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ABSTRACT

Nearly one in five adolescents currently live with a diagnosed mental or behavioral
health condition, such as anxiety, depression, or conduct disorder, underscoring the
urgency of developing accurate and interpretable diagnostic tools. Resting-state
functional magnetic resonance imaging (rs-fMRI) provides a powerful lens into
large-scale functional connectivity, where brain regions are modeled as nodes
and inter-regional synchrony as edges, offering clinically relevant biomarkers
for psychiatric disorders. While prior works use graph neural network (GNN)
approaches for disorder prediction, they remain complex black-boxes, limiting
their reliability and clinical translation. In this work, we propose CONCEPTNEURO,
a concept-based diagnosis framework that leverages large language models (LLMs)
and neurobiological domain knowledge to automatically generate, filter, and
encode interpretable functional connectivity concepts. Each concept is represented
as a structured subgraph linking specific brain regions, which are then passed
through a concept classifier. Our design ensures predictions through clinically
meaningful connectivity patterns, enabling both interpretability and strong
predictive performance. Extensive experiments across multiple psychiatric disorder
datasets demonstrate that CONCEPTNEURO-augmented GNNs consistently
outperform their vanilla counterparts, improving accuracy while providing
transparent, clinically aligned explanations. Furthermore, concept analyses
highlight disorder-specific connectivity patterns that align with expert knowledge
and suggest new hypotheses for future investigation, establishing CONCEPTNEURO
as an interpretable, domain-informed framework for psychiatric disorder diagnosis.

1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a powerful non-invasive tool that captures dynamic
changes in neural activity through blood-oxygen-level-dependent (BOLD) responses (Fox & Raichle,
2007). Functional connectivity (FC), defined as the degree of similarity in BOLD activity across brain
regions–particularly during resting-state–has emerged as an important tool to quantify individual
differences in cognition (Bassett & Sporns, 2017) and behavior (Finn et al., 2015; Shen et al., 2017),
as well as for diagnosing and characterizing brain disorders (Jo et al., 2019; Eslami et al., 2019).
However, due to the high dimensionality of FC and the lack of domain-specific constraints, current
predictive efforts based on this signal typically yield unreliable models that fail to translate into
clinical practice and produce findings with limited interpretability.

To this end, there are two key obstacles in advancing FC-based neuropsychiatric diagnosis. First,
existing models fail to integrate existing domain knowledge into the modeling framework. Neu-
roimaging and psychiatric research already provide rich knowledge about disorder-related regions
and networks, yet most learning frameworks treat FC graphs as unstructured input, leaving this
information unused and resulting in models that may overfit noise or miss clinically relevant signals.
Second, current predictive models lack interpretability, i.e., black-box approaches such as standard
graph neural networks (GNNs) may achieve competitive accuracy but provide little insight into
disorder-specific connectivity patterns, limiting clinical trust and scientific discovery.

Present work. To address these challenges, we propose CONCEPTNEURO, a novel framework
that integrates large language models (LLMs) with graph-based concept modeling. Our framework
is formulated using concept bottleneck models (CBMs) (Koh et al., 2020; Yeh et al., 2020) that
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implicitly introduce an intermediate layer of human-understandable concepts between raw data
representations and downstream predictions. Under the CBM framework, our approach tackles both
obstacles in FC-based neuropsychiatric diagnosis with two novel designs: (1) LLM-guided concept
generation. To incorporate prior neurobiological knowledge, we collect disorder-related terms from
established neuroimaging resources (e.g., NeuroQuery (Dockès et al., 2020)), which serve as anchors
for generating candidate concepts. Guided by these terms, LLMs automatically produce diverse
and disorder-specific functional connectivity concepts that capture clinically meaningful interactions
between brain regions. (2) Connectivity-based concept modeling. To ensure interpretability, we
introduce a concept bottleneck layer that mediates predictions through human-understandable con-
nectivity concepts. Specifically, each concept is represented as a relationship between two groups of
brain regions, where the connectivity strength is reflected by the edges in the induced subgraph. These
subgraphs are then structurally encoded and passed into a concept classifier for disorder prediction.
With these designs, CONCEPTNEURO is, to our knowledge, the first framework to enable automated
concept generation for fMRI-based connectivity analysis. By bridging raw FC data with clinically
interpretable representations, our method delivers accurate classification of psychiatric disorders
while providing transparent, disorder-specific explanations that align with neurobiological insights.

We validate our framework on the task of disorder diagnosis, using fMRI datasets associated with
multiple psychiatric disorders (e.g., anxiety or conduct disorder). Experimental results demonstrate
that CONCEPTNEURO achieves improved prediction accuracy and inherent interpretability com-
pared to standard black-box approaches. In particular, the selected concepts highlight brain region
interactions that align with knowledge of domain experts. The contributions of this work can be
summarized as follows: 1 we introduce an automated pipeline for generating and filtering clinically
meaningful connectivity-based concepts from brain fMRI data; 2 we design a concept-based GNN
that integrates these concepts into the classification of brain disorders; and 3 we conduct comprehen-
sive experiments showing that our framework balances predictive performance with interpretability,
offering insights into disorder-specific brain connectivity patterns.

2 RELATED WORK

This work lies at the intersection of brain network analysis and concept-guided graph neural networks.
Below, we discuss related work for each of these topics.

