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Abstract001

Large reasoning models (LRMs) can do com-002
plex reasoning via long chain-of-thought (CoT)003
involving cognitive strategies such as back-004
tracking and self-correction. Recent stud-005
ies suggest that some models inherently pos-006
sess these long reasoning abilities, which may007
be unlocked via extra training. Our work008
investigates whether we can elicit such be-009
havior without any training. To that goal,010
we propose a decoding-time approach, THIN-011
KLOGIT, which utilizes logits arithmetic (Liu012
et al., 2024) to tune a target large LM for013
long reasoning using a substantially smaller014
model as the guider. We then show that we015
can further boost its performance by training016
the guider model with preference optimiza-017
tion over correct/incorrect reasoning pairs sam-018
pled from both the target and guider model—a019
setup we refer to as THINKLOGIT-DPO. Our020
experiments demonstrate that THINKLOGIT021
and THINKLOGIT-DPO achieve a relative im-022
provement in pass@1 by 24.5% and 29.1%,023
respectively, over five mathematical and sci-024
entific reasoning datasets using the Qwen2.5-025
32B when guided by R1-Distill-Qwen-1.5B—026
a model 21x smaller. Ablation studies con-027
firm that THINKLOGIT-DPO succeeds only028
when it couples a preference-learning objec-029
tive with training pairs drawn from both the030
target and guider models. Our work presents a031
computationally-efficient method to elicit long032
reasoning in large models with minimal or no033
additional training.034

1 Introduction035

Large reasoning models (LRMs), such as036

DeepSeek-R1 (DeepSeek-AI et al., 2025), Ope-037

nAI o1 (OpenAI, 2024), and Qwen3 (Qwen Team,038

2025), have significantly advanced reasoning by039

leveraging inference-time compute (Snell et al.,040

2024; Brown et al., 2024). These models generate041

very long chain-of-thought (CoT) traces involving042

planning, reflection, and self-correction (Gandhi043

et al., 2025). It is widely believed that such be- 044

havior requires training, either through reinforce- 045

ment learning with verifiable rewards (DeepSeek- 046

AI et al., 2025; Lambert et al., 2024; Shao et al., 047

2024) or supervised distillation (Muennighoff et al., 048

2025; Li et al., 2025b). However, this training is 049

costly due to the length of reasoning traces and ex- 050

tensive sampling. While such costs are prohibitive 051

for large models, small models can be trained with 052

modest compute (Dang and Ngo, 2025; Luo et al., 053

2025). This observation motivates our central re- 054

search question: Can a small reasoning model 055

elicit long CoT behavior in a larger model at in- 056

ference time, without training the larger model? 057

We address this question with a decoding-time 058

technique, enabling a small reasoning model to 059

guide a target model, mainly by manipulating its 060

logits. Specifically, we use logit arithmetic (Liu 061

et al., 2021, 2024; Mitchell et al., 2024; Fan et al., 062

2024a) to combine the output distributions of both 063

models, allowing the target model to benefit from 064

the guider model’s long-chain-of-thought capabili- 065

ties, without any additional training. We call this 066

base approach THINKLOGIT. Furthermore, as the 067

output distribution of both models may substan- 068

tially differ, we align them by further training the 069

small guider model. This training process uses Di- 070

rect Preference Optimization (DPO; Rafailov et al., 071

2023) on preference pairs sampled from the guider 072

and target models, thereby making THINKLOGIT 073

more on-policy, and then applies logit arithmetic 074

using the fine-tuned guider. We refer to this ap- 075

proach as THINKLOGIT-DPO and show that such 076

training can further boost performance compared 077

to THINKLOGIT. 078

We evaluate our methods on five challenging 079

benchmarks covering mathematical and scientific 080

reasoning. Our results show that fusing the log- 081

its of a small reasoning model (DeepSeek-R1- 082

Distill-Qwen-1.5B) with those of a large target 083

(Qwen2.5-32B) improves pass@1 by 24.5% with 084
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Figure 1: Overview of our THINKLOGIT and THINKLOGIT-DPO approaches to elicit long chain-of-thought
reasoning from a large pre-trained model.

