
Published as a conference paper at ICLR 2025

GLORA: A BENCHMARK TO EVALUATE THE ABILITY
TO LEARN LONG-RANGE DEPENDENCIES IN GRAPHS

Dongzhuoran Zhou & Evgeny Kharlamov
Bosch Center for AI, Germany and University of Oslo, Norway
{dongzhuoran.zhou,evgeny.kharlamov}@de.bosch.com

Egor V. Kostylev
University of Oslo, Norway
egork@ifi.uio.no

ABSTRACT

Learning on graphs is one of the most active research topics in machine learning
(ML). Among the key challenges in this field, effectively learning long-range
dependencies in graphs has been particularly difficult. It has been observed that, in
practice, the performance of many ML approaches, including various types of graph
neural networks (GNNs), degrades significantly when the learning task involves
long-range dependencies—that is, when the answer is determined by the presence
of a certain path of significant length in the graph. This issue has been attributed
to several phenomena, including over-smoothing, over-squashing, and vanishing
gradient. A number of solutions have been proposed to mitigate these causes.
However, evaluation of these solutions is currently challenging because existing
benchmarks do not effectively test systems for their ability to learn tasks based
on long-range dependencies in a transparent manner. In this paper, we introduce
GLoRa, a synthetic benchmark that allows testing of systems for this ability in
a systematic way. We then evaluate state-of-the-art systems using GLoRa and
conclude that none of them can confidently claim to learn long-range dependencies
well. We also observe that this weak performance cannot be attributed to any of
the three causes, highlighting the need for further investigation.

1 INTRODUCTION

Graph structures are very common in many domains, including molecules in chemistry, social
networks on the Web, and road networks in traffic management. Thus, it is not surprising that learning
on graphs is among the most active topics in the theory and practice of ML. However, standard
ML approaches, such as classic deep neural networks, are difficult to apply to graphs due to their
non-trivial structure, and dedicated approaches have been developed for learning on graphs. The most
prominent are based on the idea of Graph Neural Networks (GNNs) (Scarselli et al., 2008), where each
layer updates the vector embedding of each node by aggregating the embeddings of the neighbours
from the previous layer and combining the result with the previous embedding of the node itself.
There are many GNN variants proposed in the literature, from basic GCNs (Kipf & Welling, 2017)
and GraphSAGE (Hamilton et al., 2017) to more advanced methods such as Drew-GCN (Gutteridge
et al., 2023) with Laplacian encoding (Kreuzer et al., 2021).

Many GNN-based systems have had great success in various tasks in learning on graphs. However, it
is also observed that the performance of such systems degrades dramatically when the task involves
learning long-range dependencies—that is, when the ground-truth answer for a node in the graph (or,
for graph-level tasks, for the full graph) depends on interaction of nodes with large graph distance
between them (Alon & Yahav, 2021). However, this property is crucial for tasks in many applications,
and essential interactions along several dozen of graph edges are not uncommon. For example, in the
Web context, tasks such as social influence prediction (Qiu et al., 2018), social representation learning
(Liu et al., 2022), and item recommendation (Fan et al., 2019) rely on the wide spread of information
in social network and user-item graphs. In urban data mining, long-range dependencies are evident in

1

Published as a conference paper at ICLR 2025

air quality (Iskandaryan et al., 2023) and traffic flow prediction (Li & Zhu, 2021). In internet safety
and finance, the challenges of fake news detection (Han et al., 2020) and anti-money laundering
(Weber et al., 2018) are critical to detecting such dependencies in the corresponding graphs. Finally,
in biochemistry, long-range dependencies emerge in protein-protein interaction (Jha et al., 2022) and
drug side effects prediction (Bongini et al., 2022), where the properties are influenced by long chains
of atoms in molecule graphs.

Numerous works address the long-range dependency learning issue by trying to identify its causes and
suggesting methods to mitigate these causes. Most prominently, the long-range issue was attributed
to three phenomena: over-smoothing (Li et al., 2018), which is an observation that in many GNN
architectures the embeddings of all nodes converge to the same constant vector as the number of
layers increases; over-squashing (Alon & Yahav, 2021), concerning that the information from many
nodes that are potentially relevant for the outcome of the target node has to be compressed into a
fixed-size vector; and more classical vanishing gradient (Glorot & Bengio, 2010), saying that, as
the number of layers increases, the gradient magnitude of the loss usually decreases, thus slowing
training down.

Several methods have been proposed to mitigate each of these phenomena. However, as a starting
point for this paper, we observe that there are no methods that can with certainty verify whether an
ML system is able to learn dependencies of a given length. Indeed, such systems are often evaluated
on benchmarks based on real-life datasets (Dwivedi et al., 2023; Morris et al., 2020), whose properties
are not known and not controlled enough to give any guarantees. For example, even if an ML system
performs relatively well on such a benchmark, we do not know whether the function to learn and
the function the system really learned rely on long-range dependencies. There are also a number of
dedicated synthetic benchmarks (Di Giovanni et al., 2023; Bodnar et al., 2021; Alon & Yahav, 2021)
to evaluate the long-range performance of such systems. Unfortunately, as we will see in more detail
later on, these benchmarks are also not suitable for such guarantees, because they either allow simple
functions that do not rely on long-range dependencies but perfectly fit the data examples, or, on the
contrary, do not have fitting functions expressible in the GNN architectures.

The main contribution of this paper overcomes these shortcomings; in particular, we present a
synthetic benchmark (more precisely, an algorithm that generates a benchmark for every dependency
length) and a method how to use this benchmark to identify, with certain guarantees, how long
dependencies a graph learning system can learn. As our second contribution, we evaluate the state-of-
the-art systems using our method, concluding that their dependency length limit is always very modest.
As a final contribution, we demonstrate, by means of dedicated experiments, that the degradation of
performance with increasing length cannot be attributed to any of the three phenomena. Therefore,
further investigation is required to identify the real cause of the long-range dependency learning issue
and to develop new methods to mitigate this issue.

The rest of the paper is organised as follows. In Section 2, we first specify the typical graph ML tasks
and formally introduce the long-range dependency issue, concentrating on a variant of formalisation
that we call path-aware. Then we discuss possible causes for this issue identified in the literature
and proposed evaluation methods; thus, Sections 2.3 and 2.4 give an overview of the most essential
related work for this paper. Finally, we argue that these methods are not satisfactory, thus justifying
the need for our benchmarks. We present our benchmark, which we call GLoRa (Graph Long-Range
dependency benchmark), in Section 3, where we include detailed intuition and formal justifications
that GLoRa benchmarks possess the desired formal properties. Then, in Section 4 we report the results
of our experiments. The main experiment demonstrates that none of the state-of-the-art systems can
learn dependencies beyond the very modest length 11. Secondary experiments demonstrate that this
degradation cannot be attributed to any of the three phenomena. We conclude in Section 5. Secondary
supporting materials for the claims of the paper are given in the appendices.

2 THE CHALLENGE OF LEARNING LONG-RANGE DEPENDENCIES

In this section, we first introduce typical graph ML tasks and graph neural networks as the standard
approach to solving these tasks. We then formalise the long-range dependency learning issue, discuss
its possible causes, and overview the existing benchmarks for this issue. Finally, we argue that these
benchmarks are not satisfactory, thus justifying the need for our benchmark (presented in Section 3).

2

Published as a conference paper at ICLR 2025

2.1 LEARNING ON GRAPHS

As customary in the context of graph ML, we formalise a graph as a triple (V, E , λ), where V is a
finite set of nodes, E ⊆ V ×V is a set of edges, which are pairs of nodes, and λ : V → Rn is the node
embedding, which is an assignment of real-valued vectors of some dimension n ∈ N to the nodes.

