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Abstract

The study looks into Brain Tumor Segmentation with Optimized UNet as its
baseline model. The study also employs both versions 1 and 2 of the nnUNet model
for 2, 5, 10, 30, and 300 epochs across the BraTS 2021 dataset and the BraTS 2023
African dataset. The results have shown a slight reduction in performance on the
African dataset though this has been improved by further fine-tuning of the model.
In fact, the study achieved a 92.56% dice similarity score on the African dataset
for 300 epoch size.
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1 Introduction

Brain tumors present a substantial health challenge in Africa. Statistically, the Sub-Saharan Africa
experiences a percentage of 0.14% in disability-adjusted life years (DALYs) and 0.17% of overall
mortality rates.North Africa is more impacted as opposed to the sub Saharan with brain tumors
reckoning 0.44% of DALYs and 0.62% of deaths [1]. The efforts of research on brain tumors have
barely made any positive change in survival rate in low-and middle-income countries(LMICs). The
rate of mortalities from glioma are among the highest in the world, with the sub saharan experiencing
a rise of 25% [2]. General medical providers need to possess a fundamental comprehension of
the diagnosis and treatment of brain tumors because they are frequently encountered. The most
prevailing types of brain tumors are the intracranial metastases originating from cancers in other parts
of the body, meningiomas, and gliomas, notably glioblastoma.Central nervous system metastases
can develop at several locales throughout the neuroaxis and mandate intergrated multidisciplinary
management involving neurosurgery, radiation oncology, and medical oncology.[3]

Precise segmentation of distinct sub-regions within gliomas such as peritumoral edema, necrotic core,
enhancing, and non-enhancing tumor core, based on multimodal MRI scans, hold material clinical
relevance for the diagnosis, prognosis, and treatment of brain tumors. However, the segmentation of
these sub-regions presents a formidable challenge due to the heterogeneity of brain tumors[4] . The
brain’s heterogeneity makes procuring the complete tumor volume arduous [5]. Additionally, severe
data imbalance exists not only between tumor and non-tumor tissues but also among different sub-
regions within the tumor [6]. Imaging assumes a primary role in diagnosing and strategizing treatment
for brain tumors. Accurate brain tumor segmentation is crucial, more so when subtle, irregular
morphological changes within the tumor make assessment taxing through medical evaluation[7].
Accurately delineating the regions of interest within a tumor provides essential insight about its
size, location, and shape, enabling the determination of the extent of tumor involvement [8] .This
information guides surgical planning, enhances the fine-tumig of radiation therapy, and facilitates the
evaluation of treatment response over time.

Brain MR images acquired in the sub Saharan Africa experience suboptimal image contrast and
resolution [2] which may be due to use of low field MRI scanners [9]. Magnetic resonance images
obtained using low magnetic field strength, typically below 1 Tesla (T), usually have impaired
resolution along the slice direction and lower contrast. This is principally attributed to the relatively
small signal-to-noise ratio (SNR) compared to MR images acquired at higher field strengths, typically
1.5T and 3T [10].

