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Abstract

Multimodal foundation models are prone to hallucination, generating outputs that
either contradict the input or are not grounded by factual information. Given the
diversity in architectures, training data and instruction tuning techniques, there can
be large variations in systems’ susceptibility to hallucinations. To assess system
hallucination robustness, hallucination ranking approaches have been developed
for specific tasks such as image captioning, question answering, summarization, or
biography generation. However, these approaches typically compare model outputs
to gold-standard references or labels, limiting hallucination benchmarking for new
domains. This work proposes CrossCheckGPT, a reference-free universal hallucina-
tion ranking for multimodal foundation models. The core idea of CrossCheckGPT
is that the distribution of hallucination content is different among different systems,
hence cross-system consistency can provide meaningful and accurate hallucination
assessment scores. CrossCheckGPT can be applied to any model or task, provided
that the information consistency between outputs can be measured through an
appropriate distance metric. Focusing on multimodal large language models that
generate text, we explore two information consistency measures: CrossCheck-
explicit and CrossCheck-implicit. We showcase the applicability of our method
for hallucination ranking across various modalities, namely the text, image, and
audio-visual domains. Further, we propose the first audio-visual hallucination
benchmark, AVHalluBench, and illustrate the effectiveness of CrossCheckGPT,
achieving correlations of 98% and 89% with human judgements on MHaluBench
and AVHalluBench, respectively.

1 Introduction

In generative foundation models, ‘hallucination’ refers to instances where generated outputs, while
seemingly credible, are inconsistent with the provided context or contradict established facts [25, 49,
45]. Hallucination impacts many generative applications and can lead to misinformation [53, 34].
Given the differences in architectures, data, and alignment techniques across models, it is crucial to
quantify the susceptibility of a system to hallucination, allowing the assessment of hallucination risks
and choosing systems with higher factual consistency.

Current hallucination benchmarks rank systems for individual tasks including question-answering
[23, 14, 19, 10, 44], summarization [30, 28], biography generation [29], instruction following
[31], image captioning [37], and visual question-answering [20, 50]. Many benchmarks use proxy
measures, such as answering questions designed to trigger hallucinations, but are task-specific and
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Figure 1: SelfCheckGPT (Left) and CrossCheckGPT (Right) for hallucination rankings. The approach can rank
a set of MLLMs on any task without reference, enabling hallucination benchmarks for various generative tasks.

rely on gold-standard labels, limiting generalizability. On the other hand, hallucination detection
approaches such as SelfCheckGPT [29] and UniHD [4] directly examine generated responses against
self-evidence, without needing gold-standard answers. These methods, though, simply aim to identify
when a model hallucinates, and scores are not directly comparable across different models.

In this paper, CrossCheckGPT, which is a universal hallucination ranking approach, is proposed to
benchmark multimodal foundation models. The core idea of CrossCheckGPT is that the distribution
of hallucinated content is different among different systems, while factual content is likely to be
consistent across models. An illustration of the approach and a comparison with SelfCheckGPT is
shown in Fig. 1. Instead of checking for self-consistency, as in SelfCheckGPT, CrossCheckGPT
checks cross-consistency by comparing against evidence generated from a set of independent models.
This produces more accurate and directly comparable hallucination scores, as well as yielding more
robust rankings. CrossCheckGPT can be applied to any foundation model and task as long as a
suitable information consistency measure is used.

CrossCheckGPT is validated on WikiBio [29] and MHaluBench [4] as text-to-text and image-to-text
description tasks, and our experiments show that CrossCheckGPT achieves a notable 98% Spearman’s
Rank Correlation (SRC) on MHaluBench against human ranking compared to -10% SRC using
SelfCheckGPT and 33% using UniHD. In addition, a comprehensive audio-visual hallucination
benchmark dataset (AVHalluBench) is proposed, covering a diverse range of styles, domains and
elements such as visual text, speech and music. The AVHalluBench is used to rank recent audio
and video LLMs such as Gemini 1.5 Pro, conducting the first study on audio-visual hallucination
benchmarking. The key contributions of this paper are summarized as follows:

• We propose CrossCheckGPT, a reference-free hallucination ranking approach that can be
applied universally across text-generation tasks for systems of different modalities.

• We conduct comprehensive experiments over a range of tasks and modalities, demonstrating
the effectiveness of CrossCheckGPT as a hallucination benchmarking approach for ranking
text, image or audio-visual systems. Experimental results illustrate that CrossCheckGPT
consistently outperforms alternate approaches, such as SelfCheckGPT [29] and UniHD [4].

• We analyze hallucination within video understanding and curate AVHalluBench, which to the
best of our knowledge, is the first publicly released audio-visual hallucination benchmark.

2 Related Work

LLM Hallucination Benchmarking: Hallucination benchmarks typically rely on proxy tasks to
probe the likelihood of LLM making factual errors. For example, question-answering (QA) based
benchmarks, such as TriviaQA [14], TruthfulQA [23], HaluEval-QA [19], MemoTrap [31] and
FEWL [51] design questions specifically to probe truthfulness and factual accuracy and rank systems
by their accuracy. Other methods, such as FaithDial [10], XSum [35] and CNN-DM [39] measure
hallucination in dialogue responses or summarization. However, these benchmarks require references
(e.g., ground-truth answers or gold-standard references) to compare to model-generated outputs. On
the other hand, SelfCheckGPT [29] can be used to rank systems on hallucination levels by measuring

2



systems’ self-consistency scores on equivalent tasks. However, SelfCheckGPT was designed as a
hallucination detection method and may not be calibrated across systems.

Multimodal LLM Hallucination Benchmarking: Multimodal hallucination has been mainly
explored in the image-to-text domain for visual LLMs. One stream of methods, including CHAIR [37],
LURE [57] and MHaluBench [4], directly evaluate the generated text descriptions of images using
gold-standard annotations or external toolkits. Another stream of methods, such as POPE [20] and
HallusionBench [13], curate a set of questions with short answers trying to capture various aspects of
hallucination. Meanwhile, AMBER [50] combines both generation and question answering in one
single benchmark. Unlike these methods, CrossCheckGPT does not rely on gold-standard reference
or dedicated question sets, and can be universally applied to any input modalities.

