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ABSTRACT

We propose a novel hierarchical Bayesian approach to Federated Learning (FL),
where our model reasonably describes the generative process of clients’ local data
via hierarchical Bayesian modeling: constituting random variables of local models
for clients that are governed by a higher-level global variate. Interestingly, the
variational inference in our Bayesian model leads to an optimisation problem whose
block-coordinate descent solution becomes a distributed algorithm that is separable
over clients and allows them not to reveal their own private data at all, thus fully
compatible with FL. We also highlight that our block-coordinate algorithm has
particular forms that subsume the well-known FL algorithms including Fed-Avg
and Fed-Prox as special cases. That is, we not only justify the previous Fed-Avg
and Fed-Prox algorithms whose learning protocols look intuitive but theoretically
less underpinned, but also generalise them even further via principled Bayesian
approaches. Beyond introducing novel modeling and derivations, we also offer
convergence analysis showing that our block-coordinate FL algorithm converges to
an (local) optimum of the objective at the rate of O(1/

√
t), the same rate as regular

(centralised) SGD, as well as the generalisation error analysis where we prove that
the test error of our model on unseen data is guaranteed to vanish as we increase
the training data size, thus asymptotically optimal.

1 INTRODUCTION

Federated Learning (FL) aims to enable a set of clients to collaboratively train a model in a privacy
preserving manner, without sharing data with each other or a central server. Compared to conventional
centralised optimisation problems, FL comes with a host of statistical and systems challenges – such
as communication bottlenecks and sporadic participation. The key statistical challenge is non-i.i.d.
data distributions across clients, each of which has a different data collection bias and potentially a
different data annotation policy/labeling function – for example, in the case of any user preference
learning. The classic and most popularly deployed FL algorithms are Fed-Avg (McMahan et al.,
2017) and Fed-Prox (Li et al., 2018), however, even when a global model can be learned, it often
underperforms on each client’s local data distribution in scenarios of high heterogeneity (Li et al.,
2019; Karimireddy et al., 2019; Wang et al., 2020). Studies have attempted to alleviate this by
personalising learning at each client, allowing each local model to deviate from the shared global
model Sun et al. (2021). However, this remains challenging given that each client may have a limited
amount of local data for personalised learning.

These challenges have motivated several attempts to model the FL problem from a Bayesian perspec-
tive. Introducing distributions on model parameters θ has enabled various schemes for estimating a
global model posterior p(θ|D1:N ) from clients’ local posteriors p(θ|Di), or to regularise the learning
of local models given a prior defined by the global model Zhang et al. (2022); Al-Shedivat et al.
(2021); Chen & Chao (2021). However, these methods are not complete and principled solutions –
having not yet have provided full Bayesian descriptions of the FL problem, and having had resort
to ad-hoc treatments to achieve tractable learning. The key difference is that they fundamentally
treat network weights θ as a random variable shared across all clients. We introduce a hierarchical
Bayesian model that assigns each client it’s own random variable for model weights θi, and these
are linked via a higher level random variable ϕ as p(θ1:N , ϕ) = p(ϕ)

∏N
i=1 p(θi|ϕ). This has several

crucial benefits: Firstly, given this hierarchy, variational inference in our framework decomposes into
separable optimisation problems over θis and ϕ, enabling a practical Bayesian learning algorithm
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(a) Overall model (b) Individual client (c) Global prediction (d) Personalisation
Figure 1: Graphical models. (a) Plate view of iid clients. (b) Individual client data with input images
x given and only p(y|x) modeled. (c) & (d): Global prediction and personalisation as probabilistic
inference problems (shaded nodes = evidences, red colored nodes = targets to infer, x∗ = test input
in global prediction, Dp = training data for personalisation and xp = test input).

to be derived that is fully compatible with FL constraints, without resorting to ad-hoc treatments
or strong assumptions. Secondly, this framework can be instantiated with different assumptions on
p(θi|ϕ) to deal elegantly and robustly with different kinds of statistical heterogeneity, as well as for
principled and effective model personalisation.

Our resulting algorithm, termed Federated Hierarchical Bayes (FedHB) is empirically effective, as
we demonstrate in a wide range of experiments on established benchmarks. More importantly, it
benefits from rigorous theoretical support. In particular, we provide convergence guarantees showing
that FedHB has the same O(1/

√
T ) convergence rate as centralised SGD algorithms, which are

not provided by related prior art Zhang et al. (2022); Chen & Chao (2021). We also provide a
generalisation bound showing that FedHB is asymptotically optimal, which has not been shown by
prior work such as Al-Shedivat et al. (2021). Furthermore we show that FedHB subsumes classic
methods FedAvg McMahan et al. (2017) and FedProx Li et al. (2018) as special cases, and ultimately
provides additional justification and explanation for these seminal methods.

2 BAYESIAN FL: GENERAL FRAMEWORK

We introduce two types of latent random variables, ϕ and {θi}Ni=1. Each θi is deployed as the network
weights for client i’s backbone. The variable ϕ can be viewed as a globally shared variable that is
responsible for linking the individual client parameters θi. We assume conditionally independent and
identical priors, p(θ1:N |ϕ) =

∏N
i=1 p(θi|ϕ). Thus the prior for the latent variables (ϕ, {θi}Ni=1) is

formed in a hierarchical manner as (1). The local data for client i, denoted by Di, is generated1 by θi,

(Prior) p(ϕ, θ1:N ) = p(ϕ)

N∏
i=1

p(θi|ϕ) (Likelihood) p(Di|θi) =
∏

(x,y)∈Di

p(y|x, θi), (1)

where p(y|x, θi) is a conventional neural network model (e.g., softmax link for classification tasks).
See the graphical model in Fig. 1(a) where the iid clients are governed by a single random variable ϕ.

Given the data D1, . . . , DN , we infer the posterior, p(ϕ, θ1:N |D1:N ) ∝ p(ϕ)
∏N

i=1 p(θi|ϕ)p(Di|θi),
which is intractable in general, and we adopt the variational inference to approximate it:

q(ϕ, θ1:N ;L) := q(ϕ;L0)

N∏
i=1

qi(θi;Li), (2)

where the variational parameters L consists of L0 (parameters for q(ϕ)) and {Li}Ni=1’s (parameters
for qi(θi)’s from individual clients). Note that although θi’s are independent across clients under
(2), they are differently modeled (emphasised by the subscript i in notation qi), reflecting different
posterior beliefs originating from heterogeneity of local data Di’s.

2.1 FROM VARIATIONAL INFERENCE TO FEDERATED LEARNING ALGORITHM

Using the standard variational inference techniques (Blei et al., 2017; Kingma & Welling, 2014), we
can derive the ELBO objective function (details in Appendix A). We denote the negative ELBO by L

1Note that we do not deal with generative modeling of input images x. Inputs x are always given, and only
conditionals p(y|x) are modeled. See Fig. 1(b) for the in-depth graphical model diagram.
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(to be minimised over L) as follows:

L(L) :=
N∑
i=1

(
Eqi(θi)[− log p(Di|θi)] + Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

])
+ KL(q(ϕ)||p(ϕ)), (3)

where we drop the dependency on L in notation for simplicity. Instead of optimizing (3) over the
parameters L jointly as usual practice, we consider block-wise optimisation, also known as block-
coordinate optimisation (Wright, 2015), specifically alternating two steps: (i) updating/optimizing all
Li’s i = 1, . . . , N while fixing L0, and (ii) updating L0 with all Li’s fixed. That is,

• Optimisation over L1, . . . , LN (L0 fixed).

min
{Li}N

i=1

N∑
i=1

(
Eqi(θi)[− log p(Di|θi)] + Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

])
. (4)

As (4) is completely separable over i, and we can optimise each summand independently as:
min
Li

Li(Li) := Eqi(θi;Li)[− log p(Di|θi)] + Eq(ϕ;L0)

[
KL(qi(θi;Li)||p(θi|ϕ))

]
. (5)

So (5) constitutes local update/optimisation for client i. Note that each client i needs to
access its private data Di only without data from others, thus fully compatible with FL.

• Optimisation over L0 (L1, . . . , LN fixed).

min
L0

L0(L0) := KL(q(ϕ;L0)||p(ϕ))−
N∑
i=1

Eq(ϕ;L0)qi(θi;Li)[log p(θi|ϕ)]. (6)

This constitutes server update criteria while the latest qi(θi;Li)’s from local clients being
fixed. Remarkably, the server needs not access any local data at all, suitable for FL. This
nice property originates from the independence assumption in our approximate posterior (2).

Interpretation. First, server’s loss function (6) tells us that the server needs to update q(ϕ;L0) in
such a way that (i) it puts mass on those ϕ that have high compatibility scores log p(θi|ϕ) with the
current local models θi ∼ qi(θi), thus aiming to be aligned with local models, and (ii) it does not
deviate from the prior p(ϕ). Clients’ loss function (5) indicates that each client i needs to minimise
the class prediction error on its own data Di (first term), and at the same time, to stay close to the
current global standard ϕ ∼ q(ϕ) by reducing the KL divergence from p(θi|ϕ) (second term).

2.2 FORMALISATION OF GLOBAL PREDICTION AND PERSONALISATION TASKS

Two important tasks in FL are: global prediction and personalisation. The former evaluates the
trained model on novel test data sampled from a distribution possibly different from training data.
Personalisation is the task of adapting the trained model on a new dataset called personalised data. In
our Bayesian model, these two tasks can be formally defined as Bayesian inference problems.

Global prediction. The task is to predict the class label of a novel test input x∗ which may or may
not come from the same distributions as the training data D1, . . . DN . Under our Bayesian model, it
can be turned into a probabilistic inference problem p(y∗|x∗, D1:N ). Let θ be the local model that
generates the output y∗ given x∗. Exploiting conditional independence from Fig. 1(c),

p(y∗|x∗, D1:N ) =

∫∫
p(y∗|x∗, θ) p(θ|ϕ) p(ϕ|D1:N ) dθdϕ (7)

≈
∫∫

p(y∗|x∗, θ) p(θ|ϕ) q(ϕ) dθdϕ =

∫
p(y∗|x∗, θ)

(∫
p(θ|ϕ) q(ϕ)dϕ

)
dθ, (8)

where in (8) we use p(ϕ|D1:N ) ≈ q(ϕ). The inner integral (in parentheses) in (8) either admits a
closed form (Sec. 3.1) or can be approximated (e.g., Monte-Carlo estimation).

Personalisation. It formally refers to the task of learning a prediction model p̂(y|x) given an
unseen (personal) training dataset Dp that comes from some unknown distribution pp(x, y), so that
the personalised model p̂ performs well on novel (in-distribution) test points (xp, yp) ∼ pp(x, y).
Evidently we need to exploit (and benefit from) the trained model from the FL training stage. To this
end many existing approaches simply resort to finetuning, that is, training on Dp warm-starting with
the FL-trained model. However, a potential issue is the lack of a solid principle on how to balance the
initial FL-trained model and personal data fitting to avoid underfitting and overfitting. In our Bayesian
framework, the personalisation can be seen as another posterior inference problem with additional
evidence of the personal training data Dp. Prediction on a test point xp amounts to inferring:

p(yp|xp, Dp, D1:N ) =

∫
p(yp|xp, θ) p(θ|Dp, D1:N ) dθ. (9)
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So, it boils down to the task of posterior inference p(θ|Dp, D1:N ) given both the personal data Dp

and the FL training data D1:N . Under our hierarchical model, by exploiting conditional independence
from graphical model (Fig. 1(d)), we can link the posterior to our FL-trained q(ϕ) as follows:

p(θ|Dp, D1:N ) ≈
∫
p(θ|Dp, ϕ) p(ϕ|D1:N ) dϕ ≈

∫
p(θ|Dp, ϕ) q(ϕ) dϕ ≈ p(θ|Dp, ϕ∗), (10)

where we disregard the impact ofDp on the higher-level ϕ given the joint evidence, p(ϕ|Dp, D1:N ) ≈
p(ϕ|D1:N ) due to the dominance of D1:N compared to smaller Dp. The last part of (10) makes
approximation using the mode ϕ∗ of q(ϕ), which is reasonable for our two modeling choices for
q(ϕ) to be discussed in Sec. 3.1 and Sec. 3.2. Since dealing with p(θ|Dp, ϕ∗) involves difficult
marginalisation p(Dp|ϕ∗) =

∫
p(Dp|θ)p(θ|ϕ∗)dθ, we adopt variational inference, introducing a

tractable variational distribution v(θ) ≈ p(θ|Dp, ϕ∗). Following the usual variational inference
derivations, we have the negative ELBO objective (for personalisation):

min
v

Ev(θ)[− log p(Dp|θ)] + KL(v(θ)||p(θ|ϕ∗)). (11)

Once we have the optimised model v, our predictive distribution becomes:

p(yp|xp, Dp, D1:N ) ≈ 1

S

S∑
s=1

p(yp|xp, θ(s)), where θ(s) ∼ v(θ), (12)

which simply requires feed-forwarding test input xp through the sampled networks θ(s) and averaging.

Thus far, we have discussed a general framework, deriving how the variational inference for our
Bayesian model fits gracefully in the FL problem. In the next section, we define specific density
families for the prior (p(ϕ), p(θi|ϕ)) and posterior (q(ϕ), qi(θi)) as our proposed concrete models.

3 BAYESIAN FL: TWO CONCRETE MODELS

We propose two different model choices that we find the most interesting: Normal-Inverse-Wishart
(Sec. 3.1) and Mixture (Sec. 3.2). To avoid distraction, we make this section concise putting only the
final results and discussions, and leaving all mathematical details in Appendix B and C.

3.1 NORMAL-INVERSE-WISHART (NIW) MODEL

We define the prior as a conjugate form of Gaussian and Normal-Inverse-Wishart. With ϕ = (µ,Σ),
p(ϕ) = NIW(µ,Σ;Λ) = N (µ;µ0, λ

−1
0 Σ) · IW(Σ;Σ0, ν0), (13)

p(θi|ϕ) = N (θi;µ,Σ), i = 1, . . . , N, (14)
where Λ = {µ0,Σ0, λ0, ν0} is the parameters of the NIW. Although Λ can be learned via data
marginal likelihood maximisation (e.g., empirical Bayes), but for simplicity we leave it fixed as2:
µ0 = 0, Σ0 = I , λ0 = 1, and ν0 = d+ 2 where d is the number of parameters in θi or µ. Next, our
choice of the variational density family for q(ϕ) is the NIW, not just because it is the most popular
parametric family for a pair of mean vector and covariance matrix ϕ = (µ,Σ), but it can also admit
closed-form expressions in the ELBO function due to the conjugacy as we derive in Sec. B.1.

q(ϕ) := NIW(ϕ; {m0, V0, l0, n0}) = N (µ;m0, l
−1
0 Σ) · IW(Σ;V0, n0). (15)

Although the scalar parameters l0, n0 can be optimised together with m0, V0, their impact is less
influential and we find that they make the ELBO optimisation a little bit cumbersome. So we fix l0,
n0 with some near-optimal values by exploiting the conjugacy of the NIW under Gaussian likelihood
(details in Appendix B), and regard m0, V0 as variational parameters, L0 = {m0, V0}. We restrict V0
to be diagonal for computational tractability. The density family for qi(θi)’s can be a Gaussian, but
we find that it is computationally more attractive and numerically more stable to adopt the mixture of
two spiky Gaussians that leads to the MC-Dropout (Gal & Ghahramani, 2016). That is,

qi(θi) =
∏
l

(
p · N (θi[l];mi[l], ϵ

2I) + (1− p) · N (θi[l]; 0, ϵ
2I)
)
, (16)

where (i) mi is the only variational parameters (Li = {mi}), (ii) ·[l] indicates a column/layer in
neural network parameters where l goes over layers and columns of weight matrices, (iii) p is the
(user-specified) hyperparameter where 1 − p corresponds to the dropout probability, and (iv) ϵ is
small constant (e.g., 10−4) that makes two Gaussians spiky, close to the delta functions.