THINKLOGIT and by 29.1% with THINKLOGIT-085

DPO over the frozen target. We further demon-086

strate cross-domain (from math to scientific rea-087

soning) and cross-model (from 32B to 72B target088

model) generalizability of our DPO-trained guider089

model. We also conduct extensive ablation studies090

on the preference-pair construction and alignment091

objectives of the guider, showing that including092

pairs with complementary strengths of both the093

guider and target, and optimizing via the DPO ob-094

jective instead of supervised fine-tuning is essential095

for maximal performance gains. Our work sheds096

light on the power of small, trainable reasoning097

models to unlock long CoT behavior in much larger098

non-reasoning models at inference time, offering099

a practical and efficient alternative to costly model100

fine-tuning. Our main contributions are as follows.101

• A decoding-time approach (THINKLOGIT)102

based on logit arithmetic (Liu et al., 2024) that103

injects long CoT guidance from a small, rea-104

soning model into a frozen large LLM without105

any additional training.106

• An alignment enhancement (THINKLOGIT-107

DPO) that uses Direct Preference Optimiza-108

tion to better match the guider’s signals to the109

target distribution, yielding further gains.110

• Extensive ablations on the training data and111

objectives in THINKLOGIT-DPO and hyper-112

parameters in THINKLOGIT, demystifying113

our success recipe for long CoT elicitation114

and enhancement.115

2 Methodology 116

Our goal is to elicit long CoT reasoning capabili- 117

ties from a large, frozen language model without 118

expensive training (see Figure 1). We introduce 119

two lightweight decoding-time techniques: THIN- 120

KLOGIT, which transfers long CoT behavior from 121

a small guider via simple logit arithmetic (Liu et al., 122

2024), and THINKLOGIT-DPO, which further 123

refines the guider using Direct Preference Opti- 124

mization (DPO; Rafailov et al., 2023) to align its 125

guidance with the target model. 126

2.1 THINKLOGIT 127

Let z1:t = z1, . . . , zt be the partially decoded se- 128

quence of reasoning tokens at step t. For any lan- 129

guage model f , denote its pre-softmax logits at the 130

next step by ℓ
(f)
t+1 = f(z1:t) ∈ R|V|, where V is 131

the vocabulary. We assume three models during 132

inference: 133

• large (target) L, a pre-trained LLM lacking 134

long CoT capability; 135

• small base S, a pre-trained model without 136

reasoning fine-tuning; 137

• small reasoning (guider) S⋆, obtained via 138

long CoT post-training to S. 139

At decoding step t+1, we compute 140

ℓ̃t+1 = ℓ
(L)
t+1 + α

(
ℓ
(S⋆)
t+1 − ℓ

(S)
t+1

)
, where α ≥ 0 141

controls the guidance strength. The delta term 142

ℓ(S
⋆) − ℓ(S) encodes the probability shift that turns 143
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a short-CoT model into a long-CoT one. Intuitively,144

adding this delta to L induces analogous long rea-145

soning behavior without altering its weights.146

Warm-up for Stable Decoding. We empirically147

observe that directly applying logit arithmetic at148

each decoding step would cause many repetitive149

generations in the long-CoT scenario. To stabilize150

generations, we defer guidance until a prefix of151

length T :152

ℓ̃t+1 =

{
ℓ
(L)
t+1, t+ 1 ≤ T,

ℓ
(L)
t+1 + α

(
ℓ
(S⋆)
t+1 − ℓ

(S)
t+1

)
, t+ 1 > T,

(1)153

We set T=100 tokens in all experiments unless154

otherwise specified.155

2.2 THINKLOGIT-DPO156

The effectiveness of THINKLOGIT can be limited157

by mismatches between the output distributions of158

the guider and target models. We therefore con-159

struct preference pairs that capture complementary160

strengths:161

Type-1: (x, yL✓, yS×) — The large model’s cor-162

rect (short) CoT is preferred over the small163

model’s incorrect (long) one. This encourages164

the guider to preserve the correctness of the165

target model and avoid introducing new errors.166

Type-2: (x, yS✓, yL×) — The small model’s cor-167

rect (long) CoT is preferred over the large168

model’s incorrect (short) one, teaching the169

guider to be more confident at fixing the large170

model’s reasoning errors.171

We gather these pairs from training queries x172

by independently sampling CoTs from L and S⋆173

and labeling correctness based on the final answer.174

Let θ denote the parameters of the preference-175

optimized guider, initialized from S⋆. We train176

θ with a DPO objective function that mixes the two177

pair types:178

LDPO(θ) = λE(x,yL✓,yS×)∼D1
ℓθ
(
x; yL✓, yS×

)
+(1− λ)E(x,yS✓,yL×)∼D2

ℓθ
(
x; yS✓, yL×

)
,

(2)179

where ℓθ
(
x; y+, y−

)
= log σ

(
rθ(x, y

+) −180

rθ(x, y
−)