3 CrossCheckGPT

CrossCheckGPT assigns a score to an MLLM (denoted as the target model) by assessing how much
the responses of the MLLM are supported by evidence generated from a set of MLLMs (denoted as
evidence models). The CrossCheckGPT scores can then be used to rank the MLLMs. As illustrated
in Fig. 2, we explore two information consistency measures, CrossCheck-explicit and CrossCheck-
implicit, which measure the hallucination of generated responses either through the explicit generation
of evidence passages or implicit prompting, respectively. CrossCheckGPT is reference-free and can
be generally applied to MLLMs of any input modality and output response type.

T
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Figure 2: Illustration of the CrossCheckGPT approach with two evidence models as an example. Two
information consistency measures are shown. 1⃝ CrossCheck-explicit where N passages are stochastically
generated by sampling from each evidence model and 2⃝ CrossCheck-implicit where evidence models are
directly used to determine whether there are any factual errors in each sentence (without sampling). The LLM
judge uses the sentence and the analysis from the evidence model to produce the Yes/No binary decision.

3.1 Information Consistency Measures

CrossCheck-explicit stochastically generates a set of evidence passages from each evidence model
and computes the average distance between each evidence passage and the target response. Let
R = [r1, . . . , ri, . . . , rI ] denote the response of the target model M̂ , where ri is the i-th sentence
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of the response, to a given query Q, which can be of any modality. We first re-formulate the
SelfCheckGPT score for sentence ri of the target model in Eqn. (1) below,

Sselfcheck(M̂) =
1

|Q|
1

I

∑

Q∈|Q|

I∑

i=1

Sselfcheck
ri,Q (M̂) where Sselfcheck

ri,Q (M̂) =
1

N̂

N̂∑

n=1

x
(n)
ri,Q

(M̂) (1)

where Q is the set of queries in a test set, N̂ is the number of stochastically generated passages by
the model M̂ , and x

(n)
ri,Q

(M̂) denotes the hallucination score of whether sentence ri is supported by
evidence n from M̂ . The hallucination score, estimated by prompting an LLM judge with the sentence
and each evidence, takes a value in {0, 1}, where 0 denotes supported and 1 denotes hallucinatory.

CrossCheck-explicit, in contrast to SelfCheckGPT, uses the evidence from |M| evidence models and
measures the distance of the response against those from all other systems. The overall CrossCheck-
explicit score Cexplicit(M̂) for a specific target model M̂ can be computed using Eqn. (2),

Cexplicit(M̂)=
1

|Q|
1

I

∑

Q∈|Q|
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ri,Q

(M̂) where Cexplicit
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(2)

where M denotes the set of evidence models used for CrossCheck-explicit. Note that self-consistency
can be taken into account by including the target model M̂ into the evidence models, M̂ ∈M. Each
evidence model Mj stochastically generates Nj passages to check the response against, and since
systems may have different levels of reliability, a factor ηj can be assigned to the passages generated
from model Mj .

CrossCheck-implicit is an alternative consistency measure, where instead of explicitly generating
passages for the same query, the evidence models are prompted to spot any factual errors in each
sentence. The overall implicit CrossCheck-implicit score is computed using Eqn. (3),

Cimplicit(M̂) =
1

|Q|
1

I

∑

Q∈|Q|

I∑

i=1

C implicit
ri,Q

(M̂) where C implicit
ri,Q

(M̂) =

|M|∑

j=1

ηj yri,Q(Mj) (3)

where yri,Q(Mj) denotes the hallucination score of sentence ri computed using CrossCheck-implicit.
In contrast to CrossCheck-explicit (which computes xri,Q(Mj)), yri,Q(Mj) is computed by first
prompting the evidence model Mj to analyze whether ri contains any factual errors given the input
Q. The LLM judge then takes the input ri and analysis from model Mj and predicts yri,Q(Mj),
whether the response is hallucinatory. If factual errors are found in ri, yri,Q(Mj) = 1, and otherwise
yri,Q(Mj) = 0. We note that concurrent work, PoLL [48], applies a group of models as judges to
evaluate texts and can be viewed as similar to CrossCheck-implicit. This work focuses on multimodal
inputs and hallucination benchmarking.

3.2 Confidence-based Weighting for Evidence Models

While all evidence models are advanced MLLMs, the quality of their evidence may vary depending
on their propensity to hallucinate. Therefore, a weighting mechanism is proposed where the scores
are weighted by model uncertainty reflected by SelfCheckGPT scores, as shown below:

ηj =
e−Sselfcheck(Mj)/T

∑|M|
k=1 e

−Sselfcheck(Mk)/T
, (4)

where T is the calibration temperature that determines the sharpness of the weight distribution, which
is set to a constant for each benchmark. A higher SelfCheckGPT score indicates that the model tends
to generate inconsistent information and is more uncertain. In addition, this weighting mechanism
ensures that outlier systems will not be undermined by the evidence from weaker models.1

1Note that a weight distribution can also be associated with each specific query by using the average
SelfCheckGPT score of each evidence model.
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4 CrossCheckGPT for Hallucination with Multimodal Inputs

CrossCheckGPT is designed to be general and applicable to models of any input modality, provided
that the outputs are of a consistent form (i.e. text) and a suitable information consistency measure
is used. This general design of CrossCheckGPT enables it to also be applied to rank multi-modal
systems (i.e. systems which use two or more input modalities).
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Figure 3: CrossCheckGPT score computation for AVHalluBench with audio, visual and audio-visual inputs.

