tion of recoverable errors. For context, CLNER 499

(w/ Our Sents) managed to recover 11.26% of the 500

errors deemed recoverable by the Oracle standard. 501

The presence of unrecoverable errors is largely at- 502

tributed to the occasional inadequacy of Google 503

Search in providing complete knowledge of the 504

NEs in target sentences. Moreover, the noise in- 505

herent in the redundancy set collected from the 506

Internet and during the retrieval process also con- 507

tributes to these limitations. 508

For ME, the two majority-voting based algo- 509

rithms ReMV, and ReMV (+span) achieves an 510

error recovery rate of 3.82% and 1.98% respec- 511

tively. On the other hand, ReTRF achieves a re- 512

covery rate of 8.83% and 4.48%, making 71.82 513

on the development set and a new state-of-the-art 514

performance of 61.43 on the test set. 515

To delve deeper into the efficacy of various tech- 516

niques and components, the outcomes of our abla- 517

tion study are delineated below. In the experiment 518

titled ReMV (-RSS), which involves the omission 519

7



of the selectivity function of the Reference Sen-520

tence Selector module from ReMV (achieved by521

retaining all sentences without exclusion), we ob-522

served a diminished recovery ratio of 24.46% and523

an error increment of 5.7% in the development and524

test sets, respectively. These findings underscore525

the pivotal role of the Reference Sentence Selector526

module in enhancing overall performance.527

The following ablation study focusing on the In-528

cremental Learning aspect of our model reveals529

notable findings. When the model is not pre-530

trained on sub-tasks, particularly in the case of the531

transformer-based model excluding A21 and A22532

(termed as ReTRF (-A21-A22)), there is a marked533

decrease in performance. Specifically, this configu-534

ration yields a recovery ratio of 4.56% and 1.04%535

in the development and test sets, respectively. This536

represents a reduction of 4.27% and 3.44% when537

compared to the fully equipped method, ReTRF.538

6 Discussion539

Challenges and Insights in Embedding Integra-540

tion and Incremental Learning This research541

highlights a critical challenge in the integration of542

well-trained token embeddings and newly trained543

tag embeddings within our NER refinement model.544

Our experiments reveal a tendency for the model545

to overly depend on token embeddings, which are546

richly informed from extensive pre-training on lan-547

guage modeling tasks. This reliance becomes par-548

ticularly pronounced when both embeddings are549

trained simultaneously in an end-to-end procedure550

without a phased approach.551

Overcoming Embedding Bias through Incre-552

mental Learning We discovered that without In-553

cremental Learning, the tag embeddings remain554

largely unadjusted during training, implying their555

underutilization. This suggests that the model, in556

such a scenario, functions more as an additional557

NE tagger rather than a true refinement model. The558

intended purpose of a refinement model is to selec-559

tively adjust and validate first-stage NE predictions,560

yet in the absence of effective tag embedding uti-561

lization, it reverts to relying solely on text for NER,562

undermining its refinement role.563

Significance of Two-Stage Architecture and Ex-564

plicit Redundancy The integration of a two-565

stage architecture, leveraging explicit redundancy,566

is pivotal in breaking down the complex task of567

NER error recovery into manageable sub-tasks.568

This approach contrasts starkly with models that569

utilize implicit redundancy, where the learning pro-570

cess is less structured and controllable. The ex- 571

plicit redundancy, as introduced in the earlier sec- 572

tions, allows for a step-by-step learning process, 573

making training more efficient and targeted. With- 574

out this bifurcation, models relying on implicit re- 575

dundancy tend to engage in self-directed learning, 576

which lacks the precision and targeted efficiency of 577

our proposed method. 578

Real-time Adaptation in NER Using Redun- 579

dancy To ensure NER models remain current 580

with evolving linguistic trends, our study, as elab- 581

orated in Appendix B.3, proposes integrating re- 582

dundancy during the testing phase. This approach 583

allows models to adapt to newly recognized Named 584

Entities, overcoming limitations in initial train- 585

ing data. By retrieving real-time, relevant redun- 586

dant information at the current time, the model 587

dynamically updates its understanding and predic- 588

tions. This strategy draws parallels to the Retrieval- 589

Augmented Generation (RAG) used in Large Lan- 590

guage Models (LLMs), where external data sources 591

are utilized for immediate model adaptation. Such 592

an approach not only enhances the model’s gener- 593

alization capability but also aligns with advanced 594

methodologies in natural language processing, en- 595

suring its applicability in diverse and evolving lin- 596

guistic contexts. 597

7 Conclusions 598

In conclusion, this paper has presented a novel 599

redundancy-enhanced framework for error correc- 600

tion in NER. By integrating internet-sourced re- 601

lated sentences into the NER process, we have 602

demonstrated significant improvements in error cor- 603

rection accuracy. Our transformer-based refiner, 604

methodologically anchored in Incremental Learn- 605

ing, effectively combines additional information 606

with minimal effort, leading to a notable reduc- 607

tion in errors and an increase in micro-f1 scores 608

over existing baselines. This approach not only 609

addresses key challenges in NER, such as context 610

dependency and data sparsity, but also marks a step 611

forward in the utilization of redundancy for enhanc- 612

ing machine learning models. Our results on the 613

WNUT17 dataset underline the potential of this 614

framework in advancing the field of NER and set 615

the stage for future research in this area. 616
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A Contrasting Implicit and Explicit 880

