
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LATENT THINKING OPTIMIZATION: YOUR LATENT
REASONING LANGUAGE MODEL SECRETLY ENCODES
REWARD SIGNALS IN ITS LATENT THOUGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel at problem solving by generating chain of
thoughts in natural language, but such verbal thinking is computationally costly
and prone to overthinking. Recent work instead proposes a latent thinking archi-
tecture Huggin-3.5B, which represents intermediate reasoning steps as sequence
of latent representations. However, latent thoughts lack interpretability and are
difficult to supervise, raising concerns about the correctness and reliability of
its latent thinking processes. In this paper, we provide a systematic study of
how Huggin-3.5B thinks in the latent space and how external supervision signals
can improve its latent thinking processes. We show that latent thoughts leading
to correct versus incorrect answers exhibit highly distinguishable patterns, and
that a latent classifier can reliably predict answer correctness directly from latent
thoughts. Leveraging these insights, we propose Latent Thinking Optimization
(LTO), a probabilistic algorithm that employs the latent classifier as a Latent Re-
ward Model (LRM) to optimize the latent thinking processes. Extensive experi-
ments across diverse reasoning tasks demonstrate that LRM is highly effective in
detecting incorrect latent thinking patterns, and LTO can significantly improve the
latent thinking processes. Furthermore, we show that LRM can generalize across
diverse domains, and LTO can be seamlessly applied to general LLMs to improve
their thinking processes. In contrast to verbal thinking, our method demonstrates
that reward modeling and scaling test-time thinking with supervision can be per-
formed directly in the latent space, highlighting its potential as a general, efficient,
and domain-agnostic approach to improving the thinking processes of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Bai et al., 2023; Touvron et al., 2023a; Anil
et al., 2023) have demonstrated impressive problem-solving abilities by generating natural language
as a form of thinking and reasoning1 (Wei et al., 2022; Kojima et al., 2022; Yao et al., 2023). This
ability to “think” enables them to solve a variety of complex tasks, such as math (Lightman et al.,
2024; Gao et al., 2023), coding (Li et al., 2022; Nijkamp et al., 2023), and embodied planning (Shinn
et al., 2023; Hao et al., 2023). However, generating the whole thinking process in natural language
is very costly and prone to the overthinking issue where LLMs output redundant or misleading
thoughts that degrade both accuracy and efficiency (Sui et al., 2025; Chen et al., 2025).

In contrast, humans think largely through internal latent representations—compact, abstract mental
codes that capture abstract concepts and hidden structures (Quiroga et al., 2005; Mishchanchuk
et al., 2024). Such a latent thinking process is highly efficient as it avoids the need to verbalize every
intermediate step, and is well-suited for reasoning with abstract logic or concepts that are often
difficult to convey through natural language. Motivated by this, a recent research explores modeling
the thinking process as a sequence of latent representations (i.e., latent thoughts) and proposes a
new latent reasoning language model Huggin-3.5B (Geiping et al., 2025), where each latent thought
corresponds to a thinking step. These latent thoughts form a latent reasoning chain that enable the

1In this paper, we use the terms “thinking” and “reasoning” interchangeably to refer to the process by which
an LLM generates intermediate steps or latent thoughts toward an answer.
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model to reason effectively in the latent space, and achieve impressive performance across a variety
of reasoning tasks.

Despite promising, such latent thinking architecture faces a major challenge: it lacks interpretability
and supervision. Unlike verbal thinking, where each intermediate step can be inspected and evalu-
ated (Wang et al., 2024), latent thinking is encoded in internal hidden states that are hard to interpret.
This makes it difficult to understand what the model is actually thinking about or to verify its cor-
rectness. Furthermore, the model is trained to generate these latent thoughts in an unsupervised
manner without explicit supervision or reward signals that can indicate what a “good” latent thought
is. This raises concerns on whether the model is truly learning to think in the latent space, or simply
memorizing the answers using the parameters of latent representations (Wang et al., 2025b).

In this paper, we aim to understand how Huggin-3.5B thinks in the latent space and how exter-
nal supervision signals can improve its latent thinking process. Specifically, we observe that latent
thinking trajectories (i.e., sequences of latent thoughts) that lead to correct versus incorrect answers
exhibit distinct patterns. To further investigate this, we train a latent classifier to predict answer
correctness from the latent thinking trajectories, and observe that it can reliably distinguish between
correct and incorrect trajectories, even for partial trajectories with just the first few thinking steps.
Building on these insights, we formulate latent thinking improvement as a reward optimization prob-
lem over latent policies, and propose a Latent Thinking Optimization (LTO) algorithm that uses the
latent classifier as a Latent Reward Model (LRM) to sample latent thinking trajectories with a higher
estimated likelihood of correctness. LTO is theoretically guaranteed to improve the expected cor-
rectness rate and empirically yields significant gains across a range of challenging reasoning tasks.

While we use Huggin-3.5B as a starting point to understand the latent thinking processes, the pro-
posed LRM and LTO extend naturally to general LLMs. Although general LLMs do not explicitly
incorporate latent thinking, their latent representations across multiple layers can be interpreted as
latent chain of thoughts (Wang et al., 2025c). Under this view, LRM and LTO can be readily ap-
plied to general LLMs. In our experiments, we demonstrate that the latent thoughts from general
LLMs also encode appropriate reward signals and LTO can significantly improve the performance
of general LLMs on diverse reasoning tasks using these LRMs. Furthermore, we show that LRM ex-
hibits strong cross-domain generalization even with a small amount of training data, highlighting its
potential as an efficient and generalist reward model in the latent space. In contrast to verbal think-
ing approaches that scale test-time compute through natural language generation (Guo et al., 2025;
Muennighoff et al., 2025), our method demonstrates that reward modeling and scaling test-time
thinking with supervision can be performed directly in the latent space, highlighting its potential as
a general, efficient, and domain-agnostic approach to improving the thinking processes of LLMs.

2 DEFINITIONS AND NOTATIONS OF REASONING LLMS

Given a question x ∼ D sampled from the dataset D, a language model π(·) can directly generate
an answer by sampling from y ∼ π(y | x). For complex questions, however, it is often beneficial to
introduce intermediate reasoning steps z to represent the model’s thinking process. In this case, the
model first thinks by sampling from z ∼ π(z | x) and then generates the final answer conditioned on
z, that is, y ∼ π(y | z). Empirically, this two-staged generation process often improves the answer
correctness rate, as generating z allows the model to decompose a complex problem into simpler
subproblems, enabling structured and logically grounded reasoning that increases the probability of
generating the correct answer (Wei et al., 2022; Kojima et al., 2022).
Verbal Thinking Common reasoning LLMs (Li et al., 2025) represent z as a sequence of reason-
ing steps (Wei et al., 2022) in natural language, that is, z = (e1, · · · , et, · · · , eT ), where each et is
a chunk of text that corresponds to a specific step in the reasoning process. However, generating all
the reasoning steps in natural language introduces significant computational overhead, and increases
the risk of overthinking where the model generates unnecessarily verbose or logically inconsistent
reasoning chains that lead to incorrect answers (Chen et al., 2025; Sui et al., 2025).
Latent Thinking To address the limitations of verbal thinking, inspired by the human cognitive
theory, a recent research proposes a latent reasoning language model Huginn-3.5B (Geiping et al.,
2025) which represents the sequence of reasoning steps as a sequence of internal hidden states
z = (h1, · · · ,ht, · · · ,hT ) (i.e., a latent thinking trajectory). Each ht ∈ RL×d represents a latent
reasoning step (i.e., a latent thought), where L is the number of tokens in the output y, d is the hidden
dimensionality. The number of thinking steps T is set as 32 by default, and can vary according to
the computation budget. The initial latent thought h0 ∼ N (0, σ2IL·d) is sampled from random
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Gaussian noise with the standard deviation σ, and a recurrent block is introduced to generate the
latent thoughts h1:T recursively conditioned on the question x. A lightweight decoding module
generates the answer y in natural language conditioned on the last latent thought hT . Because
both chain-of-thought reasoning and recurrent architectures can be conceptualized as finite-state
automata (Svete & Cotterell, 2023; Zhang et al., 2024), this approach can be viewed as generating
the chain of thoughts in the latent space without the need for verbose reasoning. While efficient, it is
difficult to trace the model’s logic or provide step-level supervision due to the lack of interpretable
structures and semantic patterns in the latent space.

3 DECIPHER HOW HUGGIN-3.5B THINKS IN THE LATENT SPACE

Latent thoughts are hidden states and may not have an intrinsic notion of “correctness” themselves.
To determine what constitutes a “good” or “bad” latent thought, in this paper, we define the cor-
rectness of a latent thinking trajectory (latent thinking process) in terms of whether the trajectory
(thinking process) leads to a correct answer. This definition provides a reference point for distin-
guishing “good” from “bad” latent thoughts and enables us to systematically investigate whether
these trajectories exhibit distinct structural patterns in latent space. It is also consistent with the idea
of process reward models (Wang et al., 2024; Lu et al., 2024), where the correctness of intermediate
reasoning steps is labeled based on their relation with the final answer.

To understand the latent thinking processes, we consider an interesting research question:

Research Question: Do latent thoughts that lead to correct answers exhibit different pat-
terns in latent space compared to those leading to incorrect answers?