)
, σ is the sigmoid function, rθ(x, y) =181

β[log πθ(y | x)− log πref(y | x)] is the implicit re-182

ward of trajectory y, and λ ∈ [0, 1] balances the183

two datasets D1 (Type-1) and D2 (Type-2). We184

use λ= |D1|
|D1|+|D2| by default, directly concatenating185

two datasets as DPO training data without further 186

rebalancing. After fine-tuning, we replace S⋆ in 187

THINKLOGIT with the optimized guider to obtain 188

THINKLOGIT-DPO. 189

3 Experiments and Results 190

3.1 Experimental Setup 191

Benchmarks. We evaluate models on five widely 192

used reasoning benchmarks. Four of them 193

are competition math problems sources from 194

AIME2024 (30 problems), AIME2025 (30 prob- 195

lems), AMC23 (40 problems), and a subset of 134 196

hard problems (level 5) from MATH500 (Light- 197

man et al., 2024). We also evaluate on another 198

scientific reasoning dataset GPQA Diamond (Rein 199

et al., 2023), consisting of 198 PhD-level science 200

questions in Biology, Chemistry, and Physics. For 201

each dataset, we independently sample 8 comple- 202

tions and compute pass@k (Chen et al., 2021). A 203

problem is marked as solved if any of the k sam- 204

pled outputs is correct, so pass@k helps reveal a 205

model’s potential to solve a problem. We primarily 206

use pass@1 unless otherwise specified. 207

Models. Our major target model is Qwen2.5- 208

32B (Yang et al., 2024a). We utilize a long CoT 209

post-trained 1.5B models as the guider which is 210

R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025), 211

a version based on Qwen2.5-Math-1.5B (Yang 212

et al., 2024b) that has been supervised fine-tuned on 213

800K long-CoT examples distilled from DeepSeek- 214

R1. Because all three models use the identical tok- 215

enizer, their output logits are directly comparable 216

and can be combined arithmetically. 217

Preference Data Construction. We use the level 218

4–5 subset of the MATH training set (Hendrycks 219

et al., 2021) and independently sample 5 comple- 220

tions from both the guider model (S⋆) and the tar- 221

get model (L). Each completion is checked for 222

final-answer correctness against the gold label.1 223

The target model L yields 12,412 correct com- 224

pletions (yL✓) and 16,448 incorrect ones (yL×), 225

whereas the guider S⋆ produces 18,651 correct 226

(yS✓) and 10,209 incorrect (yS×) completions. 227

Forming the Cartesian product for each question 228

gives 11,974 Type-1 preference pairs
(
yL✓, yS×

)
229

and 43,209 Type-2 pairs
(
yS✓, yL×

)
, for a total of 230

1We extract answers from \boxed{} and compute
exact match with ground-truths based on this script
https://github.com/openai/prm800k/blob/main/
prm800k/grading/grader.py by (Lightman et al., 2024).
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Model
# Training
Examples

# Trainable
Params

AIME
2024

AIME
2025

AMC
23

MATH
Level 5

GPQA
Diamond

Average

Qwen2.5-32B (Target) - - 14.6 8.3 57.2 44.7 36.9 32.3
R1-Distill-1.5B (Guider) - - 16.2 18.8 51.2 47.5 28.9 32.5

No Fine-tuning of the Target
Target + THINKLOGIT 0 0 22.5 19.2 62.2 55.3 41.8 40.2
Target + THINKLOGIT-DPO 10K 78M 22.1 21.7 63.7 58.5 42.4 41.7

Full Fine-tuning of the Target
s1.1-32B 1K 32B 32.9 25.4 70.0 72.2 51.9 44.5
R1-Distill-32B 800K 32B 45.8 35.0 76.9 72.7 55.6 57.2

Table 1: Comparison of pass@1 performance across five reasoning benchmarks. The best results in each section
are marked in bold. Key takeaways include: (1) fusing target and guider logits (THINKLOGIT) yields substantial
accuracy gains on top of both models; (2) DPO-trained guider (THINKLOGIT-DPO) adds further improvement; (3)
math-only guidance alignment transfers effectively to out-of-domain scientific reasoning (GPQA Diamond); (4)
THINKLOGIT-DPO partially recovers benefits of full fine-tuning with fewer trainable parameters and less training
data.