As shown in Fig. 3, CrossCheckGPT is used to evaluate models across three categories: audio,
visual (e.g., image/silent video), and audio-visual. For audio-visual, we conduct the first study
on hallucination evaluation using videos with paired audio. Due to limited systems that process
audio-visual inputs, multi-modal models are prompted to split outputs into visual and auditory
descriptions, evaluating them separately. Visual descriptions are used to check visual-only inputs
and audio descriptions to check audio-only inputs. Information may require both modalities to
check hallucination in audio-visual settings, e.g., demonstrating a skateboard trick. In this scenario,
C = min

(
Caudio, Cvisual

)
is the score where Caudio and Cvisual are the audio and visual descriptions.2

AVHalluBench: To benchmark hallucinations in audio-visual LLMs, we curate AVHalluBench,
a dataset containing 175 videos selected from six video understanding datasets covering various
styles and elements, with statistics shown in Table 15 in the Appendix. To verify the effectiveness of
CrossCheckGPT (and future benchmarking methods), AVHalluBench includes a carefully written
set of hallucination-free descriptions for audio and visual contents. After watching each video with
audio, the annotators were instructed to write one description focusing on the audio content and one
description focusing on the visual content of the video, separately.3 To analyze the inter-annotator
agreement, we split each description into atomic facts [32] and verify each fact against the descriptions
written by the other annotators, categorized as either: Supporting, such that the fact is supported
by the other annotator, Contradicting, such that the fact contradicts the information provided by
the other annotator, or Neutral such that the facts neither support nor contradict one another. Both
decomposition and verification processes are performed automatically using GPT-4. Of the 39
videos annotated by multiple annotators, there were 471 audio-related facts and 913 visual-related
facts, and the agreement between annotators (as counted by Supporting/Neutral/Contradicting) was
64.6%/24.6%/10.8% and 62.0%/29.0%/9.0%, respectively. AVHalluBench is available at https:
//huggingface.co/datasets/scb10x/avhallubench.

5 Experiments

We conduct experiments to validate CrossCheckGPT on MLLMs with three input modalities, includ-
ing text (§5.1), image (§5.2), and audio-visual (§5.3). During inference, we use a temperature of
1.0, a beam size of 1 and a top-p of 0.9 are used for all models. SelfCheckGPT [29] is applied as a
hallucination ranking baseline for all modalities since it is reference-free and not task-specific.

2For simplicity, M̂ , ri, and Q are dropped here, and the scores can be either implicit or explicit. Initial
findings showed that CrossCheck-implicit produces different audio and visual score ranges, averaging 0.2 and
0.5, respectively. Thus, only CrossCheck-explicit is used for audio-visual inputs.

3To maximize coverage, initial descriptions were generated using Gemini 1.5 Pro and GPT-4v, prompted
to describe all the elements present in the sequence of frames. Note that although these descriptions are not
hallucination-free, they have a high level of coverage and subjective details. The annotators were provided with
these descriptions in addition to the videos while being instructed to write only objective details of the videos.
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5.1 Text-to-text Experiments

Experimental Setup: The main text-to-text experiments are performed using the subset of WikiBio
data used in [29], which contains 238 biographical passages from Wikipedia. We select 10 open-
source LLMs (listed in Appendix Table 7) as target models, 8 of which are used as evidence models.
Four models are Llama-2-7B based [46] (e.g. Vicuna-v1.5-7B [6]) and four models are Mistral-7B
based [16]. Each evidence model generates 20 stochastic passages. For the LLM judge in CrossCheck-
explicit (used to determine whether sentences support one another), Mistral-7B [16] is used as it
achieves the best results among all considered open-source LLMs (shown in Appendix Table 10).

To evaluate the general benchmarking ability of ranking methods, 10 benchmark metrics from the
hallucinations leaderboard [15] (shown in Table 8) are selected to provide the overall hallucination
ranking of the systems. These metrics are either based on human annotation or gold-standard
references, where the overall rankings are obtained by averaging the rankings from each metric.

We report the system-level correlation between the hallucination ranking methods and the overall
ranking measured by Spearman’s Rank Correlation coefficient (SRC), denoted as System(ρ). In
addition, as WikiBio contains reference texts, the references can be used as evidence texts, which
can be considered an idealized fact-checking method. This method is referred to as RefCheck, and
CrossCheckGPT and SelfCheckGPT scores also are compared against RefCheck at document-level
using Pearson’s Correlation Coefficient (PCC), denoted as Document(r). Furthermore, to investigate
the effectiveness of CrossCheckGPT when the target LLM is much more powerful than those evidence
models, we include GPT-4 in addition to the 10 target LLMs.

Hallucination Ranking Results: Existing hallucination metrics such as HaluEval-QA accuracy do
not correlate well with the overall ranking at the system level. Some metrics have negative correlations
while the highest (TruthfulQA MC2) is 57.14% (shown in Table 1, with further pairwise correlations
provided in Appendix Table 13). This is likely because each existing metric is typically designed to
measure only one aspect related to hallucinations, e.g., probing through question-answering.

Metrics System(ρ) (%) Document (r) (%)
w/o GPT4 with GPT4

TruthfulQA MC2 [23] 57.14 - -
SelfCheckGPT [29] 66.46 74.06 76.08

CrossCheck-implicit 56.71 18.33 17.29
CrossCheck-explicit 77.44 82.28 77.23
CrossCheck-implicit weighted 56.81 20.21 19.16
CrossCheck-explicit weighted 82.32 81.78 82.18

Table 1: General hallucination evaluation where the task for SelfCheckGPT/CrossCheckGPT is open-ended
biography generation on WikiBio. System-level correlation, System(ρ), is measured against the overall ranking
of the leaderboard, and document-level correlation, Document(r), is measured against RefCheck. “With GPT-4”
refers to including GPT-4 as a target model. Additional metrics are presented in Table 11 in the Appendix.Human scores Human scores Human scores

RefCheck scoresRefCheck scores
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Figure 4: Scatter plot of document-level scores for SelfCheckGPT and
CrossCheck-explicit against RefCheck for text-to-text experiments.

Subset Values

Succ. Rate 90%
P-value 4×10−6

Table 2: Success rate of Cross-
Check outperforming SelfCheck
for independent subsets of Wik-
iBio documents. The P-value is
measured by the one-tailed sign
test with H0 = CrossCheck not
better than SelfCheck.

CrossCheck-explicit correlates with the overall ranking better than all other methods, with
CrossCheck-explicit weighted by model uncertainty achieving the highest correlation, highlighting its
effective general hallucination ranking ability. In addition, the document-level correlation plots are
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shown in Fig. 4, and the sign test on independent subsets in Table 2 shows the statistical significance
(p = 4× 10−6) of CrossCheckGPT being better than SelfCheckGPT for ranking at the system-level.