Client update. We apply the general client update optimisation (5) to the NIW model. Following the
approximation of (Gal & Ghahramani, 2016) for the KL divergence between a mixture of Gaussians

2This choice ensures that the mean of Σ equals I , and µ is distributed as 0-mean Gaussian with covariance Σ.
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(16) and a Gaussian (14), we have the client local optimisation (details in Appendix B):
min
mi

Li(mi) := − log p(Di|m̃i) +
p

2
(n0 + d+ 1)(mi −m0)

⊤V −1
0 (mi −m0), (17)

where m̃i is the dropout version of mi, i.e., a reparametrised sample from (16). Note that m0 and V0
are fixed during the optimisation. Interestingly (17) generalises Fed-Avg (McMahan et al., 2017) and
Fed-Prox (Li et al., 2018): With p = 1 (i.e., no dropout) and setting V0 = αI , (17) reduces to the
client update formula for Fed-Prox where constant α controls the impact of the proximal term.

Server update. The general server optimisation (6) admits the closed-form solution (Appendix B):

m∗
0 =

p

N + 1

N∑
i=1

mi, V
∗
0 =

n0
N + d+ 2

(
(1 +Nϵ2)I +m∗

0(m
∗
0)

⊤ +

N∑
i=1

ρ(m∗
0,mi, p)

)
, (18)

where ρ(m0,mi, p) = pmim
⊤
i −pm0m

⊤
i −pmim

⊤
0 +m0m

⊤
0 . Note thatmi’s are fixed from clients’

latest variational parameters. It is interesting to see that m∗
0 in (18) generalises the well-known

aggregation step of averaging local models in Fed-Avg (McMahan et al., 2017) and related methods:
when p = 1 (no dropout), it almost3 equals client model averaging. Also, since ρ(m∗

0,mi, p = 1) =
(mi−m∗

0)(mi−m∗
0)

⊤ when p = 1, V ∗
0 essentially estimates the sample scatter matrix with (N +1)

samples, namely clients’ mi’s and server’s prior µ0 = 0, measuring how much they deviate from the
center m∗

0. The dropout is known to help regularise the model and lead to better generalisation (Gal
& Ghahramani, 2016), and with p < 1 our (18) forms a principled optimal solution.

Global prediction. The inner integral of (8) becomes the multivariate Student-t distribution. Then
the predictive distribution for a new test input x∗ can be estimated as4:

p(y∗|x∗, D1:N ) ≈ 1

S

S∑
s=1

p(y∗|x∗, θ(s)), where θ(s) ∼ tn0−d+1

(
θ;m0,

(l0 + 1)V0
l0(n0 − d+ 1)

)
, (19)

where tν(a,B) is the multivariate Student-t with location a, scale matrix B, and d.o.f. ν.

Personalisation. With the given personalisation training data Dp, we follow the general framework
in (11) to find v(θ) ≈ p(θ|Dp, ϕ∗) in a variational way, where ϕ∗ obtained from (34). We adopt the
same spiky mixture form (16) for v(θ), which leads to the learning objective similar to (17).

3.2 MIXTURE MODEL

Our motivation for mixture is to make the prior p(θ, ϕ) more flexible by having multiple different
prototypes, diverse enough to cover the heterogeneity in data distributions across clients. We consider:

p(ϕ) =

K∏
j=1

N (µj ; 0, I), p(θi|ϕ) =
K∑
j=1

1

K
N (θi;µj ;σ

2I), (20)

where ϕ = {µ1, . . . , µK} contains K networks (prototypes) that can broadly cover the clients data
distributions, and σ is the hyperparameter that captures perturbation scale, chosen by users or learned
from data. Note that we put equal mixing proportions 1/K due to the symmetry, a priori. That is,
each client can take any of µj’s equally likely a priori. For the variational densities, we define:

qi(θi) = N (θi;mi, ϵ
2I), q(ϕ) =

K∏
j=1

N (µj ; rj , ϵ
2I), (21)

where {rj}Kj=1 (L0) and mi (Li) are the variational parameters, and ϵ is small constant (e.g., 10−4).

Client update. For our model choice, the general client update (5) reduces to (details in Appendix C):

min
mi

Eqi(θi)[− log p(Di|θi)]− log

K∑
j=1

exp

(
− ||mi − rj ||2

2σ2

)
. (22)

It is interesting to see that (22) can be seen as generalisation of Fed-Prox (Li et al., 2018), where the
proximal regularisation term in Fed-Prox is extended to multiple global models rj’s, penalizing the
local model (mi) straying away from these prototypes. And if we use a single prototype (K = 1), the
optimisation (22) exactly reduces to the local update objective of Fed-Prox. Since log-sum-exp is
approximately equal to max, the regularisation term in (22) effectively focuses on the closest global
prototype rj from the current local model mi, which is intuitively well aligned with our motivation.

3Only the constant 1 added to the denominator, which comes from the prior and has the regularising effect.
4In practice we use a single sample (S = 1) for computational efficiency.
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Server update. The general form (6) can be approximately turned into (Appendix C for derivations):

min
{rj}K

j=1

1

2

K∑
j=1

||rj ||2 −
N∑
i=1

log

K∑
j=1

exp

(
− ||mi − rj ||2

2σ2

)
. (23)

Interestingly, (23) generalises the well-known aggregation step of averaging local models in Fed-Avg
and related methods: Especially when K = 1, (23) reduces to quadratic optimisation, admitting
the optimal solution r∗1 = 1

N+σ2

∑N
i=1mi. The extra term σ2 can be explained by incorporating an

extra zero local model originating from the prior (interpreted as a neutral model) with the discounted
weight σ2 rather than 1. Although (23) for K > 1 can be solved by standard gradient descent, we
apply the Expectation-Maximisation (EM) algorithm5 (Dempster et al., 1977) instead:

(E-step) c(j|i) = e−||mi−rj ||2/(2σ2)∑K
j=1 e

−||mi−rj ||2/(2σ2)
, (M-step) r∗j =

1
N

∑N
i=1 c(j|i) ·mi

σ2

N + 1
N

∑N
i=1 c(j|i)

. (24)

The M-step (server update) has intuitive meaning that the new prototype rj becomes the weighted
average of the local models mi’s where the weights c(j|i) are determined by the proximity between
mi and rj (i.e., those mi’s that are closer to rj have more contribution, and vice versa). This can be
seen as an extension of the aggregation step in Fed-Avg to the multiple prototype case.

Global prediction. We slightly modify our general approach to make individual client data domi-
nantly explained by the most relevant model rj , by introducing a gating function from the mixture of
experts (Jacobs et al., 1991; Jordan & Jacobs, 1994). See Appendix C for details.

Personalisation. With v(θ) of the same form as qi(θi), the VI learning becomes similar to (22).

4 THEORETICAL ANALYSIS

We provide two theoretical results for our Bayesian FL algorithm: (Convergence analysis) As a
special block-coordinate optimisation algorithm, we show that it converges to an (local) optimum
of the training objective (3); (Generalisation error bound) We theoretically show how well this
optimal model trained on empirical data performs on unseen test data points. Due to space limit, full
details and proofs are described in Appendix D,E, and we only state the theorems and remarks here.

Theorem 4.1 (Convergence analysis). We denote the objective function in (3) by f(x) where x =
[x0, x1, . . . , xN ] corresponding to the variational parameters x0 := L0, x1 := L1, . . . , xN := LN .
Let ηt = L+

√
t for some constant L, and xT = 1

T

∑T
t=1 x

t, where t is the batch iteration counter,
xt is the iterate at t by following our FL algorithm, and Nf (≤ N ) is the number of participating
clients at each round. With Assumptions 1–3 in Appendix D, the following holds for any T :

E[f(xT )]− f(x∗) ≤ N +Nf

Nf
·

√
T+L
2 D2 +R2

f

√
T

T
= O

( 1√
T

)
, (25)

where x∗ is the (local) optimum, D, and Rf are some constants, and the expectation is taken over
randomness in minibatches and selection of participating clients.

Remark. It says that xt converges to the optimal point x∗ in expectation at the rate of O(1/
√
t). This

rate asymptotically equals that of the conventional (non-block-coordinate, holistic) SGD algorithm.

Theorem 4.2 (Generalisation error bound). Assume that the variational density family for qi(θi)
is rich enough to subsume Gaussian. Let d2(Pθi , P

i) be the expected squared Hellinger distance
between the true class distribution P i(y|x) and model’s Pθi(y|x) for client i’s data. The optimal
solution ({q∗i (θi)}Ni=1, q

∗(ϕ)) of the optimisation problem (3) satisfies:

1

N

N∑
i=1

Eq∗i (θi)
[d2(Pθi , P

i)] ≤ O

(
1

n

)
+ C · ϵ2n + C ′

(
rn +

1

N

N∑
i=1

λ∗i

)
, (26)

with high probability, where C,C ′ > 0 are constant, λ∗i = minθ∈Θ ||fθ − f i||2∞ is the best error
within our backbone network family Θ, and rn, ϵn → 0 as the training data size n→ ∞.

Remark. It implies that the optimal solution of (3) (attainable by our block-coordinate FL algorithm)
is asymptotically optimal, since the RHS of (26) converges to 0 as the training data size n→ ∞.

5Instead of performing several EM steps until convergence, in practice we find only one EM step is sufficient.
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Figure 2: Hyperparameter sensitivity analysis and comparison with simple ensemble baselines.

5 RELATED WORK

General FL approaches. FedAvg (McMahan et al., 2017) is the pioneering seminal work on FL,
which proposed fairly intuitive local training and global aggregation strategies with minimal training
and communication complexity. A potential issue of divergence of global and local models due to the
separated steps of local training and aggregation was addressed by model regularisation in the follow-
up works (Li et al., 2018; Acar et al., 2021), which is shown to help the global model converge more
reliably. Recent approaches aimed to incorporate benefits from existing machine learning approaches
including domain adaptation/generalisation, clustering, multi-task learning, transfer learning, and
meta-learning. Due to the lack of space, we leave related references in Appendix I.

Comparison to existing Bayesian FL approaches. Some recent studies tried to address the FL
problem using Bayesian methods. As we mentioned earlier, the key difference is that these methods
do not introduce Bayesian hierarchy, and ultimately treat network weights θ as a random variable
shared across all clients, while our approach assigns individual θi to each client i governed by a
common prior p(θi|ϕ). The non-hierarchical approaches must all resort to ad hoc heuristics or strong
assumptions in parts of their algorithm. Due to the lack of space, we leave related references and
discussions in Appendix I.

6 EVALUATION

In this section we evaluate the proposed hierarchical Bayesian models on two benchmark datasets:
the popular CIFAR-100 and the challenging corrupted version (CIFAR-C-100) that renders the client
data more heterogeneous both in input images and class distributions.

FL settings for CIFAR-100. We follow the settings similar to those used in (Oh et al., 2022); in
particular the client data distributions are heterogeneous non-iid, formed by the sharding-based class
sampling (McMahan et al., 2017). More specifically, we partition data instances in each class into
non-overlapping equal-sized shards, and assign s randomly sampled shards (over all classes) to each
of N clients. Thus the number of shards per user s can control the degree of data heterogeneity: small
s leads to more heterogeneity, and vice versa. The number of clients N = 100 (each having 500
training, 100 test samples), and we denote by f the fraction of participating clients. So, Nf = ⌊N ·f⌋
clients are randomly sampled at each round to participate in training. Smaller f makes the FL more
challenging, and we test two settings: f = 1.0 and 0.1. Lastly, the number of epochs for client local
update at each round is denoted by τ where we test τ = 1 and 10, and the number of total rounds is
determined by τ as ⌊320/τ⌋ for fairness. Note that smaller τ incurs more communication cost but
often leads to higher accuracy.

FL settings for CIFAR-100-Corrupted (CIFAR-C-100). The dataset (Hendrycks & Dietterich,
2019) makes CIFAR-100’s test split (10K images) corrupted by 19 different noise processes (e.g.,
Gaussian, motion blur, JPEG). For each corruption type, there are 5 corruption levels, and we use the
severest one. Randomly chosen 10 corruption types are used for training (fixed) and the rest 9 types
for personalisation. We divide N = 100 clients into 10 groups, each group assigned one of the 10
training corruption types exclusively (denoted by Dc the corrupted data for the group c = 1, . . . , 10).
Each Dc is partitioned into 90%/10% training/test splits, and clients in each group (⌊N/10⌋ clients)
gets non-iid train/test subsets from Dc’s train/test splits by following the sharding strategy with
s = 100 or 50. This way, the clients in different groups have considerable distribution shift in input
images, while there also exists heterogeneity in class distributions even within the same groups. For
the FL-trained models, we evaluate global prediction on two datasets: clients’ test splits from the 10
training corruption types and the original (uncorrupted) CIFAR’s training split (50K images). For
personalisation, we partition the clients into 9 groups, and assign one of the 9 corruption types to each
group exclusively. Within each group we form non-iid sharding-based subsets similarly, and again
we split the data into the 90% training/finetuning split and 10% test. Note that this personalisation
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Table 1: (CIFAR-100) Global prediction and personalisation accuracy.
(a) Global prediction performance (initial accuracy)

FL settings Our Methods Fed-BABU Fed-Avg Fed-Prox pFedBayes
s f τ NIW Mix. (K = 2)

100
0.1

1 49.76±0.1249.76±0.1249.76±0.12 49.37±0.30 42.35±0.42 40.87±0.62 41.49±0.75 37.23±0.88

10 29.02±0.3329.02±0.3329.02±0.33 29.02±0.2929.02±0.2929.02±0.29 27.93±0.28 28.26±0.19 27.11±0.11 28.21±1.42

1.0
1 57.80±0.1057.80±0.1057.80±0.10 52.94±0.36 48.17±0.56 47.44±0.20 47.66±1.49 44.89±0.32

10 29.53±0.42 30.55±0.1530.55±0.1530.55±0.15 28.67±0.51 28.79±0.68 27.43±0.38 28.25±0.81

10
0.1

1 37.54±0.25 38.07±0.4038.07±0.4038.07±0.40 35.04±0.56 27.48±0.86 34.73±0.21 31.49±0.18

10 18.99±0.0318.99±0.0318.99±0.03 18.95±0.13 18.54±0.37 14.69±0.40 16.84±0.48 17.93±0.68

1.0
1 50.40±0.1150.40±0.1150.40±0.11 49.52±0.88 45.41±0.11 37.10±0.44 44.33±0.31 39.95±0.89

10 22.87±0.41 23.59±0.4723.59±0.4723.59±0.47 21.92±0.66 17.38±0.32 19.54±0.38 21.85±0.50

(b) Personalisation performance

FL settings Our Methods Fed-BABU Fed-Avg Fed-Prox pFedBayes
s f τ NIW Mix. (K = 2)

100
0.1

1 54.16±0.50 56.17±0.1656.17±0.1656.17±0.16 50.43±0.93 46.43±0.82 49.91±0.78 45.83±1.12

10 36.68±0.3736.68±0.3736.68±0.37 36.32±0.27 35.45±0.34 33.57±0.06 33.92±0.22 35.74±1.36

1.0
1 60.36±0.8960.36±0.8960.36±0.89 58.82±0.37 55.87±0.91 53.15±0.25 55.50±0.90 53.00±0.48

10 35.92±0.17 36.22±0.1736.22±0.1736.22±0.17 35.58±0.24 33.82±1.04 33.70±0.42 35.57±1.02

10
0.1

1 79.41±0.24 79.70±0.1979.70±0.1979.70±0.19 75.44±0.36 70.36±1.02 75.06±0.67 73.93±0.14

10 67.35±1.02 67.57±0.6267.57±0.6267.57±0.62 66.24±0.53 61.39±0.27 64.86±0.73 65.82±0.33

1.0
1 82.71±0.3782.71±0.3782.71±0.37 81.03±0.35 78.92±0.23 76.98±0.66 78.56±0.55 78.08±0.28

10 67.78±1.0267.78±1.0267.78±1.02 66.74±0.27 66.25±0.46 63.81±0.40 63.81±0.51 66.15±1.29

setting is more challenging compared to CIFAR-100 since the data for personalisation are utterly
unseen during the FL training stage. We test τ = 1 and 4 scenarios.