Redundancy Utilization Methods 881

As outlined in Section 1, there are two primary 882

methods for incorporating redundancy in Named 883

Entity Recognition (NER): (1) utilizing implicit 884

redundancy (MI) and (2) utilizing explicit redun- 885

dancy (ME). MI involves retrieving implicit redun- 886

dant information, such as from a Search Engine, 887

and feeding it into an NE tagger along with the 888

target sentence to identify NEs, as demonstrated 889

by (Wang et al., 2021). In contrast, ME employs 890

explicit redundant information—sentences tagged 891

with NEs—inputted into a recovery model for final 892

decision-making (refer to Table 4 for a detailed 893

comparison). This study focuses specifically on 894

ME. 895

ME adopts a two-stage decision-making process. 896

The first stage conducts NER on the local sentence 897

and the retrieved redundant sentences. The second 898

stage serves as an error recovery module, refin- 899

ing decisions based on the predictions from the 900

first stage. This method distinctly separates two 901

abilities: (1) NER capability (A1) and (2) match- 902

ing and selection capability (A2). A1 tends to rely 903

on a memory-like mapping between text content 904

and NE mentions, often leading to poor general- 905

ization. Conversely, our emphasis is on A2, which 906

involves non-memory-based activities like match- 907

ing, selecting, and copying predictions based on the 908

context of both local and non-local sentences. This 909

approach could theoretically bolster the model’s 910

generalizability. 911

One might argue that MI could implicitly en- 912

compass both A1 and A2 in a single-stage process. 913

However, our analysis suggests that MI primarily 914

focuses on A1, memorizing more NEs without ef- 915

fectively learning the dual abilities, as observed in 916

(Wang et al., 2021)’s work (see Appendix E). Con- 917

sequently, MI tends to struggle with generalization, 918

particularly when encountering unseen NEs. The 919

separation of A1 and A2 in ME not only enhances 920

training efficiency but also ensures that the sys- 921

tem possesses the crucial A2 ability. Additionally, 922

while A1 is more task-specific and less transferable 923

across different Information Extraction tasks, A2 924

is theoretically more versatile and reusable. We 925

propose two implementations of the A2 error re- 926

covery module: a majority voting approach and a 927

Transformer-based approach. For further details on 928

these implementations, please refer to Section 3.2. 929
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B The Role of Redundancy in Named930

Entities931

In this work, we delve into the crucial role of re-932

dundancy in enhancing Named Entity Recognition933

(NER) effectiveness. Redundancy, as defined in934

Section 1, refers to the repeated occurrences of the935

same Named Entity (NE) across diverse sources,936

with its frequency and distribution having a signifi-937

cant impact on NER system performance.938

To illustrate, consider an NE, X , which may be939

a new concept or entity introduced at a specific940

time, t0, as shown in Figure 3. We can envision a941

universal set, U(X, t0), comprising all mentions of942

X globally at time t0. Alongside, we have an NER943

training dataset, TR(X, t0), which is a subset of944

U(X, t0), containing mentions of X .945

B.1 The Origin of Redundancy in NEs946

Redundancy in NEs is largely influenced by the947

entity’s global recognition. For instance, an NE, X ,948

which might be a newly emerged concept at time t0,949

would be less known and hence mentioned less fre-950

quently, such as in micro-blogs like Twitter. This951

results in limited redundancy for X . Conversely,952

widely recognized NEs are mentioned more fre-953

quently across various platforms, leading to higher954

cross-document redundancy.955

B.2 Redundancy in Training Improves the956

Performance957

There are many advantages if a high level of re-958

dundancy exists in the training data. The different959

occurrences of X in TR(X, t0) allows the NER960

model to know what contexts X appears in the961

training procedure. And both implicit and explicit962

types of redundancy provide the trained model the963

ability to recognize NEs.964

Implicit Redundancy in Pre-Training for Lan-965

guage Modeling. Implicit redundancy plays a966

critical role in the development of language mod-967

els, particularly in the context of Named Entity968

Recognition (NER). This type of redundancy is969

characterized by the absence of explicit tags that970

identify the span and type of Named Entities (NEs)971

in unannotated text corpora. Despite the lack of972

explicit annotations, implicit redundancy is preva-973

lent in these vast corpora, offering an indirect yet974

valuable source of information about NEs.975

During the training phase of most language mod-976

els, this implicit redundancy is inherently incorpo-977

rated as part of the unsupervised language model-978

ing task. By processing large volumes of text that979

contain repeated, untagged references to various980

NEs, language models gain a deeper understanding 981

of the essence and semantic context of these enti- 982

ties. This exposure enables the models to develop 983

an intuitive recognition of NEs, enhancing their 984

ability to identify and interpret NEs in a wide range 985

of contexts. 986

In essence, implicit redundancy contributes sig- 987

nificantly to the foundational knowledge of lan- 988

guage models, particularly in understanding and 989

identifying NEs. It serves as an indirect form of 990

learning, where the frequency and context of NE 991

mentions in large text corpora provide the mod- 992

els with a nuanced understanding of these entities 993

without the need for explicit tagging. 994

Explicit Redundancy in Fine-Tuning for NER. 995

Explicit redundancy plays a distinct and crucial role 996

during the fine-tuning stage of language models for 997

Named Entity Recognition (NER) tasks. Unlike 998

implicit redundancy, explicit redundancy is charac- 999

terized by clear indicators or tags that specify the 1000

types and spans of Named Entities (NEs) within 1001

a corpus. This form of redundancy has been con- 1002

ventionally employed in the fine-tuning process of 1003

NER models, often without explicit recognition of 1004

its connection to the concept of redundancy. 1005

During fine-tuning, explicit redundancy is lever- 1006

aged through the incorporation of annotated data, 1007

where NEs are clearly labeled. This process in- 1008

volves loss propagation, a technique that refines 1009

the model’s understanding of NEs by exposing it 1010

to various contexts in which the same NE appears. 1011

Each occurrence of an NE in the training corpus, 1012

despite referring to the same entity, is surrounded 1013

by different textual contexts. These varied contexts 1014

are crucial as they enable the model to learn not 1015

just the identification of NEs but also their pos- 1016

sible semantic roles and relationships in different 1017

situations. 1018

Error Tolerance in Training Data. The volume 1019

of redundancy present in training data significantly 1020

influences two key aspects in Named Entity Recog- 1021

nition (NER) models: performance enhancement 1022

and error tolerance. 1023

Firstly, the level of redundancy—whether im- 1024

plicit within the language modeling task or explicit 1025

during the fine-tuning stage for NER—directly im- 1026

pacts the model’s predictive accuracy for a specific 1027

Named Entity (NE), X . A higher redundancy level 1028

means that X appears in various contexts within 1029

the training data. This repeated exposure enables 1030

the model to gain a comprehensive understanding 1031
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of the NE, both semantically and syntactically. It1032