If differences exist, they would not only provide insights into how Huggin-3.5B encodes abstract
concepts during its thinking process, but also provide a foundation for detecting and correcting
thinking errors directly in the latent space.

3.1 VISUALIZATION OF LATENT THOUGHTS

To answer this research question, we select two datasets from different domains: SVAMP (Patel
et al., 2021) (grade school math) and MBPP (Austin et al., 2021) (python programming). For each
problem in these datasets, we randomly sample 100 latent thinking trajectories by sampling from
initial latent thought h0 with different random seeds, and generate the corresponding answers from
these latent thoughts. To compare the difference between latent thoughts that lead to correct and
incorrect answers, we select those problems that contain both correct and incorrect answers, then
visualize and compare their latent thoughts in Figure 1. We have the following observations:
Correct and incorrect latent thoughts exhibit different structures in the latent space. For the
same problem, the trajectory of correct and incorrect latent thoughts diverge in both their paths
and endpoints, indicating that the model is engaging in different thinking behaviors for correct and
incorrect solutions. Interestingly, the distributions of correct latent thoughts are relatively compact
and tend to converge toward consistent solution paths. In contrast, incorrect latent thoughts are more
dispersed in the latent space, suggesting that they lack a stable and consistent reasoning pattern.
Both correct and incorrect latent thoughts exhibit different thinking dynamics at different
steps. Latent thoughts from early steps show sharp and abrupt changes. This suggests that the
model is probably doing active computation and exploratory reasoning, which might involve cogni-
tive behaviors such as searching or backtracking (Gandhi et al., 2025) that are helpful for problem
solving. Latent thoughts evolve more smoothly in the middle steps, suggesting that the model is
probably finetuning its thinking process for iterative refinement (Madaan et al., 2023). In the last
few steps, latent thoughts almost converge, indicating that the thinking process is complete and a
conclusion is reached. These patterns suggest that the latent space effectively captures the progres-
sion of the thinking dynamics, with distinct behaviors emerging at different steps.
Distinct thinking patterns emerge for different types of problems. Latent thoughts from math
problems display different thinking patterns from those observed in programming problems. Within
the same dataset, the model also generates latent thoughts with different patterns for different types
of problems. Notably, convergence of latent thoughts is faster on math problems, which typically
require only two to three arithmetic computations (Patel et al., 2021). By comparison, the latent
thoughts take more steps to converge for programming problems, which are more difficult and re-
quire longer reasoning steps (Austin et al., 2021). These observations indicate that the model can
flexibly adjusts its thinking strategy in response to different problem types and difficulty levels.
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(a) Problem #26 from SVAMP. (b) Promblem #97 from MBPP.

(c) Promblem #156 from SVAMP. (d) Promblem #105 from MBPP.

Figure 1: Visualization of the distribution of the correct and incorrect latent thoughts projected onto
3D space using PCA for dimension reduction. The arrows along the lines indicate the progression
from the current step to the next step of the latent thought. More examples are in Appendix B.

3.2 QUALITATIVE AND QUANTITATIVE ANALYSES ON LATENT THOUGHTS

The case studies in Section 3.1 demonstrate that the model is engaging in different thinking behav-
iors for latent thoughts that lead to correct and incorrect answers. To gain a deeper understanding of
its thinking processes, we evaluate the latent thoughts at different thinking steps using four metrics
that measure the quality of latent representations from the perspective of information content (En-
tropy, Effective Rank) and geometric structure (Anisotropy, Intrinsic Dimension). These metrics are
calculated using all the samples from each dataset.

• Entropy (Skean et al., 2025) quantifies how much information content the latent representations
carry. A higher entropy indicates the latent representations contain diverse, more informative
features, while a lower entropy suggests the existence of redundant information.

• Effective Rank (Wei et al., 2024) measures how dimensionality of the latent representation effec-
tively shrinks under strong compression. A higher effective rank implies noisy features, while a
lower effective rank indicates better noise reduction and more compact representations.

• Anisotropy (Razzhigaev et al., 2024) measures the non-uniformity of a distribution in the latent
space. A higher anisotropy suggests that representations are more directed in specific orientations,
while a lower anisotropy indicates that the representations are spread out more evenly.

• Intrinsic Dimension (Facco et al., 2017; Cheng et al., 2025) quantifies the minimal number of
coordinates required to describe the local geometric structure of the representations without sig-
nificant information loss. A higher intrinsic dimension indicates a rich, complex latent structure,
while a lower intrinsic dimension suggests the representation lies on a simpler manifold.

The calculation details of these metrics are in Appendix C. From the visualization of the represen-
tation quality metrics across all the thinking steps in Figure 2, we have the following observations:
Correct thinking processes carry richer information with less noise. The entropy of correct
latent thoughts is consistently higher than that of incorrect ones, and the effective rank of correct
latent thoughts is consistently lower. This suggests that correct thinking processes can preserve
richer and more informative features (higher entropy), while reducing noisy components (lower
effective rank). These observations are consistent with the view of language modeling as a form
of compression (Deletang et al., 2024), where effective thinking of LLMs can be understood as a
process of extracting the key concepts while discarding noisy or redundant information.
Correct thinking processes generate more expressive latent representations with structured
and complex geometries. The anisotropy and the intrinsic dimension of correct latent thoughts are
consistently higher than those of incorrect ones. This suggests that correct latent thoughts align well
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(a) Distribution of representation quality metrics across 32 steps of the latent thoughts on SVAMP.
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(b) Distribution of representation quality metrics across 32 steps of the latent thoughts on MBPP.

Figure 2: Representation quality metrics of the latent thoughts on two datasets. The blue and red
distributions represent the distributions for the correct and incorrect trajectory of latent thoughts,
respectively. These metrics are calculated using all the samples from each dataset.
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(a) ROC-AUC of the latent classifier on MBPP.
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(b) ROC-AUC of the latent classifier on SVAMP.

Figure 3: Performance of the latent classifier trained with varying numbers of latent thinking steps
on the SVAMP and MBPP datasets. Additional metrics and results are available in Appendix G.1

along informative directions in the latent space, with a richer and more diverse manifold structure
capable of capturing task-relevant features (Valeriani et al., 2023). In contrast, incorrect thoughts
collapse into flatter, less organized structures, reflecting a collapse of expressiveness and represen-
tational capacity (Ansuini et al., 2019; Cheng et al., 2025).
Differences in thinking patterns become more distinguishable at later steps. At the beginning
of the thinking processes, the representation quality metrics change rapidly and show little difference
between correct and incorrect latent thoughts. This probably reflects an exploratory reasoning phase,
where the model is actively processing information and has not yet formed a clear solution path. As
the thinking progresses, these metrics then stabilize and the difference between correct and incorrect
thoughts becomes more salient, suggesting that the thinking process has converged to a solution,
with the emergence of distinct reasoning patterns between correct and incorrect latent thoughts.

3.3 LATENT THOUGHTS ENCODE SIGNALS PREDICTIVE OF THEIR CORRECTNESS

Empirical results from Section 3.1 and Section 3.2 demonstrate that the latent thoughts contain rich
semantic and geometric features that are predictive of their correctness. If these signals indeed cap-
ture the distinction between correct and incorrect thinking processes, they should be discriminative
enough for a model to identify their correctness directly from the latent thoughts. To verify this hy-
pothesis, we follow the widely-used probing technique (Liu et al., 2019; Hewitt & Manning, 2019),
and train a lightweight sequence classifier to predict the correctness of latent thoughts.

The classifier takes as input the trajectory of latent thoughts from a problem, and predicts the proba-
bility that the thinking process is correct. For each problem in the training set, we sample 5 different
latent thoughts and answers, and train the classifier to predict the correctness of the answer via bi-
nary cross entropy loss. More training details of the latent classifier is in Appendix D. To study how
predictive the latent representations are at different thinking steps, we construct 32 experimental
settings for each dataset. In the t-th experiment (1≤t≤32), the classifier receives the first t steps
of latent thoughts h1:t as input. The maximum of 32 steps is chosen to match the default number
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of thinking steps in Huggin-3.5B. Evaluation is performed on the test set using standard binary
classification metrics such as ROC-AUC and Accuracy.

The results are shown in Figure 3. We observe that this latent classifier achieves strong perfor-
mance on the test set, although trained with only limited data. On SVAMP, it achieves an ROC-AUC
score close to 1.0, while on MBPP it achieves an ROC-AUC score of around 0.8. These results
indicate that latent thoughts encode rich signals that are highly predictive of their correctness. We
also observe that classification performance improves steadily with more thinking steps included,
before reaching a plateau. This is consistent with the observation in Section 3.2 that differences
between correct and incorrect thinking patterns became more distinguishable after a few thinking
steps. Furthermore, the fact that incorporating latent thoughts from multiple steps improves clas-
sification performance suggests that correctness signal is not solely reflected in a specific step of
thought, but also in the evolving dynamics of the whole latent thinking trajectory.

Major Observation: The latent reasoning language model displays distinct thinking pat-
terns between correct and incorrect thinking processes, and such difference is highly distin-
guishable in the latent space, especially after a few thinking steps.

