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Abstract

Recent studies have shown that deep neural networks (DNN) are vulnerable to
various adversarial attacks. In particular, an adversary can inject a stealthy backdoor
into a model such that the compromised model will behave normally without the
presence of the trigger. Techniques for generating backdoor images that are visually
imperceptible from clean images have also been developed recently, which further
enhance the stealthiness of the backdoor attacks from the input space. Along with
the development of attacks, defense against backdoor attacks is also evolving. Many
existing countermeasures found that backdoor tends to leave tangible footprints in
the latent or feature space, which can be utilized to mitigate backdoor attacks.

In this paper, we extend the concept of imperceptible backdoor from the input space
to the latent representation, which significantly improves the effectiveness against
the existing defense mechanisms, especially those relying on the distinguishabil-
ity between clean inputs and backdoor inputs in latent space. In the proposed
framework, the trigger function will learn to manipulate the input by injecting
imperceptible input noise while matching the latent representations of the clean
and manipulated inputs via a Wasserstein-based regularization of the corresponding
empirical distributions. We formulate such an objective as a non-convex and con-
strained optimization problem and solve the problem with an efficient stochastic
alternating optimization procedure. We name the proposed backdoor attack as
Wasserstein Backdoor (WB), which achieves a high attack success rate while being
stealthy from both the input and latent spaces, as tested in several benchmark
datasets, including MNIST, CIFAR10, GTSRB, and Tinylmagenet.

1 Introduction

In the past years, deep neural network (DNN) has successfully transformed many technological fields,
such as object classification [26, 20], face recognition [31, 1], autonomous driving [53], security
applications [19, 3], etc. Meanwhile, due to the underlying black-box nature, its security and privacy
implications have also raised serious concerns recently. Efforts in the research community have
exposed the vulnerability of DNN classifiers to various attacks [50, 41, 33]. For instance, adversarial
examples leverage the difference between the classifier and human to misclassify specific inputs by
adding imperceptible perturbations without altering the model [17]. Such attacks during the inference
phase are categorized as evasion attacks [27, 5]. On the other hand, poisoning attacks attempt to inject
malicious data points or manipulate the training process to either degrade the model accuracy [37, 45,
60] or cause misclassification for specific inputs (a.k.a. backdoor attacks) [8, 36, 34, 18].

In general, backdoor attacks aim at injecting a malicious behavior into a DNN model so that the
model would perform normally on clean inputs but yield misclassification in the presence of the
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backdoor trigger (e.g., a specific pattern such as a small square [18]). Later on, many works adopt the
concepts and techniques in adversarial examples to improve the stealthiness of the trigger against
human observers [34, 2, 35]. Recent works have demonstrated more powerful backdoor attacks that
are capable of mounting attacks with visual indistinguishable backdoor images [29, 55, 59, 39, 13].
For instance, WaNet [39] generates backdoor images with warping transformation to minimize input
difference while LIRA [13] generates backdoor images with imperceptible conditional noise addition,
resulting in much stealthier triggers.

To alleviate the threats originated from the ever-growing powerful backdoor attacks, several categories
of countermeasures have been developed. One promising direction for backdoor detection entails
identifying backdoor images by characterizing the distinguishable dissimilarity in the feature or
latent representation between backdoor images and clean images [6, 54, 42, 47, 52]. These methods
rely on the assumption that the injected backdoor would leave a noticeable fingerprint in the latent
space. For example, activation clustering [6] and spectral signature [54] detect malicious samples by
inspecting the clusters of the latent space and the spectrum of the covariance of latent representations,
respectively. Thus, a stronger adaptive backdoor attack should also ensure its stealthiness from the
latent space.

In this paper, we present a novel methodology for a backdoor attack that is imperceptible from
both the input and latent spaces. We extend the concept of generating imperceptible backdoor
triggers to the latent space by minimizing the Wasserstein distance between the latent representations
of the clean and backdoor data, which significantly improves the effectiveness against the existing
defense mechanisms, especially those aforementioned that rely on the distinguishability in latent
space. We name the proposed method Wasserstein Backdoor, or WB. Our technical contributions are
summarized below:

* We propose a non-convex, constrained optimization problem, which learns to poison the
classifier with a backdoor whose trigger is visually imperceptible in the input space and
whose poisoned samples have indistinguishable latent distribution to the latent distribution of
the clean samples. The latent constraint is formulated via a variant of Wasserstein distance,
called sliced-Wasserstein distance [24], between the two sets of clean and backdoor data.