5.2 Image-to-text Experiments

We validate CrossCheckGPT for the hallucination ranking of visual LLMs on image-to-text tasks.
The experiments are performed on MHaluBench [4], an image-captioning hallucination dataset. Nine
visual LLMs are selected as target models, all of which are used to generate evidence passages (see
Appendix Table 7 for the list of models). Each evidence model generates ten image descriptions
per image. The overall ranking is obtained by averaging the rankings from CHAIR [37] and POPE
(MSCOCO subset) [20].4 In addition to SelfCheckGPT, UniHD[4] is used as a stronger baseline.

For evaluation, we take a subset of 30 image descriptions generated by each target model (a total of
270 passages with 3237 facts) and annotate each description with a binary label of either hallucinatory
or factual. The Cohen’s κ between the two annotators is 0.632, indicating substantial agreement. The
models are ranked by the average percentage of factual errors produced by each target model, and
hallucination ranking performance is measured at the system-level using SRC, denoted System(ρ)
and at the image-level using PCC, denoted as Image(r).

Metrics System(ρ) (%) Image(r) (%)
Overall CHAIR Human Human

UniHD [4] 42.02 36.98 33.33 36.70
SelfCheckGPT [29] 43.70 23.10 -10.00 20.93

CrossCheck-implicit 50.42 64.71 98.33 48.72
CrossCheck-explicit 42.86 43.70 75.00 35.16
CrossCheck-implicit weighted 50.42 64.71 98.33 52.83
CrossCheck-explicit weighted 47.06 46.22 73.33 36.98

Table 3: System-level correlation measured by System(ρ) and Image-level correlation measured by Image(r) for
various hallucination evaluation methods on the MHaluBench dataset. System-level correlation is measured
against the overall ranking, rankings from CHAIR scores and human annotation.

Hallucination Ranking Results: Similar to before, Table 3 presents the system-level and image-level
correlations against overall rankings and rankings derived from human annotations. Both variants
of CrossCheckGPT outperform SelfCheckGPT and UniHD, with CrossCheck-implicit weighted
performing best out of all methods, achieving a 98.33% correlation with the rankings from human
annotations. Equivalent statistical significance analysis and scatter plots are shown in Table 14 and
Fig. 7 in the Appendix F, respectively.

5.3 Video-to-text Experiments

Next, we apply CrossCheckGPT to AVHalluBench to investigate hallucination ranking in audio-visual
LLMs. We consider 7 models that can handle video inputs and 6 models that can handle audio inputs.
Three models, FAVOR [41], Video-LLaMA [55], and Gemini 1.5 Pro [43], are in the intersection of
the two sets, and can handle audio-visual inputs. When ranking hallucinations for visual description,
we consider audio-visual LLMs with visual-only inputs and audio-visual inputs as separate systems,
and hence, there are 7+3=10 target models for ranking. We conduct a similar ranking scheme for
audio descriptions, where there are 6+3=9 target models. All the target models are also used as
evidence models in CrossCheck-explicit,5 and each model generates ten evidence passages. When
using audio-visual LLMs as evidence models, audio-visual inputs are given to obtain the visual or
audio descriptions as evidence. As only 5 target models can handle speech inputs, we further make a
dedicated ranking only for these models with prompts explicitly asking for speech description.

Hallucination Ranking Results: First, system-level and video-level correlations are shown in Table 4,
measured by System(ρ) and Video(r). CrossCheck-explicit correlates with RefCheck best, with
an 89.09% System(ρ) for the visual description. Similar to the text-to-text results, we observe that

4CHAIR and POPE are the two popular representative metrics for free-form text generation and binary
classification hallucination benchmarks respectively [50].

5Gemini 1.5 Pro is not used for CrossCheck-implicit due to the number of request limitations.
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Metrics Visual Description (%) Audio Description (%)
System(ρ) Video(r) System(ρ) Video(r) (w. speech)

SelfCheckGPT 86.67 65.77 60.00 51.13 (44.55)
CrossCheck-implicit weighted 54.29 30.73 40.00 2.15 (16.20)
CrossCheck-explicit weighted 89.09 78.58 71.67 68.10 (47.60)

Table 4: System-level and video-level correlations of SelfCheckGPT and CrossCheckGPT against RefCheck
using manual descriptions in AVHalluBench. Weighted version of CrossCheckGPT is used with C = 0.1.
Ranking correlations for systems that handle speech are in brackets.

CrossCheck-explicit performs better than CrossCheck-implicit. For both text-to-text and video-to-text
experiments, this is likely due to the high diversity in the evidence passages as indicated by high raw
SelfCheckGPT scores, which we discuss further in Section 5.4.

Impact of Audio-Visual Inputs: As supporting information from another modality is expected to
reduce hallucination, this section investigates whether audio-visual inputs reduce the raw hallucination
scores compared to the scores when a single modality is used. Table 5 presents the average raw
hallucination scores (rather than correlations), for three MLLMs that can take audio-visual inputs.

Model Input modality Visual Description (%) Audio Description (%)
Sselfcheck ↓ Cexplicit ↓ Sselfcheck ↓ Cexplicit ↓

FAVOR [41]
Visual 60.67 53.85 — —
Audio — — 49.62 66.69

Audio-Visual 56.42 49.60 33.25 35.20

Video-LLaMA [55]
Visual 41.14 52.02 — —
Audio — — 56.42 68.05

Audio-Visual 47.73 49.13 70.23 41.25

Gemini 1.5 Pro [43]
Visual 19.87 31.74 — —
Audio — — 25.82 34.66

Audio-Visual 12.77 23.27 48.51 28.79

Table 5: SelfCheckGPT scores (Sselfcheck) and weighted CrossCheck-explicit scores (Cexplicit) on AVHalluBench
for audio-visual LLMs. Calibration temperature T = 0.1 is used here.

When considering the CrossCheckGPT scores, we observe that having audio-visual inputs reduces
hallucination rates, as measured by the raw CrossCheckGPT scores, as expected. While Gemini 1.5
Pro achieved the best scores, it can be more susceptible to hallucination when silent videos are used as
inputs as it often fabricates its audio descriptions. Moreover, except for Gemini 1.5 Pro, when audio-
visual inputs are used the reduction in hallucination scores is larger for audio description tasks than
for visual description tasks. This likely occurs as for audio description tasks, visual information often
provides useful information on the source of the sound, which can significantly reduce the uncertainty
of the sound. For visual description tasks, while particular audio cues (especially from speech) can
provide useful information, misleading or unrelated sounds may cause additional hallucinations. For
example, in Fig 10 where there is a self-playing piano, audio inputs can mislead a model to believe
that the piano is played by an individual. Further examples are presented in Appendix H with the raw
hallucination scores for audio and visual-only inputs shown in Tables 16 and 17 in Appendix.