Experimental settings. Our implementation is based on Oh et al. (2022) where we use the Mo-
bileNet (Howard et al., 2017) as a backbone, and follow the body-update strategy: the classification
head (the last layer) is randomly initialised and fixed during training, with only the network body
updated (and both the body and head updated at the personalisation stage). We report experimental
results all based on this body-update strategy since we observe that it considerably outperforms the
full update for our models and all other competing methods. The hyperparameters in our models
are: (NIW) ϵ = 10−4 and p = 1− 0.001 (See below for ablation study of other values); (Mixture)
σ2 = 0.1, ϵ = 10−4, mixture order K = 2 (See Appendix F.1 for results with other values), and the
gating network has the same architecture as the main backbone, but with output cardinality changed
to K. The other hyperparameters including batch size (50), learning rate (0.1 initially and decayed
by 0.1) and the number of epochs in personalisation (5), are the same as those in (Oh et al., 2022).

Main results. In Table 1 (CIFAR-100) and Table 2 (CIFAR-C-100), we compare our methods
(NIW and Mixture with K = 2) against the popular FL methods, Fed-BABU (Oh et al., 2022),
Fed-Avg (McMahan et al., 2017), Fed-Prox (Li et al., 2018), and the recent pFedBayes (Zhang et al.,
2022). The latter is especially interesting to contrast with as it is based on variational inference, most
closely related to ours. We run the competing methods (implementation based on their public codes)
with default hyperparameters (e.g., µ = 0.01 for FedProx) and report the results. First of all, our
two models (NIW and Mix.) consistently perform the best (by large margins most of the time) in
terms of both global prediction and personalisation for nearly all FL settings on the two datasets.
This is attributed to the principled Bayesian modeling of the underlying FL data generative process
in our approaches that can be seen as rigorous generalisation and extension of the existing intuitive
algorithms such as Fed-Avg and Fed-Prox. In particular, the superiority of our methods to the other
Bayesian approach pFedBayes verifies the effectiveness of modeling client-wise latent variables θi
against the commonly used shared θ modeling, especially for the scenarios of significant client data
heterogeneity (e.g., CIFAR-C-100 personalisation on data with unseen corruption types).

(Ablation) Hyperparameter sensitivity. We test sensitivity to some key hyperparameters in our
models. For NIW, we have p = 1−pdrop, the MC-dropout probability, where we used pdrop = 0.001
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Table 2: (CIFAR-C-100) Global prediction and personalisation accuracy.
(a) Global prediction (initial accuracy) on test splits for the 10 training corruption types

FL settings Our Methods Fed-BABU Fed-Avg Fed-Prox pFedBayes
s f τ NIW Mix. (K = 2)

100
0.1

1 81.22±0.1481.22±0.1481.22±0.14 80.34±1.44 79.45±0.71 70.01±0.77 78.94±0.82 71.14±0.33

4 67.69±0.7467.69±0.7467.69±0.74 65.81±0.84 63.58±1.28 48.47±1.26 60.96±1.11 57.88±1.51

1.0
1 91.26±0.8391.26±0.8391.26±0.83 86.84±0.22 86.84±0.83 85.10±0.18 87.03±0.55 82.80±1.28

4 73.58±1.02 74.55±0.2274.55±0.2274.55±0.22 71.03±0.75 58.32±0.07 65.76±0.10 64.07±1.89

50
0.1

1 78.63±0.39 79.36±0.2479.36±0.2479.36±0.24 77.44±1.17 68.27±0.53 78.31±0.93 67.95±0.22

4 65.08±1.7565.08±1.7565.08±1.75 63.52±0.48 62.65±0.12 43.57±1.99 58.70±1.89 54.20±1.30

1.0
1 89.31±0.1789.31±0.1789.31±0.17 88.24±0.71 86.44±0.97 83.31±0.67 86.00±0.93 82.32±0.37

4 70.33±0.1870.33±0.1870.33±0.18 70.19±1.41 67.66±0.78 52.48±1.06 60.72±1.26 60.17±0.23

(b) Global prediction (initial accuracy) on the original (uncorrupted) CIFAR-100 training sets

FL settings Our Methods Fed-BABU Fed-Avg Fed-Prox pFedBayes
s f τ NIW Mix. (K = 2)

100
0.1

1 41.55±0.1141.55±0.1141.55±0.11 36.99±0.09 34.76±0.50 34.40±0.31 35.44±0.66 35.78±0.73

4 30.84±0.0730.84±0.0730.84±0.07 30.60±0.27 28.31±0.28 29.24±0.79 28.09±0.71 29.12±0.30

1.0
1 41.32±0.3241.32±0.3241.32±0.32 38.35±0.73 35.58±0.41 36.34±0.14 36.32±0.58 37.37±0.62

4 30.67±0.1230.67±0.1230.67±0.12 30.40±0.44 28.60±0.28 30.31±0.87 27.95±0.28 29.14±0.57

50
0.1

1 41.04±0.1441.04±0.1441.04±0.14 36.41±0.47 35.44±0.58 34.13±0.50 36.37±0.50 35.68±0.27

4 32.29±0.3632.29±0.3632.29±0.36 31.50±0.34 29.68±0.08 29.19±0.14 29.20±0.50 30.10±0.44

1.0
1 41.64±0.2141.64±0.2141.64±0.21 38.54±0.42 36.09±0.28 35.78±0.83 37.13±0.55 38.39±0.21

4 32.17±0.4832.17±0.4832.17±0.48 30.68±0.46 29.28±0.17 30.45±0.45 28.73±0.26 29.74±0.25

(c) Personalisation performance on the 9 held-out corruption types

FL settings Our Methods Fed-BABU Fed-Avg Fed-Prox pFedBayes
s f τ NIW Mix. (K = 2)

100
0.1

1 72.63±2.13 74.16±3.0474.16±3.0474.16±3.04 69.93±1.24 62.32±1.46 72.94±0.37 62.52±4.01

4 62.74±0.9462.74±0.9462.74±0.94 61.56±1.69 60.33±2.12 53.35±1.39 56.91±1.40 53.71±2.13

1.0
1 83.62±1.84 84.88±0.8584.88±0.8584.88±0.85 77.55±2.05 83.44±1.68 80.96±3.18 72.44±0.13

4 64.84±1.05 67.35±1.4667.35±1.4667.35±1.46 53.25±2.19 53.34±1.22 41.39±1.18 43.41±1.92

50
0.1

1 75.50±0.7475.50±0.7475.50±0.74 67.33±2.83 59.47±2.48 57.77±0.80 56.34±2.80 53.47±0.51

4 44.90±1.23 46.39±0.8346.39±0.8346.39±0.83 44.74±1.30 44.60±2.36 39.94±1.81 37.24±1.80

1.0
1 81.46±0.67 81.77±3.1181.77±3.1181.77±3.11 67.43±2.58 72.52±1.02 71.52±2.02 68.47±1.43

4 50.84±0.7450.84±0.7450.84±0.74 48.90±0.51 40.87±3.01 45.10±0.50 41.95±1.28 41.27±0.14

in the main experiments. In Fig. 2(a) we report the performance of NIW for different values
(pdrop = 0, 10−4, 10−2) on CIFAR-100 with (s = 100, f = 0.1, τ = 1) setting. We see that the
performance is not very sensitive to pdrop unless it is too large (e.g., 0.01). For the Mixture model,
different mixture orders K = 2, 5, 10 are contrasted in Fig. 2(b). As seen, having more mixture
components does no harm (no overfitting), but we do not see further improvement over K = 2 in our
experiments (See also results on CIFAR-C-100 in Table 4 in Appendix).

Further analysis. In Appendix, we provide further empirical results: (i) comparison between our
mixture model and simple ensemble baselines (Fig. 2(b) and F.2) and (ii) actual running times (F.3).

7 CONCLUSION

We have proposed a novel hierarchical Bayesian approach to FL where the block-coordinate descent
solution to the variational inference leads to a viable algorithm for FL. Our method not only justifies
the previous FL algorithms that look intuitive but theoretically less underpinned, but also generalises
them even further via principled Bayesian approaches. With strong theoretical support in convergence
rate and generalisation error, our approach is also empirically shown to be superior to recent FL
approaches by large margin on several benchmarks with various FL settings.
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A ELBO DERIVATION FOR GENERAL FRAMEWORK

We derive the ELBO objective (3) for the general Bayesian FL framework.

KL
(
q(ϕ, θ1:N )

∣∣∣∣ p(ϕ, θ1:N |D1:N )
)
= Eq

[
log

q(ϕ) ·
∏

i qi(θi) · p(D1:N )

p(ϕ) ·
∏

i p(θi|ϕ) ·
∏

i p(Di|θi)

]
(27)

= KL(q(ϕ)||p(ϕ)) +
N∑
i=1

(
Eqi(θi)[− log p(Di|θi)] + Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

])
︸ ︷︷ ︸

=:L(L)

+ log p(D1:N ). (28)
Since KL divergence is non-negative, −L(L) must be lower bound of the data log-likelihood
log p(D1:N ), rendering L(L) as our objective function (to be minimised).

B NORMAL-INVERSE-WISHART (NIW) MODEL (DETAILED VERSION)

We define the prior as a conjugate form of Gaussian and Normal-Inverse-Wishart. More specifically,
each local client has Gaussian prior p(θi|ϕ) = N (θi;µ,Σ) where ϕ = (µ,Σ), and the global latent
variable ϕ is distributed as a conjugate prior which is Normal-Inverse-Wishart (NIW),

p(ϕ) = NIW(µ,Σ;Λ) = N (µ;µ0, λ
−1
0 Σ) · IW(Σ;Σ0, ν0), (29)

p(θi|ϕ) = N (θi;µ,Σ), i = 1, . . . , N, (30)
where Λ = {µ0,Σ0, λ0, ν0} is the parameters of the NIW. Although Λ can be learned via data
marginal likelihood maximisation (e.g., empirical Bayes), but for simplicity we leave it fixed as:
µ0 = 0, Σ0 = I , λ0 = 1, and ν0 = d+2 where d is the number of parameters in θi or µ. This choice
ensures that the mean of Σ equals I , and µ is distributed as zero-mean Gaussian with covariance Σ.

Next, our choice of the variational density family for q(ϕ) is the NIW, not just because it is the most
popular parametric family for a pair of mean vector and covariance matrix ϕ = (µ,Σ), but it can also
admit closed-form expressions in the ELBO function due to the conjugacy as we derive in Sec. B.1.

q(ϕ) := NIW(ϕ; {m0, V0, l0, n0}) = N (µ;m0, l
−1
0 Σ) · IW(Σ;V0, n0). (31)

Although the scalar parameters l0,n0 can be optimised together with m0, V0, their impact is less
influential and we find that they make the ELBO optimisation a little bit cumbersome. So we aim
to estimate their optimal values in advance with reasonably good quality. To this end, we exploit
the conjugacy of the NIW prior-posterior under the Gaussian likelihood. For each θi, we pretend
that we have instance-wise representative estimates θi(x, y), one for each (x, y) ∈ Di. For instance,
one can view θi(x, y) as the network parameters optimised with the single training instance (x, y).
Then this amounts to observing |D| (=

∑N
i=1 |Di|) Gaussian samples θi(x, y) ∼ N (θi;µ,Σ) for

(x, y) ∼ Di and i = 1, . . . , N . Then applying the NIW conjugacy, the posterior is the NIW with
l0 = λ0 + |D| = |D| + 1 and n0 = ν0 + |D| = |D| + d + 2. This gives us good approximate
estimates for the optimal l0, n0, and we fix them throughout the variational optimisation. Note that
this is only heuristics for estimating the scalar parameters l0, n0 quickly, and the parameters m0, V0
are determined by the principled ELBO optimisation (Sec. B.1). That is, L0 = {m0, V0}. Since the
dimension d is large (the number of neural network parameters), we restrict V0 to be diagonal for
computational tractability.

The density family for qi(θi)’s can be a Gaussian, but we find that it is computationally more
attractive and numerically more stable to adopt the mixture of two spiky Gaussians that leads to the
MC-Dropout (Gal & Ghahramani, 2016). That is,

qi(θi) =
∏
l

(
p · N (θi[l];mi[l], ϵ

2I) + (1− p) · N (θi[l]; 0, ϵ
2I)
)
, (32)

where (i) mi is the only variational parameters (Li = {mi}), (ii) ·[l] indicates the specific colum-
n/layer in neural network parameters where l goes over layers and columns of weight matrices, (iii) p
is the (user-specified) hyperparameter where 1− p corresponds to the dropout probability, and (iv) ϵ
is a tiny constant (e.g., 10−6) that makes two Gaussians spiky, close to the delta function. Now we
provide more detailed derivations for the client optimisation and server optimisation.
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B.1 DETAILED DERIVATIONS FOR NIW MODEL

Client update. We work on the objective function in the general client update optimisation (5).
We note that q(ϕ) is spiky since our pre-estimated NIW parameters l0 and n0 are large (as the
entire training data size |D| is added to the initial prior parameters). Due to the spiky q(ϕ), we can
accurately approximate the second term in (5) as:

Eq(ϕ)

[
KL(qi(θi)||p(θi|ϕ))

]
≈ KL(qi(θi)||p(θi|ϕ∗)), (33)

where ϕ∗ = (µ∗,Σ∗) is the mode of q(ϕ), which has closed forms for the NIW distribution:

µ∗ = m0, Σ∗ =
V0

n0 + d+ 1
. (34)

In (33) we have the KL divergence between a mixture of Gaussians (32) and a Gaussian (30). Similar
to (Gal & Ghahramani, 2016), we apply the approximation KL(

∑
i αiNi||N ) ≈

∑
i αiKL(Ni||N )

as well as the reparametrised sampling for (32), which allows us to rewrite (5) as:
min
mi

Li(mi) := − log p(Di|m̃i) +
p

2
(n0 + d+ 1)(mi −m0)

⊤V −1
0 (mi −m0), (35)

where m̃i is the dropout version of mi, i.e., a reparametrised sample from (32). Also, we use a
minibatch version of the first term for a tractable SGD update, which amounts to replacing the first
term by the batch average E(x,y)∼Batch[− log p(y|x, m̃i)] while downweighing the second term by the
factor of 1/|Di|. Note that m0 and V0 are fixed during the optimisation. Interestingly (35) generalises
the famous Fed-Avg (McMahan et al., 2017) and Fed-Prox (Li et al., 2018): With p = 1 (i.e., no
dropout) and setting V0 = αI for some constant α, we see that (35) reduces to the client update
formula for Fed-Prox where α controls the impact of the proximal term.