* We then develop an efficient estimation of the sliced-Wasserstein distance by exploiting
the discriminant directions of the trained classifier, instead of randomly sampling from the
unit sphere. The proposed distance is a valid distance metric and requires significantly
less computation, while yielding a better estimate than the existing calculations of the
sliced-Wasserstein distance.

* Finally, we demonstrate the superior attack performance of the proposed method and its
robustness against several representative defense mechanisms. Specifically, we show that the
proposed method outperforms the state-of-the-art attacks in terms of latent indistinguishabil-
ity, while maintaining similar attack success rates and input indistinguishability.

The rest of the paper is organized as follows. We review the background and related work in Section 2.
In Section 3, we define the threat model. Section 4 presents the details of the proposed methodology.
We evaluate the performance and compare to prior works in Section 5. Finally, Section 6 presents
remarks and concludes this paper. We present more details about experimental settings and results as
well as supporting proofs in the supplementary material.

2 Background and Related Work

2.1 Backdoor Attack

The increasing popularity of training outsourcing and machine learning as a service (MLaaS) has
created potential security risks in the supply chain [10, 58]. One important security threat is backdoor
attacks against DNNs, which have recently attracted a lot of attention. Backdoor attacks inject a
malicious behavior by leveraging the redundancies inside the model such that the model responds to
inputs with triggers maliciously (e.g., classify as a target class that would normally be considered as
a wrong class by manual annotation), while preserving the benign behavior for clean inputs without
the triggers. Hence, a typical backdoor embedding process is to train the model by minimizing the
loss of the clean inputs and the corresponding labels as well as backdoor inputs (with triggers) and



the target class(es). A trigger is typically applied on a clean image by superimposing at a certain
location (i.e., patch-based) [18, 34] or adding perturbations [44]. Various forms of the triggers
have been investigated in the literature, including blended [8], sinusoidal strips (SIG) [2], reflection
(ReFool) [35], and warping-based (WaNet) [39]. As we mentioned above, several techniques have
been developed recently that can significantly reduce the visibility of the trigger in the input space to
enhance the stealthiness of the backdoor attack [34, 2, 35]. In particular, WaNet uses a smooth warping
field to generate backdoor images with unnoticeable modifications [39], while LIRA [13] alternates
between the processes of trigger generation and backdoor injection to learn visually stealthy triggers.
One prior work, Adversarial Embedding [51], also attempted to improve the latent indistinguishability
of the backdoor attack by using adversarial regularization to minimize the distance between the latent
distributions of the backdoor inputs and clean inputs.

2.2 Backdoor Defense

By exploring specific characteristics of the injected backdoor, various countermeasures have been
proposed [6, 54, 16, 47, 9, 7, 42], although they are often circumvented by subsequent adaptive
attacks. For instance, based on the property that a backdoor attack usually targets redundant weights or
neurons based on the clean images, model pruning can be used to eliminate the injected backdoor [32].
In contrast, Neural Cleanse assumes a known subset of clean inputs to reverse-engineer possible
trigger patches [56]. It is also possible to filter the images to nullify the presence of triggers at the
test phase to defend against backdoor attacks [36, 30].

In this paper, we focus on optimizing the characteristics of backdoor attacks in the latent space.
As we discussed above, the rationale behind this is that prior works have demonstrated backdoor
images cause distinctive activations in the latent space from those of clean inputs. Hence, this
distinguishable dissimilarity between clean images and backdoor images can be utilized for defense
in both training [6, 54] and test phases [49, 23, 22]. Most of these approaches compute an outlier
score to detect abnormal inputs that will be filtered afterward. For example, spectral signature [54]
computes the outlier score based on the singular value decomposition of the covariance matrix of the
latent representations, while CleaNN [22] leverages a concentration inequality to detect anomalous
reconstruction errors that are then suppressed before the input entering the victim DNN.