Note here that we assume edges to be directed; undirected graphs, which are sometimes adopted in
graph learning, can be represented in this formalisation by assuming that E is symmetric—that is, such
that (v1, v2) ∈ E implies (v2, v1) ∈ E . As we will see later, our benchmark has a version for both
the directed and undirected settings, and our experiments show that each considered existing system
performs similarly across these versions; however, the directed version has a conceptual advantage,
which ensures stronger guarantees (see Section 4.2). Note also that only nodes in our graphs have
embeddings; this is just for brevity, and all our ideas apply to graphs with edge embeddings.

The most common ML task on graphs is (supervised) node classification, where a system needs to
learn, using training examples, a function that assigns a class (called a label in this context) from a
finite set to each graph node. Binary classification is a particular case when there are only two classes,
True and False. Another common task is node regression, where the function assigns a numeric value
instead of a class. Both classification and regression may be transductive, when all relevant nodes
(for all training, validation, and testing) belong to the same graph, fully known for training. The more
general is the inductive setting, where each example may have its own graph (with the same node
embedding dimension). Tasks very close in essence to the inductive tasks are graph classification
and regression, where a value is assigned to the entire graph. In our presentation, we concentrate on
inductive binary node classification, but all our ideas transfer directly to the other settings.

2.2 GRAPH NEURAL NETWORKS

In principle, we can use many ML approaches to graph learning. However, usual methods, such as
deep neural networks, have limited applicability in our setting, because graphs may be of arbitrary size
(e.g., a model trained on small graphs should be applicable to arbitrarily bigger graphs); moreover, a
graph learning model is expected to be agnostic to graph representation—that is, the answer should
be invariant over reshuffling of nodes and edges in the model’s input. Thus, a standard neural
architecture for graph learning is (message-passing) graph neural networks (GNNs); in general form,
a GNN N with L layers for classifying nodes with embedding dimension n to classes C is a triple(

{Aggℓ}ℓ∈{1,...,L}, {Combℓ}ℓ∈{1,...,L}, Class
)
,

where each aggregation function Aggℓ maps a multiset of vectors of size nℓ−1 to such a vector, each
combination function Combℓ maps two vectors of size nℓ−1 to a vector of size nℓ, and classification
function Class maps a vector of size nL to a class in C; here, n0 = n and each nℓ is the dimension
of layer ℓ. The aggregation, combination, and classification functions of a GNN usually depend
on learnable parameters of the model, while L and each nℓ, ℓ ∈ {1, . . . , L}, are fixed in advance
or among the hyperparameters. Given an input graph G = (V, E , λ) with dimension n, GNN N
computes, for each ℓ ∈ {1, . . . , L}, the ℓ-th embedding vℓ of each v ∈ V as

vℓ = Combℓ(vℓ−1,Aggℓ({{uℓ−1 | u ∈ N(v)}})), (1)

where {{· | ·}} is the multiset constructor, each v0 is λ(v), and each N(v) is the neighbourhood
{u ∈ V | (u, v) ∈ E} of a node v in G; then, the final classification of each v is Class(vL).

A GNN example is graph convolutional networks (GCNs) (Kipf & Welling, 2017) instantiating (1) as

vℓ = σ

 ∑
u∈N(v)∪{v}

Wℓuℓ−1√
|N(v)| · |N(u)|

 ,

where σ is a non-linearity activation function, such as ReLU or sigmoid, and each Wℓ is a learnable
matrix of parameters (of dimension nℓ × nℓ−1); it may also be assumed that, for binary classification,
the final dimension nL is 1, and Class(v) just thresholds vL.

Many other variants of GNN are suggested in the literature (GINs (Xu et al., 2019), Graph-
SAGE (Hamilton et al., 2017), GATs (Velickovic et al., 2018), etc.). Moreover, there are a number of
proposals to use a known GNN architecture, but apply it to a modification of the input graph G rather

3

Published as a conference paper at ICLR 2025

than to G itself; the most prominent such idea is to rewire G by adding and removing nodes and edges
according to some (often quite sophisticated) rule (Gutteridge et al., 2023; Abboud et al., 2022; Alon
& Yahav, 2021; Gasteiger et al., 2019b; Topping et al., 2022; Karhadkar et al., 2023). An extreme of
this idea is graph transformers (Dwivedi & Bresson, 2020; Kreuzer et al., 2021; Rampásek et al.,
2022), where an edge is added between each two nodes, and an attention mechanism is employed to
learn nontrivial dependencies. As we will see in the next section, several rewiring-based methods
have been proposed to mitigate difficulties with learning long-range dependencies. Another idea to
deal with long-range dependencies is realised by implicit GNNs (Gu et al., 2020; Liu et al., 2021;
Chen et al., 2022), where the number of layers is not predefined but the same transformation is
applied many times until (approximate) convergence. We omit the details of these systems here,
because in this benchmark paper we largely treat graph learning systems as a black-box.

Intuitively, node classification functions may be characterised by how long the dependencies they
rely on are—that is, how far the target node (i.e., the node to classify) may be from the nodes that this
node needs to interact with to decide its classification. It has been observed many times in practice
that the quality of learning node classification functions using standard graph learning methods (e.g.,
GCNs) degrades dramatically when the function to learn relies on long dependencies (Gutteridge
et al., 2023; Di Giovanni et al., 2023). As we will discuss in Section 2.3, this issue has been attributed
to several causes, and a number of methods are proposed to mitigate this issue. However, we first
note that, to the best of our knowledge, the long-range dependencies are not yet formalised in the
context of graph learning, and only informal explanations have been suggested (Alon & Yahav, 2021;
Dwivedi et al., 2022). Since this issue is central to our paper, we next give such a formalisation.

In the following, let, as usual, a simple path p from a node v′ ∈ V to a node v ∈ V of length d in
a graph (V, E , λ) be a sequence v0, . . . , vd of distinct nodes in V such that v0 = v′, vd = v, and
(vi−1, vi) ∈ E for every i with 1 ≤ i ≤ d. Let then Gp[k,m], for every k,m with 0 < k ≤ m < d, be
the graph obtained from G by duplicating the part of p between vk and vm—that is, the graph with
nodes V ∪ {v′k, . . . , v′m}; edges E ∪ E ′, where E ′ contains an edge (u1, u2) for each (v1, v2) ∈ E ,
such that each uh with h ∈ {1, 2} is v′j , if vh is vj for some j with k ≤ j ≤ m, and vh otherwise;
and embedding λ′ extending λ with λ′(v′j) = λ(vj) for each j with k ≤ j ≤ m.

Definition 1 A node classification function f for the node embedding dimension n relies on a (path-
aware) dependency of length d if there is a graph G = (V, E , λ) with dimension n, a node v ∈ V , a
simple path p = v0, . . . , vd−1, v, and vectors ai ̸= λ(vi) in Rn, for each i with 0 < i < d, such that

- for each i with 0 < i < d, f(G, v) ̸= f(Gi, v) where the graph Gi = (V, E , λ∗) is the same
as G except that λ∗(vi) = ai (i.e., in particular, λ∗(v′) = λ(v′) for every v′ ̸= vi);

- for each k, j,m with 0<k≤ j≤m<d, f(G, v)=f(G
p[k,m]
j , v) for Gp[k,m]

j =(V∗, E∗, λ∗)

the same as Gp[k,m] except that λ∗(v′j) = aj;

- for each i, k, j,m with 0 < i < d and 0 < k ≤ j ≤ m < d, f(G, v) ̸= f(G
p[k,m]
i,j , v) for

G
p[k,m]
i,j = (V∗, E∗, λ∗) the same as Gp[k,m] except that λ∗(vi) = ai and λ∗(v′j) = aj .

This definition essentially says that there should be a node, v, in a graph with a long enough path,
p, leading to v that is really important for the classification of v: it should be possible to distort the
embedding of any node in p to change the classification of v; moreover, a combination of p with
a duplicate of its part where an embedding of a node is distorted should not lead to the change of
classification, while distorting both the path and the duplicate should.

We argue that such requirements for a witnessing path reflect the intuition of what a long-range
dependency is. The examples of the real-life tasks in the introduction also essentially rely on these
requirements. However, we agree that there may be other, inequivalent, formalisations of this intuition
(e.g., one may waive the existence of a path to v, asking only for a node with some properties not too
close to v); we add ‘path-aware’ to the notion to emphasise our choice.