The manual segmentation of brain tumors from MRI images for cancer diagnosis is a challenging,
laborious, and time-intensive process, prone to inter-observer variability [11] [12].This discrepancy
can greatly impact the integrity and reproducibility of segmentation outcomes. A single brain MRI
scan encompasses multiple slices capturing the 3D anatomical perspective. This adds complexity to
the manual segmentation of brain tumors MR images, making it a daunting task [12]. Furthermore, the
automated classification of brain tumors from MRI scans offers a non-invasive approach, eliminating
the need for biopsies and enhancing the safety of the diagnosis process.[13].Within these images,
the tumor structure is solely defined by variations in grayscale, and the resulting images obtained
from different equipment and under different conditions may exhibit dissimilarities. Consequently,
traditional image segmentation methods face challenges in effectively handling the segmentation of
brain tumor images. [13].Due to the limited amount of brain tumor information present in traditional
single-mode MRI images, segmenting these images alone proves challenging in meeting clinical
requirements.[13]. Given the cumbersome and dragging nature of manual segmentation, there is a
need for automatic segmentation methods to ensure precise and prompt treatment [12].This leads to
improved clinical decision-making and patient care. Automated segmentation of brain tumors(BraTS),
using MRI scans, plays a crucial role in the accurate diagnosis and effective treatment of brain tumors
[14]. Deep learning models can computerize the segmentation process, eliminating use of manual
segmentation. Accurate and robust segmentation of brain tumors is of utmost importance for diagnosis,
treatment planning, and evaluating treatment outcomes. Many automatic brain tumor segmentation
methods rely on manually crafted features. Likewise, traditional deep learning approaches, like
convolutional neural networks, necessitate substantial amounts of annotated data for effective learning,
posing challenges in obtaining such data within the medical field [11]. Other challenges are low-
contrast imaging and annotation bias [15].
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Differences in image quality and imaging protocol can arise due to gaps in machines or resources
[16]. For instance, machine variability can lead to variations in image quality, resolution, and levels
of noise [17]. Another research limitation pertains to resource constraints, which can hinder the
acquisition of high-resolution images. Research gaps that impact image quality include imaging
artifacts, the absence of standardized imaging protocols, inconsistencies in contrast agents, variations
in technical expertise, and the use of outdated or subpar imaging equipment [18].

The use of lower quality MRI technology[19] in the SSA raises uncertainty about the feasibility of
implementing ML methods for clinical purposes [9] [20]. Brain MRI scans typically obtained in SSA
exhibit inadequate image contrast and resolution [10], necessitating advanced image pre-processing
to enhance their resolution before employing ML techniques for tasks like tumor segmentation,
classification, or outcome prediction [2]. The intent of our method is to solve the problems mentioned.
We aim to further pre-process the image data in order to improve image quality and improve
generalizability.

2 Methods

2.1 Implementation

Our solution, which is implemented with PyTorch, is an extension of NVIDIA’s nn-UNet, which
is publicly available on GitHub. The baseline model training and inference were done with mixed
precision to minimize costs (i.e. time and memory). The experiments were run on Tesla T4 Turing
GPUs and NVIDIA’s V100 system on Compute Canada cluster.

2.2 Datasets

This dataset represents the largest publicly-available retrospective cohort of adult Africans with
pre-operative glioma, covering both low-grade glioma (LGG) and high-grade glioma (GBM/HGG).
It comprises routine multi-parametric MRI (mpMRI) scans acquired during standard clinical care,
encompassing T1, post-contrast T1 (T1Gd), T2, and T2 Fluid Attenuated Inversion Recovery
(T2-FLAIR) MRI. The data underwent standardized pre-processing using the BraTS workflow,
involving conversion to the NIfTI format, co-registration to the SRI24 template, isotropic resolution
resampling (1mm3), and skull-stripping. Researchers can access the pre-processing pipeline through
CaPTk and FeTS. The ground truth labels were generated following the BraTS annotation protocol.
Initial automated segmentations were manually refined by trained radiology experts and further
reviewed by senior attending radiologists. This iterative process ensured the accuracy and reliability
of tumor sub-region segmentations approved by experienced neuro-radiologists.

Figure 2.2, is a representation of a sample MRI image across the 4 modalities (Flair, T1, T1CE and
T2-weighted respectively) a ground truth mask from the 2021 subset employed in the study.

Figure 1: Ground Truth from 2021 subset

Figure 2.2 is a representation of a sample MRI image across the 4 modalities (Flair, T1, T1CE, and
T2-weighted respectively) and a ground truth mask from the SSA subset employed in the study.
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Figure 2: Ground Truth Mask from SSA subset

The variation in pixel values between the GLI and SSA datasets is further graphically demonstrated
in figure 3

Figure 3: Variation in pixel values between GLI and SSA datasets

2.3 Data Preprocessing

The preprocessing step [21] employed by our group involves several key operations to prepare
medical imaging data for subsequent analysis. The preprocessing pipeline is designed to handle
various tasks and is flexible to accommodate different modalities, such as CT or MRI scans. The goal
of the preprocessing step is to ensure data consistency, enhance image quality, and standardize the
format for further processing.