This work proposes a method to minimize the difference between clean images and backdoor images
in the latent space to improve the attack stealthiness. While doing this, we also optimize the visual
imperceptibility in the input space, so that our proposed method can bypass visual inspection.

3 Threat Model

We consider the same threat model as in prior studies [44, 51, 39], which assumes the backdoor
injection is performed at training and the adversary can access to the victim model including both
structures and parameters. A successful backdoor attack over an image classification task should
produce malicious behavior on images with the trigger, while otherwise working normally on clean
images. However, in typical backdoor attacks, the poisoned images are visually inconsistent with
natural images, which can be identified easily by human observers. Besides, these attacks usually
leave a tangible trace in the latent space of the poisoned classifier; thus, some defense methods
can easily detect and discard the poisoned models. To this end, we propose a stronger backdoor
attack where the poisoned images are crafted with imperceptible perturbation in the input space to
clean images as well as unnoticeable trace in the latent space. We advance the state-of-the-art by
significantly enhancing the imperceptibility and robustness of the backdoor attack.

4 Proposed Methodology: Wasserstein Backdoor (WB)

4.1 Preliminaries

Consider the standard supervised classification task where one seeks to learn a mapping function
fo : X — C where X is the input domain and C is the set of target classes. The task is to learn the
parameters 6 by using the training dataset S = {(z;,y;) 1 xv; € X,y;, €C,i=1,..,N}.



Following the standard training scheme of backdoor attacks, the classifier is trained with the combi-
nation of the clean and poisoned subsets of S. To create a poisoned sample, a clean training sample
(x,y) is transformed into a backdoor sample (T'(x),n(y)), where T is a backdoor injection function
(also called the trigger function) and 7 is the target label function. When training f with the clean
and poison samples, we alter the behavior of f so that:

f@) =y, [(T(2)) =ny), (1)

for any pair of clean data x € X and its corresponding label y € C. There are two commonly studied
backdoor attack settings [18, 39, 51]: all-to-one and all-to-all. In the all-to-one attack, the label is
changed to a constant target, i.e. 1(y) = ¢; while for the all-to-all attack, the true label is one-shifted,
i.e. n(y) = (y+ 1) mod |C|. In the existing works, the trigger function T is usually selected before
training f and fixed during the training process of f.

4.2 Learning to Backdoor

Given the training dataset S and a loss function £, e.g., cross entropy loss, empirical risk minimization
can be used to learn the parameters 6, as follows:

N

6* = argmin Z L(fo(xi),yi)-

-

The goal of this work is to learn a trigger function T; : X — A and a classification model fj in
such a way that the clean image « and its corresponding backdoor image T'(x) are visually consistent
in the input space while the backdoor attack does not leave a detectable trace in the latent space
of the poisoned classifier. When f is a neural network, ¢(z) can be the output of an intermediate,
hidden layer of f, which captures some high-level abstractions of the input. Note that we require the
classifier to perform normally on the clean sample, x, compared to the classifier’s vanilla version, but
change its prediction on the poisoned image, T'(x), to the target class 7(y).

To generate a trigger and poison the image, we follow the prior work [13] and formulate the trigger
function as a conditional noise generator g, as follows:

Te(x) =z + ge(2),  |lge(2)||o0 <€ Va 2)

The generator function g, takes an input 2 and generates an artificially imperceptible noise on the
same input space, which guarantees the stealthiness of the backdoor attack. We can design such
generator function as an autoencoder or the more complex U-Net architecture [43].

With the above objectives and notations, similar to [13, 4], we can formulate the task into the
following constrained optimization problem:

N
min Z al(fo(xi),yi) + BL(fo(Te-0)(xi)),n(yi)) 3)

N
st &= arggflinzﬁ(fe(Tf(xi))a 1(yi)) + R (Fe, Fo)

i=1

where R4 is the regularization constraint of the clean and poisoned representations, denoted as
Fe=A{¢(z;) :i=1,..,N} and Fp{(T(z;)) : i = 1,.., N}, respectively.