learns not only to identify X but also understands1033

the diverse contexts and situations in which X can1034

be used. This deepened understanding inherently1035

improves the model’s performance in accurately1036

recognizing and classifying NEs.1037

Secondly, a high level of redundancy in the train-1038

ing data provides a mechanism for error tolerance,1039

particularly valuable in scenarios involving data1040

imperfections. Such imperfections might include1041

typos, case errors, formatting issues, or misclas-1042

sifications (e.g., mistaking a personal NE for a1043

corporate one in Twitter comments) in the unla-1044

beled or the labeled corpus used for training. In1045

these instances, the presence of a high volume of1046

correct usages and occurrences of NEs in different1047

sentences acts as a buffer. It allows the model to dis-1048

cern the correct interpretation or classification of an1049

NE despite the presence of errors. This error toler-1050

ance mechanism ensures that the model’s learning1051

is not significantly derailed by a few inaccuracies1052

in the data, thereby maintaining the integrity and1053

reliability of the NER process.1054

B.3 Redundancy in Testing Enhances1055

Generalization Ability1056

Incorporating redundancy during the testing phase1057

is as crucial as in training, significantly impacting1058

the model’s generalization ability. For instance,1059

consider a Named Entity (NE) X that was newly1060

introduced at a previous time t0 (e.g., a newly re-1061

leased movie), as depicted in Figure 3. At t0, the1062

universal set U(X, t0) encompasses all global men-1063

tions of X , and the NER model is trained on a1064

subset TR(X, t0) from U(X, t0). Initially, due to1065

X’s novelty, both |TR(X, t0)| and |U(X, t0)| are1066

small, leading to unreliable NER predictions for X1067

due to limited implicit and explicit redundancy.1068

Over time, as X becomes more recognized1069

(|U(X, t)| > |U(X, t0)|), its mention in the testing1070

phase is likely to increase (P (x = X)), highlight-1071

ing the model’s initial performance issues. To ad-1072

dress this, one could consider retraining the model1073

with a new dataset TR(X, t) sampled from U(X, t)1074

at a later time t. However, this approach is labor-1075

intensive and lacks scalability and generalization,1076

as it’s impractical to constantly update the training1077

dataset with every new NE introduction.1078

Instead, our work proposes incorporating redun-1079

dancy directly during the testing phase. We retrieve1080

the relevant, redundant information R(X, t) from1081

U(X, t) using a search engine at time t. This ap-1082

proach enables the model to adapt to new mentions1083

Figure 3: How unseen NEs naturally raise in the real
world. T (X, t), O(X, t), R(X, t) is a set of mentions
of X in the given testing document, some external doc-
uments, and retrieved related documents at a certain
time t. Each is a subset of U(X, t), a universal set of
all mentions of NE X in the world at a certain time t.
TR(X, t0) is a set of mentions of X in the training data
of the NER model at a previous time t0.

of X without the need for constant retraining or 1084

human annotations. By leveraging current, real- 1085

time redundant data, the model’s predictions for 1086

X become more accurate and generalized, effec- 1087

tively keeping pace with the evolving linguistic 1088

landscape. 1089

Note this approach of incorporating redundancy 1090

during the testing phase in NER shares similar- 1091

ities with the Retrieval-Augmented Generation 1092

(RAG) technique used in Large Language Models 1093

(LLMs). Just as RAG leverages external knowledge 1094

sources to enrich the response generation process 1095

in LLMs, our method utilizes up-to-date informa- 1096

tion retrieved from external sources to enhance the 1097

accuracy and generalization of NER predictions. 1098

C Related Work of NER 1099

Named Entity Recognition (NER) is a critical task 1100

in Natural Language Processing (NLP) and Infor- 1101

mation Extraction (IE), aimed at identifying and 1102

classifying named entities within text into prede- 1103

fined categories such as persons, organizations, lo- 1104

cations, time expressions, quantities, and mone- 1105

tary values. It is one of the fundamental steps in 1106

both Natural Language Processing (NLP) and In- 1107

formation Extraction (IE), and serves as a step- 1108

ping stone for many downstream tasks such as 1109

event extraction (Ritter et al., 2012; Hamborg et al., 1110

2019), and question answering (Toral et al., 2005; 1111

Lee et al., 2006), etc. In the past decade (Nasar 1112

et al., 2021; Li et al., 2020; Yu et al., 2020), NER 1113

has seen a tremendous amount of advances due 1114

to the rapid development of deep learning and 1115
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contextual word embeddings (e.g., ELMo, BERT,1116