The process begins by loading the dataset, which is organized according to a specified data path.
Metadata associated with the dataset is extracted from a JSON file, providing crucial information
about the modality, labels, and other relevant details. The modality information guides subsequent
preprocessing steps, as certain operations differ depending on whether the modality is CT or MRI.

To improve the quality and consistency of the images, a crop foreground operation is applied. This
step removes unnecessary background regions, focusing on the anatomical structures of interest.
Additionally, intensity normalization is performed to ensure consistent intensity ranges across the
images. For MRI scans, normalization is applied only to the non-zero regions, while for CT scans,
additional intensity clipping is performed to limit values within the pre-defined minimum and
maximum ranges.

Resampling is a critical step to address variations in voxel spacing among different scans. The target
spacing, determined based on the dataset’s median spacing, is used to resample the images and labels
to a common voxel resolution. This step helps to ensure uniformity and facilitates comparison and
analysis across different scans.
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2.4 Baseline Model (Optimized U-Net)

The baseline for our model is inspired by the work of Futrega et al [21], the Optimized U-net model
with deep supervision. Deep supervision is a method that improves gradient flow by calculating the
loss function at various decoder levels. The Optimized U-Net model with deep supervision has an
encoder depth of 7; the number of convolutional channels at each encoder level are: 64, 96, 128, 192,
256, 384, 512; has 3 output channels; and has 4 input channels with an additional one-hot-encoding
channel for the foreground voxels to input data (5, 240, 240, 155) (C, H, W, D).

2.5 nnU-Net

nnU-Net is an image segmentation approach that independently conforms to a designated dataset
[22]. The nnU-Net analyzes the given training dataset and autonomously sets up a U-Net- based
segmentation pipeline that is similar to the data. Subsequently, nnU-Net generates multiple U-
Net configurations for each dataset. This system basically simplifies the training of models. It
is capable of processing both 2D and 3D images, regardless of the input modalities or channels.
Even in situations with highly imbalanced classes, it can effectively comprehend voxel spacings
and anisotropies with robustness. While the performance of segmentation remains the same, the
version 2 of nnU-Net has some more features that have been added. These additional features make it
easier to use as a development framework and also simplifies manually adjusting its configuration to
new datasets. These new features include hierarchical labels, unified trainer class, cross-platform
support specifically Cuda, mps (Apple M1/M2) and CPU support. Furthermore, nnU-Net version
2 offers expanded support for input and output data formats using ImageIO classes. To extend the
I/O formats, you can implement new Adapters based on BaseReaderWriter. Moreover, it is faster
to save cropped npz files. Upon unpacking, the preprocessed data and segmentation are stored in
separate files. In version 1, the segmentation data was stored as int32, whereas in the current version,
it is stored as int8. Consequently, the segmentation now occupies only one-fourth of the disk space
per pixel, resulting in improved I/O throughput. In the current version, the framework offers built-in
support for multi-GPU training using Distributed Data-Parallel (DDP). All functionalities of nnU-Net
are now accessible through the API as well.Additionally, the dataset fingerprint is now generated and
explicitly saved in a JSON file, just to name a few.

2.6 Training Schedule

Each experiment was trained for 2, 5, 10, 30, and 300 epochs using the Adam optimizer with varying
learning rates. We also employed 5-fold cross-validation in model evaluation based on the mean dice
score after each epoch. We then stored both the latest or final checkpoint and the best checkpoint
model based on the Dice score on the validation dataset for use during inference.

2.7 Performance Evaluation

We used the dice similarity score to evaluate the accuracy of our models and also took into account
also the model complexity in terms of both computational time and the size of memory storage
required.