In this problem, a learned classification model with a specific parameter configuration 6 is associated
with an optimal yet stealthy backdoor trigger function, which is trained to poison the model. The
classifier is trained to minimize a linear combination of clean and targeted backdoor objectives. The
parameters « and (3 control the mixing strengths of the clean and backdoor loss signals. The trigger
function is trained to perturb an image within its /., ball in the input space, so that the loss towards the
attack target class is minimized while regularizing the latent representations of the backdoor images.

4.3 Stealthy Latent Representation via Wasserstein Regularization

In practical applications, latent-space defense methods investigate the abnormal trace of incoming
data points with respect to the previous stream of data. These traces exist primarily because of the



fact that the clean and backdoor latent representations are separated or distributed differently (e.g., the
separated clusters of the clean and poison representations that can be seen in Figures 2 and 3). Thus,
we aim to minimize such distributional difference through the regularization constraint R 4. Since
we cannot assume that the two latent distributions have common support or their density functions
are known, commonly-used divergences, such as f-divergences [40, 15] (which include KL and
JSD), are difficult to minimize. Instead, we consider the Wasserstein-2 distance and formulate the
regularization constraint as follows:
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where 11 and v are marginal probability measures defined by empirical samples F. and F;, of the

latent representations of the clean and poisoned data, respectively.

Estimating the Wasserstein distance also has some challenges. From the primal domain, computing
the infimum in Equation (4) is particularly difficult since the data distributions are not fixed or known.
On the other hand, employing the Kantorovich-Rubinstein duality requires a separate, parameterized
Lipschitz function and a minimax solver, which increases the complexity of the proposed problem.
Fortunately, for one-dimensional continuous measures, the Wasserstein distance has an elegant yet
closed-form solution. Let g, and ¢, be the corresponding density functions of u and v, respectively.
The Wasserstein-2 distance between one-dimensional measures p and v can be given by:
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where F,(z) = [ qu(p)dp and F,(2) = [~ qu(p)dp are the cumulative distribution functions.
Inspired by the efficiency of this solution and its successful applications in a variety of tasks [12,
24, 14], we propose to first find a family of one-dimensional representations, e.g., through the
linear projections, and approximate the Wasserstein distance as a function of these one-dimensional
marginals, as follows:
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where FO' = {6F¢(z;) : i = 1,.,N} and Ff* = {0F¢(T(2;)) : @ = 1,.., N} contains the
projections of the clean and poisoned datasets into a one-dimensional direction defined by 0; (a slice).
Typically, 0; is drawn from a uniform distribution on the unit sphere. This formulation is also known
as the sliced-Wasserstein distance (SWD) [12, 24]. One particular problem with this approach is
that the random nature of the slices could lead to several non-informative directions; i.e., the sliced
distances are close to 0 in directions that do not lie on the manifolds of the data. Consequently, a large
number L of random directions are needed to approximate the sliced-Wasserstein distance, which
increases the computational complexity of the estimation.

To remedy this issue, we avoid the uniform sampling of the unit sphere and select directions that
contain discriminant information of the two data sources, by exploiting the following fact in the
classification task. For backdoor samples of a target class ¢; € C, created from clean samples of
some other class co € C, the projections into an output dimension represent meaningful discriminant
information that distinguishes the backdoor samples (from class c3) and the clean samples (from
class c;). Thus, we propose to replace the uniform linear projections of SWD with the projections
into the output layer. When the latent space is the penultimate layer of the classifier, such projections
are equivalent to the following approximation:
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where W, . is a row of the matrix W € RICI%4 ({ is the dimension of the latent space), which is the
normalized parameter matrix between the penultimate and the output layers.
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Figure 1: Distance estimates (normalized) in the latent space for SWD with different number of
sampled directions (between 10 to 10,000) and DSWD.