2.3 POSSIBLE CAUSES FOR THE LONG-RANGE DEPENDENCY ISSUE

Since learning long-range dependencies is crucial in graph learning, there is a line of research that
has focused on identifying and mitigating the causes of performance degradation with increasing
dependency length. In particular, this issue is currently linked to three phenomena: over-smoothing (Li

4

Published as a conference paper at ICLR 2025

et al., 2018), over-squashing (Alon & Yahav, 2021), and vanishing gradient (Glorot & Bengio, 2010;
Bengio et al., 1994). The graph learning community has developed several methods to mitigate these
causes, which we discuss next.

Over-smoothing (Li et al., 2018) causes the node embeddings to converge to the same vector as the
number of GNN layers increases. This may hamper the effectiveness of many GNNs, especially
GCNs, when many layers are needed, for example, to capture long-range dependencies. Methods to
mitigate over-smoothing include PairNorm (Zhao & Akoglu, 2020), ResGCN and DenseGCN (Li
et al., 2019), JKNet (Xu et al., 2018), DropEdge (Rong et al., 2020), GPRGNN (Chien et al., 2021),
DAGNN (Liu et al., 2020), GCNII (Chen et al., 2020), IGNN (Gu et al., 2020), EIGNN (Liu et al.,
2021), GIND (Chen et al., 2022), and G2 (Rusch et al., 2023).

Over-squashing (Alon & Yahav, 2021) refers to the bottleneck of graph learning formalisms, including
GNNs, where information from many nodes condense into a fixed-size vector of one node. In dense
graphs, the number of paths to a target node may be exponential in the number of the GNN’s layers.
Therefore, over-squashing can limit learning long-range dependencies in such graphs. Methods to
alleviate over-squashing include several variants of DRew (Gutteridge et al., 2023), SP-GCN (Abboud
et al., 2022), FOSR (Karhadkar et al., 2023), SRDF (Topping et al., 2022), FA-GCN (Alon &
Yahav, 2021), DIGL (Gasteiger et al., 2019b), Mixhop-GCN (Abu-El-Haija et al., 2019), and graph
transformers, such as SAN (Kreuzer et al., 2021) and GraphGPS (Rampásek et al., 2022).

Vanishing gradient (Glorot & Bengio, 2010) is a common phenomenon in deep neural networks,
including GNNs. As the number of layers increases, the gradient of the loss often decreases, slowing
or even stopping the training. Well-known techniques to mitigate this in usual neural networks, such as
BatchNorm (Ioffe & Szegedy, 2015), ResNet (He et al., 2015), and LSTM (Graves, 2012), have been
adapted for GNNs in systems G2 (Rusch et al., 2023), Gradient-Guided Dynamic Rewiring (Jaiswal
et al., 2022), and Residual GANs (Lukovnikov & Fischer, 2021).

2.4 EXISTING BENCHMARKS AND THEIR LIMITATIONS

Evaluation of the abilities of GNN-based methods to address the long-range dependency issue (e.g.,
by mitigating the three phenomena) usually employs benchmarks based on real-world and synthetic
datasets. We next discuss these benchmarks and argue that they are ill-suited for this purpose.

Many real-world benchmarks, such as Cora and Citeseer (Yang et al., 2016), Cornell and Texas (Pei
et al., 2020), and TUDataset (Morris et al., 2020) were not initially designed for long-range de-
pendency studies. Others, such as OGB (Hu et al., 2020) and LRGB (Dwivedi et al., 2022), were
introduced specifically to assess the ability to mitigate the three phenomena. However, many of
them have already been argued to lack significantly long-range dependencies (Dwivedi et al., 2022;
Tönshoff et al., 2023). Moreover, we observe that real-life benchmarks do not suit well for the
purpose in general, because we do not have enough control over their functions to learn. In particular,
we have no means to ensure that a function that perfectly fits all the examples actually relies on a
dependency of a particular length; in fact, we cannot even ensure that all the labels are justified by
some properties of the inputs rather than being just noise. Thus, such benchmarks are only useful to
conclude that one system is better than another on this particular benchmark, but not to claim with
confidence that a specific approach can learn a dependency of a specific length. So, to give such
guarantees, we have to employ synthetic benchmarks.

Several synthetic benchmarks designed for long-range dependency evaluation have also been pro-
posed. They include Tree-Neighbours (Alon & Yahav, 2021), h-Proximity (Abboud et al., 2022),
Graph Transfer and Ring Transfer (Di Giovanni et al., 2023; Gutteridge et al., 2023), Synthetic
Chains (Gu et al., 2020), Color-Connectivity (Rampášek & Wolf, 2021), Conditional Recall, and
Tree Max (Lukovnikov & Fischer, 2021). The common principle in their design is that they label
nodes in rather simple graphs using a known function that relies on dependency of a specific length.
However, we argue that this is not enough: we also need to ensure that there is no other classification
function that fits all the generated examples, but does not rely on long-enough dependency; moreover,
we also need to guarantee that there exists such a long-range function that is in principle expressible
in the tested graph learning architecture—that is, that there exists an instance of the architecture (e.g.,
GCN) that realises, in a uniform way, this function (see Barceló et al. (2020) and Grohe (2023) for the
details of such expressibility and related notions (Xu et al., 2019; Morris et al., 2019; Grohe, 2023)).
Unfortunately, none of the synthetic benchmarks mentioned above satisfy these two properties. For

5

Published as a conference paper at ICLR 2025

Figure 1: Positive (left) and negative (right) GLoRa examples for d = 6: green (i.e., source), blue
(normal), and orange (hole) nodes have embeddings of form [1,−], [−, 1], and [−, 0], respectively; T
marks the target node; the red-arrows chain is the long-range dependency path

example, in the Synthetic Chains benchmark (Gu et al., 2020), the graph in each example is a directed
chain, where the tail node is labelled True or False depending on whether the start node has 1 or 0 as
the first element of its initial embedding vector. These examples are indeed generated by means of a
function that relies on a long dependency (in particular, of the length of the longest chain). However,
it is possible to perfectly solve this benchmark by a (learned) function that ignores the distance and
path information, and only checks whether there somewhere in the graph there is a node without
incoming edges with 1 or 0 as the first element. More detailed justification for this and other synthetic
benchmarks are in Appendix D. The main contribution of this paper is benchmark generator GLoRa,
which produces benchmarks satisfying the two crucial properties.

3 BENCHMARK GENERATOR GLORA

In this section, we present the main contribution of this paper: an algorithm GLoRa that generates
benchmarks (i.e., sets of training, possibly validation, and test examples), which can be systematically
used to check the ability of a system to learn functions relying on dependencies of a specified length.
In particular, our benchmark generated for length d ensures the following properties.

(P1) All node classification functions fitting the training examples rely on dependency of length d
with arbitrarily high precision and probability.

(P2) There exists such a function that is expressible by all GNN-based graph learning approaches
we are aware of (including GCNs).

(P3) The benchmark is fair—that is, all examples come from the same distribution.

Before we start with intuition, we note that our benchmarks have two versions: one with directed and
one with undirected graphs. However, in the following presentation we concentrate on the directed
version, while the generalisation to undirected graphs is straightforward.

3.1 INTUITION

Our benchmark for the dependency of length d uses graphs with dimension 2 and relies on the
following intended binary classification function, which clearly relies on the dependency of length d.

(F) The target node is classified as True if and only if there is a path of length up to d from a
node with embedding of the form [1,−] (which we call the source node) to the target node
such that all nodes along the path, except the source, have embeddings [−, 1]; here, ‘−’
represents any number different from 1.

A naive benchmark for this function would use the following examples: a positive example will have
a chain of length d or slightly less as the graph, starting from a source node with embedding [1,−],
ending at the target node, and such that all nodes along the chain except the source have embedding
[−, 1]; in turn, each negative example is the same, except that one intermediate node has [−, 0] instead
of [−, 1] (in what follows, we call a node with [−, 0] embedding a hole).