Brain Network Analysis. Analyzing brain networks focuses on uncovering the complex patterns of
connectivity in the human brain (Cui et al., 2022; Kan et al., 2022; Zhang et al., 2022b). This line
of research has recently attracted significant attention due to its wide range of applications, such as
detecting biomarkers for neurological disorders (Yang et al., 2022), providing insights into cognitive
mechanisms (Liu et al., 2023; Chen et al., 2024), and characterizing differences across various brain
network types (Liao et al., 2024). A central task in this domain is predicting brain-related attributes,
including demographic information and cognitive or task-specific states (Said et al., 2023; He et al.,
2020). Graph neural networks (GNNs) have emerged as a dominant methodology for these prediction
tasks (Li et al., 2022; Cui et al., 2022), owing to their strength in modeling structured relational
data (Li et al., 2021; Xu et al., 2024; Wang et al., 2022).

Concept-guided Graph Neural Networks. Concept bottleneck models (CBMs) enhance inter-
pretability by mediating predictions through human-understandable concepts (Koh et al., 2020; Yeh
et al., 2020). They have been applied in domains such as radiology and pathology to link predictions
with clinically meaningful features (Kim et al., 2018; Sauter et al., 2022), though most approaches
depend on manually defined concept sets, limiting scalability. Recent advances leverage large lan-
guage models (LLMs) to automatically propose candidate concepts (Kim et al., 2023; Yang et al.,
2023), reducing annotation costs while maintaining interpretability. In graph learning, explainability
has traditionally relied on post-hoc methods that highlight predictive subgraphs (Xuanyuan et al.,
2023; Huang et al., 2022), but these offer only local, instance-level insights. To move toward global
interpretability, recent work explores embedding concepts into GNN architectures. For example,
neuron-level analyses reveal that hidden units can act as detectors of interpretable graph motifs (Xu
et al., 2024), while Graph Concept Bottleneck Models explicitly encode concept relationships as a
graph structure to improve transparency (Xu et al., 2025). Despite these advances, concept-guided
GNNs remain underexplored, with most studies focusing on vision or tabular data rather than
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Figure 1: Overview of the Proposed Framework. (Left) We first prompt LLMs to generate disorder-
specific functional connectivity concepts, which are refined through filtering to remove irrelevant
or redundant concepts, resulting in a compact set of Nc concepts. (Center) For each subject, we
extract subgraphs corresponding to these concepts and encode them together with the subject’s input
functional connectivity graph. (Right) Finally, we compute concept scores, which are then passed
through a concept bottleneck classifier to perform disorder prediction in an interpretable manner.

graph-structured domains. This motivates frameworks that can automatically generate and integrate
domain-specific connectivity concepts for tasks such as neuroimaging-based diagnosis.

3 CONCEPTNEURO: OUR FRAMEWORK

In this section, we describe our framework that aims to perform neuropscychiatric diagnosis using
interpretable connectivity concepts. To achieve this goal, CONCEPTNEURO leverages concept
generation using LLMs (Sec. 3.2), connectivity-based concept modeling (Sec. 3.3), and training
a concept classifier for neuropscychiatric diagnosis (Sec. 3.4). In Fig. 1, we present an overview
of our end-to-end framework.

3.1 PRELIMINARIES

Problem Formulation. Let D = (Gi, yi)
M
i=1 be the dataset containing M subject samples, where

Gi = (V,E,Ai) is the fMRI graph for subject i and yi ∈ Y is the disorder label from N =
|Y| classes. In our task, N could be two for binary classification or greater than two for the
identification of multiple disorders. Notably, we work on a specific parcellation V (e.g., 100–400 ROIs,
depending on the atlas) for each dataset. The subject-specific weighted adjacency Ai ∈ R|V |×|V |

is derived from ROI time series (details in Sec. 3.1) obtained based on Pearson’s correlation. Let
S = {c1, . . . , cNC

} denote the set of candidate concepts, where concept c is defined as a pair of
disjoint region sets (V 1

c , V
2
c ) with (V 1

c , V
2
c ) ⊆ V , accompanied by a direction prior δc ∈ {−1,+1}

indicating hypothesized (negative/positive) connectivity.

From fMRI to Graphs. We follow the minimal preprocessing pipeline for fMRI data (Glasser
et al., 2013; Hagler et al., 2019), which includes motion correction, B0 distortion correction, and
gradient nonlinearities distortion correction. To further minimize motion-related confounds, we apply
iterative spatial smoothing, regression of motion parameters, and frame censoring (Qu et al., 2025;
Yu et al., 2025). After preprocessing, ROI-level fMRI time-series were calculated as the mean of the
values of the voxels within the ROI from the selected parcellation scheme. Formally, for each subject
i, ROI v, we demote the extracted time series as xi(v) ∈ RT , where T is the number of time points.
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3.2 CONCEPT GENERATION USING LARGE LANGUAGE MODELS

A key challenge in building interpretable concept-based models is generating a sufficiently rich
yet clinically meaningful set of candidate concepts. To this end, we design structured prompts for
LLMs that guide them to propose connectivity concepts directly tied to functional brain regions. We
design the prompts to ask to elicit short, specific features of fMRI connectivity that distinguish a
given disorder. Meanwhile, we explicitly instruct the model to avoid features that are not based on
functional connectivity (e.g., fractional anisotropy measures) and to restrict outputs to pairs or sets
of well-defined brain regions anchored in prior neuroimaging knowledge. Importantly, we collect
disorder-related terms from established neuroimaging resources (e.g., NeuroQuery (Dockès et al.,
2020)) to provide additional guidance for the LLMs. For instance, the related terms for anxiety may
include amygdala, prefrontal, insula, and cingulate.