Server update. The server optimisation (6) involves two terms, both of which we will show admit
closed-form expressions thanks to the conjugacy. Furthermore, we show that the optimal solution
(m0, V0) of (6) has an analytic form. First, the KL term in (6) is decomposed as:

KL(IW(Σ;V0, n0)||IW(Σ;Σ0, ν0)) + EIW(Σ;V0,n0)[KL(N (µ;m0, l
−1
0 Σ)||N (µ;µ0, λ

−1
0 Σ))]

(36)
By some algebra, (36) becomes identical to the following, up to constant, removing those terms that
are not dependent on m0,V0 (See Appendix B.2 for derivations):

1

2

(
n0Tr(Σ0V

−1
0 ) + ν0 log |V0|+ λ0n0(µ0 −m0)

⊤V −1
0 (µ0 −m0)

)
. (37)

Next, the second term of (6) also admits a closed form as follows (Appendix B.2 for details):

−Eq(ϕ)qi(θi)[log p(θi|ϕ)] =
n0
2

(
pm⊤

i V
−1
0 mi − pm⊤

0 V
−1
0 mi − pm⊤

i V
−1
0 m0 +m⊤

0 V
−1
0 m0

+
1

n0
log |V0|+ ϵ2Tr(V −1

0 )
)
+ const. (38)

That is, server’s loss function L0 is the sum of (37) and (38). We can take the gradients of the loss
with respect to m0, V0 as follows (also plugging µ0 = 0,Σ0 = I, λ0 = 1, ν0 = d+ 2):

∂L0

∂m0
= n0V

−1
0

(
(N + 1)m0 − p

N∑
i=1

mi

)
, (39)

∂L0

∂V −1
0

=
1

2

(
n0(1 +Nϵ2)I − (N + d+ 2)V0 + n0m0m

⊤
0 + n0

N∑
i=1

ρ(m0,mi, p)

)
, (40)

where ρ(m0,mi, p) = pmim
⊤
i − pm0m

⊤
i − pmim

⊤
0 +m0m

⊤
0 .

We set the gradients to zero and solve for them, which yields the optimal solution:

m∗
0 =

p

N + 1

N∑
i=1

mi, V ∗
0 =

n0
N + d+ 2

(
(1 +Nϵ2)I +m∗

0(m
∗
0)

⊤ +

N∑
i=1

ρ(m∗
0,mi, p)

)
.

(41)
Note that mi’s are fixed from clients’ latest variational parameters.

It is interesting to see that m∗
0 in (41) generalises the well-known aggregation step of averaging local

models in Fed-Avg (McMahan et al., 2017) and related methods: when p = 1 (i.e., no dropout), it
almost6 equals client model averaging. Also, since ρ(m∗

0,mi, p = 1) = (mi−m∗
0)(mi−m∗

0)
⊤ when

p = 1, we can see that V ∗
0 in (41) essentially estimates the sample scatter matrix with (N+1) samples,

6Only the constant 1 added to the denominator, which comes from the prior and has the regularising effect.
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namely clients’ mi’s and server’s prior µ0 = 0, measuring how much they deviate from the center
m∗

0. It is known that the dropout can help regularise the model and lead to better generalisation (Gal
& Ghahramani, 2016), and with p < 1 our (41) forms a principled optimal solution.

Global prediction. In the inner integral of (8) of the general predictive distribution, we plug
p(θ|ϕ) = N (θ;µ,Σ) and NIW q(ϕ) of (31). This leads to the multivariate Student-t distribution:∫

p(θ|ϕ) q(ϕ) dϕ =

∫
N (θ;µ,Σ) · NIW(ϕ) dϕ = tn0−d+1

(
θ;m0,

(l0 + 1)V0
l0(n0 − d+ 1)

)
, (42)

where tν(a,B) is the multivariate Student-t with location a, scale matrix b, and d.o.f. ν. Then the
predictive distribution for a new test input x∗ can be estimated as7:

p(y∗|x∗, D1, . . . , DN ) =

∫
p(y∗|x∗, θ) · tn0−d+1

(
θ;m0,

(l0 + 1)V0
l0(n0 − d+ 1)

)
dθ (43)

≈ 1

S

S∑
s=1

p(y∗|x∗, θ(s)), where θ(s) ∼ tn0−d+1

(
θ;m0,

(l0 + 1)V0
l0(n0 − d+ 1)

)
. (44)

Personalisation. With the given personalisation training data Dp, we follow the general framework
in (11) to find v(θ) ≈ p(θ|Dp, ϕ∗) in a variational way, where ϕ∗ obtained from (34). For the density
family for v(θ) we adopt the same spiky mixture form as (32),

v(θ) =
∏
l

(
p · N (θ[l];m[l], ϵ2I) + (1− p) · N (θ[l]; 0, ϵ2I)

)
, (45)

where m is the variational parameters. This leads to the MC-dropout-like learning objective,
min
m

− log p(Dp|m̃) +
p

2
(n0 + d+ 1)(m−m0)

⊤V −1
0 (m−m0), (46)

Once v is trained, our predictive distribution follows the MC sampling (12).

B.2 MATHEMATICAL DETAILS

The server optimisation (6) in our NIW model involves two terms, both of which we will show admit
closed-form expressions thanks to the conjugacy. Furthermore, we show that the optimal solution
(m0, V0) of (6) has an analytic form. First, the KL term in (6) is decomposed as:
KL(q(ϕ)||p(ϕ)) = KL(q(µ|Σ)q(Σ) || p(µ|Σ)p(Σ)) (47)

= Eq(Σ)

[
log

q(Σ)

p(Σ)

]
+ Eq(Σ)Eq(µ|Σ)

[
log

q(µ|Σ)
p(µ|Σ)

]
(48)

= KL(IW(Σ;V0, n0)||IW(Σ;Σ0, ν0))︸ ︷︷ ︸
=:kla

+EIW(Σ;V0,n0)[KL(N (µ;m0, l
−1
0 Σ)||N (µ;µ0, λ

−1
0 Σ))]︸ ︷︷ ︸

=:klb

.

(49)
First we work on kla = EIW(Σ;V0,n0)[log IW(Σ;V0, n0)] − EIW(Σ;V0,n0)[log IW(Σ;Σ0, ν0)].
From the definition of Inverse-Wishart (assuming Σ = (d× d)),

log IW(Σ;Ψ, ν) =
ν

2
log |Ψ| − ν + d+ 1

2
log |Σ| − 1

2
Tr(ΨΣ−1)− log Γd(ν/2)−

νd

2
log 2,

(50)
where Γd(·) is the multivariate Gamma function. We use the following facts from (Bishop, 2006;
Braun & McAuliffe, 2008):

EIW(Σ;Ψ,ν) log |Σ| = −d log 2 + log |Ψ| −
d∑

i=1

ψ((ν − i+ 1)/2) (51)

EIW(Σ;Ψ,ν)Σ
−1 = νΨ−1, (52)

where ψ(·) is the digamma function. Applying these to the terms in kla yields:

kla =
1

2

(
n0Tr(Σ0V

−1
0 ) + ν0 log |V0|

)
+ const (w.r.t. m0, V0). (53)

7In practice we use a single sample (S = 1) for computational efficiency.
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Next, using the closed-form expression for the KL between Gaussians, klb becomes:

klb =
1

2
EIW(Σ;V0,n0)

[
λ0(µ0 −m0)

⊤Σ−1(µ0 −m0)
]
+ const (w.r.t. m0, V0) (54)

=
λ0n0
2

(µ0 −m0)
⊤V −1

0 (µ0 −m0) + const (w.r.t. m0, V0), (55)

where in (55) we use the fact (52). Combining (56) and (55), we have:

KL(q(ϕ)||p(ϕ)) = 1

2

(
n0Tr(Σ0V

−1
0 ) + ν0 log |V0|+ λ0n0(µ0 −m0)

⊤V −1
0 (µ0 −m0)

)
+ const.

(56)

Next, we derive the second term of (6) (=utc stands for equality up to constant (w.r.t. m0, V0)).

Eq(ϕ)qi(θi)[log p(θi|ϕ)] = −1

2
E
[
log |Σ|+ (θi − µ)⊤Σ−1(θi − µ)

]
+ const (w.r.t. m0, V0) (57)

=utc −
1

2
EIW(Σ;V0,n0)

[
log |Σ|

]
− 1

2
E
[
(θi − µ)⊤Σ−1(θi − µ)

]
(58)

=utc −
1

2
log |V0| −

1

2
Tr EIW(Σ;V0,n0)

[
Σ−1EN (µ;m0,l

−1
0 Σ)qi(θi)

[
(θi − µ)(θi − µ)⊤

]]
(59)

=utc −
1

2
log |V0| −

1

2
Tr EIW(Σ;V0,n0)

[
Σ−1

(
ρ(m0,mi, p) + ϵ2I + l−1

0 Σ
)]

(60)

=utc −
1

2
log |V0| −

1

2
Tr
((
ρ(m0,mi, p) + ϵ2I

)
n0V

−1
0

)
(61)

=utc −
n0
2

(
pm⊤

i V
−1
0 mi − pm⊤

0 V
−1
0 mi − pm⊤

i V
−1
0 m0 +m⊤

0 V
−1
0 m0 +

log |V0|
n0

+ ϵ2TrV −1
0

)
,

(62)
where ρ(m0,mi, p) = pmim

⊤
i − pm0m

⊤
i − pmim

⊤
0 +m0m

⊤
0 , and we use the definition of qi(θi)

in (32) and the fact (52).

C MIXTURE MODEL (DETAILED VERSION)

Previously, the NIW model expresses our prior belief where each client i acquires its own network
parameters θi a priori as a Gaussian-perturbed version of the shared parameters µ, namely θi|ϕ ∼
N (µ,Σ), as in (14). This is intuitively appealing, but may not be adequate for capturing more
drastic diversity in local data across clients. In the situations where clients’ local data distributions,
as well as their domains and class label semantics, are highly heterogeneous (possibly even set up
for adversarial purpose), it would be ideal to consider multiple different prototypes for the network
parameters, diverse enough to cover the heterogeneity in data distributions across clients. Motivated
from this idea, we introduce a mixture prior model as follows.

First we consider that there are K network parameters (prototypes) that can broadly cover the clients
data distributions. They are denoted as high-level latent variables, ϕ = {µ1, . . . , µK}, and we let
them distributed independently as standard normal a priori,

p(ϕ) =

K∏
j=1

N (µj ; 0, I). (63)

We here note some clear distinction from the NIW prior. Whereas the NIW prior (13) only controls
the mean µ and covariance Σ in the Gaussian, from which local models θi are sampled, the mixture
prior (63) is far more flexible in covering highly heterogeneous distributions. Each local model is
then assumed to be chosen from one of these K prototypes. Thus the prior distribution for θi can be
modeled as a mixture,

p(θi|ϕ) =
K∑
j=1

1

K
N (θi;µj ;σ

2I), (64)

where σ is the hyperparameter that captures perturbation scale, and can be chosen by users or learned
from data. Note that we put equal mixing proportions 1/K due to the symmetry, a priori. That is,
each client can take any of µj’s equally likely a priori.
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We then describe our choice of the variational density q(ϕ)
∏

i qi(θi) to approximate the posterior
p(ϕ, θ1:N |D1:N ). First, qi(θi) is chosen as a Gaussian,

qi(θi) = N (θi;mi, ϵ
2I), (65)

with small ϵ. For q(ϕ) we consider a Gaussian factorised over µj’s, but with small variances, that is,

q(ϕ) =

K∏
j=1

N (µj ; rj , ϵ
2I), (66)

where {rj}Kj=1 are variational parameters (L0) and ϵ is small (e.g., 10−4). The main reason why we
make q(ϕ) spiky is that the resulting near-deterministic q(ϕ) allows for computationally efficient and
accurate MC sampling during ELBO optimisation as well as test time (global) prediction, avoiding
difficult marginalisation (Sec. C.1 for details). Although Bayesian inference in general encourages to
retain as many plausible latent states as possible under the given evidence (observed data), we aim to
model this uncertainty by having many (possibly redundant) prototypes µj’s rather than imposing
larger variance for a single one (e.g., finite-sample approximation of a smooth distribution).

C.1 DETAILED DERIVATIONS FOR MIXTURE MODEL

With the full specification of the prior distribution and the variational density family, we are ready to
dig into the client objective function (5) and the server (6).

Client update. Since q(ϕ) is spiky, we can accurately approximate the second term of (5) as
KL(qi(θi)||p(θi|ϕ∗)) where ϕ∗ = {µ∗

j = rj}Kj=1 is the mode of q(ϕ) since
Eq(ϕ)qi(θi)[log p(θi|ϕ)] ≈ Eqi(θi)[log p(θi|ϕ

∗)]. (67)
Since qi(θi) is also spiky, KL(qi(θi)||p(θi|ϕ∗)), the KL divergence between a Gaussian and a
Gaussian mixture, can be approximated accurately using the single mode sample mi ∼ qi(θi), that is,

KL(qi(θi)||p(θi|ϕ∗)) ≈ log qi(mi)− log p(mi|ϕ∗) (68)

= − log

K∑
j=1

N (mi; rj , σ
2I) + const. = − log

K∑
j=1

exp

(
− ||mi − rj ||2

2σ2

)
+ const. (69)

Note here that we use the fact that mi disappears in log qi(mi). Plugging it into (5) yields the
following optimisation for client i:

min
mi

Eqi(θi)[− log p(Di|θi)]− log

K∑
j=1

exp

(
− ||mi − rj ||2

2σ2

)
. (70)

It is interesting to see that (70) can be seen as generalisation of Fed-Prox (Li et al., 2018), where the
proximal regularisation term in Fed-Prox is extended to multiple global models rj’s, penalizing the
local model (mi) straying away from these prototypes. And if we use a single prototype (K = 1), the
optimisation (70) exactly reduces to the local update objective of Fed-Prox. Since log-sum-exp
is approximately equal to max, the regularisation term in (70) effectively focuses on the closest
global prototype rj from the current local model mi, which is intuitively well aligned with our initial
modeling motivation, namely each local data distribution is explained by one of the global prototypes.
Lastly, we also note that in the SGD optimisation setting where we can only access a minibatch
B ∼ Di during the optimisation of (70), we follow the conventional practice: replacing the first
term of the negative log-likelihood by a stochastic estimate Eqi(θi)E(x,y)∼B [− log p(y|x, θi)] and
multiplying the second term of regularisation by 1

|Di| .

Server update. First, the KL term in (6) can be easily derived as:

KL(q(ϕ)||p(ϕ)) = 1

2

K∑
j=1

||rj ||2 + const. (71)

and the second term of (6) approximated as follows:

Eq(ϕ)qi(θi)[log p(θi|ϕ)] ≈ Eq(ϕ)[log p(mi|ϕ)] ≈ log

K∑
j=1

1

K
N (mi; rj , σ

2I) (72)

= log

K∑
j=1

exp

(
− ||mi − rj ||2

2σ2

)
+ const. (73)
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where the approximations in (72) become accurate due to spiky qi(θi) and q(ϕ), respectively. Com-
bining the two terms leads to the optimisation problem for the server:

min
{rj}K

j=1

1

2

K∑
j=1

||rj ||2 −
N∑
i=1

log

K∑
j=1

exp

(
− ||mi − rj ||2

2σ2

)
. (74)

Interestingly, (74) generalises the well-known aggregation step of averaging local models in Fed-
Avg (McMahan et al., 2017) and related methods: Especially when K = 1, (74) reduces to quadratic
optimisation, admitting the optimal solution r∗1 = 1

N+σ2

∑N
i=1mi. The extra term σ2 in the

denominator can be explained by incorporating an extra zero local model originating from the prior
(interpreted as a neutral model) with the discounted weight σ2 rather than 1.