3 Results

3.1 Baseline Model (Optimized U-Net)

3.1.1 2021 Dataset

Table 3.1.1 represents the dice score, training, and validation loss from the 2021 dataset:

3.1.2 GLI + SSA dataset

Table 3.1.2represents the dice score, training, and validation loss from both the GLI and SSA 2023
dataset:
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Epochs Dice score Train loss Val loss
2 79.1 1.8259 0.209
5 84.87 1.1213 0.1513
10 86.33 0.8512 0.1367
30 89.69 0.5864 0.1031

Table 1: Results from training the Optimized U-Net on the 2021 dataset

Epochs Dice score Train loss Val loss
2 77.07 1.8987 0.2293
5 84.59 1.0124 0.1541
10 86.46 0.7566 0.1354
30 88.16 0.5685 0.1184

Table 2: Results from training the Optimized U-Net on the GLI+SSA training dataset

From the above results, we have demonstrated a decrease in the model performance despite there
being a considerably lower number of the Sub-Saharan African dataset (i.e. 60 cases) which accounts
for only 4.6% of the total 1,311 training dataset.

Having gone through the SSA dataset case-by-case, we tried to also exclude the cases where the MR
images were taken from a coronal plane section as opposed to the rest which were taken at axial
plane sections. These four unique cases included; 00051, 00097, 00041, and 00068 cases as also
visually represented in figure 4;

Figure 4: Excluded SSA Cases (from top to bottom) 00051, 00097, 00041, & 00084

Table 3.1.2 represents the results obtained after the exclusion of the above 4 cases on the SSA dataset.
From the table, we see a slight increase in dice score for 30, 10, and 2 epochs from 88.16 to 88.58;
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86.46 to 86.62; and 77.07 to 79.56 respectively. However, this was only an experiment and all cases
were used in all the trainings done on this study.

Epochs Dice score Train loss Val loss
2 79.56 1.581 0.2044
5 83.16 1.0121 0.1684

10 86.62 0.5574 0.1338
30 88.58 0.5539 0.1142

Table 3: Results from training the Optimized U-Net on the GLI+SSA dataset minus 4 cases

3.2 nnUNet version 2

We did a couple of ablation studies in order to select the most optimal neural network architecture for 0,
1, 2, 3, and 4 folds under the nnUNet V2 given below. For the 2021 dataset, the splits_final.json
was employed with a split of 801 cases for training and the remaining 200 cases for validation. The
split contains 5 splits with a desired fold for training as 4 for 3d full resolution configuration.

The graph shown below is a representation of the prediction mask overlayed on the four MR Images:

Figure 5: The Predicted mask under the 300 epoch model overlayed on the four MR Images

3.2.1 Configuration name: 3d full resolution

Here, we have employed a 3d full resolution with a batch_size of 2, a patch_size of [128, 128, 128],
32 UNet base features, a per-stage encoder and decoder of [2, 2, 2, 2, 2, 2], kernel sizes of [[1, 1, 1],
[2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], and convolution kernel sizes of [[3, 3, 3], [3, 3, 3], [3,
3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]]on the 2021 and the 2023 GLI and SSA dataset, as represented in
table 3.2.1 and 3.2.1 respectively.

Epoch Learning rate Train_loss Val_loss Pseudo dice Epoch time

2 0.01 0.00536 -0.6746 0.7833 209.28 s
5 0.00235 -0.7353 -0.7411 0.8146 191.05 s

10 0.00126 -0.7959 -0.7784 0.8305 194.02 s
30 0.00047 -0.8341 -0.8523 0.8873 190.9 s

300 6e-05 -0.8844 -0.8664 0.9471 201.65 s
Table 4: 3D full resolution on the GLI+SSA 2021 Dataset

From the table below; we can see that the 300 epoch model achieved the best dice score at 0.9256
followed by the 150 and 30 epoch models at 0.9198 and 0.8965 respectively.

The graphs shown in figure 6 are also a representation of the training progress for the best epoch for
3d configuration.