4 LATENT THINKING OPTIMIZATION

Motivated by our observations, we propose Latent Thinking Optimization (LTO), a probabilistic
optimization approach designed to improve the latent thinking processes by selectively sampling
trajectories that exhibit correct patterns. LTO formulates this as an optimization problem over latent
policies, and introduces a probabilistic algorithm to solve the optimization problem. While LTO
uses Huggin-3.5B as a starting point, we further demonstrate that LTO can also be applied to general
LLMs, and achieves strong transferability across diverse domains with high efficiency. These results
highlight the potential of LTO as an effective and scalable approach for optimizing LLM thinking
by performing reward modeling and thinking correction directly in the latent space.
Objective of LTO To formalize this, we introduce a binary variable O that indicates whether the
latent thinking trajectory z is correct. Our goal is to find an optimal latent thinking policy π∗(z|x)
such that it maximizes the expectation of generating a correct latent thinking trajectory z:

π∗(z | x) = argmaxπ(z|x) Ez∼π(z|x)p(O = 1 | x, z) (1)
where p(O = 1|x, z) is the probability of a latent thinking trajectory z being correct for a question x.
Since the classifier introduced in Section 3.3 is trained to predict the correctness of latent thoughts,
it can be used as a Latent Reward Model (LRM) r(x, z) to estimate the probability of p(O =
1|x, z). To ensure that the optimized policy does not deviate significantly from the original policy
πref(z|x) (the latent policy distribution of the model before LTO optimization), we introduce a KL-
regularization term (Jaques et al., 2017; Ziegler et al., 2019; Rafailov et al., 2023) with the weight
β to penalize the difference between the optimized policy π∗(z|x) and the original policy πref(z|x).
The optimization objective then becomes:

π∗(z|x) = argmaxπ(z|x) Ez∼π(z|x) [r(x, z)]− βDKL(π(z|x)||πref(z|x)) (2)

Probabilistic Sampling Directly optimizing over the latent policy π(z|x) is often difficult. In-
stead, we approximate π(z|x) using a finite set of N sampled latent thinking trajectories {zi}Ni=1.
In this case, we show that Equation 2 has a closed-form solution:
Theorem 1. Given a sampled set of {zi}Ni=1 to approximate the policy distribution π∗(z|x), for

each i, the solution to Equation 2 is πr(zi|x) =
πref(zi|x) exp( 1

β r(x,zi))∑N
j=1 πref(zj |x) exp( 1

β r(x,zj))
.

We provide the proof in Appendix E.1. Here we use the subscript notation πr to indicate that the
policy is derived from the reward function r(x, z). For simplicity, we omit the superscript ∗, but πr

still represents the optimized policy.

While Theorem 1 gives a closed-form solution for our optimization problem, sampling directly from
the distribution πr(z|x) is still difficult, since it hard to accurately estimate the probability of each
πref(zi|x). To address this issue, inspired by acceptance-rejection sampling algorithms (Flury, 1990;
Grover et al., 2018; Liu et al., 2024), we propose Algorithm 1 to draw samples z without explicitly
calculating the value of πr(z|x). It draws N candidate thinking trajectories {zi}Ni=1 from the original
policy πref(z|x). Each candidate sample zi will only be accepted with probability ϕi, where ϕi is

6
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Algorithm 1 Latent Thinking Optimization

1: Input: question x, the original policy πref(z|x), LRM r(x, z), sampling budget N , the number of required
samples M , weight β > 0 to control the strength of KL-regularization

2: Output: sampled set of latent thinking trajectories C
3: C ← ∅, rmax ← 0 ▷ Initialize the output set and the maximum reward.
4: for i = 1 to N do
5: zi ← z ∼ πref(z|x) ▷ Sample the i-th latent thinking trajectory from the original policy.
6: rmax ← max{rmax, r(zi, x)} ▷ Update the maximum reward.
7: while |C| < M do ▷ Repeat until M samples are collected.
8: zi ∼ Uniform{zj}Nj=1, ui ← u ∼ Uniform(0, 1)
9: ϕi ← exp((r(zi, x)− rmax)/β) ▷ Calculate the acceptance probability ϕi.

10: if ui ≥ ϕi then continue ▷ Reject the sample zi with probability 1− ϕi.
11: C ← C ∪ {zi} ▷ Otherwise, accept the sample zi with probability ϕi.
12: return C

designed such that the latent thinking trajectories with higher reward are more likely to be accepted.
This procedure is repeated until M valid samples are collected. Theoretically, the set of samples
drawn in Algorithm 1 is guaranteed to follow the distribution πr(z|x):
Theorem 2. In Algorithm 1, for each i, the probability of zi being drawn and accepted is Pr(zi|ui <
ϕi, x) = πr(zi|x).
We provide the proof in Appendix E.2. This theorem shows that each accepted sample zi is drawn
with probability πr(zi|x). Since each sampling process is independent, repeating the procedure
produces i.i.d. samples from exactly the same distribution πr(z|x).
We summarize workflow of LTO as follows: 1) Collect latent thinking trajectories from the training
data to train LRM and 2) sample multiple latent thinking trajectories and accept only high-rewarded
ones that are more likely to be correct via Algorithm 1. The samples drawn from Algorithm 1
is theoretically guaranteed to follow the distribution in Theorem 1, which is the solution to the
objective of latent thinking optimization problem as defined in Equation 2.

Application to General LLMs While our main focus is to improve the thinking process of the
latent reasoning language model, the proposed LTO algorithm can also be applied to general LLMs,
such as OLMo (Groeneveld et al., 2024), Llama (Touvron et al., 2023b) and Mistral (Jiang et al.,
2023). Although general LLMs do not explicitly introduce a latent thinking process, their latent
representations across multiple layers can be interpreted as latent chain of thoughts (Wang et al.,
2025c). Under this view, LRM and LTO can be readily applied to general LLMs. In Appendix G.1,
we demonstrate that LRMs trained with the latent representations of general LLMs can also achieve
strong classification performance, indicating that the latent thoughts from general LLMs also encode
appropriate reward signals. In Section 6.2, we demonstrate that LTO can significantly improve the
performance of general LLMs on diverse reasoning tasks using these LRMs.

Generalist Reward Modeling Natural language-based process reward models are often limited
to narrow domains such as math (Wang et al., 2024; Lu et al., 2024) due to their reliance on domain-
specific thinking formats and structures (Zeng et al., 2025). By comparison, reward modeling in the
latent space has the potential for better generalizability, since latent thoughts share a unified form
of latent representations and may be more transferable across diverse domains. In Section 6.3, we
demonstrate that LRM achieves strong transferability across diverse domains and shows potential
for building a generalist reward model in the latent space.

High Efficiency LRM only requires a modest number of training samples (Section F.2), and LTO
is highly efficient at both the training and inference stage (Section G.5). This highlights the potential
of LTO as an efficient alternative that performs reward modeling in the latent space, in contrast to
natural language-based reward models that require substantial finetuning and inference costs (Wang
et al., 2024; Lu et al., 2024; Lightman et al., 2024).

Guaranteed Performance Improvement While LTO does not explicitly modify the latent policy,
we theoretically demonstrate in Appendix E.3 that improving the accuracy of the LRM directly
translates into a higher expected correctness rate. Thus, LTO enables latent thinking improvement
simply by scaling and refining the LRM (e.g., with more training data) which is computationally
lightweight, rather than costly finetuning the base model to improve its latent policy.
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Table 1: Comparison of the answer correctness rate of Huggin-3.5B using different correction meth-
ods. The best performance in each column is in bold, and the performance of the best baseline in
each column is underlined. ∗ indicates statistically significant improvement with p < 0.05.

Method GSM8K GSM-Symbolic SVAMP CommonsenseQA MBPP

Base Model 0.326 0.265 0.517 0.500 0.278
Majority Voting 0.333 0.269 0.511 0.504 0.288
Self-Correction w. Confidence Score 0.342 0.281 0.524 0.507 0.288
Self-Correction w. Verbal Evaluation 0.262 0.193 0.518 0.505 0.226
Latent Thinking Correction w. CoE-R 0.330 0.259 0.510 0.504 0.276
Latent Thinking Correction w. CoE-C 0.324 0.256 0.516 0.507 0.280

Weighted Majority Voting w. LRM 0.375∗ 0.301∗ 0.537∗ 0.509 0.295∗

Latent Thinking Optimization w. LRM 0.385∗ 0.305∗ 0.538∗ 0.517∗ 0.299∗

5 EXPERIMENTAL SETTINGS
Datasets To study whether our approach can improve the thinking processes of Huggin-3.5B
across diverse tasks with different thinking patterns, we evaluate its performance on five datasets
from three domains: (1) GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021), GSM-
Symbolic (Mirzadeh et al., 2025) for the Math domain, (2) CommonsenseQA (Talmor et al., 2019)
for the Commonsense Reasoning domain; and (3) MBPP (Austin et al., 2021) for the Code Gener-
ation domain. The details of the datasets are in Appendix F.1.
Baselines and Implementation Details Since Huggin-3.5B generates the thinking process in the
form of latent representations, many thinking correction methods with a trained process verifier in
the natural language space (Lu et al., 2024; Wang et al., 2024) may not be applicable to the la-
tent space. Therefore, we compare our approach against two types of reasoning correction and
improvement methods applicable to Huggin-3.5B: (1) Answer Correction. These methods cor-
rect and improve the answers without requiring access to the thinking process. We include three
representative approaches: Majority Voting (Wang et al., 2023), Self-Correction with Confidence
Score (Ren et al., 2023b), Self-Correction with Verbal Evaluation (Manakul et al., 2023). (2) Latent
Thinking Correction. While explicit correction of latent thoughts remains underexplored, a recent
work (Wang et al., 2025c) introduces two heuristic metrics (CoE-R and CoE-C) to evaluate the
correctness score of latent thoughts. We adopt these scores as the correction signals, yielding two
additional baselines: Latent Thinking Correction with CoE-R, and Latent Thinking Correction with
CoE-C. Furthermore, we evaluate a simplified version of our approach, Weighted Majority Voting
with LRM, which use the LRM reward as a weighting signal. We also report the performance of the
base model (directly generating a latent thinking trajectory and the corresponding answer without
any correction) to quantify the performance improvement achieved by our approach and competing
baselines. Implementation details of baselines and our method are in Section F.2.