RoBERTa)(Devlin et al., 2019; Conneau et al.,1117

2020). Recently, studies show that they still suf-1118

fer in information-scarce tasks, such as no reli-1119

able hints (for identifying associated NEs) are pro-1120

vided in the given short sentence, and many un-1121

common language uses exist such as abbreviations1122

and rare/unseen NEs (Derczynski et al., 2017),1123

where the state-of-the-art performance ((Wang1124

et al., 2021)) still struggles at a f1-score of 60.45.1125

One of the possible solutions is to find the reli-1126

able hints in some related reference sentences if1127

they can be additionally provided. In other words,1128

for each local sentence, if we could incorporate1129

information other than the local context, e.g., from1130

a document collection, or from the Internet, we1131

could form the “redundant” information from ex-1132

ternal context, which then helps to recover errors1133

in the local sentence (c.f. Appendix D for more1134

details). This is the focus of this research.1135

D Related Work of IE with Redundant1136

Information1137

In the world filled with tremendous amount of data,1138

redundancy or duplication of information exists1139

and sometimes is intentionally formed across var-1140

ious fields. It is common to utilize redundant in-1141

formation to be resilient to errors in areas such as1142

database systems, software architecture, communi-1143

cation protocols, random access memory, chromo-1144

some genes in biology. However, the past decades1145

see few studies of using redundancy in the sphere1146

of Machine Learning or Deep Learning with only1147

some exceptions (Hamming, 1950; Yangarber and1148

Jokipii, 2005; Krishnan and Manning, 2006). Be-1149

low we list all the related work to the best of our1150

knowledge. We focus on the utilization of redun-1151

dancy information in Natural Language Processing1152

(NLP) based on Deep Neural Network (DNN).1153

The concept of utilizing “redundancy” to do er-1154

ror correction/detection is not new. Redundancy,1155

also known as “duplicate information’, has been1156

explicitly/widely utilized in various computer sys-1157

tems (e.g., on-line memory correction (Hamming,1158

1950), database entry correction (Yangarber and1159

Jokipii, 2005)) to enhance the reliability of a sys-1160

tem. Even in NER, the NE redundancy within given1161

documents has been explicitly utilized to raise the1162

performance. For example, Krishnan and Manning1163

(2006) utilize NE redundancy to model label con-1164

sistency across given documents.1165

However, in some applications running in the1166

wild such as Twitter, the related documents are not 1167

available (Derczynski et al., 2017). Moreover, due 1168

to the time difference between the model training 1169

time and the real inference time, the problem of 1170

unseen NEs naturally arises in the real world (Der- 1171

czynski et al., 2017) (which is more distinct than 1172

other tasks that have relatively same concepts over 1173

time such as parsing). Therefore, in those appli- 1174

cations, the unseen NE redundancy has not been 1175

explored and explicitly utilized in the literature 1176

with only one exception from the work of Wang 1177

et al. (2021). Specifically, Wang et al. (2021) query 1178

a Search Engine with the sentence text to retrieve 1179

related sentences to collect redundant information. 1180

Recent studies in NER (Wu et al., 2020; Liu 1181

et al., 2022; Peng et al., 2023) and other Informa- 1182

tion Extraction (IE) fields (Dunn et al., 2022; Lin 1183

et al., 2020; Jiang et al., 2020) are incorporating 1184

redundant information through statistical models. 1185

These methodologies broadly fall into two distinct 1186

categories: the One-Stage (Liu et al., 2019; Luo 1187

et al., 2019) and Two-Stage approaches (Borthwick, 1188

1999; Gui et al., 2020). The One-Stage approach 1189

employs a singular model that directly executes 1190

NER by simultaneously considering all pertinent 1191

text passages, as shown in Table 5. In contrast, the 1192

Two-Stage approach is more sequential. It initially 1193

performs NER across various documents, which 1194

constitutes the first stage. Subsequently, in the 1195

second stage, it refines these NER results by lever- 1196

aging cross-sentence or cross-document redundant 1197

information. We systematically categorize these 1198

related works across different dimensions, as delin- 1199

eated in Table 6. 1200

D.1 One-Stage Approach 1201

The One-Stage Approach in NER employs a uni- 1202

fied model to simultaneously process multiple sen- 1203

tences for entity identification. A quintessential 1204

example is BERT-NER (Liu et al., 2021), which 1205

concatenates as many consecutive sentences as its 1206

token limit (512 sub-tokens) allows. This method- 1207

ology facilitates inter-sentence information sharing, 1208

enhancing entity recognition. However, challenges 1209

arise in managing longer dependencies. Notable 1210

efforts to address these include: 1211

Hand-Crafted Features Chieu and Ng (2002, 1212

2003) developed global features, like a token’s ma- 1213

jority label, to capture dependencies across sen- 1214

tences. These features were integrated into a Con- 1215

ditional Random Field (CRF)-based (Sutton and 1216

McCallum, 2010) NE sequence tagger. 1217
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Table 4: Comparison between the methods of incorporating implicit redundancy (MI) and explicit redundancy (ME)

Approach Implicit Redundancy (MI) Explicit Redundancy (ME)

Process Flow Single stage Dual stages

Component(s) Named Entity (NE) Tagger [Component1] Named Entity (NE) Tagger
[Component2] Recovery Module

Inputs to Final
Component

Local sentence and redundant sentences
retrieved

Similar to MI, with the addition of NE
predictions from the first stage

Capabilities Utilizes both local and non-local
information to identify NEs, exhibiting

memory-like behavior (A1)

[Component1] Similar to MI (A1)
[Component2] Exhibits non-memory like

behavior, making refined decisions
through a voting-like process (A2)