Although (74) forK > 1 can be solved by standard gradient descent, the objective function resembles
the (regularised) Gaussian mixture log-likelihood, and we can apply the Expectation-Maximisation
(EM) algorithm (Dempster et al., 1977) instead. Using Jensen’s bound with convexity of the negative
log function, we have the following alternating steps8:

• E-step: With the current {rj}Kj=1 fixed, compute the prototype assignment probabilities for
each local model mi:

c(j|i) = kij∑K
j=1 kij

, where kij = exp

(
− ||mi − rj ||2

2σ2

)
. (75)

• M-step: With the current assignments c(j|i) fixed, we solve:

min
{rj}

1

2

∑
j

||rj ||2 +
1

2σ2

∑
i,j

c(j|i) · ||mi − rj ||2, (76)

which admits the closed form solution:

r∗j =
1
N

∑N
i=1 c(j|i) ·mi

σ2

N + 1
N

∑N
i=1 c(j|i)

, j = 1, . . . ,K. (77)

The server update equation (77) has intuitive meaning that the new prototype rj becomes
the weighted average of the local models mi’s where the weights c(j|i) are determined by
the proximity to rj (i.e., those mi’s that are closer to rj have more contribution, and vice
versa). This can be seen as an extension of the aggregation step in Fed-Avg to the multiple
prototype case.

Global prediction. By plugging the mixture prior p(θ|ϕ) of (64) and the factorised spiky Gaussian
q(ϕ) of (66) into the inner integral of (8), we have predictive distribution averaged equally over
{rj}Kj=1 approximately, that is,

∫
p(θ|ϕ) q(ϕ) dϕ ≈ 1

K

∑K
j=1 p(y

∗|x∗, rj). Unfortunately this is not
ideal for our original intention where only one specific model rj out of K candidates is dominantly
responsible for the local data. To meet this intention, we extend our model so that the input point x∗
can affect θ together with ϕ, and with this modification our predictive probability can be derived as:

p(y∗|x∗, D1:N ) =

∫∫
p(y∗|x∗, θ) p(θ|x∗, ϕ) p(ϕ|D1:N ) dθdϕ (78)

≈
∫∫

p(y∗|x∗, θ) p(θ|x∗, ϕ) q(ϕ) dθdϕ (79)

≈
∫
p(y∗|x∗, θ) p(θ|x∗, {rj}Kj=1) dθ. (80)

To deal with the tricky part of inferring p(θ|x∗, {rj}Kj=1), we introduce a fairly practical strategy of
fitting a gating function. The idea is to regard p(θ|x∗, {rj}Kj=1) as a mixture of experts (Jacobs et al.,
1991; Jordan & Jacobs, 1994) where the prototypes rj’s serving as experts,

p(θ|x∗, {rj}Kj=1) :=

K∑
j=1

gj(x
∗) · δ(θ − rj), (81)

where δ(·) is the Dirac’s delta function, and g(x) is a gating function that outputs a K-dimensional
softmax vector. Intuitively, the gating function determines which of the K prototypes {rj}Kj=1 the

8Although one can perform several EM steps until convergence, in practice, we find that only one EM step
per round is sufficient.
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model θ for the test point x∗ belongs to. With (81), the predictive probability in (80) is written as:

p(y∗|x∗, D1:N ) ≈
K∑
j=1

gj(x
∗) · p(y∗|x∗, rj). (82)

However, since we do not have this oracle g(x), we introduce and fit a neural network to the local
training data during the training stage. Let g(x;β) be the gating network with the parameters β. To
train it, we follow the Fed-Avg9 strategy. In the client update stage at each round, while we update
the local model mi with a minibatch B ∼ Di, we also find the prototype closest to mi, namely
j∗ := argminj ||mi − rj ||. Then we form another minibatch of samples {(x, j∗)}x∼B (input x
and class label j∗), and update g(x;β) by SGD. The updated (local) β’s from the clients are then
aggregated (by simple averaging) by the server, and distributed back to the clients as an initial iterate
for the next round.

Personalisation. For p(θ|Dp, ϕ∗) in the general framework (10), we define the variational distribution
v(θ) ≈ p(θ|Dp, ϕ∗) as:

v(θ) = N (θ;m, ϵ2I), (83)
where ϵ is small positive constant, and m is the only parameters that we learn. Our personalisation
training amounts to ELBO optimisation for v(θ) as in (11), which reduces to:

min
m

Ev(θ)[− log p(Dp|θ)]− log

K∑
j=1

exp

(
− ||m− rj ||2

2σ2

)
. (84)

Once we have optimal m (i.e., v(θ)), our predictive model becomes:
p(yp|xp, Dp, D1:N ) ≈ p(yp|xp,m), (85)

which is done by feed-forwarding test input xp through the network deployed with the parameters m.

D CONVERGENCE ANALYSIS

Our (general) FL algorithm is a special block-coordinate SGD optimisation of the ELBO function (3)
with respect to the (N + 1) parameter groups: L0 (of q(ϕ;L0)), L1 (of q1(θ1;L1)), . . . , and LN (of
qN (θN ;LN )). In this section we will provide a theorem that guarantees convergence of the algorithm
to a local minimum of the ELBO objective function under some mild assumptions. We will also
analyse the convergence rate. Note that although our FL algorithm is a special case of the general
block-coordinate SGD optimisation, we may not directly apply the existing convergence results for
the regular block-coordinate SGD methods since they mostly rely on non-overlapping blocks with
cyclic or uniform random block selection strategies (Beck & Tetruashvili, 2013; Wang & Banerjee,
2014). As the block selection strategy in our FL algorithm is unique with overlapping blocks and
non-uniform random block selection, we provide our own analysis here. Promisingly, we show that
in accordance with general regular block-coordinate SGD (cyclic/uniform non-overlapping block
selection), our FL algorithm has O(1/

√
t) convergence rate, which is also asymptotically the same

as that of the conventional (holistic, non-block-coordinate) SGD optimisation. Note that this section
is about the convergence of our algorithm to an (local) optimum of the training objective (ELBO).
The question of how well this optimal model trained on empirical data performs on the unseen data
points will be discussed in Sec. E.

First we formally describe our FL algorithm as a block-coordinate SGD optimisation. For ease of
exhibition, we will simplify the notation: The objective function in (3) is denoted as f(x) where
x = [x0, x1, . . . , xN ] is the optimisation variables corresponding to x0 := L0, x1 := L1, . . . ,
xN := LN . That is, x0 is server’s parameters while xi (i = 1, . . . , N ) is worker i’s parameters. We
let xu be the partial vector of x selected by the index set u ⊆ {0, 1, . . . , N}, and x−u be the vector
of the rest elements. Similarly ∇uf(x) indicates the gradient vector with only elements at the indices
in u. Let xt be the iterate at iteration t. Our FL algorithm is formally defined in Alg. 1.

Now we state our convergence theorem. We first need the following mild assumptions:

Assumption 1. Our objective function f(x) is locally convex, and ft(x) is also locally convex for
all iterations t, where ft is the minibatch version of f defined on the minibatch data batcht (so that
Ebatcht [ft(x)] = f(x)). Actually, the latter implies the former. Although the negative ELBO is in

9We also follow the Fed-BABU (Oh et al., 2022) strategy by updating only the body of β and fixing/sharing
the random classification head across the server and clients.
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Algorithm 1 Bayesian FL Algorithm as Block-Coordinate Descent.
We define the following hyperparameters:

• Nf (≤ N) = the number of participating clients at each round.
• M = the number of SGD iterations per round for updating the (participating) clients.
• Let MS = the number of SGD iterations per round for updating the server.
• Let ηt = the reciprocal of the SGD learning rate at iteration t.

Initialise the global iteration counter t = 0.
for each round do

• Select Nf clients uniformly at random from {1, . . . , N} without replacement. Let ut ⊆
{1, . . . , N} be the set of the participants (|ut| = Nf ).

• (Client update) For each of M iterations,
1. Perform an SGD update for the block ut. That is,

xt+1 := [xt+1
ut

;xt
−ut

], where xt+1
ut

= xt
ut
− 1

ηt
∇utft(x

t), (86)

where ft is the minibatch version of f defined on the minibatch data batcht (so that
Ebatcht [ft(x)] = f(x)). Note that this update is actually done independently over the
participating clients i ∈ ut due to the separable objective, i.e., from (4) to (5).

2. t← t+ 1.
• (Server update) For each of MS iterations,

1. Perform SGD update for the index (singleton block) 0. That is,

xt+1 := [xt+1
0 ;xt

−0], where xt+1
0 = xt

0 −
1

ηt
∇0ft(x

t). (87)

2. t← t+ 1.
end for

general non-convex globally, we can regard it as a convex function within a local neighborhood, as is
usually assumed in non-convex analysis (Bertsekas, 2016) and other FL analysis (Li et al., 2020).

Assumption 2. For all t, ft(x) has Lipschitz continuous gradient with constant L.

Assumption 3. For all t, ||∇ft(x)|| ≤ Rf and ||x − x′|| ≤ D for any x, x′, where Rf and D are
some constants.

Theorem D.1 (Convergence analysis). Let ηt = L+
√
t, MS =

M ·Nf

N , and xT = 1
T

∑T
t=1 x

t by
following our FL algorithm. With Assumptions 1–3, the following holds for any T :

E[f(xT )]− f(x∗) ≤ N +Nf

Nf
·

√
T+L
2 D2 +R2

f

√
T

T
= O

( 1√
T

)
, (88)

where x∗ is the (local) optimum, and the expectation is taken over randomness in minibatches and
block selections {ut}T−1

t=0 .

Remark. Theorem D.1 states that xt converges to the optimal point x∗ in expectation at the rate of
O(1/

√
t). This convergence rate asymptotically equals that of the conventional (holistic, non-block-

coordinate) SGD algorithm.

To prove the theorem, we note that the algorithm Alg. 1 overall repeats the following three steps
per round: i) sample the subset of clients ut from {1, . . . , N} with |ut| = Nf , ii) update xut

for
M iterations, and iii) update x0 for MS iterations. Thus in the long-term view, we can see that the
algorithm proceeds as follows: At each iteration t, we select ut as

ut =

{
{0} with prob. MS

M+MS

Size-Nf subset uniformly from {1, . . . , N} with prob. M
M+MS

, (89)

and update the iterate as

xt+1 := [xt+1
ut

;xt−ut
], where xt+1

ut
= xtut

− 1

ηt
∇ut

ft(x
t). (90)

We will use this long-term view strategy in our proof. Next we state the following lemma that is
motivated from (Wang & Banerjee, 2014), which is useful in our proof.

Lemma D.2. Assume ηt > L, and ft is (locally) convex with Lipschitz continuous gradient with
constant L. For any subset u ⊆ {0, 1, . . . , N}, we define xt+1 as:

xt+1
u = xtu − 1

ηt
∇uft(x

t) and xt+1
−u = xt−u. (91)
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Then the following holds for any x:

⟨∇uft(x
t), xtu − xu⟩ ≤

ηt
2

(
||x− xt||2 − ||x− xt+1||2

)
+

R2
f

2(ηt − L)
. (92)

Proof of Lemma D.2. By definition, ∇uft(x
t) + ηt(x

t+1
u − xtu) = 0. Then for any x, we have

⟨∇uft(x
t), xt+1

u − xu⟩ = −ηt⟨xt+1
u − xtu, x

t+1
u − xu⟩ (93)

=
ηt
2

(
||xu − xtu||2 − ||xu − xt+1

u ||2 − ||xt+1
u − xtu||2

)
(94)

=
ηt
2

(
||x− xt||2 − ||x− xt+1||2 − ||xt+1

u − xtu||2
)
. (95)

Note that (95) follows from (94) since xt and xt+1 only differ at indices u. Since ft has Lipschitz
continuous gradient,

ft(x
t+1)− ft(x

t) ≤ ⟨∇uft(x
t), xt+1

u − xtu⟩+
L

2
||xt+1

u − xtu||2 (96)

= ⟨∇uft(x
t), xt+1

u − xu⟩+
L

2
||xt+1

u − xtu||2 − ⟨∇uft(x
t), xtu − xu⟩ (97)

=
ηt
2

(
||x− xt||2 − ||x− xt+1||2 − ||xt+1

u − xtu||2
)
+
L

2
||xt+1

u − xtu||2

− ⟨∇uft(x
t), xtu − xu⟩, (98)

where we plugged (95) into (97). We rearrange the terms in (98) as follows:

⟨∇uft(x
t), xtu − xu⟩ ≤

ηt
2

(
||x− xt||2 − ||x− xt+1||2

)
+
L− ηt

2
||xt+1

u − xtu||2

+ (ft(x
t)− ft(x

t+1)). (99)
Due to the convexity of ft, we can bound the last term in (99) as

ft(x
t)− ft(x

t+1) ≤ ⟨∇ft(xt), xt − xt+1⟩ (100)

= ⟨∇uft(x
t), xtu − xt+1

u ⟩ (101)

≤ 1

2α
||∇uft(x

t)||2 + α

2
||xtu − xt+1

u ||2 (for any α > 0). (102)

Plugging (102) into (99) and choosing α = ηt − L(> 0) yields:

⟨∇uft(x
t), xtu − xu⟩ ≤

ηt
2

(
||x− xt||2 − ||x− xt+1||2

)
+

||∇uft(x
t)||2

2(ηt − L)
. (103)

Applying Assumption 3 of the bounded gradient norm completes the proof.

Now we are ready to prove our convergence theorem (Theorem D.1).

Proof of Theorem D.1. We first aim to bound ⟨∇f(xt), xt − x⟩, as it upper-bounds of f(xt)− f(x)
for convex f . Note that by conditioning on xt, we can only deal with randomness in minibatch at t
(batcht), that is,

⟨∇f(xt), xt − x⟩ = Ebatcht
[⟨∇ft(xt), xt − x⟩]. (104)

Further conditioning on batcht leads to:

⟨∇ft(xt), xt − x⟩ = ⟨∇0ft(x
t), xt0 − x0⟩+

N∑
i=1

⟨∇ift(x
t), xti − xi⟩. (105)

Here we aim to rewrite the summation term in (105) in terms of size Nf blocks. To this end, let us
consider: ∑

u∈2N,Nf

⟨∇uft(x
t), xtu − xu⟩, (106)

where 2N,Nf is defined as the set of all subsets of {1, . . . , N} with size Nf and no repeating elements.
For instance, 25,3 contains {1, 3, 4} and {2, 4, 5}, among others. Obviously |2N,Nf | =

(
N
Nf

)
, and

each particular index i ∈ {1, . . . , N} appears exactly
(
N−1
Nf−1

)
times in the sum (106). Thus we can
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establish the following identity:∑
u∈2N,Nf

⟨∇uft(x
t), xtu − xu⟩ =

(
N − 1

Nf − 1

) N∑
i=1

⟨∇ift(x
t), xti − xi⟩. (107)

We plug (107) into (105) and apply Lemma D.2:

⟨∇ft(xt), xt − x⟩ = ⟨∇0ft(x
t), xt0 − x0⟩+

1(
N−1
Nf−1

) ∑
u∈2N,Nf

⟨∇uft(x
t), xtu − xu⟩ (108)

≤ ηt
2

(
||x− xt||2 − ||x− xt+1(0, batcht)||2

)
+

R2
f

2(ηt − L)

+
1(

N−1
Nf−1

) ∑
u∈2N,Nf

(ηt
2

(
||x− xt||2 − ||x− xt+1(u, batcht)||2

)
+

R2
f

2(ηt − L)

)
, (109)

where we define xt+1(u, batcht) for any subset u ⊆ {0, 1, . . . , N} as: xt+1
u := xtu−(1/ηt)∇uft(x

t)
and xt+1

−u := xt−u. Although we can simply use xt+1, here we use this explicit notation to emphasise
dependency of xt+1 on i and batcht. By letting g(x, xt, xt+1) := ηt

2

(
||x− xt||2 − ||x− xt+1||2

)
+

R2
f

2(ηt−L)
, we can express (109) succinctly to yield:

⟨∇ft(xt), xt − x⟩ ≤ g(x, xt, xt+1(0, batcht)) +
1(

N−1
Nf−1

) ∑
u∈2N,Nf

g(x, xt, xt+1(u, batcht)).