Empirically, Figure 1 shows the estimated SWD with different numbers of random directions and
the proposed calculation, so called DSWD, when the latent space is defined at the penultimate layer
of the classifier. The dimension of the latent space is 512 for both MNIST and CIFAR10 datasets.
Each distance is computed on a random sample of 1000 clean and 1000 backdoor images, and
each calculation is repeated 100 times. It can be seen that with only a fraction of slices, DSWD
achieves a significantly smaller variance than that of the SWD estimates. Furthermore, in MNIST, the
selected directions of DSWD leads to higher distance estimates than SWD, which means that DSWD
selects more discriminant directions than SWD while SWD underestimates the distance between
the two empirical samples. In addition, we show that DSWD is a valid distance metric of the latent
distributions. The detailed proof is presented in the supplementary material.

Theorem 1. When the latent space is the penultimate layer of a neural network, the proposed DSWD
distance is a valid distance function of probability measures in this space.

Remark 1. Since existing defense methods choose the penultimate layer of a neural network. as the
space to perform the defense analysis, in most cases, we can employ the proposed DSWD calculation.

Remark 2. To preserve the clean classification performance, the classifier seeks optimal parameters
that lead to similar predictions of clean samples from the same class. The goal of the trigger function
is to make the poisoned samples classified toward a different class. This leads to an adversarial game
between the classifier and the trigger functions.

DSWD also has a significantly better computational efficiency than SWD. In most problems, SWD
requires a large number of random directions, typically between 1000 to 10,000, in order to provide a
reliable estimate of the distance [38, 14]. In DSWD, the number of random directions is fixed to the
number of possible output labels, which is typically small for many classification problems.

4.4 Optimization

The non-convex, constrained optimization in Equation (3) is challenging because of its non-linear
constraint. In general, we can alternately update one of f and 1" while keeping the other fixed,
similar to training GANs. However, it is difficult and slow for the classifier to reach an acceptable
performance on the clean data, i.e., similar accuracy to that of the vanilla classifier.

Under the alternating update scheme, we observe that on MNIST, the poisoned classifier can reach the
acceptable clean-data performance after several epochs; while on other more complex datasets (i.e.
CIFAR10, GTSRB, and TinyImagenet), this procedure results in sub-optimal clean-data performance.
One possible explanation is that training the vanilla classifier with complex architecture and dataset
to reach a decent accuracy is already a difficult and time-consuming task (e.g., 2 to 3 epochs to reach
the optimal performance on MNIST but several hundreds of epochs on the other datasets).

Fortunately, we observe that after training the classifier and the trigger functions in an alternating
update scheme for a certain number of epochs (denoted as Stage I), we can fix the trigger function
and only train the classifier for the remaining epochs (denoted as Stage II). This two-stage training
scheme is adopted in our experiments.



5 Experimental Results

5.1 Experimental Setup

We demonstrate the effectiveness of the proposed method through a range of experiments on four
widely-used datasets for backdoor attack study: MNIST, CIFAR10, GTSRB and TinyImagenet.
For these experiments, we follow the previous works [51, 54, 6, 39] and select the penultimate layers
of the classifiers as the latent space for the defense experiments. The implementation of WB was
based on the PaddlePaddle deep learning platform.

Architectures: For the classifier f, we consider several popular models: Pre-activation Resnet-
18 [20], VGG [46], DenseNet [21] for CIFAR10 and GTSRB datasets, and Resnet-18 for Tinylma-
genet. For the MNIST dataset, we employ a CNN model.

Hyperparameters: For the baselines, we train the classifiers using the SGD optimizer with an
initial learning rate of 0.01 and a learning rate decay of 0.1 after every 100 epochs. For other
hyperparameters, we follow the proposed setup in [39] for all datasets. We use the same configurations
for WB. We train the classifier and trigger functions alternately (Stage I) for 10 and 50 epochs for
MNIST and the other datasets, respectively, and fine-tune the classifier (Stage II) for another 40
epochs and 450 epochs for MNIST and the other datasets, respectively. To achieve a high-degree
stealthiness of WB, we pick € as small as 0.01 for all datasets. In general, the larger the value of e,
the easier the trigger functions can be learned and the more successful the attacks are.