Final Component Task-specific Potentially task-agnostic

Non-Local Feature Extractors Innovations like1218

those by Hu et al. (2019) involve automatic extrac-1219

tion of features such as document-level token rep-1220

resentations. They achieve this by merging embed-1221

dings of identical tokens from different sentences or1222

documents. Similarly, Liu et al. (2019) employed1223

this technology for sentence representation, com-1224

bining it with individual token representations.1225

Skip Connections Techniques implemented by1226

researchers like Bunescu and Mooney (2004), Sut-1227

ton and McCallum (2004), and Finkel et al. (2005)1228

involve creating direct links between model nodes1229

or neurons representing the same token in various1230

contexts. These skip connections directly model1231

non-local, non-sequential dependencies, effectively1232

using a virtual memory segment to recall and utilize1233

prior representations or embeddings.1234

Virtual Memory Usage Examples include Ak-1235

bik et al. (2019b) and Luo et al. (2019), who uti-1236

lized virtual memory for querying or updating the1237

hidden states of repeated tokens across different1238

sentences or documents.1239

D.2 Two-Stage Method1240

The Two-Stage Method, distinct from the One-1241

Stage approach, emphasizes computational effi-1242

ciency in NER. While the One-Stage approach,1243

as shown in Table 1, conducts NER within a sin-1244

gle document, the Two-Stage method leverages1245

information across multiple documents, which is1246

more resource-efficient. This method was pio-1247

neered in response to the computational challenges1248

noted by Finkel et al. (2005) in conducting within-1249

document NER. The Two-Stage approach operates1250

sequentially: the first stage performs initial NER,1251

and the second stage refines these results using1252

broader, non-local dependencies. Our research fo- 1253

cuses primarily on this second stage of refinement. 1254

Two-Stage methods can be further categorized 1255

along four dimensions: 1256

D.2.1 Scope of Information Used in Recovery 1257

Model 1258

Specified Document-Collection Utilizes cross- 1259

document information but confines to a pre- 1260

specified collection (e.g., Mikheev et al. (1999); Kr- 1261

ishnan and Manning (2006); Yangarber and Jokipii 1262

(2005)). 1263

Unspecified Collections Extends beyond the 1264

given dataset, incorporating external information 1265

sources (e.g., Ji and Grishman (2008)). 1266

D.2.2 Type of Information Used in Recovery 1267

Model 1268

Label Consistency Exploits the consistency in la- 1269

bels of the same token sequence across occurrences 1270

(e.g., Krishnan and Manning (2006); Yangarber and 1271

Jokipii (2005); Ji and Grishman (2008); Gui et al. 1272

(2020)). 1273

Other Information Sources Includes additional 1274

data like coreference resolution (e.g., Borthwick 1275

(1999)) or a correction dataset (e.g., Zhu et al. 1276

(2020)). 1277

D.2.3 Recovery Model Used 1278

The models range from rule-based and statistical- 1279

based to neural-based. While earlier approaches 1280

(e.g.,Yangarber and Jokipii (2005); Ji and Grish- 1281

man (2008)) relied on hand-crafted rules, recent 1282

trends, like Zhu et al. (2020), favor neural-based 1283

models for their ability to learn error patterns with- 1284

out extensive feature engineering. 1285
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Table 5: Overview of One-Stage Approaches in Named Entity Recognition in chronological order: This table
compares various works based on their scope of information used, type of non-local information utilized, method
type, model description, and the specific NER task addressed. It highlights the evolution from within-document
redundancy handling through hand-crafted features, skip connections, and feature extractors to more advanced
techniques like virtual memory and representation consistency in both within-document and cross-document
contexts.

Work Scope of Information Used Non-local Information
Type Used Method Type Model Description Task

Chieu and Ng (2002, 2003)
within-document

redundancy
label consistency hand-crafted features

CRF with within-document
features

NER

Bunescu and Mooney (2004)
within-document

redundancy
label consistency skip connection

Relational Markov Network
(Global Clique Templates that

use Repeat Template (potential)
to connect the label

nodes of multiple entities.)

NER

Lafferty et al. (2001)
within-document

redundancy
label consistency skip connection skip-chain CRF NER

Finkel et al. (2005)
within-document

redundancy
label consistency skip connection

skip-chain CRF with penalties
for label inconsistency

NER

Akbik et al. (2019b)
cross-document

redundancy
representation

consistency
virtual memory

BiLSTM with token
representation memory

NER

Hu et al. (2019)
within-document

redundancy
representation

consistency
feature extractor

BiLSTM with non-local feature
extractor (that obtains document-level

token representation for multiple
occurrences of the same token)

NER

Liu et al. (2019)
within-document

redundancy
context

information
features extractor

BiLSTM with non-local feature
extractor (that obtains

sentence representation)
NER

Luo et al. (2019)
cross-document

redundancy

context
information +
representation

consistency

features extractor +
virtual memory

BiLSTM with token representation
memory + non-local feature extractor
(that obtains sentence representation)

NER

D.2.4 Processing Unit of Recovery Model1286

Cluster-Based Processes a cluster of mentions at1287

a time, assigning uniform labels within the cluster1288

(e.g., Yangarber and Jokipii (2005)).1289

Sentence-Based Re-tags each token in a sen-1290

tence individually (e.g., Zhu et al. (2020)).1291

In our research, we adopt a neural-based model1292

for its adaptability and potential portability across1293

different NE recognizers, focusing on the refine-1294

ment stage to investigate the effectiveness of inte-1295

grating non-local information.1296

E An Example of Wang et al. (2021)’s1297

Lack of Focus On the Reference1298

Sentences1299

As mentioned in Section 1, our work relies on1300

the explicit redundancy, while the work of Wang1301

et al. (2021) is based on the implicit redundancy.1302

Our claim is that using the explicit redundancy1303

can make the model more aware of the informa-1304

tion from the reference sentences, while using the1305

implicit redundancy tends to ignore them and get1306

stuck on the given sentence.1307

To illustrate, below shows an example, where1308

the sentence to be tagged is “Venom is not good’,1309

the special token ⟨SEP⟩ means the end of the local 1310

sentence, and the tokens behind ⟨SEP⟩ are the to- 1311

kens of all reference sentences, and [span]type is 1312

used to denote the NE span and the NE type. 1313

Our experiment showed that Wang et al. (2021) 1314

identified “Venom” as a person in this sentence 1315

without any reference sentences: 1316

(Wang et al., 2021)’s prediction: [Venom]person 1317

is not good. 1318

This seems to be correct, since it could mean 1319

the fictional character “Venom” in Marvel Comics, 1320

hence a “person” NE. However, this sentence is 1321

actually ambiguous and its annotation should de- 1322

pend on the context and the time when it was used. 1323

For example, it was highly likely to be a “person” 1324

NE if it was written prior to the release of the film 1325

“Venom” by Marvel Studio. But if it was posted 1326

by a user on his Twitter page just one hour af- 1327

ter the movie “Venom (2018)” had its debut, it is 1328

more likely that “Venom” should be identified as a 1329

“creative-work” in WNUT17 regime instead. 1330

That is, we are interested if a model can make 1331

different predictions based on the retrieved refer- 1332

ence sentences. Therefore, we prompted the model 1333

from Wang et al. (2021) with the some pseudo 1334
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Table 6: Comparative Analysis of Two-Stage Approaches in Named Entity Recognition: This table methodically
outlines different two-stage NER methodologies, detailing the scope of information used, types of information
leveraged in the second stage, models used in both stages, and the processing unit of the second stage. It showcases
a range of techniques from statistical models with hand-crafted features to advanced neural network applications,
highlighting the evolution and diversity in tackling NER tasks.