Each generated concept follows the pattern of concise phrases such as “reduced connectivity between
amygdala and dorsolateral prefrontal cortex” or “hyperconnectivity between posterior cingulate
cortex and medial prefrontal cortex.” These are then parsed into structured region sets (V 1

c , V
2
c ) using

atlas-specific aliases and ontology lookups, ensuring compatibility with downstream graph-based
analysis. The motivation behind this design is twofold: i) leveraging LLMs’ ability to synthesize
domain knowledge into a broad and diverse candidate pool and ii) enforcing domain-informed
constraints so that the resulting concepts remain interpretable, clinically relevant, and directly
mappable onto fMRI connectivity data.

Example prompt template to generate concepts for ‘Anxiety’

You need to list the most important visual features of brain images for diagnosing a patient as “Anxiety”.
You should be specific in generating these features that are related to single regions. You should make each
feature very concise and clear, and each feature should be separated by a new line. You should not include
any other information or explanation, just the features.
You should make sure the generated concepts are not fractional anisotropy (FA) measures.
You should make sure the generated concepts are derived only to functional connectivity.
The generated concepts are related to at least one of the following: [Anxiety-related Terms]

To refine the LLM outputs, we apply rule-based filters: we discard concepts that involve fewer than
two regions in either set, overlap excessively with existing concepts, or cannot be reliably resolved to
atlas-defined regions. The resulting set S forms a compact yet diverse collection of connectivity-based
concepts, which balances coverage across disorders while avoiding redundancy.

Illustrative Example. A concept “hyperconnectivity between amygdala and prefrontal cortex ”
maps to V 1

c = ‘L/R amygdala’ and V 2
c = ‘L/R ofrontal cortex parcels’. For each subject i, we will

examine only the edges between these sets to compute a concept score and a subgraph embedding.

3.3 STRUCTURAL ENCODING FOR CONCEPT SUBGRAPHS

With the concepts obtained from the LLMs’ output for each disorder, we need to extract the subgraph
of each concept to be integrated into our concept-guided GNN. Particularly, for a concept c ∈ S and
subject i, the concept subgraph is given by:

Gc
i =

(
V 1
c ∪ V 2

c , Ec, A
c
i

)
, Ec = {(u, v) | u ∈ V 1

c , v ∈ V 2
c }, (1)

with Ac
i the |V 1

c | × |V 2
c | submatrix of Ai. Based on the extracted concept subgraph, we select Nc

concepts based on their average adjacency strength across subjects. Formally, for a concept c ∈ S
with subgraph adjacency Ac

i for subject i, we define its average connectivity score as

s̄c =
1

M

M∑
i=1

1

|Ec|
∑

(u,v)∈Ec

Ac
i (u, v), (2)

where M is the number of subjects and Ec is the edge set of the concept subgraph. We then rank all
candidate concepts {c} by s̄c and retain the top Nc concepts to form the final concept set.

To capture higher-order structural patterns within each concept subgraph, we construct initial node
features using two components: a one-hot vector indicating the ROI identity in the atlas, and the
average neighbor degree of the node, computed with networkx, which summarizes the typical
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degree of its neighbors and thus provides a local connectivity descriptor. Given these initial features,
we learn structural embeddings of nodes through an edge-weighted message-passing framework.
Formally, the node representation at layer t is updated as:

h(0)
u =

[
eu

∥∥∥∥ 1

deg(u)

∑
v∈N (u)

deg(v)

]
, (3)

where eu ∈ {0, 1}|V | is the one-hot vector corresponding to ROI u, deg(u) is the degree of node u,
N (u) is the neighbor set of u, and [· ∥ ·] denotes concatenation of feature vectors.

General message passing. For node u at layer t→ t+1, the encoding process is described as
follows:

h(t+1)
u = U (t)

(
h(t)
u ,

⊕
v∈N (u)

M (t)
(
h(t)
u ,h(t)

v , Ai(u, v)
))

, (4)

where h
(t)
u ∈ Rdt is the node state, N (u) is the neighborhood of u,

⊕
∈ {

∑
,mean,max} is a

permutation-invariant aggregator, M (t) is a learnable message function, U (t) is a learnable update
function. After T layers, we obtain the final subgraph embedding via attention pooling:

αu = softmax
(
w⊤x(T )

u

)
, hc

i =
∑

u∈V 1
c ∪V 2

c

αu h
(T )
u . (5)

This design ensures that both ROI identity and local structural properties contribute to the learned
representation, while message passing integrates higher-order connectivity patterns across regions.
We denote the structural encoder by g(·), and obtain the concept-specific representation of subject i
as hc

i = g(Gc
i ), where Gc

i is the concept subgraph for subject i.

3.4 CONCEPT BOTTLENECK CLASSIFIER

For each subject input Gi, we obtain its embedding zi = g(Gi) using the structural encoder described
in Sec. 3.3. We then compute its concept score si,c for each concept c via dot product:

si,c = z⊤i h
c
i , ∀c ∈ S. (6)

This yields a concept similarity vector si = [si,1, si,2, . . . , si,Nc
] ∈ RNc , where Nc is the number of

concepts. The vector si serves as the concept-level representation of subject i, which is then passed
through a multi-layer perceptron (MLP) classifier to produce the final class logits:

oi = σ(W · si +Wz · zi + b) , (7)

where si ∈ RNc is the concept score vector of subject i, W ∈ RN×Nc and Wz ∈ RN×d are trainable
weight matrices, b ∈ RN is the bias term, σ(·) is a nonlinear activation function (e.g., Sigmoid). d is
the dimension of embeddings. The final predictive distribution is given by the softmax:

p(y | i) = exp(oi,y)∑
y′∈Y exp(oi,y′)

, ∀y ∈ Y. (8)

This design ensures that predictions are directly mediated through concept scores, while the MLP
provides a flexible mapping from the concept space to the disorder label space.