6 EXPERIMENTAL RESULTS

6.1 OVERALL PERFORMANCE COMPARISON

Table 1 presents the experimental results on all the datasets. We have the following observations:
LTO significantly improves the latent thinking processes. Across all datasets, LTO consistently
outperforms both the base model and the best baseline for thinking correction. Leveraging a well-
trained LRM, LTO can effectively detect and correct erroneous thinking patterns in the latent space
via a probabilistic algorithm, bringing robust and consistent improvements to the latent thinking
processes. By comparison, other thinking correction methods show suboptimal performance or
even worse performance than the base model, indicating that these techniques originally developed
for verbal thinking are not suitable for identifying errors for latent thinking.
LRM is highly effective in detecting incorrect latent thinking patterns. Both weighted majority
voting and Latent Thinking Optimization with LRM achieve consistent improvements over the base
model. Notably, standard majority voting yields little to no benefit; however, when the LRM reward
is used as a weighting signal, weighted majority voting achieves substantial gains. This demonstrates
that the LRM reward provides a reliable estimation of the correctness of latent thoughts and serves
as an effective correction signal for thinking correction algorithms in the latent space.

6.2 APPLICATION TO GENERAL LLMS

While we mainly focus on improving the thinking process of Huggin-3.5B, we also demonstrate
that LTO can be applied to general LLMs, such as OLMo (Groeneveld et al., 2024), Llama (Touvron
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Table 2: Performance of LTO on general LLMs. The best-performing method for each model is in
bold. ∗ indicates the improvement over the best runner-up is statistically significant with p < 0.05.

Model Method GSM8K GSM-Symbolic SVAMP CommonsenseQA MBPP

OLMo-7B
Base Model 0.124 0.078 0.297 0.464 0.244
Majority Voting 0.209 0.149 0.469 0.521 0.240
Latent Thinking Optimization 0.252∗ 0.154∗ 0.552∗ 0.602∗ 0.308∗

Llama-2-7B
Base Model 0.223 0.204 0.473 0.399 0.189
Majority Voting 0.275 0.302 0.598 0.493 0.193
Latent Thinking Optimization 0.389∗ 0.316∗ 0.776∗ 0.606∗ 0.237∗

Llama-2-13B
Base Model 0.306 0.273 0.521 0.398 0.247
Majority Voting 0.417 0.379 0.612 0.501 0.263
Latent Thinking Optimization 0.534∗ 0.442∗ 0.791∗ 0.650∗ 0.322∗

Mistral-7B
Base Model 0.368 0.278 0.548 0.671 0.315
Majority Voting 0.529 0.413 0.624 0.687 0.334
Latent Thinking Optimization 0.565∗ 0.462∗ 0.771∗ 0.708∗ 0.388∗

et al., 2023b) and Mistral (Jiang et al., 2023). To evaluate the performance of LTO on general LLMs,
we use the same LRM and LTO configurations as described in Section 5, and train LRMs using the
latent representations from general LLMs. From the experimental results in Table 2, we can see
that LTO achieves substantial performance gains across diverse datasets, with improvement of up to
103% over the base model, even with a modest sampling budget (N = 20). These results highlight
the potential of LTO as a general method for improving the latent thinking processes of LLMs.
6.3 GENERALIST REWARD MODELING

GSM8K
GSM-S

SVAMP
CQA

MBPP

Dataset

None

GSM8K

SVAMP

CQA

MBPP

GeneralLa
te

nt
 R

ew
ar

d 
M

od
el

0.326 0.265 0.517 0.500 0.278

0.385 0.305 0.523 0.497 0.290

0.357 0.284 0.538 0.500 0.290

0.350 0.280 0.530 0.517 0.288

0.354 0.283 0.532 0.505 0.299

0.382 0.308 0.537 0.508 0.295

Figure 4: Performance of
LTO using different LRMs.
“GSM-S” refers to the GSM-
Symbolic dataset. “CQA”
refers to the Common-
senseQA dataset. “None”
refers to the performance of
the base model without LTO.

To evaluate whether LRMs can achieve generalist reward modeling,
we first examine the cross-dataset transferability of LRMs by eval-
uating the performance of LTO when paired with an LRM trained
on different datasets. We extend the study by training a general
LRM on the combined training data from all datasets and evaluat-
ing the performance of LTO with the general LRM. From the re-
sults in Figure 4, we can see that LRMs demonstrate transferability
across different domains, since LTO can improve the performance
of the base model when paired with an LRM trained on a differ-
ent dataset. The improvement is consistent even if the gap between
domains is large. For example, although CommonsenseQA primar-
ily involves commonsense reasoning, an LRM trained on Common-
senseQA still improves performance on math-focused datasets such
as GSM8K, GSM-Symbolic, and SVAMP. This suggests that LRMs
may capture some fundamental aspects of latent thinking patterns
shareable across different domains. Furthermore, the performance
of LTO using the general LRM is on par with the performance of
LTO using domain-specific LRMs. These results suggest that latent
reward modeling can generalize across domains and shows strong
potential for building a generalist reward model in the latent space.
7 CONCLUSION
In this paper, we observe that the latent thoughts of Huggin-3.5B that lead to correct versus in-
correct answers display distinct thinking patterns, and such difference is highly distinguishable by
a latent classifier. Building on these insights, we formulate latent thinking improvement as a re-
ward optimization problem over latent policies, and propose an LTO algorithm that uses the latent
classifier as an LRM to optimize the latent thinking processes. Extensive experiments across di-
verse reasoning tasks demonstrate that LTO can significantly improve the latent thinking processes
of Huggin-3.5B. Furthermore, we show that LRM can generalize across different domains, and
LTO can be seamlessly applied to general LLMs to improve their thinking processes. In contrast to
verbal thinking approaches that scale test-time compute through natural language generation (Guo
et al., 2025; Muennighoff et al., 2025), our method demonstrates that reward modeling and scaling
test-time thinking with verification can be performed directly in the latent space, offering a general
(Section 6.2), efficient (Appendix G.5), and domain-agnostic (Section 6.3) approach to improving
the thinking processes of LLMs. We discuss the related works, limitations, broader impact and re-
producibility of our research in Appendix A, Appendix H, Appendix I and Appendix K, respectively.
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Appendices
A RELATED WORKS

A.1 VERBAL AND LATENT THINKING FOR LLMS

Human cognition often involves thinking through intermediate steps rather than directly answering
the question (Kahneman, 2011; Zelikman et al., 2024). Inspired by this, a growing line of research
focuses on guiding LLMs to generate intermediate reasoning steps as the thinking process before
generating the answers. Most approaches represent the thinking process in natural language, such as
step-by-step chain-of-thought prompting (Wei et al., 2022; Kojima et al., 2022; Wang et al., 2023),
self-correction via iterative feedback (Shinn et al., 2023; Madaan et al., 2023; Kumar et al., 2025),
or building reasoning trees to explore diverse solutions (Yao et al., 2023; Hao et al., 2023). While
effective, such verbal thinking incurs significant computational cost, and is also prone to the over-
thinking issue (Chen et al., 2025; Sui et al., 2025). In contrast, latent thinking offers an alternative
approach, where the model represents its thinking process as compact latent representations rather
than natural language. This approach is more computationally efficient and better suited for rea-
soning with abstract concepts that are difficult to verbalize. Among various approaches for latent
thinking (Zhang et al., 2023; Goyal et al., 2024; Hao et al., 2025; Geiping et al., 2025), a represen-
tative one is the latent reasoning language model (Geiping et al., 2025), which is pretrained from
scratch as a new language model architecture. It introduces a recurrent unit to generate sequences
of latent thoughts and supports test-time scaling with flexible computation budgets. Despite promis-
ing, the lack of interpretability in the latent representations makes it difficult to understand what the
model is actually thinking about or to verify the correctness of its thinking process. In this paper, we
aim to bridge this gap by investigating how the latent reasoning language model thinks in the latent
space and how external supervision can guide and improve the latent thinking processes.