55,183 pairs. We then randomly select 10K prefer-231

ence pairs from the total 55K pairs for DPO fine-232

tuning. We applied LoRA (Hu et al., 2022) with a233

rank size of 64 for parameter-efficient fine-tuning234

of the guider model. For all models, decoding is235

performed with a temperature of 0.6, a maximum236

length of 8192 tokens, and guidance strength of237

α = 1. More training details are in Appendix A.1.238

3.2 Main Results239

Table 1 presents the pass@1 scores for all systems.240

We highlight three key observations. First, THIN-241

KLOGIT boosts reasoning accuracy upon both tar-242

get and guider model, and THINKLOGIT-DPO243

raises it further. Combining the logits of the 32B244

target with those of the 1.5B guider (THINKLOGIT)245

raises the average pass@1 by 24.5% relative to the246

frozen target and by 23.7% relative to the guider.247

Replacing the vanilla guider with the DPO-trained248

guider (THINKLOGIT-DPO) brings the relative im-249

provement to 29.1% over the target model, without250

any extra inference cost. The performance gains251

are consistent across five tested datasets.252

Second, a guider trained only on mathemat-253

ics problems maintains effectiveness on out-of-254

domain scientific reasoning. Although the DPO255

alignment phase trains the 1.5B guider solely to256

mathematics problems, it still maintains and even257

slightly improves performance of vanilla logit258

arithimetic (THINKLOGIT) from 41.8 to 42.4 on259

the out-of-domain GPQA Diamond benchmark,260

which spans biology, chemistry, and physics. This261

indicates that while DPO shrinks the distribution 262

gap between guider and target outputs on maths 263

data, it also makes the guider’s token-level proba- 264

bilities easier for the target to follow regardless of 265

subject matter. A recent study by Tang et al. (2025) 266

also reports a similar domain-general nature of long 267

CoT based on model representation analysis, rein- 268

forcing the potential for enhanced guidance from 269

a math-trained guider to transfer broadly across 270

disciplines. 271

Third, our approach recovers most of the ben- 272

efit of full-parameter fine-tuning while touching 273

only a small subset of weights and using far less 274

data. With LoRA, we adjust just 78M adapter pa- 275

rameters and train on 10K preference pairs, yet 276

THINKLOGIT-DPO closes 77% of the pass@1 277

gap between the frozen 32B target and the fully 278

fine-tuned s1.1-32B (Muennighoff et al., 2025), 279

which updates all 32B parameters using 1K care- 280

fully selected long-CoT examples from a corpus of 281

59K examples. Our pipeline does rely on a 1.5B 282

guider (R1-distill-1.5B) that was already fine-tuned 283

on 800K distilled examples from DeepSeek-R1, but 284

training this smaller model is far cheaper than R1- 285

distill-32B, and once trained, the same guider can 286

be reused for many other larger targets, especially 287

those in the same model family (e.g., Qwen2.5- 288

72B, with results shown in Figure 4), at no extra 289

cost. Consequently, the cumulative data and com- 290

pute requirements of our pipeline remain well be- 291

low those of fully fine-tuning large models, while 292

still delivering substantial accuracy gains. 293
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Figure 2: Test-time scaling on AIME2025. Pass@ k
for k = 1–16 comparing the target, guider, their di-
rect logit fusion (THINKLOGIT), and the DPO-aligned
fusion (THINKLOGIT-DPO). Our methods not only in-
crease sample efficiency but also broaden the reasoning
boundary of the target model.

3.3 Test-Time Scaling Properties294

Figure 2 plots pass@k for k = 1–16 on295

AIME2025, the dataset where the 32B target per-296

forms worst and scaling effects are therefore most297

visible. Both THINKLOGIT and THINKLOGIT-298

DPO surpass the target’s pass@16 performance299

with only four generations, achieving a four-fold300

improvement in sample efficiency. The advantage301

widens as k grows: at k = 16 our DPO-aligned302

guider leads the target by roughly 17 points. Un-303

like the baseline’s early plateau, our curve keeps304

rising, implying that logits guidance broaden the305

reasoning boundary (Yue et al., 2025b) rather than306

merely re-ranking similar completions.307

3.4 Comparison with Other Training-Free308

Methods for Long CoT Elicitation309

Figure 3 contrasts our approach against two310

training-free baselines for long chain-of-thought311

elicitation. First, the budget-forcing heuristic in-312

troduced by Muennighoff et al. (2025) replaces313

end-of-sentence tokens with a placeholder string314

like “Wait” to artificially increase output length.315

While this does produce longer completions, it con-316

sistently hurts performance, showing that verbosity317

alone does not lead to deeper reasoning.2 Second,318

2We note that while Muennighoff et al. (2025) demonstrate
the effectiveness of budget-forcing on a Qwen2.5-32B-Instruct
model fine-tuned on 1K long CoTs, they do not evaluate this
technique directly on the untuned model.
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Qwen2.5-32B (Target)
Target + Budget Forcing