Classification loss. The primary objective is the standard cross-entropy loss over the predicted class
distribution: Lcls = −

∑M
i=1 log p(yi | i), where p(y | i) is defined in Eq. (8) through the softmax

over class logits.

Sparsity on concepts. To encourage the model to rely on a compact set of highly informative
concepts, we add an ℓ1 penalty on the first-layer weights W of the MLP, which directly control the
influence of each concept on the downstream prediction: Lsp = λsp ∥W∥1, where λsp is a tunable
coefficient. This loss promotes sparsity across concepts, making it easier to identify a small subset of
clinically meaningful connectivity patterns that drive classification decisions.

Direction-aware constraints. If δc ∈ {±1} is provided for a concept c, we incorporate this prior
into the concept-to-class mapping. Specifically, for concepts labeled with δc = +1 (hyperconnec-
tivity), we enforce that their learned contribution to the class logits is non-negative; for δc = −1
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(hypoconnectivity), the contribution is enforced to be non-positive. Practically, we implement this by
adding a hinge penalty that punishes sign violations. This constraint serves as an inductive bias that
aligns the learned concept-class associations with domain knowledge.

Overall objective. The final training loss combines all terms:

L = −
M∑
i=1

log
exp(oi,yi

)∑
y′∈Y exp(oi,y′)

+ λsp∥W∥1 + λdir

Nc∑
c=1

N∑
j=1

[
max

(
0, −δc Wj,c

)]2
, (9)

This formulation ensures that the learned model is both accurate and interpretable, and grounded in
both clinical priors and the parsimony of concept usage.

Summary. Our framework provides a clinically meaningful bridge between complex fMRI connectiv-
ity signals and psychiatric diagnosis by ensuring that predictions are mediated through interpretable
connectivity concepts. Unlike black-box models, which often struggle to gain trust in clinical practice,
CONCEPTNEURO produces explanations that are directly anchored in neurobiological constructs
familiar to clinicians, such as amygdala–prefrontal connectivity or cingulate–insula interactions.
This interpretability enables practitioners to not only verify model decisions but also use them as
hypotheses for further investigation into disorder mechanisms.

4 EXPERIMENTS

We organize our experiments around the following research questions: RQ1: Does CONCEPTNEURO
consistently outperform vanilla GNN baselines across multiple architectures and disorder prediction
tasks? RQ2: Do the concepts discovered by CONCEPTNEURO align with domain experts’ under-
standing of clinically meaningful brain connectivity? RQ3: What patterns emerge when analyzing
the distribution of concept importance across subjects, and do these patterns reflect disorder-specific
neural signatures? RQ4: How critical are the design choices of CONCEPTNEURO, such as learned
concept weights and inclusion of diverse concept sets, for achieving strong predictive performance?

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on two fMRI datasets. (1) Resting-state fMRI (rs-fMRI) data
from the Adolescent Brain Cognitive Development (ABCD) Study1 (Casey et al., 2018), the largest
longitudinal neuroimaging study of brain development in youth in the United States. At baseline,
11,099 participants aged 9–11 years were enrolled. After excluding individuals without usable
rs-fMRI scans or those who failed the ABCD quality control procedures, our final sample comprised
7,844 participants. All rs-fMRI data were preprocessed using the standard ABCD pipelines (Hagler
et al., 2019). Cortical regions were parcellated using the Glasser atlas (Glasser et al., 2016), and
subcortical regions were defined using the Aseg atlas (Fischl et al., 2002). Functional connectivity
was then estimated as the statistical association between ROI-level rs-fMRI time series. (2) Human
Connectome Project-Development (HCP-D) dataset, which contained data from a total of 1300 youth
ranging in age from 5 to 21 years (Somerville et al., 2018). In the current release (version 2.0),
the baseline data from 652 participants were available. We excluded participants with excessive
head motion during scanning, and the final sample included 528 participants (Zhang et al., 2022a).
Preprocessed rs-fMRI data using the HCP minimal preprocessing pipelines v3.22 (Glasser et al.,
2013) were available. We used the same Glasser atlas for cortical parcellation and applied the same
procedure for FC estimation.

Diagnostic Task. In this study, we focus on five psychiatric disorders commonly examined in
pediatric populations: obsessive-compulsive disorder (OCD), anxiety, attention-deficit/hyperactivity
disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder. Diagnostic information
was obtained through the parent-report Kiddie Schedule for Affective Disorders and Schizophrenia
for School-Age Children, Computerized Version (K-SADS-COMP) or the Child Behavior Checklist
(CBCL) subscales for dimensional assessment (Achenbach & Rescorla, 2001). Particularly, for the
ABCD dataset, the task is framed as binary classification, where the goal is to determine whether
a subject is diagnosed with a given disorder. In contrast, for the HCP-D dataset, we use the raw
symptom score as the label for a multi-class classification task. This symptom score ranges from 0 to

1https://abcdstudy.org/

6

https://abcdstudy.org/


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Mean accuracy (%) on disorder classification tasks on the ABCD dataset, with standard
error across five random seeds. We observe that CONCEPTNEURO-augmented GNN architectures
consistently outperform their vanilla counterparts across all five classes.