5.4 CrossCheck-explicit vs. CrossCheck-implicit

While CrossCheck-implicit is more sample-efficient than CrossCheck-explicit and only requires
generating the error analysis once, the performance of CrossCheck-implicit can be highly dependent
on the task. For the text-to-text and video-to-text experiments, CrossCheck-implicit performs worse
than CrossCheck-explicit, as opposed to the findings in the image-to-text experiments. We hypothesize
that for challenging and open-ended tasks, CrossCheck-explicit is preferred as it can better cover
the output space by disentangling the evidence generation and verification tasks, yielding more
calibrated uncertainty measures. However, in other circumstances, CrossCheck-implicit may help
the model focus on specific aspects of the input and yield more accurate rankings. For challenging
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and open-ended tasks with diverse outputs, the raw SelfCheckGPT scores are expected to be high
and therefore can be used as a proxy to determine which consistency measure to select. For example,
the average SelfCheckGPT score across models is 40.63% for text-to-text, which is much higher
than 17.16% for image-to-text. We recommend using CrossCheck-explicit when the SelfCheckGPT
scores are high, and CrossCheck-implicit when they are sufficiently low, which is demonstrated to be
a reasonable rule, illustrated by the results in Appendix Table 18.

5.5 Ablation Studies

Self-Bias: LLMs are known to have self-preferential bias [2, 56] and may prefer outputs from similar
models. Therefore LLMs using the same base model may provide inflated CrossCheckGPT scores.
The results in Table 6 show that self-bias is an issue, and for example, when only using Llama-2-based
evidence models, the outputs from Vicuna get a lower hallucination score whereas when only using
Mistral-based evidence models, Mistral has the lowest hallucination score, resulting in contradictory
conclusions. This bias can be mitigated by adopting a wide range of evidence models, which is
adopted in CrossCheckGPT scores, hence achieving more reliable evaluation with strong correlations.

Evidence Models System(ρ) Document(r) Vicuna Cexplicit Mistral Cexplicit

Llama-2-based models only 55.49% 81.10% 42.94% 45.68%
Mistral-based models only 81.71% 81.06% 44.98% 41.81%
All models 82.32% 82.28% 44.82% 44.93%

Table 6: The mitigation of self-bias in CrossCheckGPT scores and its influence measured by document-level
correlations and CrossCheck-explicit scores of Vicuna and Mistral on WikiBio. There are 4 Llama-2-based
models and 4 Mistral-based models in the set of evidence models.
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Figure 5: Variation of SelfCheckGPT scores (Left) and the weighted CrossCheck-explicit scores (Right) against
the varying temperature during description generation.

Robustness to Manipulation: To investigate whether a ranking method can be easily manipulated,
we examine the influence of the generation temperature (which can be selected for any model).
The results in Fig. 5 show that by increasing the temperature of the target model from 0.5 to
1.5, SelfCheckGPT scores increase by as much as 35%, drastically influencing the rankings. In
contrast, CrossCheckGPT provides more stable rankings for all generation temperatures. Results are
demonstrated for MHaluBench, but similar trends are observed for WikiBio as well.

6 Conclusions

This paper proposes CrossCheckGPT, a universal hallucination ranking method for multimodal
large language models. We evaluated two variants of CrossCheckGPT on text-to-text, image-to-
text and video-to-text tasks, demonstrating that it consistently outperforms all baseline methods,
achieving 98% and 89% system-level correlation against humans on MHaluBench and AVHalluBench
respectively. We also introduce AVHalluBench, the first resource to study audio-visual hallucination
issues in video understanding.
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A Experimental Setup Details

We list the models involved in this paper in Table 7, and text-to-text metrics in Table 8.

Target LLMs Modality Evidence Models Evidence Models License
(explicit) (explicit)

Llama-2-7B [29] Text ✓ ✓ llama2
Llama-2-7B-Chat [29] Text ✓ ✓ llama2
Mistral-7B-Instruct-v0.1 [16] Text ✗ ✗ Apache-2.0
Mistral-7B-Instruct-v0.2 [16] Text ✓ ✓ Apache-2.0
Vicuna-v1.5-7B[6] Text ✓ ✓ llama2
Falcon-7B[1] Text ✗ ✗ Apache-2.0
Starling-7B-alpha[58] Text ✓ ✓ Apache-2.0
StableBeluga-7B[27] Text ✓ ✓ llama2
Zephyr-7b-beta[47] Text ✓ ✓ MIT
Mistral-7B-OpenOrca[33] Text ✓ ✓ Apache-2.0
GPT-4 [36] Text ✗ ✗ N/A

LLaVA-v1.5 [24] Vision ✓ ✓ llama2
InstructBLIP (vicuna-7B) [8] Vision ✓ ✗ BSD 3-Clause
mPLUG-Owl2 [54] Vision ✓ ✓ MIT
Valley [26] Vision ✓ ✓ Apache-2.0
Video-LLaVA [22] Vision ✓ ✓ Apache-2.0
Chat-Univi [17] Vision ✓ ✓ Apache-2.0
LLaMA-VID [21] Vision ✓ ✗ Apache-2.0

LTU [12] Audio ✓ ✓ Apache-2.0
Qwen-Audio-Chat [7] Audio ✓ ✓ Tongyi Qianwen
SALMONN [42] Audio ✓ ✓ Apache-2.0

Video-LLaMA [55] Audio-visual ✓ ✓ BSD 3-Clause
FAVOR [41] Audio-visual ✓ ✓ Apache-2.0
Gemini 1.5 Pro [43] Audio-visual ✓ ✗ N/A

Table 7: Models and reference benchmarks for validating CrossCheckGPT.

Reference Benchmarks (Metrics) Description

TriviaQA [14] (Acc) A realistic text-based question-answering dataset containing documents
collected from Wikipedia and the web.