This approach, however, would not lead to a benchmark that satisfies property (P1). Indeed, it would
be possible to perfectly fit all these examples by learning a much simpler function, which does not
depend on any significantly long-range dependency; for instance, one such function classifies the
target node as True if and only if there is no node anywhere in the graph, except the target node, with
embedding [−,−] (i.e., where both elements are not 1). Thus, the model that learned this ‘shallow’
alternative can perfectly classify all the examples of this benchmark.

6

Published as a conference paper at ICLR 2025

Algorithm 1 GLoRa Benchmark Example Generation
Input: Length d ≥ 3, label Ans ∈ {True,False}
Output: Graph-node pair (G, v) labelled Ans

1: Let D := [−12,−2] ∪ [3, 13]

/* Part A: Create the main chain */
2: Let G := (V, E , λ) with k0 ∼ U({⌊2/3 · d⌋, . . . , d}),

V := {v00 , . . . , v
k0
0 }, E := {(vi−1

0 , vi0) | i ∈ {1, . . . , k0}},
λ(v00) := (1, y00) with y00 ∼U(D), λ(vi0) := (xi

0, 1) with xi
0 ∼U(D) for each i ∈ {1, . . . , k0}

3: if Ans = False then
4: Set λ(vh0

0) := (xh0
0 , 0) with h0 ∼ U({1, . . . , k0 − 1})

/* Part B: Add alternative chains */
5: Let P ∼ U({5, . . . , 10})
6: for p = 1 to P do
7: Let kp ∼ U({⌊2/3 · d⌋, . . . , d}) and mp, np ∼ U({1, . . . , kp − 1}) assuming mp ≤ np

8: Let v′ ∼ U({vmj

j ∈ V | mj = ⌊kj · (mp − 1)/kp + 1/2⌋})
9: Let v′′ ∼ U({vnj

j ∈ V | nj = ⌊kj · (np + 1)/kp + 1/2⌋})
10: Add fresh v

mp
p , . . . , v

np
p to V and (v′, v

mp
p), (v

mp
p , v

mp+1
p), . . . , (v

np−1
p , v

np
p), (v

np
p , v′′) to E ,

letting λ(vip) := (xi
p, 1) with xi

p ∼ U(D) for each i ∈ {mp, . . . , np}
11: Set λ(vhp

p) := (x
hp
p , 0) with hp ∼ U({mp, . . . , np})

/* Part C: Add additional holes */
12: Let R ∼ U({2, 3}) and V ′ := V \ {v00 , v

k0
0 }

13: if Ans = True then
14: Set R := R+ 1 and V ′ := V ′ \ {vi0 | i ∈ {1, . . . , k0 − 1}}
15: for r = 1 to R do
16: Set λ(vij) := (xi

j , 0) with vij ∼ U(V ′)

17: return (G, vk0
0)

To ensure (P1), while preserving (P2), GLoRa adds to the chain-like graphs as in the naive approach
alternative paths with holes (i.e., [−, 0] embeddings) from the source to the target; this is illustrated
in Figure 1. The embeddings on these extra chains also ensure that the number of holes cannot be
used as a distinguishing property between positive and negative examples; same should hold for
more complex properties, such as the number of holes on paths between a [1,−]-source node and the
target node. As we will see formally in Theorem 1, such an approach ensures that any GNN-based
function fitting (a sufficient number of) such examples rely on a dependency of length d. So, we can
use GLoRa for length d to check if a system can learn functions with dependency of length d (e.g.,
d = 6 in Figure 1). Moreover, we can use a sequence of the benchmarks with increasing d to identify
the limit of a system—that is, the maximal length for which it can learn the dependencies.

3.2 GENERATOR ALGORITHM AND GUARANTEES

The pseudocode that generates a GLoRa example is given in Algorithm 1. Since each benchmark is
parameterised by length d, this number is one of the inputs of the algorithm. The second input, Ans,
ranges over classes True and False—that is, specifies whether the example is positive or negative. It
is assumed that GLoRa for a given depth d contains a sufficiently large balanced number of examples
generated by this algorithm in its training, validation (possibly), and test sets. Note that the algorithm
has a large degree of randomness, and the notation X ∼ U(S) means that X is sampled, uniformly at
random and independently of other samplings, from a set S. The algorithm consists of three parts.

In Part A (lines 2–4), the algorithm generates the main chain, which either has no holes, if the
example is positive, or one hole (i.e., a [−, 0]-embedded node), otherwise. The chain length is not
predetermined, but sampled randomly from (rounded) 2/3 of d to d, so that the exact length cannot be
used by systems in learning. The main chain starts in source node v00 with embedding [1,−], while all
other nodes have embeddings [−, 1] or [−, 0] (i.e., the hole); these nodes include the target node vk0

0 .

In Part B (lines 5–11), the algorithm adds several (5 to 10) alternative chains with the ends on the
previously generated chains (main or additional). The construction ensures (lines 7–9) that there are
no loops and the length of the path from the source to the target corresponding to each additional

7

Published as a conference paper at ICLR 2025

chain is within the same bounds as the main chain. Each additional chain has a hole, so that only the
path along the main chain determines if the example is positive or negative. Note, however, that a
model does not know which nodes belong to the main chain, so it has to explore all of them.

Finally, in Part C (lines 12–17), the algorithm adds several holes so that each individual path from
the source to the target does not have a predetermined number of holes. It also ensures that positive
examples remain positive (i.e., that the main chain has no holes), and that the distribution of the
number of holes in the positive and negative examples is the same.

We next argue that GLoRa possesses properties (P1)–(P3). Property (P1) is the most sophisticated
and is ensured by the following theorem (proved in Appendix C). We use several new notions. First,
we introduce an approximate version of Definition 1: a node classification function f relying on a
dependency of length d with precision δ > 0 is the same as in Definition 1 except that λ∗ in each item
is required to match λ, aj , and ai (when relevant) only with precision δ (under the maximum norm),
while the difference between each ai and λ(vi) should have the gap at least 3δ—that is, we require,
for example, ||λ∗(vi)−ai||∞ ≤ δ instead of λ∗(vi) = ai for each i and ||ai−λ(vi)||∞ ≥ 3δ instead
of ai ̸= λ(vi). Then, a set of examples for node classification requires learning dependencies of
length d with precision δ > 0 if each function that fits all these examples relies on such a dependency.

Theorem 1 Let d ∈ N be a length. Then, for every δ > 0 and P ∈ (0, 1) there exists a number
K such that a set of K examples, half generated by GLoRa(d,True) and half by GLoRa(d,False),
requires learning dependencies of length d with precision δ with probability at least P .

Moving on to property (P2) we note that the results of Barceló et al. (2020) imply that GCNs
can express our intended function (F). We also observe that virtually all other known GNN-based
classification approaches are more expressive than GCNs, which implies (P2). Finally, property (P3)
is automatic since the same (probabilistic) algorithm is used for generating all examples.

In the passing, we note that our algorithm can be easily adapted to undirected graphs.

4 EMPIRICAL STUDIES

In this section, we report our results on the evaluation of existing systems’ ability to learn long-
range dependencies. We begin with the setup of our main experiment, which is based on GLoRa
benchmarks. We then present our results, demonstrating that, although some systems perform better
than others, none can effectively learn dependencies of significantly long length. Finally, we show
that this rather weak performance cannot be attributed to any of the three phenomena.

4.1 MAIN EXPERIMENT SETUP AND RESULTS

If a system for learning binary node classification claims that it can learn dependencies of length
d, then it should show (nearly) perfect testing accuracy on a benchmark generated using GLoRa
example generator for length d. So, we can find the length limit of a system by running it on such
benchmarks with increasing values of d until the accuracy drops from nearly 1 to values close to 0.5.

For our experiment, we generated 5000 positive and 5000 negative examples using Algorithm 1 for
each d ∈ {3, . . . , 15}, and split each half with the ratio 80:10:10 to training, validation, and test sets.