GNN Architecture Method Anxiety OCD ADHD ODD Conduct

GCN
Vanilla 61.2±1.7 70.1±1.1 57.8±1.8 65.5±1.3 69.3±1.5
CONCEPTNEURO 65.8±1.0 76.1±1.7 62.6±1.3 67.5±1.9 72.3±1.2

GAT
Vanilla 61.0±1.4 69.8±1.2 57.2±1.9 65.1±1.3 68.7±2.0
CONCEPTNEURO 64.5±1.1 74.9±1.5 62.0±1.7 66.9±1.3 71.4±1.6

GraphSAGE
Vanilla 61.5±1.8 70.5±1.3 58.1±1.7 66.2±2.0 69.0±1.4
CONCEPTNEURO 65.0±1.6 75.3±1.2 62.2±1.9 67.1±1.2 71.8±1.7

GIN
Vanilla 62.7±1.3 71.0±1.4 61.4±1.1 67.9±1.8 73.2±1.0
CONCEPTNEURO 64.9±0.9 72.5±1.0 63.8±1.4 69.7±1.2 75.9±0.9

10, resulting in an 11-class setup. Importantly, the raw score is not a formal clinical diagnosis; rather,
it represents the number of symptoms observed for a specific disorder. As such, it can be interpreted
as a proxy for disease severity. For the HCP-D dataset, only four disorders are considered (as the
symptom scores of OCD are unavailable).

Baselines. To benchmark our proposed framework, we compare it against several widely used
models in graph learning and representation learning. Graph Convolutional Network (GCN) (Kipf
& Welling, 2017) leverages spectral graph convolutions to aggregate neighborhood information.
Graph Isomorphism Network (GIN) (Xu et al., 2019) strengthens expressive power by using injective
aggregation functions. Graph Attention Network (GAT) (Veličković et al., 2018) incorporates
attention mechanisms to assign learnable weights to neighboring nodes. GraphSAGE (Hamilton
et al., 2017) introduces an inductive framework that learns aggregation functions to generalize to
unseen nodes and graphs.

Implementation Details. The loss weights used in Eq. 9 are set as 1. We use a learning rate of
1 × 10−3 and weight decay of 10−4. We use GPT-4.1 as the LLM for generating concepts. More
details are provided in Appendix B.

4.2 EXPERIMENTAL RESULTS

Here, we discuss experimental results that answer key questions highlighted at the beginning of this
section (RQ1-RQ4).

RQ1) CONCEPTNEURO outperforms Vanilla Graph Neural Networks. Table 1 reports the
accuracy of different GNN architectures on five disorder classification tasks. We observe several
consistent patterns emerge. First, across all four GNN architectures, CONCEPTNEURO substantially
outperforms the corresponding vanilla baseline. For example, with GCN, the average improvement
ranges from +2.0% (Conduct) to nearly +5.0% (Anxiety), with gains consistently larger than the
reported standard errors. Similar margins are observed for GAT and GraphSAGE, where our approach
improves performance by 3.4% across five disorders. These results highlight the benefit of explicitly
incorporating LLM-guided concepts into otherwise standard black-box GNN pipelines.

Second, the improvements are not limited to a single architecture, but hold across convolution-based
(GCN), attention-based (GAT), sampling-based (GraphSAGE), and injective (GIN) encoders. This
demonstrates that our framework is architecture-agnostic and provides complementary information
to the underlying message-passing mechanism. Notably, even strong baselines such as GIN-Vanilla
benefit from our design: for ADHD, accuracy increases from 61.4% to 63.8%, and for Conduct class
from 73.2% to 75.9%.

Third, our framework demonstrates strong performance on the multi-class classification task using
the HCP-D dataset, as reported in Table 2. Unlike the binary classification setting, here the prediction
problem is extended to 11 classes (ranging from 0 to 10), which substantially increases task difficulty
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Table 2: Mean accuracy (%) on disorder classification tasks on the HCP-D dataset, with standard
error across five random seeds. We observe that CONCEPTNEURO-augmented GNN architectures
consistently outperform their vanilla counterparts across all four classes. Note that the HCP-D dataset
does not have labels for the OCD class.

GNN Architecture Method Anxiety ADHD ODD Conduct

GCN
Vanilla 29.9±2.1 45.8±1.9 34.1±1.6 19.8±1.5
CONCEPTNEURO 34.8±2.5 52.8±2.0 40.2±2.4 28.7±2.3

GAT
Vanilla 28.1±1.5 44.0±2.7 35.0±2.8 18.6±2.6
CONCEPTNEURO 34.8±2.3 53.2±2.4 44.8±2.5 31.0±1.5

GraphSAGE
Vanilla 29.4±1.6 45.8±1.8 37.6±2.9 22.7±2.4
CONCEPTNEURO 38.3±2.2 54.3±2.5 46.9±1.6 30.9±2.1

GIN
Vanilla 31.1±1.4 48.7±1.6 35.4±2.5 21.3±2.3
CONCEPTNEURO 38.6±2.4 56.4±1.8 47.1±2.4 30.3±2.1

and reduces the baseline accuracy across all architectures. Despite this, CONCEPTNEURO consistently
outperforms the vanilla GNN counterparts across all four disorders.

Our results reveal that different disorders vary in difficulty. While tasks such as ADHD and Anxiety
yield lower absolute accuracies across all methods, reflecting their more heterogeneous neural
signatures, Conduct disorder consistently achieves higher accuracy. Importantly, in all cases, our
method narrows this performance gap while retaining interpretability, suggesting that concept-based
modeling helps extract clinically meaningful connectivity patterns that align with diagnostic labels.

Overall, our findings show that CONCEPTNEURO consistently improves predictive performance
across diverse GNN backbones, while maintaining generalizability to multiple disorder types.

Table 3: Agreement between model-extracted concepts and expert-selected concepts. We report
two metrics: (i) Concept Agreement, the fraction of shared concepts at top–k, and (ii) Ranking
Agreement, the ratio of subjects for which the model-selected features matched expert-selected
features. Both are shown at top–3, top–5, and top–10.