TruthfulQA MC1 [23] (Acc) A benchmark to measure whether a language model is truthful in
generating answers to questions, spanning 38 categories.TruthfulQA MC2 [23] (Acc)

XSum [35] (FactKB [11]) The factual accuracy of summarization models by verifying the presence
of knowledge base facts in generated summaries.

CNN-DM [39] (BERTP) The CNN-DailyMail dataset is a collection of news articles and accom-
panying summaries measured by BERTScore-Precision.

MemoTrap [31] (Acc) Assessing whether LLMs fall into memorization traps which occur when
LLMs memorize specific examples in training.

FaithDial [10] (Acc) A benchmark for hallucination-free dialogues by editing hallucinated
responses in Wizard of Wikipedia (WoW) [9]

HaluEval-QA [19] (Acc) A large collection of generated and human-annotated hallucinated
samples for evaluating the performance of LLMs in recognizing
hallucination. It contains the QA, summarization and dialogue tasks.

HaluEval-summarization [19] (Acc)
HaluEval-Dialogue [19] (Acc)

Table 8: Dataset, models and reference benchmarks for validating CrossCheckGPT. Acc stands for accuracy.
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B Exact Prompts

We provide the exact prompts we used in our experiments in Table 9 for various tasks.

Task Prompt

Text-to-text generation Generate a passage about <name>.
Image-to-text description Describe the image in one paragraph.
Visual description for video Describe the video in one paragraph.
Audio description for video Describe the audio in one paragraph.
Prompt for speech content What does the man/woman say in the video?

LLM Judgment for CrossCheck-explicit Context: <evidence_passage>\n\nSentence:
<sentence> \n\nIs the sentence supported by the
context above? Answer Yes or No.\n\nAnswer:

CrossCheck-implicit factual errors You are given the following sentence
about <name/image/video> that might be
inaccurate:\n<sentence>\n List possible inaccu-
rate information in this sentence.

LLM Judgment for CrossCheck-implicit You are given the following sentence about
<name/image/video>:\n<sentence>\nThe
following is an analysis of
possible inaccuracies in this
sentence:\n<list_of_possible_errors>\nBased on
the analysis, determine if the sentence contains
any inaccurate information. Answer Yes or
No.\n\nAnswer:

Table 9: Exact prompt used for different tasks.

C CrossCheckGPT as a Hallucination Detection Method

CrossCheckGPT can be used as a Hallucination detection method, which performs better than the
best output-probability-based method reported in SelfCheckGPT[29].

Evidence Model Non-Factual Non-Factual* Factual Document (r)

Llama 30B Max(H) [29] 80.92 37.32 37.90 35.57

Llama-2-7B-Chat 85.84 57.22 54.41 56.25
Vicuna-v1.5-7B 83.13 53.38 51.13 54.64
Mistral-7B-Instruct-v0.2 87.21 59.60 56.72 63.04

Table 10: AUC-PR and document-level correlation against human annotation for detecting hallucinations in
GPT-3 using individual evidence models on non-factual and factual statements in WikiBio [29].

D Text-to-text Additional Results

We provide the version of Table 1 with all ten benchmark metrics in Table 11. Moreover, we
investigate the specific-task hallucination ranking ability where the inputs to SelfCheckGPT and
CrossCheckGPT are from a specific task (rather than text generation). We conduct task-specific
experiments using the inputs from TruthfulQA MC1 and HaluEval QA containing multiple-choice
and yes-no questions respectively. The results in Table 12 show high system-level correlations and
moderate document-level correlations, indicating that CrossCheckGPT can operate as a task-specific
metric without requiring any ground truth.
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Metrics System(ρ) Document (r)
w/o GPT4 with GPT4

TriviaQA [14] 23.33 - -
TruthfulQA MC1 [23] 52.94 - -
TruthfulQA MC2 [23] 57.14 - -
XSum [35] -70.00 - -
CNNDM [39] 38.33 - -
MemoTrap [31] 10.88 - -
FaithDial [10] -8.33 - -
HaluEval-QA [19] -18.33 - -
HaluEval-Summarization [19] 48.33 - -
HaluEval-Dialogue [19] 46.03 - -
SelfCheckGPT [29] 66.46 74.06 76.08

CrossCheck-explicit 77.44 82.28 77.23
CrossCheck-implicit 56.71 18.33 17.29
CrossCheck-explicit weighted 82.32 81.78 82.18
CrossCheck-explicit weighted 56.81 20.21 19.16

Table 11: Full version of Table 1 including all other metrics. General hallucination evaluation where the task for
SelfCheckGPT/CrossCheckGPT is open-ended text generation on WikiBio. System-level correlation, System(ρ),
is measured against the overall ranking in the leaderboard, and document-level correlation, Document(r), is
measured against RefCheck. With GPT-4 refers to including GPT-4 as the target LLM.

Metrics System(ρ) Document (r)
TruthfulQA MC1 HaluEval QA TruthfulQA MC1 HaluEval QA

SelfCheckGPT 76.19 30.95 30.87 6.76
CrossCheckGPT 76.19 88.10 33.68 22.00

Table 12: Task-specific hallucination evaluation where the task of SelfCheckGPT/CrossCheckGPT is, in this
example, either TruthfulQA MC1 or HaluEval QA. Note that rankings are performed on 8 target models that are
instruction-tuned as these tasks are QA-based and require some instruction-following ability.
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Figure 6: The variation of System(ρ) and Document(r) against calibration temperature T in Eqn. (4) for
weighted CrossCheck-explicit. Constant weighting refers to applying the same weight for all documents, while
per-passage weighting refers to the use of passage-specific weighting derived from SelfCheckGPT scores of
each passage.

We first show the variation of system and document-level correlation against varying calibration
temperatures for CrossCheck-explicit weighted in Fig. 6 using WikiBio data. A comparison between
using per-query weights and using the same weights for the entire task is also provided. As a result,
C = 0.1 is chosen as it achieves the best system-level correlation. Besides, the same weighting
across the whole task is used at C = 0.1 as the large variance among weights of different queries
introduces more noise in scoring and hence hinders the correlation.
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E System-level Correlations between Individual Text-based Hallucination
Benchmarks

We provide the system-level correlations between individual text-based hallucination benchmarks to
show that they capture different aspects and do not correlate well with each other in Table 13.