A.2 SCALING UP TEST-TIME COMPUTE

As LLMs are tasked with increasingly difficult problems, directly prompting the LLM to generate
the answers is often insufficient. To address this, recent works emphasize scaling up test-time com-
pute as an effective approach to enhance the problem-solving capability of LLMs (Sardana et al.,
2024; Snell et al., 2025). Existing approaches scale up test time compute from different perspec-
tives, such as sequential scaling with revisions to refine the answer (Shinn et al., 2023; Madaan
et al., 2023; Muennighoff et al., 2025), parallel scaling by generating multiple answers to search for
diverse solutions (Wang et al., 2023; Yao et al., 2023; Hao et al., 2023), or scaling with a verifier or
reward model to ensure the correctness of solutions (Wang et al., 2024; Lu et al., 2024; Feng et al.,
2025; Setlur et al., 2025). However, most of these approaches focus on scaling up test-time compute
using natural language, and how to scale up test-time compute in the latent space (Geiping et al.,
2025) remains underexplored. In this paper, we introduce an probabilistic sampling approach with a
latent reward model that can improve the latent thinking processes and enable efficient and effective
test-time scaling in the latent space.

B ADDITIONAL VISUALIZATION OF LATENT THOUGHTS

Additional examples on the visualization of correct and incorrect latent thoughts are in Figure A1.

C CALCULATION OF REPRESENTATION QUALITY METRICS

In this section, we provide the details on how to calculate the representation quality metrics. For a
question x, Huggin-3.5B generates T steps of latent thoughts h1:T recursively. Each latent thought
ht ∈ RL×d is an internal hidden state generated by Huggin-3.5B, where L is the number of to-
kens, d is the hidden dimensionality. The representation quality metrics are calculated over the
latent thoughts across all the thinking steps to capture the evolving dynamics of latent thinking pro-
cesses. Specifically, for each latent thought ht(1≤t≤T ), we calculate the Entropy, Effective Rank,
Anisotropy and Intrinsic Dimension of ht as follows.
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(a) Problem #171 from SVAMP. (b) Promblem #70 from MBPP.

(c) Promblem #257 from SVAMP. (d) Promblem #102 from MBPP.

(e) Problem #276 from SVAMP. (f) Promblem #159 from MBPP.

(g) Promblem #365 from SVAMP. (h) Promblem #191 from MBPP.

(i) Promblem #624 from SVAMP. (j) Promblem #215 from MBPP.

Figure A1: Visualization of the distribution of the correct and incorrect latent thoughts projected
onto 3D space demonstrate that correct and incorrect latent thoughts exhibit different patterns in
the latent space. Note that this phenomenon is not limited to these cases. On the SVAMP dataset,
we identify 1,654 problems with both correct and incorrect answers, and on the MBPP dataset,
we identify 179 problems with both correct and incorrect answers. In all of these cases, the latent
thoughts leading to correct versus incorrect answers show different patterns in the latent space.
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C.1 ENTROPY

Entropy (Skean et al., 2025) quantifies how much information content the latent representations
carry. A higher entropy indicates a richer spread of information across many dimensions, reflecting
diverse, less redundant features and better information preservation. Conversely, a lower entropy re-
flects concentrated eigenvalue spectra, suggesting that the latent representations may contain redun-
dant information. We compute the entropy over the Gram matrix K = hth

⊤
t using a matrix-based

generalization of Rényi entropy. For any α > 0, this is defined as:

Entropy(ht) =
1

1− α
log

(
r∑

i=1

(
λi(K)
tr(K)

)α)
, (3)

where λi(K) denotes the i-th eigenvalue of the Gram matrix K, r = rank(K) denotes its rank.
While we can vary α to get different formulations of matrix entropy, we follow the approach of Skean
et al. (2025) and choose α→1, which is equivalent to the standard von Neumann entropy.

C.2 EFFECTIVE RANK

Effective Rank (Wei et al., 2024) measures how effectively the model extracts key concepts and
reduce noisy features in its latent representations. A higher effective rank implies that the repre-
sentations contain noisy features, while a lower effective rank indicates better noise reduction. It is
defined as follows:

EffectiveRank(ht) = exp

(
−

K∑
i=1

σi∑K
i=1 σi

log
σi∑K
i=1 σi

)
, (4)

where K = min{L, d}, and σ1, σ2, . . . , σK are the singular values of the matrix ht.

C.3 ANISOTROPY

Anisotropy (Razzhigaev et al., 2024) measures the non-uniformity of a distribution in the latent
space. A higher anisotropy suggests that representations are more directed in specific orientations,
while a lower anisotropy indicates that the representations are spread out more evenly in all direc-
tions. It is defined as follows:

Anisotropy(ht) =
σ2
1∑K

i=1 σ
2
i

. (5)

where K = min{L, d}, and σ1, σ2, . . . , σK are the singular values of the matrix ht.

C.4 INTRINSIC DIMENSION

Intrinsic Dimension (Facco et al., 2017; Cheng et al., 2025) quantifies the minimal number of coor-
dinates required to describe the local geometric structure of the representations without significant
information loss. A higher intrinsic dimension indicates a rich, complex latent structure, while a
lower intrinsic dimension suggests the representation lies on a simpler manifold. Specifically, for
the matrix ht ∈ RL×d, we can view it as a collection of L points hi

t in the d-dimensional space,
i.e., ht = {hi

t}Li=1. To calculate the intrinsic dimension, we use the Two-Nearest-Neighbour es-
timator (Facco et al., 2017): for each point hi

t, we compute its nearest-neighbor distance r1,i and
second-nearest-neighbor distance r2,i, and form the ratio µi = r2,i/r1,i. Sorting {µi}Li=1 in ascend-
ing order yields µ(1), . . . , µ(L), and the empirical cumulative distribution is given by Fj = j/L.
Each µ(j) is then mapped to a transformed data point (xj = logµ(j), yj = − log(1 − Fj)). Un-
der mild assumptions, the points {(xj , yj)}Lj=1 are theoretically expected to align on a straight line
through the origin, and the slope of this line provides an estimation of the intrinsic dimension. Fol-
lowing Glielmo et al. (2022), we use the standard Euclidean distance as the distance metric, and
introduce a trimming factor f = 0.9 to discard extremely large values of µi = r2,i/r1,i, ensuring
robustness against outlier data points that may violate the estimator’s assumptions. The detailed
algorithm is summarized in Algorithm 2.
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Algorithm 2 Calculation of Intrinsic Dimension with Two-Nearest-Neighbour Estimation

1: Input: matrix zt = {zit}Li=1, distance metric dist(·, ·), trimming fraction f ∈ [0, 1)

2: Output: estimated intrinsic dimension d̂
3: for i = 1 to L do
4: Compute the pairwise distances {dist(zit, zjt)}j ̸=i

5: r1,i ← smallest distance (nearest neighbor)
6: r2,i ← second smallest distance (second nearest neighbor)
7: µi ← r2,i/r1,i

8: Sort {µi}Li=1 in ascending order to obtain µ(1), . . . , µ(L)

9: for j = 1 to L do
10: Fj ← j/L
11: xj ← log(µ(j))

12: yj ← − log
(
1− Fj

)
13: if f > 0 then
14: Trim the largest ⌈f · L⌉ values of µ(j) by setting L

′
← ⌊(1− f)L⌋

15: else
16: Keep all the µ(j) by setting L

′
← L

17: Fit the points of the plane given by coordinates {(xj , yj)}L
′

j=1 with a straight line y = d̂ ·x passing through
the origin

18: return the slope d̂ as the estimated intrinsic dimension

Table A1: Performance comparison of the latent classifier with different aggregation strategies. The
best performance in each column is in bold.

Aggregation
Strategy

GSM8K SVAMP CommonsenseQA MBPP

Accuracy ROC-AUC Accuracy ROC-AUC Accuracy ROC-AUC Accuracy ROC-AUC

first 10 tokens 0.708 0.742 0.924 0.980 0.574 0.595 0.732 0.742
last 10 tokens 0.790 0.863 0.957 0.987 0.610 0.644 0.749 0.773
all the tokens 0.820 0.884 0.960 0.987 0.623 0.671 0.790 0.807

D TRAINING DETAILS OF THE LATENT CLASSIFIER

To capture the thinking dynamics of the latent thoughts across different thinking steps, we de-
sign a latent classifier that can operate over the sequence of latent representations. Specifically,
we adopt a 2-layer Transformer (Vaswani et al., 2017) with Sinusoidal positional encoding to en-
code the sequence of latent thoughts. The configuration of the latent classifier (hidden dimension-
ality 5280, number of attention heads 55, and MLP hidden size 17920) follows the configuration
of Huggin-3.5B. While we observe in our experiments that alternative configurations also bring
comparable performance, we use this configuration as the default setting. The output sequences
of the Transformer are aggregated with mean pooling over the dimension T (number of thinking
steps), followed by a two-layer MLP with ReLU as activation function to produce logits for binary
classification. Training is performed with binary cross-entropy loss for 10 epochs using the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of 5e− 6.