Target + Long CoT ICL
Target + ThinkLogit

Figure 3: Comparison of our training-free long
chain-of-thought elicitation method (THINKLOGIT)
against two baselines: budget-forcing and one-shot long
CoT in-context learning (ICL). The left panel shows
pass@1 on AIME2025 and AMC23; the right panel
shows the average chain-of-thought length in tokens.
While budget-forcing and long CoT ICL increase ver-
bosity, they degrade accuracy, whereas THINKLOGIT
produces genuinely extended reasoning that boosts per-
formance.

inserting a single long CoT example in the prompt 319

(sampled from the s1.1-1K dataset (Muennighoff 320

et al., 2025)) for in-context learning (ICL; Brown 321

et al., 2020; Min et al., 2022; Dong et al., 2024) also 322

degrades performance despite of longer outputs 323

from the target model. In contrast, THINKLOGIT- 324

DPO uses logit-level guidance from a small rea- 325

soning model to steer the decoding towards gen- 326

uine long chain-of-thoughts, which translates into 327

a clear uplift in downstream accuracy. This shows 328

that our improvements stem from the quality of the 329

guidance being applied, rather than the quantity of 330

tokens generated. 331

3.5 Cross-Model Transferability of 332

THINKLOGIT-DPO 333

We evaluate whether the THINKLOGIT-DPO 334

guider, optimized for the reasoning preference 335

of Qwen2.5-32B, can be applied off-the-shelf 336

to a larger model (Qwen2.5-72B) in the same 337

family. At inference time, we fuse the 338

R1-distill-1.5B guider logits with the 72B target 339

(THINKLOGIT) and then swap in the DPO-trained 340

guider (THINKLOGIT-DPO), without any addi- 341

tional fine-tuning on the outputs from the 72B 342

model. As highlighted in Figure 4, THINKLOGIT- 343

DPO consistently improves upon THINKLOGIT, 344

confirming that preference signals learned via 345

DPO on a 32B model transfer effectively to larger 346

scales, offering a plug-and-play mechanism to 347

boost long-chain reasoning in even more capable 348

LLMs within the same family. 349
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Figure 4: Pass@1 for eliciting long CoT in a 72B target
model with logits arithmetic. THINKLOGIT-DPO de-
livers larger performance improvements on AIME2025
and AMC23 compared to THINKLOGIT, demonstrating
that preference signals learned on a 32B model transfer
effectively to a larger 72B model.

3.6 Ablation Study of THINKLOGIT-DPO350

To further investigate the design choices in351

THINKLOGIT-DPO, we ablate both our mixed-pair352

data construction and preference-based learning ob-353

jective (DPO) against single-source or supervised354

fine-tuning alternatives. Results in Table 2 answer355

the following research questions.356

Are preference pairs sourced from both the tar-357

get and the guider necessary to maximize perfor-358

mance? We construct the same amount of 10K359

preference pairs using only the guider’s correct vs.360

incorrect outputs, i.e., (x, yS✓, yS×). DPO on this361

data underperforms markedly on AMC23 (58.8 vs.362

63.7), confirming that mixing pairs which highlight363

both the target’s and guider’s strengths is crucial364

for maximal gains.365

Is training on both types of pairs necessary for366

the effectiveness of THINKLOGIT-DPO? We367

next ablate by training on only one type of pref-368

erence pairs at a time: using only Type-2 pairs369

(x, yS✓, yL×) (i.e., λ = 0 in Equation 2) yields370

a pass@1 of 57.2, while using only Type-1 pairs371

(x, yL✓, yS×) (i.e., λ = 1 in Equation 2) drops fur-372

ther to 51.9. Both are substantially below the 63.7373

achieved by the full mixture, indicating that both374

Type-2 pairs (which teach the guider to correct tar-375

get errors) and Type-1 pairs (which enforce preser-376

vation of correct target outputs) provide comple-377

mentary signals necessary for optimal alignment.378

Can supervised fine-tuning replace prefer-379

ence-based alignment of the guider? We evalu-380

ate standard supervised fine-tuning (SFT) against381

Model
Guider’s

Training Data
Pass@1

THINKLOGIT-DPO
(ours)