TriviaQA TruthfulQA Xsum CNN-DM MemoTrap FaithDial HaluQA HaluSumm HaluDial

TriviaQA [14] 1.00 0.20 -0.72 0.15 0.07 0.13 0.27 0.40 0.50
TruthfulQA [23] 0.20 1.00 -0.10 0.38 0.27 0.05 -0.50 0.37 0.63
Xsum [35] -0.72 -0.10 1.00 -0.03 -0.40 0.12 -0.57 -0.63 -0.68
CNN-DM [39] 0.15 0.38 -0.03 1.00 0.28 -0.05 -0.05 0.33 0.37
MemoTrap [31] 0.07 0.27 -0.40 0.28 1.00 -0.05 -0.08 0.48 0.17
FaithDial [10] 0.13 0.05 0.12 -0.05 -0.05 1.00 -0.03 -0.22 -0.13
HaluQA [19] 0.27 -0.50 -0.57 -0.05 -0.08 -0.03 1.00 0.30 0.20
HaluSumm [19] 0.40 0.37 -0.63 0.33 0.48 -0.22 0.30 1.00 0.67
HaluDial [19] 0.50 0.63 -0.68 0.37 0.17 -0.13 0.20 0.67 1.00

Table 13: System-level correlation (ρ) between each pair of the 9 selected benchmarks metrics.

F Scatter Plots and Statistical Significance for Image-to-text
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Figure 7: Scatter plot of SelfCheckGPT, CrossCheck-explicit and CrossCheck-implicit scores against human
annotation for image-to-text tasks.

The scatter plot, similar to text-to-text ones in Fig. 4, is shown in Fig. 7.

Methods Success rate (p-value)

CrossCheck-explicit 65.5% (<0.00001)
CrossCheck-implicit 84.5% (<0.00001)
CrossCheck-explicit weighted 67.0% (<0.00001)
CrossCheck-implicit weighted 88.0% (<0.00001)

Table 14: Success rate and statistical significance of CrossCheckGPT approaches measured via sign-test on
independent subsets of images.

Additionally, we report the statistical significance of CrossCheckGPT being better than SelfCheckGPT
on MHaluBench by performing the sign test at the image level.

G Statistics of AVHalluBench

We provide detailed statistics about AVHallubench in Table 15, including the number of videos,
average lengths of each subset, as well as various audio and visual elements involved.
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Source Dataset Num. of Videos Avg. Length (sec.) w/ Speech w/ Music w/ Visual Text

NeXT-QA [52] 32 (18%) 22.0 19 7 1
M3AV [5] 27 (16%) 11.3 27 0 27
How2 [38] 27 (16%) 9.5 27 4 2
MUSIC-AVQA [18] 23 (13%) 29.0 0 23 0
VALOR32k [3] 26 (15%) 8.7 11 7 8
FAVDBench [40] 38 (22%) 8.0 8 15 13

Overall 175 14.2 92 (52%) 56 (32%) 51 (29%)

Table 15: Statistics of the AVHalluBench dataset with the percentage shown in brackets.

H Additional SelfCheckGPT and CrossCheckGPT Scores on AVHalluBench

We provide the detailed SelfCheckGPT and CrossCheckGPT scores on AVHalluBench for all MLLMs
that handle video or audio inputs in this paper in Table 16 for video descriptions and Table 17 for
audio descriptions.

Models SelfCheckGPT CrossCheck-explicit CrossCheck-implicit

Valley [26] 52.43 55.98 48.22
Video-LLaVA [22] 30.59 33.52 40.57
Chat-Univi [17] 29.40 32.68 41.75
LLaMA-VID [21] 38.61 39.14 40.48
Video-LLaMA [55] 41.14 52.02 48.80
FAVOR [41] 60.67 53.85 50.49
Gemini 1.5 Pro 19.87 31.74 -

Table 16: SelfCheckGPT and CrossCheckGPT scores for 6 visual-LLMs that take video as inputs on AVHal-
luBench. Note that FAVOR, Video-LLaMA and Gemini 1.5 Pro are only given visual inputs. Gemini 1.5 Pro
was not used for CrossCheck-implicit.

Models SelfCheck CrossCheck-explicit CrossCheck-implicit
audio w. speech audio w.speech audio w. speech

LTU [12] 21.95 - 37.44 - 18.06 -
Qwen-Audio-Chat [7] 36.57 37.08 43.66 43.41 20.21 52.20
SALMONN [42] 34.99 34.80 42.21 40.15 18.32 48.17
FAVOR [41] 49.62 41.51 66.69 55.41 23.26 61.01
Video-LLaMA [55] 56.42 - 68.05 - 17.10 -
Gemini 1.5 Pro 25.82 27.38 34.66 36.52 - -

Table 17: SelfCheckGPT and CrossCheckGPT scores for 6 audio-LLMs on AVHalluBench. Note that FAVOR
and Video-LLaMA are only given audio inputs. Gemini 1.5 Pro was not used for CrossCheck-implicit.

I CrossCheck-explicit vs. CrossCheck-implicit

We present the average SelfCheckGPT scores on each task together with the system-level correlations
in Table 18 to support our recommendations on CrossCheck-explicit and CrossCheck-implicit.

J Case Studies for Hallucination with Audio-Visual Inputs

In addition to the piano example shown in Fig. 10 that has been mentioned in the main text, we
show here two additional examples in Fig. 9 and Fig. 8 where audio-visual inputs influence the
hallucination compared to using audio or visual inputs alone.
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System(ρ)
Tasks Ave. Sselfcheck CrossCheck-explicit CrossCheck-implicit

Text-to-text 40.63 77.44 56.71
Image-to-text 17.16 42.86 50.42
Audio description 39.91 71.67 40.00
Visual description 42.14 89.09 54.29

Table 18: SelfCheckGPT scores and system-level correlations using CrossCheck-explicit and CrossCheck-
implicit on four tasks. The system-level correlation for audio and visual descriptions is measured against
RefCheck, and that for text-to-text and image-to-text tasks are measured against overall ranking.