5.2 Attack Performance

We present the attack success rates of the proposed WB method, along with a comparison to
two state-of-the-art methods, i.e., WaNet [39] and LIRA [13]. Both LIRA and Wanet’s attack
performances are significantly better than other approaches, including BadNets [18], and are two of
the strongest existing methods that generate very stealthy triggers on the images. We first poison
the classifier using the backdoor attack methods in both all-to-one and all-to-all settings and record
the performance of the classifier on both clean and backdoor test samples. For all-to-one, we
randomly pick the target label ¢ (i.e., n(y) = ¢ Vy), while for all-to-all, the target label function
is defined as n(y) = (y + 1) mod |C| Vy, which is widely used to evaluate the backdoor-related
works [39, 18, 6, 13]. Note that this all-to-all attack setting is more challenging than the all-to-one
setting, especially on datasets with a large number of classes such as TinyImagenet.

The classification accuracy on the clean test samples and the attack success rate for each method
is represented in Table 1 and Table 2 for the all-to-one and all-to-all settings, respectively. As we
can observe from these tables, all the methods can achieve high clean-data accuracies and attack
success rates. While WB’s attack performance slightly drops compared to LIRA’s performance, WB
is significantly more stealthy in the latent space, as being discussed next.

Table 1: Attack Performance: All-to-one Attack

Dataset WaNet LIRA WB
Clean | Attack | Clean | Attack | Clean | Attack
MNIST 0.99 0.99 0.99 1.00 0.99 0.99
CIFAR10 0.94 0.99 0.94 1.00 0.94 0.99
GTSRB 0.99 0.98 0.99 1.00 0.99 0.99
TinyImagenet | 0.57 0.99 0.58 1.00 0.57 0.99

Table 2: Attack Performance: All-to-all Attack

Dataset WaNet LIRA WB
Clean | Attack | Clean | Attack | Clean | Attack
MNIST 0.99 0.95 0.99 0.99 0.99 0.96
CIFAR10 0.94 0.93 0.94 0.94 0.94 0.94
GTSRB 0.99 0.98 0.99 1.00 0.99 0.98
TinyImagenet | 0.58 0.58 0.58 0.59 0.58 0.58




5.3 Latent-Space Defense

Recent works on backdoor defense have found that backdoor attacks tend to leave a tangible trace in
the latent space of the poisoned classifier. Activation Clustering [6] and Spectral Signature [54] are two
representative defenses used for analyzing the latent space in prior work [51]. In this section, we also
examine the latent space of the backdoor-injected classifiers through the lens of these defense methods.

5.3.1 Learned Latent Representation and Activation Clustering

It has been shown in [6] that in a poisoned classifier, the latent representations of the clean and
backdoor samples form separate clusters, which can be easily detected using clustering methods such
as K-means. The authors also recommend a process called exclusionary reclassification to determine
which cluster is poisoned and re-train the poisoned classifier.

In Figure 2 and Figure 3, we can observe highly separated clusters (for samples with the sample
predictions of ¥ = 0) in the latent space when we omit the latent regularization term R4 in WB
(Baseline), which is similar to LIRA [13]. However, when R is included, the latent representations
of the clean and backdoor samples are distributed similarly. Without well-separated clusters of the
clean and poisoned samples, the exclusionary reclassification process in the activation clustering is
not effective against the attacks.
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Figure 2: MNIST: t-SNE embedding in the latent space. Baseline is WB without R .

.

. . 25 >

Som Backdoor
o8, ‘:_I .'d'

(a) All-to-one: Baseline (b) All-to-one: WB (c) All-to-all: Baseline (d) All-to-all: WB
Figure 3: CIFAR10: t-SNE embedding in the latent space. Baseline is WB without R.