However, a challenge is that each latent thought ht ∈ RL×d is a matrix rather than a vector, and
this requires an aggregation over the dimension L before it can be processed by the Transformer.
To this end, we experiment with different aggregation strategies in Table A1, and empirically we
observe that apply mean pooling over the hidden states corresponding to all the L tokens yields
better performance than mean pooling over the hidden states corresponding to the first 10 or the last
10 tokens. Therefore, we choose to apply mean pooling over the dimension L for each latent thought
ht. This design choice is also motivated by the common practices in probing methods, where mean
pooling over the sequence dimension is widely adopted as a standard approach for deriving fixed-
length representations from variable-length sequences (Hewitt & Manning, 2019; Tenney et al.,
2019; Ren et al., 2023a).
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E ADDITIONAL THEORETICAL RESULTS

E.1 PROOF FOR THEOREM 1

Theorem 1. Given a sampled set of {zi}Ni=1 to approximate the policy distribution π∗(z|x), for

each zi, the solution to Equation 2 is πr(zi|x) =
πref(zi|x) exp( 1

β r(x,zi))∑N
i=1 πref(zj |x) exp( 1

β r(x,zj))
.

Proof. Since we are sampling from a discrete set of {zi}Ni=1, we represent the policy distribution
π(z|x) as a vector over the set of latent thoughts {zi}Ni=1. To ensure that π(z|x) forms a valid policy
distribution, π(z|x) should satisfy the constraint

∑N
i=1 π(zi|x) = 1. To solve the optimization prob-

lem from Equation 2 subject to this constraint, we introduce a Lagrange multiplier λ and construct
the Lagrangian:

L(π(z|x), λ) =
∑N

i=1

[
π(zi|x)r(x, zi)− βπ(zi|x) log

π(zi|x)
πref(zi|x)

]
+ λ

∑N

i=1
(π(zi|x)− 1)

To find the solution to this problem, since we are optimizing over a probability distribution π(z|x),
we can compute the partial derivative of the objective L(π(z|x), λ) with respect to each coordinate
π(zi|x). Setting the partial derivative to zero, for each zi, we have:

∂L(π(z|x), λ)
∂π(zi|x)

= r(x, zi)− β

(
log

π(zi|x)
πref(zi|x)

+ 1

)
+ λ = 0

By rearranging this equation, we can get:

π(zi|x)
πref(zi|x)

= exp(
r(x, zi) + λ− β

β
) ⇒ π(zi|x) ∝ πref(zi|x) exp(

r(x, zi)

β
)

Plugging in the constraint that
∑N

i=1 π(zi|x) = 1, for each zi, we obtain the solution:

πr(zi|x) =
πref(zi | x) exp

(
1
β r(x, zi)

)
∑N

j=1 πref(zj | x) exp
(

1
β r(x, zj)

)

Here we use the subscript notation πr to indicate that the policy is derived from the reward function
r(x, z). For simplicity, we omit the superscript ∗, but πr still represents the optimized policy.

Intuitively, the optimized policy πr reweights the original policy πref with the exponential reward
term exp( 1β r(x, z)): latent thinking trajectories with higher reward r(x, z) will have higher prob-
ability of being selected, while trajectories with lower reward will have lower probability of being
selected. The weight β controls how strong this adjustment is: when β is small, the policy becomes
more “greedy” and focuses heavily on the high-rewarded latent thinking trajectories; when β is
large, it stays closer to the original policy πref.

E.2 PROOF FOR THEOREM 2

Theorem 2. In Algorithm 1, for each i, the probability of zi being drawn and accepted is Pr(zi|ui <
ϕi, x) = πr(zi|x).

Proof. In Algorithm 1, since the distribution πr(z|x) is difficult to directly sample from, we would
like to draw candidate samples z from the distribution πref(z|x), and only accept those samples
that follow the distribution πr(z|x) with probability πr(z|x)

M ·πref(z|x) . Here M is a constant, and for the

acceptance probability to be valid, it must satisfy πr(z|x)
M ·πref(z|x) ≤ 1, i.e., M ≥ πr(zi|x)

πref(zi|x) for each zi. We
choose the smallest possible M so that each zi has the highest chance of being accepted, because a
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tight M avoids unnecessary rejections and makes the algorithm more efficient. Therefore, the value
of M can be calculated as:

M = max
1≤i≤N

{ πr(zi|x)
πref(zi|x)

} = max
1≤i≤N

{
exp

(
1
β r(x, zi)

)
∑N

j=1 πref(zj | x) exp
(

1
β r(x, zj)

)}
=

exp
(

1
β rmax

)
∑N

j=1 πref(zj | x) exp
(

1
β r(x, zj)

)
where rmax is the maximum reward calculated in Algorithm 1. Then we can get the acceptance
probability ϕi for each zi:

ϕi =
πr(zi|x)

M · πref(zi|x)
=

exp
(

1
β r(x, zi)

)
M ·

∑N
j=1 πref(zj | x) exp

(
1
β r(x, zj)

) = exp((r(zi, x)− rmax)/β)

For each candidate zi we have:

Pr(zi, ui < ϕi, | x) = πref · (zi | x) · ϕi = πref(zi | x) ·
πr(zi|x)

M · πref(zi|x)
=

πr(zi|x)
M

.

The total probability of acceptance is:

Pr(ui < ϕi | x) =
N∑
j=1

Pr(zj , ui < ϕi | x) =
N∑
j=1

πr(zi|x)
M

=
1

M

N∑
j=1

πr(zi|x) =
1

M
.

Therefore, by Bayes rule, the probability of zi being drawn and accepted is:

Pr(zi | ui < ϕi, x) =
Pr(zi, ui < ϕi, | x)
Pr(ui < ϕi | x)

=
πr(zi|x)

M
1
M

= πr(zi|x).

E.3 THEORETICAL ANALYSIS ON CORRECTNESS RATE

To analyze the expected correctness rate of the LTO algorithm using the trained latent classifier
as LRM, we first introduce the notion of a perfect reward model, which serves as an oracle for
evaluating the correctness of latent thinking trajectories. This formalization provides a reference
point for quantifying the performance of the latent policy derived from the trained LRM:
Definition 1 (Perfect reward model). A perfect reward model r∗(x, z) is a function that always
assigns a value of 1.0 if the latent thinking trajectory z is correct for question x, and 0.0 if the latent
thinking trajectory z is incorrect for question x. Using this definition, for a question x, the expected
correctness rate of a latent policy π can be represented as Ez∼πr

∗(x, z).

Next, we introduce the following theorem to measure how the expected correctness rate of z ∼
πr(z|x) (the policy derived from the trained LRM) relates to that of z ∼ πr∗(z|x) (the policy
derived from the perfect reward model):
Theorem 3. For a question x, for each sample zi, if the error between the trained reward model
r(x, zi) and the perfect reward model r∗(x, zi) is bounded by ϵ, that is, |r(x, zi)− r∗(x, zi)| ≤
ϵ, then the performance gap of using an imperfect reward model is upper bounded by∣∣Ez∼πr(z|x)r

∗(x, z)− Ez∼πr∗ (z|x)r
∗(x, z)

∣∣ ≤√ 4ϵ
β

Proof. The expectation of the performance gap ∆ between using the trained reward model and using
the perfect reward model is:

∆ = |Ez∼πr(z|x)r
∗(x, z)− Ez∼πr∗ (zi|x)r

∗(x, z)|

=
∑N

i=1
|πr(zi|x)− πr∗(zi|x)| · r∗(x, zi)

≤
∑N

i=1
|πr(zi|x)− πr∗(zi|x)| · 1
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Using Pinsker’s inequality (Cover, 1999), we have:∑N

i=1
|πr(zi|x)− πr∗(zi|x)| ≤

√
2DKL (πr(z|x)||πr∗(z|x))

Recall that in Theorem 1, we can get the solution πr(zi|x) =
πref(zi|x) exp( 1

β r(x,zi))∑N
j=1 πref(zj |x) exp( 1

β r(x,zj))
,

πr∗(zi|x) =
πref(zi|x) exp( 1

β r∗(x,zi))∑N
j=1 πref(zj |x) exp( 1

β r∗(x,zj))
. Therefore, the KL divergence between the policy dis-

tributions can be written as:

DKL (πr(z|x)||πr∗(z|x))

=
∑N

i=1
πr(zi|x) log

πr(zi|x)
πr∗(zi|x)

=
∑N

i=1
πr(zi|x) log

����πref(zi|x) exp( 1
β r(x,zi))∑N

j=1 πref(zj |x) exp( 1
β r(x,zj))

����πref(zi|x) exp( 1
β r∗(x,zi))∑N

j=1 πref(zj |x) exp( 1
β r∗(x,zj))

=
∑N

i=1
πr(zi|x)

[
log exp(

1

β
(r(x, zi)− r∗(x, zi)))− log

∑N
j=1 πref(zj | x) exp

(
1
β (r(x, zj)

)
∑N

j=1 πref(zj | x) exp
(

1
β r

∗(x, zj)
)]

=
∑N

i=1
πr(zi|x)

[
(
1

β
(r(x, zi)− r∗(x, zi)))

− log

∑N
j=1 πref(zj | x) exp

(
1
β (r

∗(x, zj)
)
exp

(
1
β (r(x, zj)− r∗(x, zj)

)
∑N

j=1 πref(zj | x) exp
(

1
β r(x, zj)

) ]

=
∑N

i=1
πr(zi|x)

[
(
1

β
(r(x, zi)− r∗(x, zi)))

− log

N∑
j=1

 πref(zj | x) exp
(

1
β (r

∗(x, zj)
)

∑N
j=1 πref(zj | x) exp

(
1
β r(x, zj)

)
 exp

(
1

β
(r(x, zj)− r∗(x, zj)