Audio-visual video description: A man in a blue and white tracksuit is standing in an entryway with a faux 
stone wall and a staircase. He is pointing to the wall and describing how the viewer's eye will travel up the 
wall to a mirror at the top of the landing. The audio consists of the man's voice describing the scene.

Visual-only video description: A man in a blue and white jacket and khaki pants is standing in an entryway. 
He is pointing to a mural on the wall that looks like a stone wall with vines and flowers. There is a vase of 
flowers and a white dove on a shelf in the mural. There is a staircase with a black metal railing to the right of 
the mural. The man is explaining that he painted the mural to make the entryway look more inviting.

Hallucination Content Less hallucinated contents

Figure 8: Example of audio-visual hallucination problem from Gemini 1.5 Pro. In this example, even when
no audio is provided, the model still describes what the man is talking about, and having audio inputs greatly
benefits the description by reducing the hallucination in describing the man’s speech.

K Limitations

Our investigation is limited in the following aspects: First, hallucination is an expansive area and, as
done in other studies, this paper only covers a reasonable subset of all possible domains. However, we
plan to release a live hallucination leaderboard where we plan to benchmark the performance of further
MLLMs over more benchmark metrics. Secondly, while the confidence-based weighting mechanism
improves the performance of CrossCheckGPT, it does not take into account the similarities of different
evidence models. Correlation between models, due to having similar training data or from starting at
the same checkpoints, may result in evidence models making similar mistakes. This poses a future
research direction, in raking model correlation into account for the weighting mechanism. Lastly,
there is limited by the number of currently available audio-visual LLMs for evidence generation.

L Broader Impact

Hallucinations in multimodal foundation models have become increasingly critical and challenging.
Therefore, providing a general reference-free hallucination benchmarking approach is necessary and
timely, enabling practitioners to have metrics for model trustworthiness. Therefore, CrossCheckGPT
has the following positive broad impact:

• CrossCheckGPT establishes a universal ranking system which helps identify more factual
and faithful models to be selected in particular applications, reducing the dissemination of
misinformation and increasing societal confidence in AI applications.
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Audio-visual video description: In the video, a man is seen playing a first-person shooter video game. 
The sound of rain can be heard in the background. The man presses a button on the controller, and a 
robotic voice is heard. He then opens a door. A black cat can be seen sitting on a window sill in the room.

Visual-only video description: First, we see a person standing in a dark room with a flashlight on the 
ground. Then, a person walks into the room, followed by another person walking into the room. They 
both have backpacks and are wearing grey sweatshirts. Next, we see a woman wearing a white hat and a 
red baseball cap on her head. She is standing in the room with the two men.  Overall, the video seems to 
be of people exploring a dark room or cave, using flashlights and navigational tools.

New hallucination Less hallucinated contents

Figure 9: Example of audio-visual hallucination problem from FAVOR. In this example, the audio is the man
explaining what he is doing in the game. The speech description reduces the hallucination of “pressing the
button” and "opening a door" in the visual description with new but random hallucinations coming out.

Audio-visual video description: The video shows people standing and sitting at a train station, with a 
piano in the background playing music. The piano is being played by a woman wearing a hat and a 
woman in a green dress. The music is upbeat and there are various people walking by in the background. 
The video has a muted color tone, with grays and whites predominating.

Visual-only video description: The video shows a grand piano placed on the stage in an auditorium. A 
red ribbon is tied around the leg of the piano, and the auditorium appears to be deserted. The piano has a 
sleek, glossy black finish and is in good condition. The video captures various shots of the piano from 
different angles, highlighting its size and design. The stage and the auditorium look well-maintained and 
spacious. The video ends with the piano and the red ribbon as the only objects.

New hallucination Less hallucinated contents

Figure 10: Example of audio-visual hallucination problem. In this example, the audio is the piano itself playing,
which introduces additional hallucination to the visual description which describes it as “played by a woman”.

• CrossCheckGPT provides a reliable ranking that would aid regulatory bodies in enforcing
compliance standards for multimodal foundation models, particularly in critical areas such
as healthcare, finance, and public safety.

• As a reference-free and versatile benchmarking method, CrossCheckGPT can drive develop-
ers to innovate and improve their multimodal foundation models.

However, our method by no means provides perfect hallucination scores and may inherit potential
bias from the chosen evidence models. Therefore, practitioners should be independently educated
and avoid overreliance on the rankings, as doing so may lead to complacency in critical thinking
and reduced vigilance. From the model aspect, the approach in this paper does not give rise to any
additional potential biases beyond the ones directly inherited from the pre-trained LLM checkpoints.
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M Computing Resource

Our experiments are performed on a single Nvidia A100 GPU for inference. The average inference
time for each target model to get the CrossCheckGPT score is 20 hours. The total amount of time to
run for all models in the text-to-text leaderboard is 200 hours, in the image-to-text leaderboard is 190
hours and in the AVHalluBench is 240 hours. The total GPU hours for running the full research is
2000. There is no training process involved in the research.

N Assets and License Explanation

Links to the following licenses that apply to the models used in the paper are provided (see Table 7).

• Llama2: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/blob/
main/LICENSE.txt

• Apache-2.0: https://www.apache.org/licenses/LICENSE-2.0
• MIT License: https://choosealicense.com/licenses/mit/
• BSD 3-Clause License: https://github.com/salesforce/LAVIS/blob/main/
LICENSE.txt

• Tongyi Qianwen: https://github.com/QwenLM/Qwen-Audio/blob/main/LICENSE

The following licenses are applied to the datasets used in our paper:

• CC-BY-SA-3.0: Used by WikiBio hallucination data [29]. License link: https://spdx.
org/licenses/CC-BY-SA-3.0.

• MIT License: Used by MHaluBench (https://huggingface.co/datasets/openkg/
MHaluBench). License link see above.

The following licenses are applied to the code and Python packages we use for our experiments:

• Apache-2.0: Applies to Huggingface Transformers (https://github.com/
huggingface/transformers/blob/main/LICENSE) and UniHD (https:
//github.com/OpenKG-ORG/EasyDetect/blob/main/LICENSE).

• MIT License: Applies to SelfCheckGPT (https://github.com/potsawee/
selfcheckgpt/blob/main/LICENSE) and spaCy (https://github.com/explosion/
spaCy/blob/master/LICENSE).
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