Work Scope of Information Used Information Type
Used By 2nd Stage

1st Stage
(Extraction)

2nd Stage Model
Type (Refinement) 2nd Stage Model 2nd Stage

Processing Unit Task

Borthwick (1999)
cross-document

redundancy
label consistency Maximum Entropy

Statistical
(Maximum Entropy)

hand-crafted features sentence-based NER

Borthwick (1999)
cross-document

redundancy
label

consistency
Maximum Entropy

Statistical
(Maximum Entropy)

hand-crafted features sentence-based NER

Krishnan and Manning (2006)
cross-document

redundancy
label

consistency
CRF Statistical (CRF) hand-crafted features sentence-based NER

Yangarber and Jokipii (2005)
cross-document

redundancy
label

consistency
HMM-based IE Rules hand-crafted features cluster-based Event Extraction

Ji and Grishman (2008)

cross-document
redundancy + cross-
corpus redundancy
(external unlabeled

corpus)

label
consistency

HMM-based IE Rules hand-crafted features cluster-based Event Extraction

Zhu et al. (2020) *

*others (recovery
patterns learnt in the

error correction
dataset manually

annotated)

* Neural network (BERT) hand-crafted features sentence-based Refine NER dataset

Gui et al. (2020)
within-document

redundancy

representation
consistency

+ label consistency
BiLSTM

Neural network
(Transformer)

feature extractor
+ entity memory

sentence-based NER

Ours external redundancy
learned by 2nd-

stage neural-
based model

Transformer Encoder Transformer Encoder no features needed sentence-based NER

reference sentences stating that the definition of1335

“Venom”, e.g., “Venom is a film. ”. Ideally, the1336

model should be able to adjust its prediction based1337

on the reference sentences as in1338

Benchmark: [Venom]creative-work is not good.1339

⟨SEP⟩ Venom is a film.1340

However, our experiment showed that Wang et al.1341

(2021) was still stubborn on its original prediction1342

as shown in Table 7. This showed that the work1343

of Wang et al. (2021) did not pay enough attention1344

to the references sentences. Hence, the focus of1345

our work is to perform error recovery with the re-1346

dundant information in a more explicit way than1347

the implicit methods (cf. Appendix A).1348

F Pseudo-code of Majority-Voting1349

Refiner and Oracle Refiner1350

Algorithm 1 shows the pseudo-code of the1351

Majority-Voting Refiner. It mainly performs clus-1352

tering, string-matching and majority voting as de-1353

scribed in Section 3.2. This rule-based refiner fol-1354

lows the steps below for each sentence s and its1355

NS’: (i) collect all NEs in s and NS’, (ii) cluster all1356

NEs by grouping them if they share the same con-1357

tent words (normalized by lowercasing), and then1358

record their NE predictions. This forms multiple1359

NE clusters, (iii) in order to address false negative1360

errors and NE span errors such as missing one to-1361

ken, we identify the spans string-matched by the1362

content words of each NE cluster within the lo-1363

cal sentence and its non-local sentences. Then we1364

add those spans and their predictions to their cor- 1365

responding NE cluster. Note that the cluster with 1366

the longest string matching is favored if multiple 1367

clusters can match such span. (iv) then the major- 1368

ity NE predictions are voted for each cluster and 1369

assigned to each NEs in the local sentence within 1370

that cluster. 1371

G Generation of NER Recovery Dataset 1372

proposed by Krishnan and Manning 1373

(2006) 1374

This section shows the generation process of NER 1375

recovery dataset proposed by Krishnan and Man- 1376

ning (2006) as shown in Figure 4. This dataset 1377

should have the NER tags predicted by the 1st-stage 1378

NE tagger along with the ground truth tags, so the 1379

error recovery model can learn what to and how to 1380

recover possible NER errors with the information 1381

of the original first-stage predictions. Therefore, 1382

we need to get predictions on the train data, the 1383

development data, and the test data. For predic- 1384

tions on the testing data (i.e., the development set 1385

or the test set), all the train data is used to train the 1386

1st –stage NE tagger. For predictions on the train 1387

set, on the other hand, “N-fold cross-validation” is 1388

applied so that the predictions would be reflective 1389

of the performance on the test data. Note that their 1390

work did not have external sentences, while our 1391

work did have such sentences from a Search En- 1392

gine. That is to say, we will also need to obtain the 1393
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Table 7: The Inputs and Outputs of One Example in Different Settings

model input to the model annotation on Venom

Benchmark Venom is not good. ⟨SEP⟩ Venom is a film. Creative Work

Wang et al. (2021) Venom is not good. Person

Wang et al. (2021) Venom is not good. ⟨SEP⟩ Venom is a film. Person

Figure 4: Generation of Recovery Dataset

first-stage predictions for the non-local reference1394

sentences in addition to the local sentence.1395

H Statistics of WNUT17 Dataset1396

WNUT17 is the dataset adopted in the shared task1397

of the 3rd Workshop on Noisy User-generated1398

Text (Derczynski et al., 2017). It focuses on iden-1399

tifying unusual, previously-unseen entities in the1400

context of emerging discussions for the purpose of1401

evaluating the system’s ability of generalizing on1402

unseen data. This task provides an NER dataset1403

of emerging and of rare entities from a variety of1404

domains such as politics, news, and sports, etc., as1405

shown in Table 8 This task concentrates on 6 types1406

of named entities: Person, Location, Corporation,1407

Group, Product and Creative-Work. These rare and1408

unseen entities were created by collecting training1409

data (no later than 2015) and testing data (Jan-May1410

2017) at different times and from different sources1411

as shown in Table 9. Additionally, Derczynski et al.1412

(2017) also ensured none of the entities between1413

the training data and the testing data share the same1414

surface form (by simply removing seen entities). 1415

Therefore, this is why it is by far the hardest NER 1416

dataset, where the SOTA model only has an av- 1417

erage f1 score of about 60.45 only (Wang et al., 1418

2021). 1419

I Implementation Details for the Other 1420

Modules 1421

I.1 Query Generator 1422

To extract the query spans from the sentence, we 1423

follow Huang et al. (2015) to specifically train a 1424

mention detector by the state-of-the-art sequence 1425

tagging framework (Wang et al., 2021) on the 1426

dataset of WNUT17. This comprises of: (1) one 1427

layer of embedding layer, which concatenates both 1428

the TWITTER embedding (Akbik et al., 2019a) and 1429

the XLM-RoBERTa embedding (Conneau et al., 1430

2020), followed by (2) a linear re-projection layer 1431

to reduce the dimension, and (3) one final classifi- 1432

cation layer with CRF (Lafferty et al., 2001). 1433
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Table 8: Statistics of the adopted NER datasets, WNUT17