(110)
For the second term, we use the uniform expectation to replace the sum (i.e.,

∑
u∈2N,Nf ψ(u) =(

N
Nf

)
Eu∼2N,Nf [ψ(u)] for any function ψ). Using

(
N
Nf

)
/
(
N−1
Nf−1

)
= N/Nf ,

⟨∇ft(xt), xt − x⟩ ≤ g(x, xt, xt+1(0, batcht)) +
N

Nf
Eu∼2N,Nf [g(x, x

t, xt+1(u, batcht))], (111)

and the right hand side of (111) can be written as:
M +MS

MS

(
MS

M +MS
g(x, xt, xt+1(0, batcht)) +

M

M +MS
Eu∼2N,Nf [g(x, x

t, xt+1(u, batcht))]

)
,

(112)
where we use our specification of MS =

M ·Nf

N . Note that the expression inside the parentheses
is exactly the expectation of g(x, xt, xt+1(ut, batcht)) over the random index set ut following our
client-server selection strategy in the long term view, that is, (89). Then we have the following result:

⟨∇ft(xt), xt − x⟩ ≤ M +MS

MS
Eut

[g(x, xt, xt+1(ut, batcht))], (113)

where ut follows (89).

As we have conditioned all quantities on batcht, we now take the expectation over batcht.
⟨∇f(xt), xt − x⟩ = Ebatcht

[⟨∇ft(xt), xt − x⟩] (114)

≤ M +MS

MS
Ebatcht,ut

[
ηt
2

(
||x− xt||2 − ||x− xt+1||2

)
+

R2
f

2
√
t

]
, (115)

where we drop the dependency in xt+1(ut, batcht) in notation, and use ηt = L +
√
t. Since f is

convex,
f(xt)− f(x) ≤ ⟨∇f(xt), xt − x⟩, (116)

and taking the expectation over xt leads to:

E[f(xt)]− f(x) ≤ M +MS

MS

(
ηt
2

(
E||x− xt||2 − E||x− xt+1||2

)
+

R2
f

2
√
t

)
. (117)

By telescoping ( 1
T

∑T
t=1) and using M+MS

MS
=

N+Nf

Nf
, we have:

E

[
1

T

T∑
t=1

f(xt)

]
− f(x) ≤ N +Nf

Nf

1

T

(
1

2

T∑
t=1

ηt
(
E||x− xt||2 − E||x− xt+1||2

)
+R2

f

T∑
t=1

1

2
√
t

)
.

(118)
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There are two sums in the right hand side of (118), and they can be bounded succinctly as follows.
First, we use the simple calculus to bound the second sum:

∑T
t=1

1
2
√
t
≤
∫ T

1
1

2
√
z
dz + 1

2 ≤
√
T .

Next, we let at := E||x−xt||2, and the first sum is written as: η1(a1−a2)+ · · ·+ηT (aT −aT+1) =∑T
t=1(ηt − ηt−1)at − ηTaT+1 by letting η0 = 0. Using at ≤ D2 from Assumption 3, this sum

is bounded above by D2
∑T

t=1(ηt − ηt−1) = D2(ηT − η0) = (
√
T + L)D2. Plugging these

bounds into (118) and applying Jensen’s inequality to the left hand side (i.e., E[(1/T )
∑T

t=1 f(x
t)] ≥

E[f((1/T )
∑T

t=1 x
t)] = E[f(xT )]) yields:

E[f(xT )]− f(x) ≤ N +Nf

Nf
·

√
T+L
2 D2 +R2

f

√
T

T
, (119)

for any x, which completes the proof.

E GENERALISATION ERROR BOUND

In this section we will discuss generalisation performance of our proposed algorithm, answering the
question of how well the Bayesian FL model trained on empirical data performs on the unseen data
points. We aim to provide the upper bound of the generalisation error averaged over the posterior
distribution of the model parameters (ϕ, {θi}Ni=1), by linking it to the expected empirical error with
some additional complexity terms.

To this end, we first consider the PAC-Bayes bounds (McAllester, 1999; Langford & Caruana, 2001;
Seeger, 2002; Maurer, 2004), naturally because they have similar forms relating the two error terms
(generalisation and empirical) expected over the posterior distribution via the KL divergence term
between the posterior and the prior distributions. However, the original PAC-Bayes bounds have the
square root of the KL in the bound, which deviates from the ELBO objective function that has the
sum of the expected data loss and the KL term as it is (instead of the square root). However, there are
some recent variants of PAC-Bayes bounds, specifically the PAC-Bayes-λ bound, which removes the
square root of the KL and suits better with the ELBO objective function (See (Thiemann et al., 2017)
or Eq. (5) of (Rivasplata et al., 2019)).

To discuss it further, the objective function of our FL algorithm (3) can be viewed as a conven-
tional variational inference ELBO objective with the prior p(β) and the posterior q(β), where
β = {ϕ, θ1, . . . , θN} indicates the set of all latent variables in our model. More specifically, the
negative ELBO (function of the variational posterior distribution q) can be written as:

-ELBO(q) = Eq(β)[l̂n(β)] +
1

n
KL(q(β)||p(β)), (120)

where l̂n(β) is the empirical error/loss of the model β on the training data of size n. We then apply
the PAC-Bayes-λ bound (Thiemann et al., 2017; Rivasplata et al., 2019); for any λ ∈ (0, 2), the
following holds with probability at least 1− δ:

Eq(β)[l(β)] ≤
1

1− λ/2
Eq(β)[l̂n(β)] +

1

λ(1− λ/2)

KL(q(β)||p(β)) + log(2
√
n/δ)

n
, (121)

where l(β) is the generalisation error/loss of the model β. Thus, when λ = 1, the right hand side of
(121) reduces to −2 · ELBO(q) plus some complexity term, justifying why maximizing ELBO with
respect to q can be helpful for reducing the generalisation error. Although this argument may look
partially sufficient, but strictly saying, the extra factor 2 in the ELBO (for the choice λ = 1) may be
problematic, potentially making the bound trivial and less useful. Other choice of λ fails to recover
the original ELBO with slightly deviated coefficients for the expected loss and the KL.

In what follows, we state our new generalisation error bound for our FL algorithm, which does not
rely on the PAC-Bayes but the recent regression analysis technique for variational Bayes (Pati et al.,
2018; Bai et al., 2020). It was also adopted in the analysis of some personalised FL algorithm (Zhang
et al., 2022) recently.

E.1 GENERALISATION ERROR BOUND VIA REGRESSION ANALYSIS TECHNIQUE

We begin with the regression-based data modeling perspective and related assumptions/notations. We
denote by P i(x, y) the true data distribution for client i (i = 1, . . . , N ). We assume that the target y
is real vector-valued (y ∈ RSy ), and there exists a true regression function f i : RSx → RSy for each
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i. That is,
P i(y|x) = N (y; f i(x), σ2

ϵ I), (122)
where σ2

ϵ is constant Gaussian output noise variance. Let Di = (Xi, Y i) ∼ P i(x, y) be the
i.i.d. training data of size n for each client i.

In our FL model, we assume that our backbone network is an MLP with L hidden layers of width M ,
and all activation functions σ(·) are Lipschitz continuous with constant 1. The parameters θ of the
MLP are also assumed to be bounded, more formally, the parameter space Θ is defined as:

θ ∈ Θ = {θ ∈ RG : ||θ||∞ ≤ B,MLP with L layers of width M}. (123)
Note that G = dim(θ) and B is the maximal norm bound. The MLP defines a regression function
fθ : RSx → RSy , and the θ-induced predictive distribution is denoted as:

Pθ(y|x) = N (y; fθ(x), σ
2
ϵ I), (124)

where we assume that the true noise variance is known.

For notational convenience, we denote by f(Xi) the concatenated vector of f(x) for all x ∈ Xi,
i.e., f(Xi) = [f(x)]x∈Xi , where f(·) is either the true f i(·) or the model fθ(·). Extending this
notation, simply writing f i or fθ means infinite-dimensional (population) responses, that is, f i =
[f i(x)]x∈RSx and fθ similarly. For instance, ||fθ−f i||∞ stands for the worst-case difference, namely
maxx∈RSx ||fθ(x)− f i(x)||. As a generalisation error measure, we consider the expected squared
Hellinger distance between the true P i and the model Pθ. Formally,

d2(Pθ, P
i) = Ex∼P i(x)

[
H2(Pθ(y|x), P i(y|x))

]
= Ex∼P i(x)

[
1− exp

(
− ||fθ(x)− f i(x)||22

8σ2
ϵ

)]
.

(125)
More specifically, we will bound the posterior-averaged distance 1

N

∑N
i=1 Eq∗i (θi)

[d2(Pθi , P
i)], where

{q∗i (θi)}Ni=1 is an optimal solution of our FL-ELBO optimisation problem10 (We showed in Sec. D
that our block-coordinate FL algorithm converges to this optimal solution in O(1/

√
t) rate).

Theorem E.1 (Generalisation error analysis). Assume that the variational density family for qi(θi)
is rich enough to subsume Gaussian. The optimal solution ({q∗i (θi)}Ni=1, q

∗(ϕ)) of our FL-ELBO
optimisation problem (3) satisfies (with high probability):

1

N

N∑
i=1

Eq∗i (θi)
[d2(Pθi , P

i)] ≤ O

(
1

n

)
+ C · ϵ2n + C ′

(
rn +

1

N

N∑
i=1

λ∗i

)
, (126)

where C,C ′ > 0 are constant, λ∗i = minθ∈Θ ||fθ − f i||2∞ is the best error within our backbone Θ,

rn =
G(L+ 1)

n
logM +

G

n
log

(
Sx

√
n

G

)
, (127)

and ϵn =
√
rn log

δ(n) for δ > 1 constant.

Remark. Theorem E.1 implies that the optimal solution for our FL-ELBO optimisation problem
(attainable by our block-coordinate FL algorithm) is asymptotically optimal, since the right hand
side of (126) converges to 0 as the training data size n → ∞. This is easy to verify: as n → ∞,
rn → 0 obviously, accordingly ϵn → 0, and the last term 1

N

∑
i λ

∗
i can be made arbitrarily close to 0

by increasing the backbone capacity (MLPs as universal function approximators). But practically
for fixed n, as enlarging the backbone capacity (i.e., large G, L, and M ) also increases ϵn and rn, it
is important to choose the backbone network architecture properly. Note also that our assumption
on the variational density family for qi(θi) is easily met; for instance, the families of the mixtures
of Gaussians adopted in NIW (Sec. 3.1) and mixture models (Sec. 3.2) obviously subsume a single
Gaussian family.

Proof of Theorem E.1. We first aim to link the variational ELBO objective function to the Hellinger
distance via Donsker-Varadhan’s (DV) theorem (Boucheron et al., 2013), motivated from (Bai et al.,
2020; Zhang et al., 2022). The DV theorem allows us to express the expectation of any exponential
function variationally using the KL divergence. More specifically, the following holds for any
distributions p, q and any (bounded) function h(z):

logEp(z)[e
h(z)] = max

q

(
Eq(z)[h(z)]− KL(q||p)

)
. (128)

10Note that the optimal posterior on ϕ (i.e., q∗(ϕ)) does not appear here since it only affects d2(Pθ, P
i)

implicitly. See our detailed analysis/proof provided below.
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Here we set p(z) := p(θi|ϕ), q(z) := qi(θi), h(z) := log ηi(θi), where
ηi(θi) := exp

(
ln(Pθi(Di), P

i(Di)) + nd2(Pθi , P
i)
)

and (129)

ln(Pθi(Di), P
i(Di)) := log

Pθi(Di)

P i(Di)
, (130)

and we have the following inequality that holds for any ϕ:
logEp(θi|ϕ)[ηi(θi)] ≥ Eqi(θi)[log ηi(θi)]− KL(qi(θi)||p(θi|ϕ)). (131)

By taking the expectation with respect to q(ϕ) and rearranging terms, we have
n · Eqi(θi)[d

2(Pθi , P
i)] ≤ Eqi(θi)[−ln(Pθi(Di), P

i(Di))] + Eq(ϕ)[KL(qi(θi)||p(θi|ϕ))] +
Eq(ϕ)

[
logEp(θi|ϕ)[ηi(θi)]

]
. (132)

For the last term of the right hand side, we use the bound Es(θ)[η(θ)] ≤ eCnϵ2n from the regression
theorem (Pati et al., 2018), which holds for any distribution s(θ) with high probability. The details
and proof of this bound can be found in the proof of Theorem 3.1 in (Pati et al., 2018). Applying this
bound and telescoping over i = 1, . . . , N yields:

n ·
N∑
i=1

Eqi(θi)[d
2(Pθi , P

i)] ≤
N∑
i=1

Eqi(θi)[−ln(Pθi(Di), P
i(Di))] +

N∑
i=1

Eq(ϕ)[KL(qi(θi)||p(θi|ϕ))] + NCnϵ2n. (133)

We add KL(q(ϕ)||p(ϕ)) to the right hand side, which retains the inequality since KL divergence is
nonnegative. Then we have the following result that holds for any q with high probability,

n

N
·

N∑
i=1

Eqi(θi)[d
2(Pθi , P

i)] ≤ Ln(q(ϕ), {qi(θi)}Ni=1) + Cnϵ2n, (134)

where Ln(q(ϕ), {qi(θi)}Ni=1) equals:

1

N

{ N∑
i=1

(
Eqi(θi)[−ln(Pθi(Di), P

i(Di))] + Eq(ϕ)[KL(qi(θi)||p(θi|ϕ))]
)
+ KL(q(ϕ)||p(ϕ))

}
,

(135)
which exactly coincides with our FL-ELBO objective (3) up to constant, by the factor of 1/N .

Next, we define q̃i(θi) and q̃(ϕ) as follows:

q̃i(θi) = N (θi; θ
∗
i , σ

2
nI) with θ∗i = argmin

θ∈Θ
||fθ − f i||2∞, σ2

n =
G

8n
A, where (136)

A−1 = log(3SxM) · (2BM)2(L+1) ·
((

Sx + 1 +
1

BM − 1

)2
+

1

(2BM)2 − 1
+

2

(2BM − 1)2

)
,

q̃(ϕ) = argmin
q(ϕ)

N∑
i=1

Eq(ϕ)[KL(q̃i(θi)||p(θi|ϕ))] + KL(q(ϕ)||p(ϕ)). (137)

Since ({q∗i (θi)}Ni=1, q
∗(ϕ)) is the optimal solution of the FL-ELBO optimisation problem, it is

obvious that Ln(q
∗(ϕ), {q∗i (θi)}Ni=1) ≤ Ln(q̃(ϕ), {q̃i(θi)}Ni=1) if the variational density family for

qi(θi) is rich enough to subsume Gaussian. Now we look closely at Ln(q̃(ϕ), {q̃i(θi)}Ni=1), and we
note that the last two terms as per (135) are constant (i.e., not a function of data size n). That is,

1

N

{ N∑
i=1

Eq̃(ϕ)[KL(q̃i(θi)||p(θi|ϕ))] + KL(q̃(ϕ)||p(ϕ))
}

= C̃, (138)

for some constant C̃. Then we can write

Ln(q̃(ϕ), {q̃i(θi)}Ni=1) =
1

N

N∑
i=1

Eq̃i(θi)[−ln(Pθi(Di), P
i(Di))] + C̃. (139)

We bound the expected −ln term in (139) using use Lemma E.2 below11, which states that with high
probability,

Eq̃i(θi)[−ln(Pθi(Di), P
i(Di))] ≤ C ′n(rn + λ∗i ), (140)

11Although Lemma E.2 can be found in the proof of Lemma 4.1 of (Bai et al., 2020), we state this lemma
more clearly with separate proof for self-containment.
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for some constant C ′ > 0. Plugging this bound into (139), we have the following derivation where
we start from (134) with q(ϕ) = q∗(ϕ) and qi(θi) = q∗i (θi):

n

N
·

N∑
i=1

Eq∗i (θi)
[d2(Pθi , P

i)] ≤ Ln(q
∗(ϕ), {q∗i (θi)}Ni=1) + Cnϵ2n (141)

≤ Ln(q̃(ϕ), {q̃i(θi)}Ni=1) + Cnϵ2n (142)

≤ C̃ + C ′n

(
rn +

1

N

N∑
i=1

λ∗i

)
+ Cnϵ2n. (143)

By dividing both sides by n, we complete the proof.