Having these GLoRa benchmarks at hand, we evaluated state-of-the-art systems from four categories:

1. vanilla GNN-based systems (i.e., not designed to deal with long-range dependencies):
GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018), GraphSAGE (Hamilton et al.,
2017), GatedGCN (Bresson & Laurent, 2017), GGNN (Li et al., 2016), SGC (Wu et al.,
2019), and GIN (Xu et al., 2019);

2. GNN-based systems targeting over-smoothing: GCNII (Chen et al., 2020), PairNorm (Zhao
& Akoglu, 2020), DropEdge (Rong et al., 2020), GPRGNN (Chien et al., 2021),
DAGNN (Liu et al., 2020), APPNP (Gasteiger et al., 2019a), ResGCN and DenseGCN (Li
et al., 2019), as well as their variants ResGatedGCN, DenseGatedGCN, ResGAT, and
DenseGAT with self-explanatory names, JKNet (Xu et al., 2018), IGNN (Gu et al., 2020),
EIGNN (Liu et al., 2021), GIND (Chen et al., 2022), and G2 (Rusch et al., 2023);

8

Published as a conference paper at ICLR 2025

3. GNN-based systems targeting over-squashing (and vanishing gradient): νDrew-GCN, for
ν ∈ {1,∞}, and 1Drew-GCN+LapPE (Gutteridge et al., 2023), SP-GCN (Abboud et al.,
2022), FA-GCN (Alon & Yahav, 2021), DIGL (Gasteiger et al., 2019b), MixHop-GCN (Abu-
El-Haija et al., 2019), SDRF (Topping et al., 2022), and FOSR (Karhadkar et al., 2023);

4. transformer-based systems (Vaswani et al., 2017): GraphTransformer (Dwivedi & Bresson,
2020), SAN (Kreuzer et al., 2021), and GraphGPS (Rampásek et al., 2022), where the last
uses either RWSE or LapPE positional encoding.

(a) Vanilla GNN-based systems

(b) Systems targeting over-smoothing

(c) Systems targeting over-squashing

Figure 2: Test accuracy of based systems on
GLoRa benchmarks for increasing d (lines rep-
resent mean accuracy over multiple runs, shaded
areas indicate the standard deviation)

We run each system on each benchmark five
times, training for a maximum of 300 epochs or
until convergence, validating hyperparameters,
and computing the average testing accuracy over
the five runs. For the GNN-based systems, we
set the number of layers as d+2, which is always
enough to express (F). Further details on the
experiment setting are given in Appendix A.

In Figure 2, we present test accuracy results
for the best five systems in each of the first
three categories; detailed results for the other
systems, including the transformer-based ones,
which perform badly even for very short d, are
given in Appendix B. Since our benchmark is
noise-free, accuracy 1.0 is a reasonable target.
Moreover, since this is a binary classification
task, random guessing has accuracy 0.5. So, ac-
curacy below 0.8 is an indication that the model
has not effectively learned any function that fits
the examples—that is, cannot learn dependen-
cies of the given length.

In the figure, we can observe that most systems
experience a performance drop before d reaches
9, showing their inability to learn dependencies
of significant length. We also see that some
systems can learn longer dependencies a little
better; however, even their performance is poor
after d = 11. Notably, the best performance is
achieved by systems that use gated edges—that
is, GatedGCN, and its variants DenseGatedGCN
and ResGatedGCN—suggesting that this feature
may be a starting point for GNNs that can truly
learn long-range dependencies.

In summary, while some systems perform better
than others, none can reliably claim to be able
to learn dependencies much longer than of quite
modest length 11. We also note that, as we
report in Appendix E, the performance of all the
systems in the undirected setting is very similar.

4.2 OVER-SMOOTHING, OVER-SQUASHING, VANISHING GRADIENT ARE NOT THE REASON

Finally, we argue that, rather surprisingly, none of the three phenomena—over-smoothing, over-
squashing, or vanishing gradient—is the reason for the dropping performance in the main experi-
ment. In this section, we focus on the best-performing systems in the three categories (GatedGCN,
DenseGatedGCN, and 1Drew-GCN), but the same arguments apply to the other systems.

We first argue that over-smoothing is not a reason for the performance drop in all three systems.
To justify our claim, we considered the largest d for which the accuracy is 1 for all systems and

9

Published as a conference paper at ICLR 2025

(a) GatedGCN (b) DenseGatedGCN (c) 1Drew-GCN

Figure 3: Histograms of the last-layer values for the best-performing systems

(a) GatedGCN (b) DenseGatedGCN (c) 1Drew-GCN

Figure 4: First layer weight gradients across max 300 epochs for best-performing systems

the smallest d for which the accuracy is close to 0.5: 6 and 13. For each case, we extracted the
numeric value of the (1-dimensional) last (i.e., 8 and 15) layer embedding of the target node for
each of the examples and plotted their histograms in Figure 3. As expected, when accuracy is good,
the last-layer embeddings are clearly separated, while when accuracy is poor, they are more mixed
together. However, even in the latter case they still do not converge—that is, have rather significant
standard deviation. In other words, we do not observe over-smoothing in any of the three cases.

We next argue that over-squashing is also not the reason for degradation for the systems. In fact, this
is guaranteed by the construction of GLoRa examples. Indeed, since each example has P additional
chains, which is at most 10 (line 5 in Algorithm 1), there is a small (and independent of d) bound
on the number of paths leading to the target node. Therefore, over-squashing, which concerns the
compression of the information from many (exponential number of) paths to a single vector, is not
relevant here. Note that directedness of the graphs is crucial for this argument: in undirected graphs,
even a single chain to the target node would induce an exponential (in d) number of paths leading to
this node, and so making such a claim would not be possible.

We finally argue that gradient vanishing is also not the reason for the performance degradation of the
three systems. This phenomenon is primarily caused by the fact that the chain rule in backpropagation
results in exponentially smaller gradients in previous layers, making training difficult when there are
many of them. We plotted, in Figure 4, the distribution of the first layer gradients across multiple
epochs for the three systems. As we can see, the gradients remain stable throughout training, with
magnitudes well above zero, indicating no vanishing. As we report in Appendix F, the systems have
similar behaviour on other layers. This suggests that gradient vanishing is not the reason for their
inability to learn dependencies for the corresponding d. As a side comment, we note that the standard
techniques against gradient vanishing, such as AdamW, weight initialisation, gradient clipping, ReLU
activation, and batch normalisation are all employed during training for all the systems.

5 CONCLUSION AND FUTURE WORK

The main contribution of this paper is GLoRa, a generator of synthetic benchmarks that allows us to
evaluate graph-learning systems in terms of their ability to learn long-range dependencies. Using
GLoRa, we have demonstrated that none of the state-of-the-art systems can learn dependencies longer
than a very modest length of 11. We have also shown that this degradation cannot be attributed to
the over-smoothing, over-squashing, or vanishing gradient. This opens up two directions for future
research: to identify the real causes of this degradation and to develop methods to overcome it.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

The work was partially supported by EU Projects Graph Massivizer (GA 101093202), Dome 4.0
(GA 953163), enRichMyData (GA 101070284), and SMARTY (GA 101140087), and the Research
Council of Norway through its Centres of Excellence scheme, Integreat—Norwegian Centre for
knowledge-driven machine learning, project 332645.

REFERENCES

Ralph Abboud, Radoslav Dimitrov, and İsmail İlkan Ceylan. Shortest path networks for graph
property prediction. In Learning on Graphs Conference (LoG), 2022.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In International Conference on Machine Learning
(ICML), pp. 21–29, 2019.

Uri Alon and Eran Yahav. On the bottleneck of Graph Neural Networks and its practical implications.
In International Conference on Learning Representations (ICLR), 2021.

Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.
The logical expressiveness of Graph Neural Networks. In International Conference on Learning
Representations (ICLR), 2020.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F. Montúfar, and
Michael M. Bronstein. Weisfeiler and Lehman go cellular: CW networks. In Annual Conference
on Neural Information Processing Systems (NeurIPS), pp. 2625–2640, 2021.