Concept Agreement Ranking Agreement

Disorder Top–3 Top–5 Top–10 Top–3 Top–5 Top–10

Anxiety 66.7% 80.0% 70.0% 61.2% 73.5% 81.0%
OCD 33.3% 40.0% 80.0% 47.6% 59.2% 77.8%

RQ2) Domain Expert Analysis/Verification. To further validate the interpretability of our frame-
work, we compared the model-extracted concepts (ranked by concept scores in Eq. 6) with those
selected by clinical domain experts in neuroimaging and psychiatry. Agreement was assessed us-
ing two complementary metrics: (i) Concept Agreement, which measures the proportion of shared
concepts between the top-k sets from the model and experts, and (ii) Ranking Agreement, which
quantifies the average per-subject alignment of selected features across the cohort.

As shown in Table 3, concept agreement values are consistently strong at larger cutoffs (e.g., 70–80%
at top–10), suggesting that our framework captures many clinically meaningful connectivity patterns.
At stricter cutoffs, concept agreement is more variable across disorders (e.g., 66.7% for Anxiety vs.
33.3% for OCD at top–3), reflecting differences in the prioritization of the most salient features. The
ranking agreement metric further supports these findings: for both Anxiety and OCD, agreement rates
increase steadily from top–3 (≈47–61%) to top–10 (≈78–81%), demonstrating that our framework
recovers clinically validated concepts consistently across subjects.

Overall, these results demonstrate that CONCEPTNEURO not only provides competitive predictive
performance but also yields interpretable concept-level explanations that align well with domain
expertise, both at the set-level (via ranking overlap) and subject-level (via ranking agreement).
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(a) GCN ablation results across disorders.
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(b) GIN ablation results across disorders.
Figure 3: Ablation study results for two architectures.

Figure 2: The distribution of similarity scores.

RQ3) Concept Analysis of Importance Distri-
butions over Subjects. To further investigate
how individual concepts contribute to disorder
prediction, we focus on the case of Anxiety and
select two representative concepts: the most im-
portant concept (Altered connectivity from or-
bitofrontal cortex (OFC) to amygdala) and the
least important concept (Increased connectiv-
ity between thalamus and prefrontal regions).
For each of these concepts, we compute the dis-
tribution of cosine similarity scores across all
subjects, as shown in Fig. 2. The results reveal
clear differences in their subject-level relevance.
The most important concept consistently aligns with a large subset of subjects and represents a core
connectivity pattern strongly associated with Anxiety. In contrast, the least important concept displays
a distribution centered closer to zero, suggesting weak relevance across subjects. This comparison
highlights how our framework quantifies relevance of concepts across individuals. By examining
these distributions, clinicians can distinguish between robust, disorder-specific connectivity markers
and marginal features, thereby improving the interpretability and reliability of model outputs.

RQ4) Ablation Study. To disentangle the contribution of each design choice in CONCEPTNEURO,
we perform two ablation variants: (1) replacing our achieved concepts with randomly sampled
concepts, and (2) restricting the model to use only the top-5 most important concepts. The results
are shown in Fig. 3. First, the random concepts setting results in a substantial drop in accuracy
across all disorders and architectures. This degradation confirms that the functional connectivity
concepts extracted by CONCEPTNEURO are not arbitrary; rather, they encode clinically meaningful
neurobiological patterns. In particular, models trained with random concepts perform close to chance
level, highlighting the necessity of guided concept generation. Second, the top–5 concepts only
setting performs better than random concepts and even approaches the full model in some cases,
especially for disorders like Anxiety and OCD where a small subset of connectivity patterns are
highly discriminative. However, across all tasks the top–5 setting still underperforms the full model,
demonstrating that while a few high-importance concepts are valuable, broader concept coverage
is essential for capturing the heterogeneity of psychiatric disorders. Overall, these ablations show
that both the diversity and quality of the extracted concepts are critical. The full CONCEPTNEURO
framework thus provides the best balance between interpretability and predictive performance.

5 CONCLUSION

In this work, we introduced an interpretable framework for neuropsychiatric diagnosis that combines
large language models (LLMs) and graph neural networks (GNNs) through the use of connectivity-
based concepts. By leveraging LLMs to generate clinically grounded candidate concepts, our method
enables predictions that are both accurate and interpretable. The concept bottleneck classifier enforces
sparsity and direction-aware regularization, ensuring that model decisions align with clinical priors
while relying on a compact set of meaningful connectivity patterns. Extensive experiments across
multiple disorders demonstrated that our approach achieves strong predictive performance, while
expert analysis verified that the identified concepts capture clinically relevant connectivity features.
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A LIMITATIONS STATEMENT

While our framework advances interpretable neuropsychiatric diagnosis by integrating LLM-
generated connectivity concepts with concept-guided GNNs, several limitations remain. First, our
evaluation is conducted on publicly available datasets (e.g., ABCD, HCP-D), which, although widely
used, may contain biases in demographics, acquisition protocols, and diagnostic labels. These factors
could limit generalizability to other populations or clinical settings. Second, the interpretability of
our method is inherently constrained by the quality of the candidate concepts provided by LLMs;
although we employ filtering and expert validation, spurious or incomplete concepts may still arise.
Third, while our direction-aware regularization incorporates clinical priors, it assumes that such
priors are correct and consistent across individuals, which may not always hold in heterogeneous
disorders. Finally, our framework is intended as a research tool and has not been clinically validated.
Translation to practice would require large-scale prospective studies, integration with multimodal
assessments, and careful oversight to ensure safety, fairness, and reliability.