)]

=

N∑
i=1

πr(zi|x)
[
1

β
(r(x, zi)− r∗(x, zi))− log

N∑
j=1

πr∗(zj |x) exp
(
1

β
(r(x, zj)− r∗(x, zj))

)]
Using Jensen’s inequality, we have:

− log

N∑
j=1

πr∗(zj |x) exp
(
1

β
(r(x, zj)− r∗(x, zj))

)

≤ −
N∑
j=1

πr∗(zj |x) log exp
(
1

β
(r(x, zj)− r∗(x, zj))

)
= −

N∑
j=1

πr∗(zj |x)
(
1

β
(r(x, zj)− r∗(x, zj))

)
Therefore, we have:

DKL (πr(z|x)||πr∗(z|x))

≤
N∑
i=1

πr(zi|x)
[
1

β
(r(x, zi)− r∗(x, zi))−

N∑
j=1

πr∗(zj |x)
(
1

β
(r(x, zj)− r∗(x, zj))

)]

≤
N∑
i=1

πr(zi|x)
[
1

β
|r(x, zi)− r∗(x, zi)|+

N∑
j=1

πr∗(zj |x)
(
1

β
|r(x, zj)− r∗(x, zj)|

)]

≤
∑N

i=1
πr(zi|x)

[
ϵ

β
+

ϵ

β

∑N

j=1
πr∗(zj |x)

]
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In Theorem 1, we have the constraint that
∑N

j=1 πr(zj |x) = 1, and
∑N

j=1 πr∗(zj |x) = 1. Therefore,
the KL divergence between the policy distributions can be written as:

DKL (πr(z|x)||πr∗(z|x)) ≤
∑N

i=1
πr(zi|x)

[
ϵ

β
+

ϵ

β

∑N

j=1
πr∗(zj |x)

]
=
∑N

i=1
πr(zi|x)

[
ϵ

β
+

ϵ

β

]
= 1 · 2ϵ

β
=

2ϵ

β

Putting all the results together, we get:

|Ez∼πr(z|x)r
∗(x, z)− Ez∼πr∗ (z|x)r

∗(x, z)| ≤
√

4ϵ

β

This theorem establishes a bound on the expected correctness rate of trajectories z generated using
the trained LRM in comparison to the perfect reward model. As the performance of the classifier
improves, the error ϵ will drop, leading to a tighter bound and higher expected correctness rate.
Notably, even if the latent policy of the base model is not explicitly optimized, a more accurate LRM
with a smaller ϵ enables LTO to more accurately select only the correct latent thinking trajectories,
thereby improving the expected correctness rate. Empirically, as shown in Section 3.3, the classifier
achieves a very high AUC-ROC, implying that ϵ is small in practice. From a theoretical perspective,
standard generalization bounds for binary classifiers guarantee that the reward error ϵ is controlled by
the classification error on the training set plus a complexity term of order O(

√
1/S) with S being the

number of training samples (Bartlett & Mendelson, 2002; Bartlett et al., 2017). Consequently, with
a well-trained classifier as the reward model, this bound guarantees that the expected correctness
rate under the trained reward model closely matches that of the perfect reward model.

F EXPERIMENTAL DETAILS

F.1 DATASET DETAILS

We select five datasets from three domains for a comprehensive evaluation. The details of datasets
are described as follows:

• Math Problems

• GSM8K (Cobbe et al., 2021) is a collection of grade-school math word problems written by
human annotators. The dataset is designed to evaluate arithmetic and reasoning skills at the
grade-school level and serves as a benchmark for testing the multi-step reasoning capability of
LLMs. It is divided into 7,473 training problems and 1,318 test problems, and each problem is
paired with a detailed step-by-step solution based on basic arithmetic operations.

• GSM-Symbolic (Mirzadeh et al., 2025) is a more challenging extension of GSM8K that gen-
erates diverse math problem variants using symbolic templates. It includes 5,000 test problems
but does not provide a training split.

• SVAMP (Patel et al., 2021) is also a collection of grade-school math word problems. It is
constructed by applying systematic variations to seed examples from the ASDiv dataset (Miao
et al., 2020) to discourage shortcut reasoning patterns. The dataset is split into 35,381 training
problems and 1,000 test problems.

• Commonsense Reasoning

• CommonsenseQA (Talmor et al., 2019) is a multiple-choice question answering benchmark
dataset designed to evaluate the capability of LLMs to perform commonsense reasoning. It
consists of 9,741 training problems and 1,221 test problems.

• Code Generation

• MBPP (Austin et al., 2021) is a benchmark dataset for evaluating the capability of LLMs to
generate programming codes. It consists of Python programming problems covering basic
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Table A2: Performance of the latent classifier on the test set for general LLMs on different datasets.

Model Metric GSM8K SVAMP CommonsenseQA MBPP

OLMo-7B Accuracy 0.896 0.854 0.652 0.858
ROC-AUC 0.851 0.899 0.708 0.882

Llama-2-7B Accuracy 0.836 0.919 0.681 0.834
ROC-AUC 0.858 0.970 0.738 0.822

Llama-2-13B Accuracy 0.805 0.925 0.729 0.805
ROC-AUC 0.868 0.974 0.773 0.839

Mistral-7B Accuracy 0.793 0.968 0.736 0.741
ROC-AUC 0.868 0.992 0.765 0.794

algorithmic and data-processing tasks. Each problem is paired with a natural language descrip-
tion, a reference implementation, and multiple test cases. The generated code is considered
correct only if it successful passes all the test cases. The dataset is divided into 374 training
problems and 483 test problems.

F.2 IMPLEMENTATION DETAILS

To train the latent classifier as the LRM, we generate multiple latent thinking trajectory-answer
pairs for each dataset. For GSM-8K, SVAMP, and CommonsenseQA, we sample 5 different latent
thinking trajectories and answers per problem from the training split. For MBPP, which contains
only 373 training problems, we sample 50 latent thinking trajectories and answers per problem to
ensure sufficient training data. The latent classifier is trained to predict the correctness of the answer
from the latent thoughts on each dataset. For GSM-Symbolic, which does not include a training
split, we use the classifier trained on GSM8K. We evaluate the performance of baselines and our
approach on the test split of each dataset. For LTO and the baselines, we allocate a sampling budget
of N=20 per problem. Each method selects a single final solution from these candidates (i.e., the
number of required samples M=1). For baselines, the solution with the highest evaluation score
(e.g., verbal evaluation score, confidence score or CoE score) will be selected. We adopt the default
setting of sampling budget N=20, the KL-regularization weight β=1e−3, and latent thinking steps
T=32 by default, and the performances with different sampling budget, different βs and different
number of thinking steps are studied in Section G.2, Section G.3 and Section G.4, respectively.

For LRMs on general LLMs, we follow the same training configuration as in Appendix D. For
each LLM, we configure the corresponding LRM with the same hidden dimensionality, number of
attention heads, and MLP hidden size as that LLM, following the training setup in Appendix D. The
latent representations of general LLMs from all the layers are regarded as latent chain of thoughts.
To ensure that general LLMs will generate different latent representations for multiple samples of
latent representations, we randomly sample one example (problem-answer pair) from the training
split of each dataset, and append this example as an in-context demonstration to the input question.
For GSM-Symbolic, which lacks a training set, we instead draw examples from the training set of
GSM8K. Because a new example is drawn at each iteration, the input tokens and consequently the
latent representations will be different across multiple samples.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ADDITIONAL RESULTS ON THE PERFORMANCE OF THE LATENT CLASSIFIER

Additional experimental results on the performance of latent classifier for Huggin-3.5B using dif-
ferent thinking steps on different datasets are shown in Figure A2.

Additional experimental results on the performance of latent classifier for general LLMs on different
datasets are shown in Table A2. In this setting, each LRM is trained with the latent representations
from all the layers of each general LLM.
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(a) Accuracy on GSM8K.
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(b) Accuracy on SVAMP.
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(c) ROC-AUC on GSM8K.
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(d) ROC-AUC on SVAMP.
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(e) Accuracy on MBPP.
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(f) Accuracy on CommonsenseQA.
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(g) ROC-AUC on MBPP.
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(h) ROC-AUC on CommonsenseQA.

Figure A2: Test-set performance of the latent classifier (measured by Accuracy and ROC-AUC) on
the test set trained with varying numbers of latent thinking steps on the SVAMP and MBPP datasets.
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Figure A3: Performance of LTO with different numbers of samples. “CQA” refers to the Common-
senseQA dataset. “Base” refers to the performance of the base model.
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Figure A4: Performance of LTO with different betas. “CQA” refers to the CommonsenseQA dataset.
“Base” refers to the performance of the base model.
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Table A3: Performance of LTO with different numbers of thinking steps. For each thinking step, the
best-performing method is highlighted in bold. ∗ indicates the improvement over the best runner-up
is statistically significant with p < 0.05.