Pietro Bongini, Franco Scarselli, Monica Bianchini, Giovanna Maria Dimitri, Niccolo Pancino, and
Pietro Lio. Modular multi-source prediction of drug side-effects with DruGNN. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 20(2):1211–1220, 2022.

Xavier Bresson and Thomas Laurent. Residual gated Graph ConvNets. CoRR, arXiv:1711.07553
[cs.LG], 2017.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep Graph
Convolutional Networks. In International Conference on Machine Learning (ICML), pp. 1725–
1735, 2020.

Qi Chen, Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Optimization-induced
graph implicit nonlinear diffusion. In International Conference on Machine Learning (ICML), pp.
3648–3661, 2022.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized PageRank
Graph Neural Network. In International Conference on Learning Representations (ICLR), 2021.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M.
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning (ICML), pp. 7865–7885, 2023.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
CoRR, arXiv:2012.09699 [cs.LG], 2020.

Vijay Prakash Dwivedi, Ladislav Rampásek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In Annual Conference on Neural
Information Processing Systems (NeurIPS), 2022.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking Graph Neural Networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

11

Published as a conference paper at ICLR 2025

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
Neural Networks for social recommendation. In The World Wide Web Conference (WWW), pp.
417–426, 2019.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph Neural Networks meet personalized PageRank. In International Conference on Learning
Representations (ICLR), 2019a.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In Annual Conference on Neural Information Processing Systems (NeurIPS), pp. 13333–
13345, 2019b.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics (AISTATS), pp.
249–256, 2010.

Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks, volume 385 of Studies
in Computational Intelligence. Springer, 2012.

Martin Grohe. The descriptive complexity of Graph Neural Networks. In Symposium on Logic in
Computer Science (LICS), pp. 1–14, 2023.

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit graph
neural networks. In Annual Conference on Neural Information Processing Systems (NeurIPS), pp.
11984–11995, 2020.

Benjamin Gutteridge, Xiaowen Dong, Michael M. Bronstein, and Francesco Di Giovanni. Drew:
Dynamically rewired message passing with delay. In International Conference on Machine
Learning (ICML), pp. 12252–12267, 2023.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Annual Conference on Neural Information Processing Systems (NIPS), pp. 1024–1034,
2017.

Yi Han, Shanika Karunasekera, and Christopher Leckie. Graph Neural Networks with continual
learning for fake news detection from social media. CoRR, arXiv:2007.03316 [cs.SI], 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, arXiv:1512.03385 [cs.LG], 2015.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Annual
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning (ICML), pp.
448–456, 2015.

Ditsuhi Iskandaryan, Francisco Ramos, and Sergio Trilles. Graph Neural Network for air quality
prediction: A case study in Madrid. IEEE Access, 11:2729–2742, 2023.

Ajay Jaiswal, Peihao Wang, Tianlong Chen, Justin F. Rousseau, Ying Ding, and Zhangyang Wang.
Old can be gold: Better gradient flow can make vanilla-GCNs great again. In Annual Conference
on Neural Information Processing Systems (NeurIPS), 2022.

Kanchan Jha, Sriparna Saha, and Hiteshi Singh. Prediction of protein–protein interaction using Graph
Neural Networks. Scientific Reports, 12(1):8360, 2022.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montúfar. FoSR: First-order spectral rewiring
for addressing oversquashing in GNNs. In International Conference on Learning Representations
(ICLR), 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

12

Published as a conference paper at ICLR 2025

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. In Annual Conference on Neural Information
Processing Systems (NeurIPS), pp. 21618–21629, 2021.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs go as deep
as CNNs? In International Conference on Computer Vision (ICCV), pp. 9267–9276, 2019.

Mengzhang Li and Zhanxing Zhu. Spatial-temporal fusion Graph Neural Networks for traffic flow
forecasting. In AAAI Conference on Artificial Intelligence (AAAI), volume 35, pp. 4189–4196,
2021.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into Graph Convolutional Networks for
semi-supervised learning. In AAAI Conference on Artificial Intelligence (AAAI), pp. 3538–3545,
2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated Graph Sequence Neural
Networks. In International Conference on Learning Representations (ICLR), 2016.

Hai Liu, Chao Zheng, Duantengchuan Li, Zhaoli Zhang, Ke Lin, Xiaoxuan Shen, Neal N. Xiong,
and Jiazhang Wang. Multi-perspective social recommendation method with graph representation
learning. Neurocomputing, 468:469–481, 2022.

Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, and Xiaokui Xiao. EIGNN: Efficient
infinite-depth graph neural networks. In Annual Conference on Neural Information Processing
Systems (NeurIPS), pp. 18762–18773, 2021.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper Graph Neural Networks. In International
Conference on Knowledge Discovery & Data Mining (SIGKDD), 2020.

Denis Lukovnikov and Asja Fischer. Improving breadth-wise backpropagation in Graph Neural
Networks helps learning long-range dependencies. In International Conference on Machine
Learning (ICML), pp. 7180–7191, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order Graph Neural Networks.
In AAAI Conference on Artificial Intelligence (AAAI), pp. 4602–4609, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,
arXiv:2007.08663 [cs.LG], 2020.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geometric
Graph Convolutional Networks. In International Conference on Learning Representations (ICLR),
2020.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. DeepInf: Social
influence prediction with deep learning. In International Conference on Knowledge Discovery &
Data Mining (ICKDDM), pp. 2110–2119, 2018.

Ladislav Rampášek and Guy Wolf. Hierarchical Graph Neural Nets can capture long-range interac-
tions. In International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6,
2021.

Ladislav Rampásek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Annual Conference
on Neural Information Processing Systems (NeurIPS), 2022.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. DropEdge: Towards deep Graph
Convolutional Networks on node classification. In International Conference on Learning Repre-
sentations (ICLR), 2020.

T. Konstantin Rusch, Benjamin Paul Chamberlain, Michael W. Mahoney, Michael M. Bronstein,
and Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. In International
Conference on Learning Representations (ICLR), 2023.

13

Published as a conference paper at ICLR 2025

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
Graph Neural Network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? Reassessing
the long-range graph benchmark. Transactions on Machine Learning Research, 2023.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations (ICLR), 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Annual Conference on Neural
Information Processing Systems (NIPS), pp. 5998–6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations
(ICLR), 2018.

Mark Weber, Jie Chen, Toyotaro Suzumura, Aldo Pareja, Tengfei Ma, Hiroki Kanezashi, Tim Kaler,
Charles E. Leiserson, and Tao B. Schardl. Scalable graph learning for anti-money laundering: A
first look. CoRR, arXiv:1812.00076 [cs:SI], 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing Graph Convolutional Networks. In International Conference on Machine Learning (ICML),
pp. 6861–6871, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning (ICML), pp. 5453–5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International Conference on Machine Learning (ICML), pp. 40–48, 2016.

Lingxiao Zhao and Leman Akoglu. PairNorm: Tackling oversmoothing in GNNs. In International
Conference on Learning Representations (ICLR), 2020.

14

Published as a conference paper at ICLR 2025

A MAIN EXPERIMENT DETAILS

In this appendix, we give additional details of the settings of the main experiment in Section 4.1.

A.1 STATISTICS OF THE BENCHMARK USED IN THE EXPERIMENT

Table 1 presents an excerpt of the benchmark statistics. We created benchmarks for every
d ∈ {3, . . . , 15}, but, for readability, give the statistics only for those at intervals of 5—that is,
for depths of 5, 10, and 15.