# Entities 3,850

# Tokens 101,858

# Sentences 5,689

# Documents (no document split)

Tag Schemes person, location, corporation, group, product, creative-work

Domains Noisy texts from the forums or the micro-blogs of politics, sports, news,
movies, science, countries and cities of Anglosphere (both high- and low-
traffic)

SOTA f1 60.45 (Wang et al., 2021)

Table 9: Statistics of the discrepancies in the three splits
of WNUT17.

train dev test

# Sen-
tences

3,394 1,008 1,287

Source Twitter YouTube
comments

Twitter,
Reddit,

StackEx-
change

comments

Created
Time

No later
than 2015

Jan-May 2017

I.2 Reference Sentence Selector1434

This model performs a classification task based on1435

a pair of input, one local sentence and one non-local1436

sentence, and the output is a binary class, “keep”1437

or “discard”. We use a conventional Transformer-1438

based framework to perform such task, which con-1439

sists of one Transformer encoder layer as the con-1440

textual word embeddings, one feed forward layer to1441

map to a two-dimensional class space, and one soft-1442

max layer to obtain the probability. We form the1443

input to the Transformer encoder by concatenating1444

the local and the non-local sentence together with1445

a special token ⟨SEP⟩ to separate them. Specifi-1446

cally, we choose ALBERT (Lan et al., 2020) as the1447

Transformer encoder in this module for its known1448

effectiveness on pair-wise classification.1449

I.3 Reference Sentence Selector1450

To train a model for Reference Sentence Selector,1451

we need a dataset for pairwise sentence classifi-1452

cation. Although it is true that paraphrase corpus1453

could be used for pairwise classification, it is not 1454

useful for our module. This is because a para- 1455

phrased sentence in such corpus, such as replacing 1456

some words with their synonyms, is not preferred 1457

in our module, while a sentence which provides 1458

useful information, like the information that sig- 1459

nals the NE type of the suspicious entity, is favored. 1460

Since there is no existing dataset suitable for such 1461

task, which needs to consider both “relatedness” 1462

and “usefulness” (in terms of aiding the NER task) 1463

for one sentence to another, we create a dataset for 1464

such purpose by our own in an automatic way. 1465

Generally, by making use of the existing bench- 1466

marks from a NER dataset and using an existing 1467

NE tagging tool to tag NEs in nonlocal sentences, 1468

we can generate a benchmark (keep or discard) for 1469

each nonlocal sentence. To elaborate, if a nonlocal 1470

sentence has NEs that share the same string and the 1471

same NE type of the gold local NEs, it is said to be 1472

“keep” and “discard” otherwise. 1473

Specifically, five steps are done (Figure 5): for a 1474

specific example, one local sentence (blue) with 1475

multiple corresponding non-local sentences re- 1476

trieved from Google (orange) 1477

1. we first cluster all NEs (with all different NE 1478

types) in both the local sentence (orange solid 1479

rectangle) and all the nonlocal sentences (blue 1480

solid rectangle), where a cluster (black circle) 1481

contains all NEs that share the same string in 1482

the lowercase form. 1483

2. To also include “non-entity decisions” for the 1484

clustered NEs, we perform string-matching 1485

(after lowercasing) on all the sentences to iden- 1486

tify those “non-entities”, as indicated as a hol- 1487

low box in the figure. 1488
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Figure 5: The Benchmark Generation for Each Non-local sentence for Reference Selection Selector

3. We then add those non-entities to each corre-1489

sponding cluster1490

4. The clusters without any local NEs contained1491

would be removed1492

5. For each cluster, if the nonlocal NE has the1493

same type of the local NE, a benchmark of1494

“keep” will be assigned to the sentence that1495

the nonlocal NE belong; if not, “discard” will1496

be assigned otherwise.1497

6. If all of the non-local NEs in one non-local1498

sentence are annotated as “keep”, the sentence1499

will be annotated as “keep”; otherwise, the1500

sentence will be annotated as “discard”.1501

J Experimental Details1502

This section lists the details for reproducing our1503

results. To have a fair comparison among vari-1504

ous approaches, we adopt exactly the same hyper-1505

parameters as those used in (Wang et al., 2021):1506

all word-embedding-vectors are tunable for fine-1507

tuning; the word dropout rate is 0.1; A negative-1508

log-likelihood loss is used after the last CRF layer;1509

Adam optimizer (Kingma and Ba, 2015) is used1510

with an epsilon of 10−6; beta1 is 0.9; beta2 is 0.999;1511

learning rate is 5× 10−6 for all parameters in the1512

model except that for CRF (in which it is set to1513

0.05); the mini-batch size is 2, and the batch accu-1514

mulation is used with a step size of 2, giving an1515

effective batch size of 4. A scheduler that linearly1516

decays the learning rate is used, and the adopted1517

model achieves the best micro-f1 score on the de- 1518

velopment. 1519

K Differences between Our System 1520

and Wang et al. (2021) 1521

CLNER (w/ Our Sents) in our experiment mostly 1522

follows the setting adopted by Wang et al. (2021) 1523

except the following points. First, we have more 1524

queries (through Query Generator) rather than the 1525

only one sentence query. Second, comparing Refer- 1526

ence Sentences Retrieval with the reported setting 1527

of the Google Search Engine in their paper, we 1528

consider the title and the snippet in retrieved pas- 1529

sages as correlated, and concatenate them to form 1530

one long sentence for re-ranking; in contrast, they 1531

view them as different sentences to be scored by 1532

the re-ranker. This allows us to rank/select different 1533

search results also based on their title information. 1534

Third, we enlarge the number of results retrieved 1535

from the default number of 12 to 100. Fourth, we 1536

train a specific selector, Reference Sentence Selec- 1537

tor, rather than BERTScore used in their paper. 1538

L A Correctly Recovered Example 1539

This section shows an example of correctly recov- 1540

ered local sentence, “Venom is not good! ”, with 1541

“Venom” as a creative-work NE. As shown in Fig- 1542

ure 6, an ordinary NE recognizer fails to identify it 1543

as a creative-work NE and instead a person. This 1544

is likely to be caused by memorizing “Venom” as a 1545

person during pre-training language modeling over 1546

a large corpus with “Venom” as a common name 1547

of fictional characters. 1548
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Algorithm 1 Majority-Voting Refiner