Lemma E.2 (From the proof of Lemma 4.1 in (Bai et al., 2020)). For q̃i(θi) defined12 as in (136)
and rn, λ∗i defined as in Theorem E.1, the inequality (140) holds with high probability.

Proof of Lemma E.2. From our regression model assumption (122) and (124),
Eq̃i(θi)

[
− ln(Pθi(Di), P

i(Di))
]
= Eq̃i(θi)

[
logP i(Di)− logPθi(Di)

]
(144)

=
1

2σ2
ϵ

(
Eq̃i(θi)||Y

i − fθi(X
i)||22 − Eq̃i(θi)||Y

i − f i(Xi)||22
)

(145)

=
1

2σ2
ϵ

(
Eq̃i(θi)||fθi(X

i)− f i(Xi)||22︸ ︷︷ ︸
≜R1

+2 · Eq̃i(θi)

〈
Y i − f i(Xi), f i(Xi)− fθi(X

i)
〉︸ ︷︷ ︸

≜R2

)
. (146)

We first work on R1. Since
||fθi(Xi)− f i(Xi)||22 ≤ n · ||fθi − f i||2∞ ≤ 2n

(
||fθi − fθ∗

i
||2∞ + ||fθ∗

i
− f i||2∞

)
, (147)

we have
R1 = 2n · Eq̃i(θi)||fθi − fθ∗

i
||2∞ + 2n · ||fθ∗

i
− f i||2∞ (148)

≤ 2n(rn + λ∗i ). (149)
where in (149), we use the definition of λ∗i and the fact Eq̃i(θi)||fθi − fθ∗

i
||2∞ ≤ rn from Appendix G

in (Chérief-Abdellatif, 2020).

Next, we bound R2. Since (Y i − f i(Xi)) ∼ N (0, σ2
ϵ I) and independent of θi, we can let ϵ :=

Y i − f i(Xi) for ϵ ∼ N (0, σ2
ϵ I). Then

R2 = ϵ⊤ · Eq̃i(θi)

[
f i(Xi)− fθi(X

i)
]
∼ N (0, cfσ

2
ϵ ), (150)

where cf =
∥∥Eq̃i(θi)

[
f i(Xi)− fθi(X

i)
]∥∥2

2
. Applying Jensen’s inequality on the convexity of || · ||22,

cf ≤ Eq̃i(θi)||f i(Xi)−fθi(Xi)||22 = R1. Due to the property of Gaussian, there exists some constant
C ′

0 such that R2 ≤ C ′
0 · cf ≤ C ′

0 ·R1 with high probability. Plugging these bounds on R1 and R2

back to (146) leads to:

Eq̃i(θi)

[
− ln(Pθi(Di), P

i(Di))
]
=

1

2σ2
ϵ

(R1 + 2R2) ≤ 1 + 2C ′
0

2σ2
ϵ

R1 (151)

≤ 1 + 2C ′
0

σ2
ϵ

n(rn + λ∗i ). (152)

Letting C ′ :=
1+2C′

0

σ2
ϵ

(constant) completes the proof.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 MORE RESULTS ON CIFAR-100 & CIFAR-C-100

We test our mixture model with different mixture orders K = 2, 5, 10 on CIFAR-100 (Table 3) and
CIFAR-C-100 (Table 4). In the last columns of the tables, we also report the performance of the
centralised (non-FL) training, in which the batch sampling follows the corresponding FL settings.

12In (Bai et al., 2020), they defined q̃i(θi) as a spike-and-slab model to deal with sparsity. Essentially it is
a mixture of two components, selecting N (θi; θ

∗
i , σ

2
nI) when θ∗i entries are non-zero and selecting the delta

function at 0 when θ∗i entries equal zero. Without loss of generality (or under mild numerical approximation),
we can assume all entries of θ∗i are non-zero, which makes q̃i(θi) Gaussian equal toN (θi; θ

∗
i , σ

2
nI) as in (136).
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Table 3: (CIFAR-100) Global prediction and personalisation accuracy. Mixture order K varied.
Comparison with centralised (non-FL) training.

(a) Global prediction performance (initial accuracy)
FL settings NIW (Ours) Mixture (Ours) Fed-BABU Centralised

s f τ K = 2 K = 5 K = 10

100
0.1

1 49.76±0.12 49.37±0.30 46.97±0.13 48.35±0.07 42.35±0.42 52.21±0.19

10 29.02±0.33 29.02±0.29 29.08±0.63 29.90±0.25 27.93±0.28 36.87±1.72

1.0
1 57.80±0.10 52.94±0.36 52.24±0.20 51.92±0.04 48.17±0.56 58.50±0.52

10 29.53±0.42 30.55±0.15 30.85±0.13 30.24±0.49 28.67±0.51 48.16±0.58

10
0.1

1 37.54±0.25 38.07±0.40 39.96±0.63 39.97±0.52 35.04±0.56 28.55±1.05

10 18.99±0.03 18.95±0.13 18.93±0.37 18.95±0.03 18.54±0.37 9.92±0.33

1.0
1 50.40±0.11 49.52±0.88 49.82±0.43 49.51±0.36 45.41±0.11 78.37±0.88

10 22.87±0.41 23.59±0.47 23.69±0.76 24.28±1.04 21.92±0.66 4.40±0.21

(b) Personalisation performance

FL settings NIW (Ours) Mixture (Ours) Fed-BABU Centralised
s f τ K = 2 K = 5 K = 10

100
0.1

1 54.16±0.50 56.17±0.16 54.93±0.25 55.83±0.47 50.43±0.93 53.18±0.10

10 36.68±0.37 36.32±0.27 37.30±0.64 37.34±0.38 35.45±0.34 38.20±1.58

1.0
1 60.36±0.89 58.82±0.37 58.16±0.26 58.32±0.34 55.87±0.91 58.49±0.50

10 35.92±0.17 36.22±0.17 36.44±0.15 35.91±0.15 35.58±0.24 48.17±0.59

10
0.1

1 79.41±0.24 79.70±0.19 79.29±0.19 77.44±0.54 75.44±0.36 42.04±1.38

10 67.35±1.02 67.57±0.62 67.84±0.40 67.33±0.26 66.24±0.53 17.40±1.05

1.0
1 82.71±0.37 81.03±0.35 79.91±0.25 80.92±0.19 78.92±0.23 78.43±0.90

10 67.78±1.02 66.74±0.27 66.50±0.24 67.30±0.29 66.25±0.46 5.13±0.19

2 5 10
K (the number of networks)

10

20

30

40

50

Ac
cu

ra
cy

Global prediction (s = 100)

Fed-BABU
Preset (Baseline)
Ensemble (Baseline)
Mixture (Ours)

2 5 10
K (the number of networks)

20

30

40

50

Ac
cu

ra
cy

Personalisation (s = 100)

Fed-BABU
Preset (Baseline)
Ensemble (Baseline)
Mixture (Ours)

Figure 3: Comparison between our mixture model and ensemble baselines (K varied) on CIFAR-100.

That is, at each round, the minibatches for SGD (for conventional cross-entropy loss minimisation)
are sampled from the data of the participating clients. The centralised training sometimes outperforms
the best FL algorithms (our models), but can fail completely especially when data heterogeneity is
high (small s) and τ is large. This may be due to overtraining on biased client data for relatively few
rounds. Our FL models perform well consistently and stably being comparable to centralised training
on its ideal settings (small τ and/or large s).

F.2 COMPARISON WITH SIMPLE ENSEMBLE BASELINES.

Our mixture model maintains K backbone networks (specifically {rj}Kj=1) where the mixture order
K is usually small but greater than 1 (e.g., K = 2). Thus it requires extra computational resources
than other methods (including our NIW model) that only deal with a single backbone. As a baseline
comparison, we aim to come up with some simple extension of Fed-Avg (McMahan et al., 2017)
that incorporates multiple (the same K) networks. Here are the detailed descriptions of the baseline
ensemble extensions:
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Table 4: (CIFAR-C-100) Global prediction and personalisation accuracy. Mixture order K varied.
Comparison with centralised (non-FL) training.

(a) Global prediction (initial accuracy) on test splits for the 10 training corruption types
FL settings NIW (Ours) Mixture (Ours) Fed-BABU Centralised
s f τ K = 2 K = 5 K = 10

100
0.1

1 81.22±0.14 80.34±1.44 81.30±0.21 81.23±0.79 79.45±0.71 87.68±0.48

4 67.69±0.74 65.81±0.84 64.37±0.99 66.72±1.46 63.58±1.28 76.82±1.17

1.0
1 91.26±0.83 86.84±0.22 86.41±0.58 87.04±0.33 86.84±0.83 90.22±0.57

4 73.58±1.02 74.55±0.22 74.53±0.81 75.03±0.45 71.03±0.75 87.71±0.91

50
0.1

1 78.63±0.39 79.36±0.24 78.23±0.33 78.45±0.40 77.44±1.17 84.97±0.22

4 65.08±1.75 63.52±0.48 63.08±0.55 63.13±0.21 62.65±0.12 70.76±2.93

1.0
1 89.31±0.17 88.24±0.71 87.81±0.66 87.02±0.19 86.44±0.97 89.92±0.47

4 70.33±0.18 70.19±1.41 71.87±2.31 74.18±0.46 67.66±0.78 86.40±1.90

(b) Global prediction (initial accuracy) on the original (uncorrupted) CIFAR-100 training sets

FL settings NIW (Ours) Mixture (Ours) Fed-BABU Centralised
s f τ K = 2 K = 5 K = 10

100
0.1

1 41.55±0.11 36.99±0.09 37.75±0.50 37.78±0.44 34.76±0.50 35.10±0.65

4 30.84±0.07 30.60±0.27 30.51±0.20 29.13±0.15 28.31±0.28 33.64±1.09

1.0
1 41.32±0.32 38.35±0.73 38.85±0.96 38.97±0.26 35.58±0.41 32.78±0.22

4 30.67±0.12 30.40±0.44 30.57±0.28 30.95±0.28 28.60±0.28 28.95±2.09

50
0.1

1 41.04±0.14 36.41±0.47 36.03±0.24 38.32±0.07 35.44±0.58 35.71±0.13

4 32.29±0.36 31.50±0.34 31.19±0.26 31.06±0.58 29.68±0.08 35.28±1.47

1.0
1 41.64±0.21 38.54±0.42 39.19±0.37 38.93±0.15 36.09±0.28 33.49±0.17

4 32.17±0.48 30.68±0.46 31.29±0.65 32.46±0.20 29.28±0.17 29.50±1.24

(c) Personalisation performance on the 9 held-out corruption types

FL settings NIW (Ours) Mixture (Ours) Fed-BABU Centralised
s f τ K = 2 K = 5 K = 10

100
0.1

1 72.63±2.13 74.16±3.04 74.43±4.94 75.65±4.68 69.93±1.24 88.76±0.31

4 62.74±0.94 61.56±1.69 60.46±0.13 64.41±2.66 60.33±2.12 80.47±0.99

1.0
1 83.62±1.84 84.88±0.85 83.01±1.79 82.58±0.91 77.55±2.05 87.55±2.93

4 64.84±1.05 67.35±1.46 64.34±0.75 65.12±0.77 53.25±2.19 76.58±12.63

50
0.1

1 75.50±0.74 67.33±2.83 67.32±1.35 65.34±3.19 59.47±2.48 84.08±1.03

4 44.90±1.23 46.39±0.83 45.95±0.37 45.43±0.34 44.74±1.30 74.14±2.51

1.0
1 81.46±0.67 81.77±3.11 78.03±1.05 74.62±1.95 67.43±2.58 87.57±1.62

4 50.84±0.74 48.90±0.51 45.07±1.15 48.78±0.49 40.87±3.01 81.46±1.11

1. The server maintains K networks (denoted by θ1, . . . , θK).

2. We partition the clients into K groups with equal proportions. We will assign each θj to
each group j (j = 1, . . . ,K).

3. At each round, each participating client i receives the current model θj(i) from the server,
where j(i) means the group index to which client i belongs.

4. The clients perform local updates as usual by warm-start with the received models, and send
the updated models back to the server.

5. The server collects updated local models from the clients, and takes the average within each
group j to update θj .

6. After training, we have trained K networks. At test time, we can use these K networks in
two different ways/options: (Preset option) Each client i uses the network assigned to its
group, i.e., θj(i), for both prediction and finetuning/personalisation; (Ensemble option) We
use all K networks (as an ensemble) for prediction and finetuning.
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Table 5: Running times (in seconds) on CIFAR-100 with (s = 100, f = 1.0, τ = 1) setting.

Fed-BABU NIW Mix. (K = 2) Mix. (K = 5)

Train Client 0.283 0.362 0.481 0.595

Server 0.027 0.267 1.283 1.434

Global prediction 0.021 0.025 0.040 0.060

Personalisation 1.581 2.158 2.421 2.766

Note that K = 1 exactly reduces to Fed-Avg (or Fed-BABU). In Fig. 3 we visualise the performance
of these ensemble baselines, compared with our mixture model for different K = 2, 5, 10 on CIFAR-
100 with (f = 0.1, τ = 1) setting. It clearly shows that these simple ensemble strategies are
prone to overfit. The result signifies the importance of the sophisticated negative log-sum-exp
regularisation in the client/server updates as in (22) and (23) in our mixture model.

F.3 RUNNING TIMES

Although our models achieve significant improvement in prediction accuracy, we have extra com-
putational overhead compared to simpler FL methods like Fed-BABU. To see if this extra cost is
allowable, we measure/compare wall clock times in Table 5, where all methods are tested on the
same machine, Xeon 2.20GHz CPU with a single RTX 2080 Ti GPU. For NIW, the extra cost in
the local client update and personalisation (training) originates from the penalty term in (17), while
model weight squaring to compute V0 in (18) incurs additional cost in server update. For Mixture, the
increased time in training is mainly due to the overhead of computing distances from the K server
models in (22) and (23). However, overall the extra costs are not prohibitively large, rendering our
methods sufficiently practical.

G (REVISION) ALGORITHMS/PSEUDOCODES AND COMPUTATIONAL
COMPLEXITY ANALYSIS

G.1 ALGORITHMS/PSEUDOCODES

We provide pseudocodes for our algorithms:

1. Training algorithms

• General framework in Alg. 2.
• Normal-Inverse-Wishart case in Alg. 3.
• Mixture case in Alg. 4.

2. Global prediction algorithms

• General framework in Alg. 5.
• Normal-Inverse-Wishart case in Alg. 6.
• Mixture case in Alg. 7.

3. Personalisation algorithms

• General framework in Alg. 8.
• Normal-Inverse-Wishart case in Alg. 9.
• Mixture case in Alg. 10.

G.2 COMPUTATIONAL COMPLEXITY ANALYSIS

Based on the detailed algorithms in Sec. G.1, we can easily analyse the computational complexity of
the proposed algorithms. They are summarised in Table 6 (training complexity with communication
costs), Table 7 (global prediction complexity), and Table 8 (personalisation complexity).
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Algorithm 2 Training algorithm: General framework.
Input: Initial parameters L0 in the variational posterior q(ϕ;L0).
Output: Trained parameters L0.
For each round r = 1, 2, . . . , R do:

1. Sample a subset I of participating clients (|I| = Nf ≤ N ).
2. Server sends L0 to all clients i ∈ I.
3. For each client i ∈ I in parallel do:

Solve (by SGD) with L0 fixed:
min
Li

Eqi(θi;Li)[− log p(Di|θi)] + Eq(ϕ;L0)

[
KL(qi(θi;Li)||p(θi|ϕ))

]
,

Initial Li can be either copied from L0 or the last iterate if the client is able to save Li locally.
4. Each client i ∈ I sends the updated Li back to the server.
5. Upon receiving {Li}∈I , the server updates L0 by solving (with {Li}∈I fixed):

min
L0

KL(q(ϕ;L0)||p(ϕ))−
N

Nf

∑
i∈I

Eq(ϕ;L0)qi(θi;Li)[log p(θi|ϕ)].