Length d Examples Total Nodes Average
Nodes in a

Graph

Mean
In-Degree

Total Edges Average
Edges in a

Graph

Average
S → T

5 10000 19334 19 2 259154 26 5
10 10000 336606 33 2 401698 40 9
15 10000 497528 50 2 562624 56 14

Table 1: Statistics of the synthetic benchmark generated by GLoRa with varying length d, where each
column entry gives the number of the elements in the set of the column name; here ‘Average S → T ’
stands for the average path length from the source node to the target node, while other column names
are self-explanatory

A.2 BENCHMARK LICENSES

Our benchmark generator source code is available at https://github.com/DongzhuoranZhou/GLoRa
under the MIT License.

A.3 SOURCE CODES FOR EVALUATED SYSTEMS

For the vanilla GNN-based systems (i.e., not designed to deal with long-range dependencies), GCN,
GAT, GraphSAGE, GGNN, SGC, and GIN, we used the implementations included into library
PyTorch Geometric (see https://github.com/pyg-team/pytorch_geometric). The implementation of
GatedGCN was taken from the repository of GraphGPS (Rampásek et al., 2022).

For the GNN-based systems targeting over-smoothing, we used the PyTorch Geometric implementa-
tions for GCNII, PairNorm, DropEdge, APPNP, JKNet, ResGCN, and DenseGCN, as well as the
variants ResGatedGCN, DenseGatedGCN, ResGAT, and DenseGAT of the last two. The imple-
mentations of GPRGNN, DAGNN, IGNN, EIGNN, GIND, and G2 were obtained from the original
repositories reported in the corresponding papers.

For the GNN-based systems targeting over-squashing, the implementations of νDrew-GCN with
ν ∈ {1,∞}, SP-GCN, DIGL, and MixHop-GCN were taken from the repository of Drew (Gutteridge
et al., 2023), while SDRF and FOSR were taken from https://github.com/hieubkvn123/revisiting-gnn-
curvature. Lastly, the FA-GCN architecture was re-implemented in-house.

For all transformer-based systems—that is, GraphTransformer, SAN, and GraphGPS with RWSE
and LapPE—we used the implementations available in the GraphGPS repository (Rampásek et al.,
2022).

The overview of these sources is given in Table 2.

A.4 COMPUTING ENVIRONMENT

All experiments were conducted in a shared computing cluster environment utilizing various CPU
and GPU architectures, including NVidia V100 (16GB/32GB) and NVidia A100 (40GB/80GB). Each
system was allocated a resource budget of 1 GPU, 4 CPUs, and up to 32GB of system RAM.

15

https://github.com/DongzhuoranZhou/GLoRa
https://github.com/pyg-team/pytorch_geometric
https://github.com/hieubkvn123/revisiting-gnn-curvature
https://github.com/hieubkvn123/revisiting-gnn-curvature

Published as a conference paper at ICLR 2025

Category Baseline URLs

vanilla GNNs
GCN, GAT, GraphSAGE https://github.com/pyg-team/pytorch_geometricGIN, GGNN, SGC
GatedGCN https://github.com/rampasek/GraphGPS

targeting over-smoothing

GCNII, PairNorm, DropEdge

https://github.com/pyg-team/pytorch_geometricResGCN, APPNP, ResGatedGCN
DenseGCN, JKNet, DenseGAT
ResGAT, DenseGatedGCN
GPRGNN https://github.com/jianhao2016/GPRGNN
DAGNN https://github.com/mengliu1998/DeeperGNN/tree/master
IGNN https://github.com/sczhou/IGNN
EIGNN https://github.com/liu-jc/EIGNN
GIND https://github.com/7qchen/GIND
G2 https://github.com/tk-rusch/gradientgating

targeting over-squashing

∞Drew-GCN, 1Drew-GCN https://github.com/BenGutteridge/DRew/tree/main
SP-GCN https://github.com/BenGutteridge/DRew/tree/main
DIGL https://github.com/BenGutteridge/DRew/tree/main
MixHop-GCN https://github.com/BenGutteridge/DRew/tree/main
SDRF https://github.com/hieubkvn123/revisiting-gnn-curvature
FOSR https://github.com/hieubkvn123/revisiting-gnn-curvature
FA-GCN https://github.com/DongzhuoranZhou/GLoRa

transformer-based
GraphTransformer https://github.com/rampasek/GraphGPS
SAN https://github.com/rampasek/GraphGPS
GraphGPS with RWSE and LapPE https://github.com/rampasek/GraphGPS

Table 2: URLs for Baseline Model Source Codes

A.5 HYPERPARAMETER SETTINGS

The essential parameters and hyperparameters are as follows.

• All experiments are trained for 300 epochs or until convergence, with results averaged over
5 runs.

• All experiments use batch sizes of 32.

• All results use the AdamW optimiser with momentum β1 = 0.9, base learning rate search
space [0.005, 0.01, 0.05], and weight decay space [0, 5e-6, 5e-5, 5e-4].

• All experiments use batch normalisation with ϵ = 1e-5, momentum=0.9.

• For the GNN-based systems, the number of layers was set to d + 2, where d is the depth
of the benchmark (which, not surprisingly, was shown to be a best number of layers in all
cases in additional experiments).

• For MixHop-GCN, hyperparameter P is a set of integer adjacency powers. The search space
for P is [3, 5, 7].

• DIGL and GraphGPS are configured to use GatedGCN as the base model, as it delivers the
best performance among MPNNs.

• For DIGL, we employ PPR diffusion with α with search space [0.1, 0.2, 0.5, 0.9] and apply
threshold sparsification with average degree davg with search space [1, 2, 3, 4, 5].

• GAT head search space is [1, 4, 8].

• JKNet has three options of connection, i.e., concatenation, max, and lstm, which is also
taken as a hyperparameter.

• For GPRGNN, we set the random walk path length to K = 10, and search for the best PPR
within space α ∈ [0.1, 0.2, 0.5, 0.9].

• For GPS and SAN, layer number search space is [5, . . . , 14].

B ADDITIONAL RESULTS OF THE MAIN EXPERIMENT

In this appendix, we report the results of the main experiment that are not included in the main body
of the paper. In Figure 5, we show the testing accuracy on GLoRa benchmarks with increasing d

16

https://github.com/pyg-team/pytorch_geometric
https://github.com/rampasek/GraphGPS
https://github.com/pyg-team/pytorch_geometric
https://github.com/jianhao2016/GPRGNN
https://github.com/mengliu1998/DeeperGNN/tree/master
https://github.com/sczhou/IGNN
https://github.com/liu-jc/EIGNN
https://github.com/7qchen/GIND
https://github.com/tk-rusch/gradientgating
https://github.com/BenGutteridge/DRew/tree/main
https://github.com/BenGutteridge/DRew/tree/main
https://github.com/BenGutteridge/DRew/tree/main
https://github.com/BenGutteridge/DRew/tree/main
https://github.com/hieubkvn123/revisiting-gnn-curvature
https://github.com/hieubkvn123/revisiting-gnn-curvature
https://github.com/DongzhuoranZhou/GLoRa
https://github.com/rampasek/GraphGPS
https://github.com/rampasek/GraphGPS
https://github.com/rampasek/GraphGPS

Published as a conference paper at ICLR 2025

Figure 5: Test accuracy of non-top-5 based systems on GLoRa benchmarks for increasing d (lines
represent mean accuracy over multiple runs, shaded areas indicate the standard deviation)

for systems outside the top 5 in vanilla GNNs, GNNs targeting over-smoothing, GNNs targeting
over-squashing, and all transformer-based methods. Specifically, for vanilla GNN-based systems
they are GAT and GGNN; for the GNNs targeting over-smoothing they are ResGAT, G2, DenseGAT,
DropEdge, DAGNN, PairNorm, APPNP, GPRGNN, GIND, EIGNN, JKNet, and IGNN; and for the
GNNs targeting over-squashing systems they are DIGL, SDRF, FOSR, and FA-GCN. For transformer-
based methods, we consider GraphTransformer, SAN, and GraphGPS.

C PROOF SKETCH OF THEOREM 1

In this appendix, we give a proof sketch of our theorem.

Theorem 1 Let d ∈ N be a length. Then, for every δ > 0 and P ∈ (0, 1) there exists a number
K such that a set of K examples, half generated by GLoRa(d,True) and half by GLoRa(d,False),
requires learning dependencies of length d with precision δ with probability at least P .