B EXPERIMENTAL SETTINGS

We employ a 2-layer GNN with hidden dimension of 64, where each layer is followed by BatchNorm
and ReLU activation, and global mean pooling is used to obtain graph embeddings. Regularization is
applied through node dropout with probability 0.5 and weight decay of 10−4. The Adam optimizer
is used with a learning rate of 1× 10−3. Training is performed for 500 epochs with 100 balanced
mini-batches per epoch, each containing up to 16 positive and 16 negative samples. Validation is
conducted every 5 epochs, and early stopping patience is set to 20. All experiments are conducted on
a NVIDIA A6000 GPU with 48GB of memory.

C GENERATED CONCEPTS (UNFILTERED)

Concepts for Anxiety

• hyperconnectivity between amygdala and prefrontal cortex

• aberrant connectivity between parahippocampal gyrus and cingulate cortex

• altered connectivity from orbitofrontal cortex (OFC) to amygdala

• decreased connectivity between dorsolateral prefrontal cortex and orbitofrontal cortex

• decreased connectivity between occipital cortex and prefrontal cortex

• decreased connectivity between right hippocampus and precuneus

• dysfunctional communication between cingulate cortex and frontal regions

• dysregulated connectivity within anterior cingulate cortex (ACC)

• elevated connectivity between DLPFC and cingulate cortex

• elevated connectivity between insula and amygdala

• elevated insula to somatosensory cortex connectivity

• enhanced functional coupling between parahippocampal gyrus and occipital cortex

• heightened synchronization between amygdala and hippocampus

• hyperconnectivity within anterior cingulate cortex

• altered connectivity between left hippocampus and prefrontal cortex

• increased connectivity between frontal cortex and brainstem

• increased connectivity between right hippocampus and prefrontal regions

• increased connectivity between thalamus and prefrontal regions

• increased connectivity in parahippocampal-prefrontal networks

• increased functional connectivity between insula and anterior cingulate cortex

• reduced functional connectivity between DLPFC and limbic regions
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Concepts for ODD

• altered functional connectivity between the right prefrontal cortex and striatum

• altered functional connectivity between the left prefrontal cortex and the striatum

• aberrant connectivity between the ventral striatum and precuneus

• abnormal connectivity patterns in the inferior frontal gyrus

• altered functional coupling between the cerebellum and prefrontal cortex

• attenuated connectivity between the left inferior frontal gyrus and occipital regions

• augmented connectivity between superior frontal areas and motor cortex

• decreased functional connectivity between the motor cortex and reward regions

• diminished functional connectivity from the superior frontal gyrus to the precuneus

• dysregulated connectivity from the ventral striatum to the left motor cortex

• elevated functional connectivity in the left orbitofrontal cortex

• enhanced connectivity between the cingulate cortex and somatomotor areas

• higher functional connection between the left inferior frontal gyrus and the right striatum

• hyperconnectivity of the insula with the anterior cingulate cortex

• hyperconnectivity within the right orbitofrontal cortex

• impaired connectivity between the prefrontal cortex and somatosensory areas

• increased synchronization in the superior frontal gyrus networks

• increased synchrony between the cerebellum and occipital regions

• lowered connectivity between the orbitofrontal cortex and cingulate cortex

• reduced connectivity between the dorsolateral prefrontal cortex and occipital cortex

• reduced functional connectivity within the right insula

Concepts for OCD

• altered functional connectivity between orbitofrontal cortex and right thalamus

• abnormal connectivity between insula and frontal lobe

• abnormal connectivity between the occipital lobe and anterior cingulate

• abnormal functional connections between right insula and anterior cingulate cortex

• abnormal functional connectivity between the right basal ganglia and frontal lobe

• altered connectivity between the cerebellum and prefrontal cortex

• altered connectivity between the right OFC and left thalamus

• altered functional connectivity in the basal ganglia

• elevated connectivity between the caudate nucleus and prefrontal cortex

• elevated connectivity between the left orbitofrontal cortex and right anterior cingulate

• enhanced connectivity between the striatum and prefrontal cortex

• hyperconnectivity between left orbitofrontal cortex and basal ganglia

• hyperconnectivity between the anterior cingulate cortex and striatum

• hyperconnectivity between the left orbitofrontal cortex and left anterior cingulate

• hyperconnectivity between the superior temporal gyrus and cingulate

• hyperconnectivity in the anterior cingulate cortex

• increased functional connectivity between the right superior frontal gyrus and thalamus

• reduced functional connectivity between occipital lobe and frontal areas

• altered connectivity between the left OFC and left thalamus
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Concepts for ADHD

• decreased functional connectivity between prefrontal cortex and striatum

• abnormal FC between orbitofrontal cortex and thalamus

• altered connectivity between anterior cingulate cortex and cerebellum

• altered connectivity between caudate and sensorimotor cortex

• altered connectivity between cingulate and sensorimotor cortex

• attenuated connectivity between left orbitofrontal cortex and motor cortex

• attenuated connectivity between superior frontal gyrus and occipital lobe

• attenuated functional connectivity within the working memory network

• decreased connectivity between caudate and precuneus

• decreased connectivity between inferior frontal gyrus and insula

• decreased connectivity between the cerebellum and motor cortex

• decreased connectivity within the default mode network (DMN)

• decreased functional connectivity between precuneus and occipital lobe

• diminished task-related functional connectivity in the right frontal lobe

• hypo-connectivity between cingulate cortex and frontal regions

• hypo-connectivity within reward processing networks

• hypoconnectivity between the cerebellum and prefrontal regions

• impaired connectivity between right inferior frontal gyrus and superior frontal gyrus