1: Input: local sentence s;
2: Input: selected nonlocal sentences NS′ ←
{ns1, ns2, . . .};

3: CS← all NEs in s;
4: CNS′ ← all NEs in NS′’;
5: Instantiate a table clusters_table;
6: for each unique entity E in Union(CS,CNS′)

do
7: key ← lowercase(E);
8: if key is not present in the keys of

clusters_table then
9: store a new list in key of clusters_table;

10: add E to the list stored in key;
11: end if
12: end for
13: for each key in the clusters_table do
14: spans ← all spans string-matched by key

in s
15: for each span in spans do
16: add span to the list stored in key of

clusters_table;
17: end for
18: end for
19: for each key in clusters_table do
20: Instantiate a table count_table;
21: NE_list← clusters_table[key];
22: for each entity E in NE_list do
23: key2 ← get_predictions(E);
24: if key2 is not present in count_table then
25: count_table[key2]← 0;
26: end if
27: increment count_table[key2] by 1;
28: end for
29: majority ←

get_majority_prediction(count_table);
30: for each entity E in NE_list do
31: if E belongs to the local sentence s then
32: the prediction of E ← majority;
33: end if
34: end for
35: end for

This problem still appears in the method of incor-1549

porating implicit redundancy (MI). For example,1550

the method proposed by (Wang et al., 2021) (we1551

train one model from the code provided) did not1552

make a change on the NE prediction even when the1553

retrieved sentences indicating that “Venom” is a1554

film are provided. This shows that MI still fails to1555

fully utilize the information from the non-local sen-1556

tences. The reason is likely to be the memory-like 1557

behavior aforementioned. 1558

However, in the method of ME, both the 1559

majority-based approach and the DNN-based 1560

model successfully corrected the error by recog- 1561

nizing “Venom” as a creative work. 1562

Figure 6: A Correctly Recovered Example. A local
sentence “Venom is not good” is to be identified NEs
along with the non-local sentences retrieved from the
Internet. NER is an ordinary NE recognizer, while
MI and ME is the method incorporating implicit and
explicit redundancy respectively. Both NER and MI
made wrong predictions, while ME (the model ReTRF)
correctly identify “Venom” as a creative-work, where
the second module made a majority-voting like behavior
from the first module predictions (i.e., one person and
two creative works).

M Limitations 1563

This study, while contributing significant advance- 1564

ments in Named Entity Recognition (NER) error 1565

correction, has certain limitations that should be 1566

acknowledged. Primarily, the experimental valida- 1567

tion of our proposed redundancy-enhanced frame- 1568

work and Incremental Learning approach was con- 1569

ducted on a limited number of datasets. This con- 1570

straint may affect the generalizability of our find- 1571

ings across diverse linguistic contexts and text gen- 1572

res. Different datasets, especially those with vary- 1573

ing linguistic structures or from distinct domains, 1574

could present unique challenges not encountered 1575

in our current experimental setup. 1576

Additionally, our methodology was tested using 1577

only one model architecture. While this model 1578

demonstrated effective performance in our exper- 1579

iments, reliance on a single model may limit in- 1580

sights into how our approach would perform with 1581

alternative architectures, especially those with dif- 1582

fering underlying principles or capabilities. Future 1583

research could explore the applicability and effec- 1584
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tiveness of our framework with a variety of model1585

architectures to establish broader validity and to1586

understand the nuances of its performance across1587

different NER models.1588

In summary, while our study presents a promis-1589

ing approach to NER error correction, further re-1590

search involving a wider range of datasets and1591

model architectures is necessary to fully ascertain1592

the versatility and robustness of our methodology.1593

N Licenses and Intended Use of1594

Resources1595

In this study, we utilized several external resources,1596

each governed by its own license agreement. Un-1597

derstanding and adhering to these licenses is crucial1598

for responsible and legal use of these resources.1599

WNUT17 Dataset (Derczynski et al., 2017): Li-1600

censed under the Creative Commons Attribution1601

4.0 International License (CC-BY-4.0), this dataset1602

is open for use in academic and research contexts.1603

The CC-BY-4.0 license allows for sharing and1604

adapting the material, provided appropriate credit1605

is given and any changes are indicated.1606

XLM-RoBERTa Pretrained Embeddings (Con-1607

neau et al., 2020) and CLNER (Wang et al., 2021):1608

Both of these resources are under the MIT License,1609

a permissive free software license. It permits reuse1610

within proprietary software provided that the li-1611

cense is distributed with that software.1612

Hugging Face Transformers: This library is li-1613

censed under the Apache License, Version 2.0,1614

which is a permissive free software license sim-1615

ilar to the MIT License, but with additional terms1616

concerning patents and contributions.1617

Flair: Also under the MIT License, Flair is free1618

to use in both open-source and proprietary software,1619

with the same conditions as XLM-RoBERTa and1620

CLNER.1621

In addition to these licenses, the use of ChatGPT1622

for brainstorming research directions and grammar1623

error checking in this study should be noted. Chat-1624

GPT, as an AI language model provided by Ope-1625

nAI, is designed for a wide range of applications1626

including research assistance and language tasks.1627

The use of ChatGPT in this study aligns with its1628

intended purpose, offering support in developing1629

research ideas and ensuring language accuracy, but1630

not for making autonomous research decisions.1631

Throughout the research, all resources were used1632

strictly for academic and research purposes, in line1633

with their intended use as stated in their respective1634

licenses. This approach ensures compliance with1635

legal and ethical standards, supporting the integrity 1636

and reproducibility of the research. 1637
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