Proof sketch. First, observe that, for the given d, there is only a finite number of pairs V, E of sets of
nodes and edges that can be the first two components of a graph generated by GLoRa algorithm with
parameter d. Moreover, each of these pairs has non-zero probability of being generated. Moreover,
D is bounded and the values are sampled from this set by the agorithm uniformly. So, for the given
δ and P , there is a number K such that K generated examples include, with required probability,
an appropriate number of examples that support the claim—that is, such thar the approximated
version of Definition 1 holds. Indeed, we only need to ensure that the graph structures of each

17

Published as a conference paper at ICLR 2025

positive-negative pair agree with the required structure and between the two examples in the pair, and
that their embeddings are within δ everywhere, except the designated differences. □

D NON-SUITABILITY OF EXISTING SYNTHETIC BENCHMARKS

In this appendix, we provide a summary of existing synthetic benchmarks, each with its unique graph
structures and target functions. Then we explain why each of the existing synthetic benchmarks are
not suitable for the purpose of checking whether a system is able to learn long-range dependencies.

Summary of existing synthetic benchmarks is as follows:

• Synthetic Chains (Gu et al., 2020). The graph structure in this benchmark is directed
chain. The task is to classify nodes in a directed chain of length l. For simplicity, a binary
classification is used, with two types of chains. The class of each node is determined by the
1/0 encoding in the first dimension of the starting node’s 100-dimensional feature vector.
The training set includes randomly sampled nodes from these chains. The target function is
that the node is true if and only if the starting node, which has no incoming edges, has a
value of 1 in its first dimension.

• Graph Transfer, Ring Transfer (Di Giovanni et al., 2023; Gutteridge et al., 2023). The
graph structures in these benchmarks are ring, crossed-ring, and clique-path. Ring graphs
are cycles of size n. In each ring, there exist pairs of nodes that are placed at a distance
of

⌊
n
2

⌋
from each other. One of these node pairs is chosen. One node in the pair has its

class information encoded as a one-hot vector (5 classes total) in its embedding, which is
used to classify the other node. The target function is that there exists a node with a one-hot
encoding node embedding in the graph. The class of the node at a distance of

⌊
n
2

⌋
from this

node is the same as the one-hot encoded class. A similar setting applies in crossed-ring and
clique-path.

• Tree-Neighbours (Alon & Yahav, 2021). The graph structure in this benchmark is a
directed binary tree, where the root and leaves have some additional 1-hop neighbours
pointing to them. The target function is that the class of the root node is the class of the leaf
node, which has the same number of 1-hop neighbors pointing to it as the root node. Here,
the 1-hop neighbours do not include the nodes on the original binary tree.

• h-Proximity (Abboud et al., 2022). The graph structure in the benchmark is defined as
follows: (i) consecutive level nodes are pairwise fully connected, (ii) nodes within the same
level are pairwise disconnected. Each node is either red, blue, or uncoloured. The target
function states that the graph is positive if all red nodes in this graph have at most 2 blue
nodes within their h-hop neighborhood.

• Colour-Connectivity (Rampášek & Wolf, 2021). The graph structure in the benchmark
consists of 2D square grids. Each node is either red or blue. Red nodes are sampled by
random walks starting from two random nodes until half the nodes are red; the remaining
nodes are colored blue. The target function states that the graph is positive if there is a single
connected island of red nodes, and negative if there are two disjoint islands of red nodes.

• Conditional Recall (Lukovnikov & Fischer, 2021): The graph structure in Conditional
Recall is a directed chain. The nodes in the chain are encoded as letters (both uppercase
and lowercase) and digits. The target function is as follows: (i) if there is a digit in the
sequence, the first digit corresponds to the class label of the chain; (ii) otherwise, if there
is an uppercase letter, the first uppercase letter is the class label; (iii) if neither digits nor
uppercase letters are present, the class is given by the first character in the sequence.

• Tree-Max (Lukovnikov & Fischer, 2021). The graph structure in Tree-Max is a directed
binary tree. The nodes in the tree are encoded as digits. The target function is that the label
of the node is the largest value of all the descendants of a node and the node itself.

The reason why each of the existing synthetic benchmarks are not suitable for the purpose of checking
whether a system is able to learn long-range dependencies are as follows:

• Synthetic Chains. Intuitively, to solve this benchmark, it is possible for the learned function
to ignore the distance and path information, making global readouts like Virtual Nodes

18

Published as a conference paper at ICLR 2025

Figure 6: Test accuracy of best five systems in each category of vanilla GNN-based systems, systems
targeting over-smoothing and systems targeting over-squashing on undirected GLoRa benchmarks
for increasing d (lines represent mean accuracy over multiple runs, shaded areas indicate the standard
deviation)

sufficient. In particular, such function does not rely on long-range dependency, because
it does not satisfy the requirement that any intermediate node on a justifying path can be
dropped.

• Graph Transfer and Ring Transfer. This benchmark has similar properties as Synthetic
Chains and hence also can be perfectly fitted with a similar function that does not rely on
long-range dependency. Moreover, the design of these benchmarks allows only for five
different examples (one for each class of the used multi-class classification), which makes
the benchmarks of limited use, because these five examples may be memorised by the
system during training.

• Tree-Neighbours. Same as the previous two cases, this benchmark can be perfectly fitted
with a function that does not rely on long-range dependency, which is based on the same
principle.

• h-Proximity. In this case, the possible function that does not rely on long-range dependency
is the one that does not rely on the embeddings of the nodes on the paths between any red
node and the target node (thus not satisfying Definition 1).

• Colour-Connectivity. On the contrary to the previous cases, this benchmark indeed requires
learning function relying on long-range dependency. However, it has an opposite issue: all
the GNN-based systems we are aware of cannot express any function that fits a sufficient
amount of randomly generated training examples.

• Conditional Recall, Tree-Max. The graphs in these benchmarks have limited size, so it is
also possible to solve each of them by using a function that does not depend on long-range
dependency.

E UNDIRECTED GRAPH EXPERIMENT RESULTS

In this section, we present the test results for all the based systems discussed in Section 4 on the
undirected version of GLoRa. The results are reported in Figures 6 and 7.

19

Published as a conference paper at ICLR 2025

Figure 7: Test accuracy of non-top-5 based systems on undirected GLoRa benchmarks for increasing d
(lines represent mean accuracy over multiple runs, shaded areas indicate the standard deviation)

F GRADIENT VISUALIZATION OF THE DEEP LAYERS

In this section, we present the gradient distributions of the second and third layers for the best-
performing systems. As shown in Figure 8, the gradients in both the second and third layers remain
sufficiently large, indicating that the models do not suffer from vanishing gradient problems. This
stability of gradients across deeper layers suggests that the degradation in performance is not due to
gradient vanishing, but likely other factors.

20

Published as a conference paper at ICLR 2025

(a) GatedGCN (b) DenseGatedGCN (c) 1Drew-GCN

(d) GatedGCN (e) DenseGatedGCN (f) 1Drew-GCN

Figure 8: Gradient weights of the second (a, b, c) and third layer (d, e, f) across 300 epochs for the
best-performing systems

21

	Introduction
	The challenge of learning long-range dependencies
	Learning on graphs
	Graph neural networks
	Possible causes for the long-range dependency issue
	Existing benchmarks and their limitations

	Benchmark generator GLoRa
	Intuition
	Generator algorithm and guarantees

	Empirical studies
	Main experiment setup and results
	Over-smoothing, over-squashing, vanishing gradient are not the reason

	Conclusion and future work
	Main experiment details
	Statistics of the benchmark used in the experiment
	Benchmark licenses
	Source codes for evaluated systems
	Computing environment
	Hyperparameter Settings

	Additional results of the main experiment
	Proof sketch of Theorem 1
	Non-suitability of existing synthetic benchmarks
	Undirected graph experiment results
	Gradient visualization of the deep layers