(x, yL✓, yS×),
(x, yS✓, yL×)

63.7

THINKLOGIT-DPO
w/o dual sources (x, yS✓, yS×) 58.8
w/o Type-1 pairs (x, yS✓, yL×) 57.2
w/o Type-2 pairs (x, yL✓, yS×) 51.9

THINKLOGIT-SFT
learning from target (x, yL✓) 44.7
self-learning (x, yS✓) 55.6
learning from teacher (x, yR1✓) 60.9

Table 2: Pass@1 on AMC23 under ablations of guider’s
training data and objectives in THINKLOGIT-DPO. We
compare the full DPO regime with mixed Type-1 and
Type-2 pairs against single-source DPO (only guider
outputs, only Type-1, only Type-2) and supervised fine-
tuning variants. The dual-source, mixed-pair DPO
yields the highest accuracy, demonstrating the necessity
of complementary preference signals and preference-
based alignment.

DPO by training the guider on three equally sized 382

sets of high-quality completions: (1) the target 383

model’s correct outputs yL✓, (2) its own correct 384

outputs yS✓ (also known as rejection-sampling 385

fine-tuning (Yuan et al., 2023)), and (3) R1-distilled 386

completions yR1✓. Although SFT on (1) and (2) 387

turns the guider into a better standalone reasoner, 388

none of these variants rival the performance of the 389

DPO-aligned guider. This gap demonstrates that 390

optimizing with pairwise preference comparisons 391

yields a better guider than optimizing solely for 392

correctness. While SFT can adapt the guider to- 393

ward the target’s short–CoT reasoning style in (3) 394

and thus reduce the distributional gap, it tends to 395

overwrite the guider’s native strengths. In contrast, 396

DPO maintains the guider’s intrinsic reasoning 397

capabilities—preserving its long reasoning capa- 398

bility—while selectively aligning it to the target’s 399

preferences through pairwise comparisons. 400

Overall, the best performance arises when the 401

guider is aligned with the target via DPO and 402

trained on a mixture of Type-1 and Type-2 pref- 403

erence pairs sourced from both models. Naive 404

SFT—whether on the guider itself, the target’s out- 405

puts, or a stronger teacher—fails to match these 406

gains, underscoring key factors behind the effec- 407

tiveness of THINKLOGIT-DPO. 408
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(a) Varying the warm-up steps T reveals that
applying guidance too early (i.e., T=0) leads
to repeated generations and lower accuracy,
while a moderate T improves pass@1 and
stablize decoding.
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off between guider influence and target
model priors.
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(c) Increasing DPO training pairs from
5K to 10K improves pass@1, but fur-
ther scaling leads to negative returns,
likely due to redundancy and overfitting
in preference data.

Figure 5: Impact of hyperparameter tuning on THINKLOGIT (Figure 5a and 5b) and training data size on
THINKLOGIT-DPO (Figure 5c).