3.2.2 Configuration name: 2d full resolution

Here, we have employed a 2d full resolution with a batch_size of 105, a patch_size of [192, 160], 32
UNet base features, a per-stage encoder and decoder of [2, 2, 2, 2, 2, 2], kernel sizes of [[1, 1], [2, 2],
[2, 2], [2, 2], [2, 2], [2, 2]], and convolution kernel sizes of [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]]
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Epoch Learning rate Train_loss Val_loss Pseudo dice Epoch time

2 0.01 0.00536 -0.6746 0.7833 209.28 s
5 0.00235 -0.7353 -0.7411 0.8146 191.05 s

10 0.00126 -0.7959 -0.7784 0.8305 194.02 s
30 0.00047 -0.8341 -0.8523 0.8965 190.9 s

150 0.00536 -0.8668 -0.8695 0.9198 495.48 s
300 6e-05 -0.8891 -0.8561 0.9256 196.42 s

Table 5: A representation of the average of class prediction dice scores per epoch number

Figure 6: Graphical Representation of training progress for 300 epochs

on the GLI and SSA dataset. As seen in the table below, the 30-epoch model achieves the best dice
score at 0.8965, followed by the 5-epoch model at 0.8629.

Epoch Learning rate Train_loss Val_loss Pseudo dice Epoch time

2 0.00536 -0.7974 -0.8236 0.8432 337.17 s
5 0.00235 -0.8625 -0.8687 0.8629 165.65 s

10 0.00126 -0.7959 -0.7784 0.8305 195.28 s
30 0.00047 -0.8341 -0.8523 0.8965 190.9 s

Table 6: Comparison of performance with epoch size

These are the results for the African dataset (GLI + SSA). From the table below; we can observe
that a higher epoch size, in this case 30, achieves the best performance across the 5-fold validation;
followed by the 10 epoch size models; then the 5-epoch models, and lastly the 2-epoch size models.

4 Discussion and Future Work

From Tables 1, 2, and 3 above, we have seen that as the number of training epochs increases,
the Dice score improves significantly, demonstrating that the model’s segmentation performance
gets better with more training. The reduction in both training and validation loss over epochs
indicates that the model is effectively learning and generalizing well to unseen data. Moreover,
training the model for approximately 300 epochs strikes a balance between achieving good
segmentation performance and minimizing training time from Table 5. Fine-tuning the learning rate
or exploring other optimization techniques could potentially further improve the model’s performance.
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Epoch Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

2 0.7658 0.7466 0.8175 0.7882 0.8432
5 0.8158 0.813 0.78 0.7916 0.7945
10 0.8823 0.8784 0.8832 0.8795 0.8778
30 0.895 0.8895 0.9006 0.8972 0.9244

Table 7: A comparison of performance across the folds

Additionally, it’s essential to consider the trade-off between training time and performance when
deciding the optimal number of epochs for model training. The training done with 2d configuration
also tends to outperform that with 3d configuration for a smaller number of epochs (at least that
was our case for up to 30 epochs from the tables above). A higher epoch size translates into better
performance as the model trains more on the dataset and is able to increase its accuracy in the
segmentation as it learns more patterns.

For future work, we can tackle this as a domain adaptation problem that can arise from any
multi-center/institutional data. More specifically, the problem arises from the low-field MR producing
lower quality images, we therefore considered the baseline nnUnet version 2 for both 2D and 3D
methods but with the variation of self-supervised style transfer (this has been recently proposed, but
have not been employed on the African dataset.

We could also employ the ensembling methods; style transfer methods, low to high-resolution quality
transfer learning approach from model weights from Bouter et.al. Having validated the nnUnet v2
feasibility on the African dataset in this study, we will test our approach to a larger African dataset
cohort (currently there are only 60 cases). Since we were able to achieve a 92.56% dice similarity
score with 300 epochs, a higher epoch size could still be trained to check for further improvements in
the score.

5 Conclusion

We have experimented with various U-Net variants including the base U-Net-V1, Optimized U-Net,
and the nnUNet-V2. Based on our experiments, training a model with a higher epoch size, say
300, yields better results as opposed to a smaller epoch size though we still also have to take into
consideration the model complexity to avoid overfitting.
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