Quantitatively, we present the quality scores (i.e., the adjusted Rand Index) of the clustering step in
Table 3. The adjusted Rand Index is 1 when the samples form two distinct clusters and is close to
0 for a random separation. We compare WB with BadNets [18] and Adversarial Embedding [51],
which is the state-of-the-art backdoor attack method with stealthy latent space. As we can observe
in this table, the defense is most successful on BadNets since there exists a perfect clustering of the

Table 3: Adjusted Rand Index in All-to-one Attack

Model Dataset Rand Index  Adversarial Embedding WB
(BadNets)  Rand Index Attack Rand Index  Attack
DenseNet CIFARI10 0.979 0.1820 0.764 0.0382 0.998
DenseNet GTSRB 0.997 0.2710 0914 0.0135 0.997
VGG CIFAR10 0.998 0.0006 0.962 0.0002 0.999
VGG GTSRB 0.997 0.6420 0.743 0.1010 0.999




clean and poisoned samples (Rand Index > 0.95). While Adversarial Embedding is more resistant
against the defense, WB is significantly more stealthy against the defense since the values of Rand
Index are all very close to 0. Note that, similar to BadNets, WaNet also does not pass this defense
(please see the supplementary material).

5.3.2 Spectral Signature Defense

The work in [54] proposes a defense method that identifies and removes backdoor samples using the
Spectral Signature. For data from each predicted class, Spectral Signature first finds the top singular
value of the covariance matrix of the latent vectors of the data. Then it computes the correlation
score to this singular value for each sample and those samples with the outlier scores are flagged
as backdoor samples. While Spectral Signature is a sample filtering-based defense method, the
inspection of the correlation scores can also be useful to verify whether there is a tangible trace in the
latent space of the classifier.

Following the same experiments in [54], we first pick 5,000 clean samples and 500 backdoor samples
for each dataset. Then, we plot the histograms of the correlation scores for both sets of samples. As
we can observe in Figure 4, there is no clear separation between the scores of the backdoor samples
and those of the clean samples.
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Figure 4: Defense experiments of the all-to-one attack against Spectral Signature. The correlations of
the clean and backdoor samples with the top singular vector of the covariance matrix in the latent
space are not separable.

5.4 Model Mitigation Defense

In this section, we evaluate the robustness of WB against another popular defense, Neural Cleanse [56],
which is model mitigation defense based on a pattern optimization approach. Specifically, Neural
Cleanse searches for the optimal patch pattern for each possible target label that induces a misclassifi-
cation to that label. It then quantifies whether any of the optimal backdoor trigger pattern is an outlier
via a metric called Anomaly Index. The model has a backdoor if the Anomaly Index is greater than 2
for any class. The anomaly indices are presented in Figure 5.

It can be seen that both WaNet and WB can pass the detection of Neural Cleanse, similar to that of the
vanilla classifier (Clean). In MNIST and CIFAR10, WB even achieves smaller Anomaly Indices than
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Figure 5: Backdoor attacks against Neural Cleanse defense.



those of the vanilla models. Note that popular backdoor attacks, such as BadNets, can be defended by
Neural Cleanse in most of these datasets [56].

5.5 Input Perturbation Defense

In this section, we study the stealthiness of WB against STRIP [16], a representative detection based
backdoor defense mechanism. Given the classifier and an input image, STRIP first perturbs the image
and determines the presence of a backdoor in the model according to the entropy of the predictions of
these perturbed images (i.e., if the predictions are consistent or not).

In Figure 6, we plot the entropy of clean and backdoor images, which are computed by STRIP. We
can observe that the distribution of entropy of the backdoor samples is similar to that of the clean
samples. In other words, STRIP fails to detect backdoor samples generated by WB, which further
validates the advantage of the proposed method.
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Figure 6: Performance against STRIP defense.

Additional experiments for demonstrating the stealthiness of WB against several other defense
approaches can be found in the supplementary material.

6 Conclusion

This paper presented a novel methodology for a backdoor attack that is imperceptible from both the
input and latent spaces, i.e., Wasserstein Backdoor (WB). WB learns a trigger function that adds
visually imperceptible noise to an input image and minimizes the distributional difference via a
novel sliced Wasserstein distance formulation between representations of the clean and backdoor
images in the latent space of the trained classifier. We comprehensively evaluated the performance
of the proposed method on various image classification benchmark models over a wide range
of datasets. Our experimental results demonstrated that the proposed method could significantly
improve the effectiveness against the existing defense mechanisms, especially those relying on the
distinguishability in latent space.
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