3.7 Impact of Hyperparameter Tuning on409

THINKLOGIT410

In THINKLOGIT, two hyperparameters play a crit-411

ical role in balancing stability, accuracy, and gen-412

eration efficiency: the warm-up length T and the413

guidance strength α (Eq. 1). We evaluate their ef-414

fects on the AMC23 benchmark, which presents415

a suitable mix of problem difficulties and clearly416

exhibits both stability and guidance effects.417

To assess warm-up, we vary T over418

{0, 50, 100, 200, 500, 1000} with α fixed to419

1. For each possible values of T , we sample 8420

completions per question and compute pass@1421

alongside the average number of generated tokens422

(Figure 5a). When T = 0, guidance is applied423

immediately from the beginning, causing repetitive424

loops in early decoding and yielding the lowest425

accuracy. Allowing 50–200 tokens of unguided426

generation stabilizes the chain-of-thought, improv-427

ing pass@1 over both target and guider models and428

reducing generation length. Increasing T beyond429

200 causes the model to revert to the shorter CoTs430

typically produced by the target model, leading to431

an accuracy drop and shorter outputs.432

With T fixed at 100, we sweep α over433

{0.5, 0.75, 1.0, 1.25, 1.5} to control how strongly434

the guider’s delta-logits modify the target’s distri-435

bution (Figure 5b). At α = 1.0, we observe the436

highest pass@1 together with moderate generation437

length, indicating an optimal trade-off between the438

guider’s corrective signal and the target model’s439

own priors. Therefore, we set α = 1.0 as the de-440

fault guidance strength. Future work might explore441

adaptive, context-aware schedules for T and α (Fan442

et al., 2024a) to optimize this trade-off further.443

3.8 Impact of Training Data Size on 444

THINKLOGIT-DPO 445

To determine the optimal number of DPO prefer- 446

ence pairs, we randomly sampled subsets of 5K, 447

10K, 20K, 30K, 40K, and 50K from our full pool 448

of 55K Type-1 and Type-2 pairs. Figure 5c plots 449

pass@1 against training dataset size. With 5K pairs, 450

THINKLOGIT-DPO ’s pass@1 remains lower than 451

that of the vanilla THINKLOGIT; increasing to 10K 452

pairs raises pass@1 above THINKLOGIT while 453

keeping training cost moderate. Beyond 10K pairs, 454

adding more data leads to a decline in pass@1. 455

Since our preference set is constructed via the 456

Cartesian product of correct and incorrect genera- 457

tions, we hypothesize that pairs beyond 10K pri- 458

marily recombine existing chains-of-thought rather 459

than introduce new solution patterns, resulting in 460

redundant examples and a higher risk of overfitting. 461

4 Related Work 462

4.1 Long Chain-of-Thought (CoT) Reasoning 463

Large reasoning models, such as OpenAI’s 464

o1 and o3 (OpenAI, 2024, 2025), DeepSeek- 465

R1 (DeepSeek-AI et al., 2025), and QwQ (Team, 466

2025), achieve state-of-the-art results on mathe- 467

matical and coding benchmarks by generating CoT 468

traces that often extend to thousands of tokens, en- 469

abling systematic backtracking, verification, and 470

self-reflection before a final answer is produced 471

(Gandhi et al., 2025). One way to elicit such long- 472

form reasoning is through reinforcement learning 473

with verifiable rewards (Lambert et al., 2024). 474

Pioneered by Group-Relative Policy Optimization 475

(GRPO) (Shao et al., 2024) and refined by more sta- 476

ble and token-efficient variants such as DAPO (Yu 477
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et al., 2025) and Dr. GRPO (Liu et al., 2025), this478