Algorithm 3 Training algorithm: Normal-Inverse-Wishart case.
Input: Initial L0 = (m0, V0) in q(ϕ;L0) = NIW(ϕ; {m0, V0, l0 = |D|+ 1, n0 = |D|+ d+ 2}) where

|D| =
∑N

i=1 |Di| and d = the number of parameters in the backbone network p(y|x, θ).
Output: Trained parameters L0 = (m0, V0).
For each round r = 1, 2, . . . , R do:

1. Sample a subset I of participating clients (|I| = Nf ≤ N ).
2. Server sends L0 = (m0, V0) to all clients i ∈ I.
3. For each client i ∈ I in parallel do:

Solve (by SGD) with L0 = (m0, V0) fixed:
min
mi

− log p(Di|m̃i) +
p

2
(n0 + d+ 1)(mi −m0)

⊤V −1
0 (mi −m0),

where m̃i is the dropout version (with probability 1− p) of mi.
Initial mi can be either copied from m0 or the last iterate if the client is able to save mi locally.

4. Each client i ∈ I sends the updated Li = mi back to the server.
5. Upon receiving {mi}∈I , the server updates L0 = (m0, V0) by:

m∗
0 =

p

N + 1

N

Nf

∑
i∈I

mi, V ∗
0 =

n0

N + d+ 2

(
(1 +Nϵ2)I +m∗

0(m
∗
0)

⊤ +
N

Nf

∑
i∈I

ρ(m∗
0,mi, p)

)
,

where ρ(m0,mi, p) = pmim
⊤
i − pm0m

⊤
i − pmim

⊤
0 +m0m

⊤
0 .

Algorithm 4 Training algorithm: Mixture case.
Input: Initial L0 = {rj}Kj=1 in q(ϕ;L0) =

∏
j N (µj ; rj , ϵ

2I) and β in the gating network g(x;β).
Output: Trained parameters L0 = {rj}Kj=1 and β.
For each round r = 1, 2, . . . , R do:

1. Sample a subset I of participating clients (|I| = Nf ≤ N ).
2. Server sends L0 = {rj}Kj=1 and β to all clients i ∈ I.
3. For each client i ∈ I in parallel do:

Solve (by SGD) with L0 = {rj}Kj=1 fixed:

min
mi

Eqi(θi;mi)[− log p(Di|θi)]− log

K∑
j=1

exp

(
− ||mi − rj ||2

2σ2

)
, where qi(θi;mi) = N (θi;mi, ϵ

2I).

Initial mi can be either the center of {rj}Kj=1 or the last iterate if the client is able to save mi locally.

βi = SGD update of β in g(x;β) with data {(x, j∗)}x∼Di where j∗ = argminj ||mi − rj ||.
4. Each client i ∈ I sends the updated Li = mi and βi back to the server.
5. Upon receiving {mi}∈I and {βi}∈I , the server updates L0 = {rj}Kj=1 by the one-step EM:

(E-step) c(j|i) = e−||mi−rj ||2/(2σ2)∑K
j=1 e

−||mi−rj ||2/(2σ2)
, (M-step) r∗j =

1
Nf

∑
i∈I c(j|i) ·mi

σ2

N
+ 1

Nf

∑
i∈I c(j|i)

,

and updates β by aggregation: β∗ = 1
Nf

∑
i∈I βi.
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Algorithm 5 Global prediction: General framework.
Input: Test input x∗. Learned model L0 in the variational posterior q(ϕ;L0).
Output: Predictive distribution p(y∗|x∗, D1:N ).
1. Sample θ(s) ∼

∫
p(θ|ϕ) q(ϕ;L0) dϕ for s = 1, . . . , S.

2. Return p(y∗|x∗, D1:N ) ≈ 1
S

∑S
s=1 p(y

∗|x∗, θ(s)).

Algorithm 6 Global prediction: Normal-Inverse-Wishart case.
Input: Test input x∗. Learned model L0 = (m0, V0) in q(ϕ;L0) = NIW(ϕ; {m0, V0, l0, n0}).
Output: Predictive distribution p(y∗|x∗, D1:N ).

1. Sample θ(s) ∼ tn0−d+1

(
θ;m0,

(l0+1)V0
l0(n0−d+1)

)
for s = 1, . . . , S.

2. Return p(y∗|x∗, D1:N ) ≈ 1
S

∑S
s=1 p(y

∗|x∗, θ(s)).

Algorithm 7 Global prediction: Mixture case.
Input: Test input x∗. Learned model L0 = {rj}Kj=1 in q(ϕ;L0) =

∏
j N (µj ; rj , ϵ

2I) and β in g(x;β).
Output: Predictive distribution p(y∗|x∗, D1:N ).
1. Return p(y∗|x∗, D1:N ) ≈

∑K
j=1 gj(x

∗) · p(y∗|x∗, rj).

Algorithm 8 Personalisation: General framework.
Input: Personal training data Dp. Test input xp. Learned model L0 in the variational posterior q(ϕ;L0).
Output: Predictive distribution p(yp|xp, Dp, D1:N ).
1. Estimate the variational density v(θ) ≈ p(θ|Dp, ϕ∗) by solving (via SGD):

min
v

Ev(θ)[− log p(Dp|θ)] + KL(v(θ)||p(θ|ϕ∗)), where ϕ∗ = argmax
ϕ

q(ϕ;L0).

2. Sample θ(s) ∼ v(θ) for s = 1, . . . , S.
3. Return p(yp|xp, Dp, D1:N ) ≈ 1

S

∑S
s=1 p(y

p|xp, θ(s)).

Algorithm 9 Personalisation: Normal-Inverse-Wishart case.
Input: Personal training data Dp. Test input xp.

Learned model L0 = (m0, V0) in q(ϕ;L0) = NIW(ϕ; {m0, V0, l0, n0}).
Output: Predictive distribution p(yp|xp, Dp, D1:N ).

1. Estimate m in v(θ;m) =
∏

l

(
p · N (θ[l];m[l], ϵ2I) + (1− p) · N (θ[l]; 0, ϵ2I)

)
by solving (via SGD):

min
m
− log p(Dp|m̃) +

p

2
(n0 + d+ 1)(m−m0)

⊤V −1
0 (m−m0),

where m̃ is the dropout version (with probability 1− p) of m.
2. Return p(yp|xp, Dp, D1:N ) ≈ p(yp|xp,m).

Algorithm 10 Personalisation: Mixture case.
Input: Personal training data Dp. Test input xp.

Learned model L0 = {rj}Kj=1 in q(ϕ;L0) =
∏

j N (µj ; rj , ϵ
2I).

Output: Predictive distribution p(yp|xp, Dp, D1:N ).
1. Estimate m in v(θ;m) = N (θ;m, ϵ2I) by solving (via SGD):

min
m

Ev(θ;m)[− log p(Dp|θ)]− log

K∑
j=1

exp

(
− ||m− rj ||2

2σ2

)
.

2. Return p(yp|xp, Dp, D1:N ) ≈ p(yp|xp,m).

H (REVISION): ADDITIONAL EXPERIMENTS

H.1 CIFAR-100 WITH THE EXTRA FOUR FL METHODS

The results are summarized in Table 9 where we use the following hyperparameters for the competing
methods. FedPA (Al-Shedivat et al., 2021): shrinkage parameter ρ = 0.01; FedBE (Chen & Chao,
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Table 6: Training complexity of the proposed algorithms (NIW and Mixture) and Fed-Avg. All
quantities are per-round, per-batch, and per-client costs. In the entries, d = the number of parameters
in the backbone network, F = time for feed-forward pass, B = time for backprop, and Nf = the
number of participating clients per round.

Communication cost Client Local update Server update
Server→ Client Client→ Server

NIW 2d d F +B +O(d)
O(Nf · d)(sent: m0, V0) (sent: mi) (O(d) from quadratic penalty)

Mixture (K + 1)d 2d 2(F +B) +O(K · d)
O(K ·Nf · d)(Order K) (sent: {rj}Kj=1, β) (sent: mi, βi) (O(K · d) from log-sum-exp)

Fed-Avg d d
F +B

O(Nf · d)
(sent: θ) (sent: θi) (aggregation)

Table 7: Global prediction complexity of the proposed algorithms (NIW and Mixture) and Fed-Avg.
All quantities are per-test-batch costs. In the entries, d = the number of parameters in the backbone
network, F = time for feed-forward pass, and S = the number of samples θ(s) from the Student-t
distribution in the NIW case (we use S = 1).

Per-test-batch complexity

NIW S · F +O(S · d)
(O(S · d) from the cost of t-sampling)

Mixture (K + 1)F
(Order K) (a forward pass for the gating network)
Fed-Avg F

Table 8: Personalisation complexity of the proposed algorithms (NIW and Mixture) and Fed-Avg.
All quantities are per-train/test-batch costs. In the entries, d = the number of parameters in the
backbone network, F = time for feed-forward pass, and B = time for backprop.

Training (personalisation) complexity Test complexity

NIW F +B +O(d)
F(O(d) from quadratic penalty)

Mixture F +B +O(K · d)
F(Order K) (O(K · d) from log-sum-exp)

Fed-Avg F +B F

2021): the number of ensemble components 3; FedEM (Marfoq et al., 2021): the number of base
models 3.

H.2 MNIST AND FASHION-MNIST

The FL setting is as follows: the number of clients N = 100, the number of shards per client s = 5,
the fraction of participating clients per round f = 0.1, and the number of local training epochs per
round τ = 1 (total number of rounds 100) or 5 (total number of rounds 20). FedBE and FedEM use
three component models. The backbone is an MLP with a single hidden layer with 256 units. The
results are summarized in Table 10 (MNIST) and Table 11 (Fashion-MNIST).

H.3 EMNIST

The FL setting is as follows: the number of clients N = 200, the fraction of participating clients per
round f = 0.2, and the number of local training epochs per round τ = 1 (total number of rounds
300). We follow the standard Dirichlet-based client data splitting. FedBE and FedEM use three
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component models. The backbone is a standard ConvNet with two hidden layers. The results are
summarized in Table 12.

I (REVISION): EXTENDED RELATED WORK

General FL approaches. Perhaps the seminal pioneering work on FL is attributed to FedAvg (McMa-
han et al., 2017), which proposed fairly intuitive local training and global aggregation strategies
with minimal training and communication complexity. A potential issue of divergence of global and
local models due to the separated steps of local training and aggregation was addressed by model
regularisation in the follow-up works (Li et al., 2018; Acar et al., 2021), which is shown to help the
global model converge more reliably. Recent approaches aimed to incorporate benefits from existing
machine learning approaches including domain adaptation/generalisation, clustering, multi-task
learning, transfer learning, and meta-learning. To deal with heterogeneous client data distributions,
those works in (Peterson et al., 2019; Zhang et al., 2021; Sun et al., 2021) attempted to tackle the FL
problem in the perspective of (multi-)Domain Adaptation/Generalisation. Another interesting line of
works aims to cluster clients with similar data distributions together (Briggs et al., 2020; Mansour
et al., 2020). Along the line, the shared representations among the related or similar clients can be
modeled motivated from general multi-task learning (Smith et al., 2017; Dinh et al., 2021). Motivated
from transfer learning, reasonable attempts are made to exploit the idea of learning/transferring
knowledge from related clients (Chen et al., 2020; Yang et al., 2020; Dinh et al., 2020; Li et al., 2021),
Last but not least, there have been attempts to the personalised FL methods based on meta learning
since the fientuning from the global trained model can be seen as adaptation to new data (Chen et al.,
2018; Fallah et al., 2020).

Comparison to existing Bayesian FL approaches. Some recent studies tried to address the FL
problem using Bayesian methods. As we mentioned earlier, the key difference is that these methods
do not introduce Bayesian hierarchy, and ultimately treat network weights θ as a random variable
shared across all clients, while our approach assigns individual θi to each client i governed by a
common prior p(θi|ϕ). The non-hierarchical approaches must all resort to ad hoc heuristics or strong
assumptions in parts of their algorithm. More specifically, FedPA (Posterior Averaging) (Al-Shedivat
et al., 2021) aims to establish the decomposition, p(θ|D1:N ) ∝

∏N
i=1 p(θ|Di) also known as product

of experts, to allow client-wise inference/optimisation of p(θ|Di). Unfortunately this decomposition
does not hold in general unless we make a strong assumption of uninformative prior p(θ) ∝ 1 as they
did. FedBE (Bayesian Ensemble) (Chen & Chao, 2021) aims to build the global posterior distribution
p(θ|D1:N ) from the individual posteriors p(θ|Di) in either of two ad-hoc ways: SWAG (Maddox
et al., 2019)-like model averaging over clients, or a convex combination of the modes of the local
posteriors. pFedBayes (Zhang et al., 2022) can be seen as an implicit regularisation-based method to
approximate p(θ|D1:N ) from individual posteriors p(θ|Di). To combine the individual posteriors,
they introduce the so-called global distribution w(θ), which essentially serves as a regulariser
that aims to enforce local posteriors p(θ|Di) not to deviate from it, i.e., p(θ|Di) ≈ w(θ) for all
i. The introduction of w(θ) and its update strategy appears to be a hybrid treatment rather than
solely Bayesian perspective. Finally, FedEM (Marfoq et al., 2021) forms a seemingly reasonable
hypothesis that local client data distributions can be identified as mixtures of a fixed number of
base distributions (with different mixing proportions). However, although they have probabilistic
modeling, mixture estimation, and base distribution learning under this hypothesis, this method is not
a Bayesian approach.

FedGP (Achituve et al., 2021b) aims to extend the GP-Tree algorithm (Achituve et al., 2021a) to
the FL setting via the shared deep kernel learning. To this end, the clients perform GP-Tree kernel
learning locally on its own data while the server aggregation simply follows the FedAvg algorithm
to learn a global kernel. In this sense, the overall approach is quite different from our hierarchical
Bayesian treatment. FedPop (Kotelevskii et al., 2022): It has a similar hierarchical Bayesian model
structure as ours. But they split the backbone network parameters into those of the feature extractor
(denoted by ϕ in the paper) and the linear classification head (β). In their model, the feature extractor
weights ϕ are shared across the clients (called fixed effects), and the client-wise classification head
parameters zi are sampled from β, i.e., zi ∼ p(z|β). Thus the client data Di is generated by ϕ and zi.
The main differences from our approach are in four folds: 1) The higher-level variables β and local
variables zi sampled from β are both restricted to the linear classification head part of the network,
which makes imposing uncertainty in model parameters quite limited; 2) Moreover, they do not
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actually treat β (and ϕ of feature extractor) as random variables, but deterministic variables which
are optimized in empirical Bayes learning. This hinders the model from benefiting from hierarchical
Bayesian modeling (e.g., they do not have prior distribution p(β) at all); 3) Their optimization is
alternating between the feature extractor ϕ and the head prior parameters β, utterly different from
our block coordinate optimization alternating between higher level random variables and individual
local variables; 4) They did not use variational inference for inference p(zi|Di, ϕ, β), but MCMC
sampling (Lagevin dynamics), which is the very reason why they had to reduce the size of the latents
zi only limited to classification heads, instead of full network parameters as we did.
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