Thinking Steps Method GSM8K GSM-Symbolic SVAMP CommonsenseQA MBPP

16 Steps
Base Model 0.333 0.269 0.503 0.498 0.276
Majority Voting 0.345 0.279 0.501 0.498 0.274
Latent Thinking Optimization 0.434∗ 0.335∗ 0.560∗ 0.523∗ 0.295∗

24 Steps
Base Model 0.326 0.265 0.515 0.507 0.282
Majority Voting 0.334 0.274 0.513 0.509 0.293
Latent Thinking Optimization 0.398∗ 0.312∗ 0.549∗ 0.523∗ 0.293

32 Steps
Base Model 0.326 0.265 0.517 0.500 0.278
Majority Voting 0.333 0.269 0.511 0.504 0.288
Latent Thinking Optimization 0.378∗ 0.303∗ 0.539∗ 0.520∗ 0.295∗

We can see that the latent classifier achieves strong performance on the test set for Huggin-3.5B
and general LLMs across diverse datasets. These results demonstrate that latent thoughts encode
appropriate reward signals that can indicate whether they will lead to the correct answer.

G.2 PERFORMANCE WITH DIFFERENT SAMPLING BUDGET

To investigate the performance of LTO with different sampling budget N , we vary N from 1 to 20
and report the performance of LTO in Figure A3. Performance steadily improves as N increases,
as a larger N enhances the diversity of sampled latent thoughts and increases the likelihood that
at least one sampled latent thinking trajectory is correct. Moreover, even with a very small budget
(e.g., N = 2), LTO can still achieve substantial performance improvement compared with the base
model, demonstrating that LTO is sample-efficient without the need for a large sampling budget.

G.3 PERFORMANCE WITH DIFFERENT BETAS

To investigate the performance of LTO with different β, we vary β from 1e−3 to 1e−1 and report the
performance of LTO in Figure A4. Across different values of β, LTO consistently outperforms the
base model, demonstrating that it can reliably improve the latent thinking processes with different
choices of the hyperparameter.

G.4 PERFORMANCE WITH DIFFERENT NUMBERS OF THINKING STEPS

While most of our evaluation uses a fixed number of latent thinking steps, we also investigate the
adaptability of LTO to latent thinking trajectories of varying thinking steps. Specifically, for each
dataset, we train the LRM with the sampled latent thinking trajectories with varying number of
thinking steps. We then test the performance of LTO using this LRM trained with varying number of
thinking steps. From the experimental results in Table A3, we can see that LTO achieves a consistent
improvement over the base model in all the cases, indicating that LTO can be flexibly applied to
latent thinking trajectories of varying numbers of thinking steps. Interestingly, performance slightly
declines as the number of steps increases. This is attributed to the reduced diversity in the sampled
latent thoughts and answers when longer thinking steps are used. For example, on SVAMP, when
using 16 thinking steps, 427 problems have sampled answers that are all incorrect, 437 problems
have sampled answers that are all correct, and 136 problems have both correct and incorrect answers.
Therefore, the performance upper bound is (437+136)/1000 = 0.573. By comparison, when using
24 thinking steps, the split becomes 446/468/86 with the performance upper bound calculated as
(468 + 85)/1000 = 0.554; when using 32 thinking steps, the split becomes 454/486/60 with the
performance upper bound calculated as (486 + 60)/1000 = 0.546. While increasing the number
of thinking steps slightly improves the expected correctness rate of the base model, it substantially
reduces the diversity of sampled latent thoughts and answers, probably due to overthinking (Sui
et al., 2025). As a result, fewer problems contain both correct and incorrect answers (i.e., diverse
sets), leaving less room for improvement with LTO. It is possible that there exists an optimal number
of thinking steps that balances the expected correctness rate of the base model with the diversity of
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Table A4: Comparison of the total training time and GPU memory usage of LRM across different
datasets and settings. “General” denotes the general reward model from Section 6.3.

GSM8K SVAMP CommonsenseQA MBPP General

Total Training Time (h) 0.85 4.19 1.05 0.92 6.12
GPU Memory Usage (GB) 10.39 10.40 10.39 10.40 10.39

Table A5: Comparison of the average computation time (seconds) of the base model inference and
the latent reward computation per sample across five datasets.

GSM8K GSM-Symbolic SVAMP CommonsenseQA MBPP

Based Model Inference 39.5 43.0 6.0 7.3 20.4
Latent Reward Computation 7.6e-02 7.6e-02 7.5e-02 7.5e-02 7.6e-02

the latent thoughts and answers, and future work may design adaptive mechanisms to identify such
optimal thinking steps and further improve the performance of LTO.

G.5 EFFICIENCY ANALYSIS

We evaluate the efficiency of our framework from two perspectives: the training efficiency of LRM
and the sampling efficiency of LTO. Our results demonstrate that LRM requires only modest re-
sources to train, and sampling answers with LTO brings negligible additional cost during inference.

Training Efficiency of LRM We analyze the training efficiency of the LRM by measuring the
total training time and GPU memory usage of LRM across different datasets and settings. All the
experiments are conducted on a single A100 GPU using the default 32 thinking steps. From the
experimental results in Table A4, we can see that the training of LRM can be completed within
reasonable time and modest memory budgets in all the settings. Such resource cost is significantly
lower than that of language-based reward models (Wang et al., 2024; Lu et al., 2024). These results
demonstrate that reward modeling in the latent space offers a more efficient alternative to reward
modeling in the natural language space.

Sampling Efficiency of LTO Compared to standard inference procedure, which directly samples
latent thoughts and responses from the base model, LTO introduces an additional step for latent re-
ward computation. To evaluate the efficiency of this step, we compare the average computation time
of the base model inference and the latent reward computation per sample across five datasets. All
the experiments are conducted on a single A100 GPU using the default 32 thinking steps. From the
experimental results in Table A5, we can see that the computation time of LRM is orders of mag-
nitude lower than the inference time of the base model, indicating that LRM is highly efficient and
incurs little computation cost. Moreover, since there are not sequential dependencies between the
sampled latent thinking trajectories, the sampling process in LTO can be fully parallelized. There-
fore, LTO incurs only negligible additional inference cost, and its total inference time can be almost
the same with direct sampling from the base model when parallel sampling is introduced.

H LIMITATION STATEMENT

Direct Optimization over the Latent Thinking Processes Although LTO is formulated as an
optimization problem, it achieves the optimization objective by selectively sampling correct latent
thinking trajectories that follow the optimized distribution, rather than directly modifying or updat-
ing the latent thinking policy of the base model. As with the common limitation of test-time scaling
methods (Gandhi et al., 2025; Setlur et al., 2025), when the latent thinking policy of the base model
diverges substantially from the optimized distribution (e.g., when the model lacks the problem-
solving ability and generates latent thoughts and answers that are all incorrect), then LTO cannot
improve the latent thinking processes, since every generated latent thinking trajectory remains in-
correct. To address this limitation, future works may integrate the reward signals from LRM into
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a reinforcement learning-based preference optimization framework (Rafailov et al., 2023), enabling
direct optimization and refinement of the latent thinking processes.

Optimization with Multiple Reward Signals The reward signals derived from LTO are binary
and can only indicate if the latent thinking processes will lead to the correct answer. This restricts
reward modeling to the correctness of the answer but may not capture other important dimensions,
such as safety or helpfulness. An interesting direction for future work is to investigate whether
latent thoughts are separable along these additional dimensions, and to extend the latent classifier
to incorporate these criteria for latent reward modeling. Another interesting direction is to extend
LTO into a multi-objective optimization framework (Wang et al., 2025a). This will enable simulta-
neous optimization of latent thinking across processes multiple reward dimensions and broaden its
applicability to more general settings for reward optimization and alignment.

I IMPACT STATEMENT

Most existing approaches for reward modeling and LLM thinking optimization are performed in the
natural language space (Wang et al., 2024; Lu et al., 2024), but may be costly and prone to overthink-
ing (Sui et al., 2025). Our research demonstrates that the latent representations of both Huggin-3.5B
and general LLMs encode appropriate reward signals that can be directly leveraged to optimize the
latent thinking processes. Furthermore, we show that reward modeling in the latent space can gener-
alize across domains and shows strong potential for building a generalist reward model in the latent
space. Our results demonstrate that reward modeling and scaling test-time thinking with supervi-
sion (Muennighoff et al., 2025; Guo et al., 2025; Setlur et al., 2025) can be performed directly in
the latent space, highlighting its potential as a general, efficient, and domain-agnostic approach to
improving the thinking processes of LLMs.

We do not aim to claim that latent reward modeling and latent thinking optimization are better than
natural language-based reward modeling and verbal thinking optimization. Instead, we show that
they offer efficient and effective alternatives in specific settings and open up promising directions for
future works. For example, in resource-constrained settings where training computation is limited
and inference efficiency is imperative, LTO can effectively optimize the thinking processes of LLMs
with low computation cost. We hope that our research motivates further exploration of reward mod-
eling and thinking optimization in the latent space—a largely underexplored but highly promising
direction for advancing scalable, efficient, and generalist LLM thinking and reasoning.

J ETHICS STATEMENT

All the datasets used in this research are from public open-access benchmark datasets, which are
fully anonymized and do not contain sensitive or private information.

K REPRODUCIBILITY STATEMENT

Calculation methods for the representation quality methods are provided in Appendix C. A complete
proof of the theorems is provided in Appendix E. The implementation details and the computational
cost of the LRMs are provided in Appendix D and Appendix G.5, respectively. The implementation
details of the baseline methods are provided in Appendix F.2. Our code and datasets are available at
this anonymous link.
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