• lower connectivity between the default mode network and superior frontal gyrus

• lower synchrony between occipital lobe and reward network

• lowered connectivity between motor cortex and somatosensory regions

• reduced connectivity between orbitofrontal cortex and insula

• reduced connectivity between working memory areas and anterior insula

• reduced functional connectivity within the anterior cingulate cortex

• reduced FC between insula and sensorimotor network

• reduced integration between dorsolateral prefrontal cortex and precuneus

• weakened connectivity between caudate and anterior cingulate cortex

• weaker connectivity between right inferior frontal gyrus and thalamus
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Concepts for Conduct Disorder

• reduced functional connectivity between anterior cingulate cortex and prefrontal cortex

• reduced functional connectivity between the amygdala and prefrontal cortex

• abnormal connectivity between fusiform gyrus and occipital cortex

• abnormal functional connectivity between the cerebellum and prefrontal cortex

• altered connectivity between the left superior frontal gyrus and default mode network

• altered functional connectivity between brainstem and prefrontal cortex

• altered functional connectivity within the default mode network

• attenuated connectivity between orbitofrontal cortex and anterior cingulate cortex

• attenuated thalamic connectivity with prefrontal regions

• decreased connectivity between amygdala and orbitofrontal cortex

• decreased connectivity between fusiform gyrus and anterior cingulate cortex

• decreased connectivity between the right superior frontal cortex and motor areas

• diminished connectivity between precuneus and superior frontal gyrus

• diminished connectivity between right superior frontal gyrus and default mode network

• enhanced connectivity within the insula

• hyperconnectivity between the insula and anterior cingulate cortex

• hypoconnectivity between the anterior brainstem and cingulate cortex

• impaired functional links between anterior cingulate cortex and supplementary motor area

• reduced connectivity between cingulate cortex and cerebellum

D DISORDER-RELATED TERMS

To provide additional guidance for concept generation, we extract disorder-related terms from
NeuroQuery (Dockès et al., 2020). These terms serve as anchors to help ensure that the generated
concepts are clinically meaningful and aligned with prior neuroimaging knowledge.

• Anxiety Disorders: amygdala, prefrontal, insula, cingulate, thalamus, occipital, brainstem, somati-
zation, dlpfc, orbitofrontal, left, acc, right, hippocampus, fa, fusiform gyrus, memory, precuneus,
parahippocampal, motion, ofc, hope, frontal, task

• Oppositional Defiant Disorder (ODD): reward, fa, cerebellum, white matter, tensor, matter,
occipital, precuneus, white, cingulate, prefrontal, insula, frontal, motion, striatum, superior, right,
motor, inferior, left, orbitofrontal, task, striatal, somatization

• Attention-Deficit/Hyperactivity Disorder (ADHD): cerebellum, precuneus, cingulate, occipital,
insula, prefrontal, frontal, motor, inferior, right, striatal, superior, default, left, orbitofrontal, motion,
task, reward, acc, sensorimotor, caudate, lobe, working memory, thalamus

• Obsessive-Compulsive Disorder (OCD): thalamus, cingulate, frontal, ofc, fa, occipital, insula,
striatal, white matter, right, left, cerebellum, acc, anterior, orbitofrontal, tensor, stg, nucleus,
superior, task, lobe, matter, basal ganglia

• Conduct Disorder: insula, dmn, fusiform, matter, occipital, precuneus, fusiform gyrus, thalamus,
prefrontal, cingulate, sma, orbitofrontal, motion, amygdala, ofc, frontal, anterior, brainstem,
cerebellum, default, right, superior, motor, default mode

E REPRODUCIBILITY STATEMENT

We have taken careful steps to ensure that our framework and results are reproducible. The entire
codebase, including data preprocessing scripts, model implementation, and training procedures, is
provided in our anonymous repository: https://anonymous.4open.science/status/ConceptNeuro.
Exact hyperparameters, training configurations, and optimizer settings are reported in Appendix B,
along with information about early stopping and regularization. We document all datasets, prepro-
cessing pipelines, and region atlases used in our experiments in Sec. 4.1. To facilitate verification,
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we include ablation studies, expert analysis results, and visualizations (Tables/Figures in the main
text and appendices). The repository also contains environment files, data loaders, and evaluation
scripts to guarantee that all reported results can be replicated.

F THE USE OF LARGE LANGUAGE MODELS

According to the ICLR’s policy on the use of large language models (LLMs), we explicitly state how
LLMs were employed in this work. Our research investigates how LLMs can be leveraged to generate
clinically meaningful concepts for neuropsychiatric diagnosis. LLMs were directly integrated into
the methodology by serving as a concept generation module, prompted with structured queries to
produce disorder-related functional connectivity concepts, which were subsequently filtered and
integrated into our framework. Beyond this methodological role, LLMs were also used as auxiliary
tools to polish the manuscript’s presentation by improving grammar and readability. Importantly, all
core scientific contributions, including the design of algorithms, experimental implementation, and
analyses, were conceived and validated entirely by the authors.

G ETHICS STATEMENT

This research does not involve the collection or use of personal, sensitive, or identifiable data. All
experiments are conducted on publicly available neuroimaging datasets, such as ABCD and HCP-D,
which are widely used in the neuroscience and machine learning communities. These datasets
are de-identified and shared under strict data usage agreements, ensuring compliance with ethical
standards for human subject research.

While our framework is designed to enhance interpretability and align predictions with clinical priors,
we acknowledge that automated tools in psychiatry and neuroscience should be deployed with caution.
In particular, care must be taken to avoid over-reliance on machine predictions, to ensure human
oversight in clinical decision-making, and to mitigate risks such as model bias, misinterpretation
of neuroimaging findings, or unintended misuse in sensitive healthcare contexts. The methods and
results presented in this paper are intended strictly for research purposes, and any potential translation
to clinical practice must be accompanied by rigorous validation and ethical review.
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