approach optimizes outcome-based rewards for cor-479

rectness; nevertheless, mounting evidence shows480

that it mainly re-weights reasoning patterns already481

latent in the base model (Liu et al., 2025; Yue et al.,482

2025a). A complementary line of work demon-483

strates that the same capability can be acquired with484

data-efficient supervised fine-tuning. Distilled485

long CoTs from stronger teacher models allows a486

student to extend its reasoning length and thus im-487

prove accuracy using only about one thousand ex-488

amples (Muennighoff et al., 2025; Xu et al., 2025;489

Ye et al., 2025; Li et al., 2025b). Finally, training-490

free methods exploit the fact that pretrained LLMs491

already exhibit long-CoT behaviours (Liu et al.,492

2025; Gandhi et al., 2025). (Tang et al., 2025) in-493

ject contrastive long- versus short-CoT represen-494

tations into hidden states via representation engi-495

neering (Zou et al., 2023), whereas (Zhao et al.,496

2025) amplify a handful of key neurons at infer-497

ence. Both techniques, however, require domain-498

specific long/short traces and white-box access,499

limiting their applicability in out-of-domain or500

black-box settings. THINKLOGIT sidesteps these501

constraints entirely. It keeps the target LLM frozen502

and, at inference time, fuses its logits with those503

of a lightweight “guider” model trained for long504

reasoning. This logit-fusion strategy recovers long-505

CoT behaviour induced by training-based methods506

while introducing no additional training cost or507

curated long-CoT examples.508

4.2 Decoding Algorithms for LLM Reasoning509

Decoding-time interventions offer an attractive al-510

ternative to full model fine-tuning: they can im-511

prove the reasoning capabilities of an off-the-shelf512

LLM with only a marginal increase in training or in-513

ference cost. The earliest line of work is Chain-of-514

Thought (CoT) prompting (Wei et al., 2022), which515

simply asks the model to “think aloud.” Subsequent516

self-consistency decoding (Wang et al., 2023) sam-517

ples a set of diverse CoTs and majority-votes over518

their answers, while later work shows that short519

CoTs can even be elicited without any prompt-520

ing (Wang and Zhou, 2024). Crucially, these traces521

are usually brief: they march directly to the answer522

without back-tracking or verification, and there-523

fore do not unlock the long-form reasoning studied524

in our work. A second family, guided decoding,525

biases generation toward correctness using either526

self-evaluation signals from the model itself (Xie527

et al., 2023) or an external discriminator (Khalifa528

et al., 2023). Accuracy is further improved by best- 529

of-n reranking with discriminative reward models 530

that score either the final answer or the reason- 531

ing process (Cobbe et al., 2021; Lightman et al., 532

2024; Wang et al., 2024). Generative reward objec- 533

tives extend this idea and generalise better across 534

tasks (Hosseini et al., 2024; Zhang et al., 2025; 535

Wang et al., 2025; Khalifa et al., 2025). However, 536

all of these methods depend on sampling many 537

complete reasoning traces and scoring them after 538

they are generated, which both raises costs and 539

keeps them in the short-CoT regime. Auxiliary- 540

model approaches modify the output of a frozen 541

target model on the fly. Contrastive decoding sub- 542

tracts logits from an “amateur” model or layer 543

to suppress low-quality outputs (Li et al., 2023; 544

Chuang et al., 2024), while speculative decoding 545

speeds inference by letting a small draft model 546

propose tokens that the expert later accepts or re- 547

jects (Leviathan et al., 2023; Yang et al., 2025; Liao 548

et al., 2025). A closely related strand, logits arith- 549

metic, blends the output distributions of three mod- 550

els token-by-token (Liu et al., 2021; Ormazabal 551

et al., 2023; Shi et al., 2024), successfully emulat- 552

ing task-specific fine-tuning (Liu et al., 2024; Fan 553

et al., 2024b), scaling laws (Mitchell et al., 2024), 554

unlearning (Huang et al., 2025) and even overrid- 555

ing safety filters (Zhao et al., 2024). THINKLOGIT 556

follows this lightweight pathway by using a com- 557

pact guider model to unlock long-form reasoning 558

in a frozen large model, while THINKLOGIT-DPO 559

additionally aligns the guider’s distribution with 560

the target model’s, delivering further gains. 561

5 Conclusion and Future Work 562

We introduce THINKLOGIT and THINKLOGIT- 563

DPO, two decoding-time techniques that unlock 564

long chain-of-thought (CoT) reasoning in frozen, 565

non-reasoning LLMs. THINKLOGIT injects logits 566

from a small, long-CoT guider, boosting accuracy 567

by 24.5 % on five reasoning benchmarks for only a 568

1.1× increase in inference-time parameters, while 569

THINKLOGIT-DPO aligns the guider with target 570

distribution via Direct Preference Optimization for 571

even higher gains. Together they offer a compute- 572

efficient route to deploy long-CoT LLMs. Future 573

work will combine heterogeneous model families, 574

and develop context-aware guidance (e.g., adaptive 575

strength α as in Fan et al. (2024a)) to mitigate 576

the over-thinking problem in long reasoning (Chen 577

et al., 2024). 578

8



Limitations579

Inference-Time Overhead. Deploying THIN-580

KLOGIT requires hosting the large target model581

along with two smaller models—the base model582

S and the DPO-aligned guider S⋆. In our pri-583

mary experimental setup (guiding a 32B target584

with a 1.5B guider), the total parameter count in-585

creases by approximately 1.1× compared to using586

the frozen target alone. Instead of sequentially587

querying each model at every inference step, we588

implement asynchronous decoding to concurrently589

obtain logits from all three models. Profiling on590

NVIDIA L40S GPUs indicates a moderate infer-591

ence slowdown (approximately 25% fewer tokens592

per second) compared to running only the target593

model. Since THINKLOGIT-DPO simply replaces594

the original guider model used in THINKLOGIT595

with a preference-optimized model of the same596

size, THINKLOGIT-DPO incurs no additional in-597

ference overhead beyond THINKLOGIT itself.598

Same–Family Constraint. THINKLOGIT and599

THINKLOGIT-DPO computes token-wise differ-600

ences between the guider’s and a base model’s log-601

its and then adds that delta to the target model.602

Because the three models must share an identical603

vocabulary, we currently restrict all three to the604

same model family (e.g., Qwen2.5). Although Sec-605

tion 3.5 shows that a guider aligned on a 32B target606

transfers to a 72B target in the same family, we607

have not yet verified that the method generalizes608

to other model families. Extending the approach609

to heterogeneous families such as Mistral (Ras-610

togi et al., 2025), Llama (Dubey et al., 2024), or611

Gemma (Kamath et al., 2025) will require a robust612

tokenizer alignment algorithm (Fu et al., 2023; Li613

et al., 2025a) to ensure delta logits remain semanti-614

cally meaningful across models. We leave the de-615

sign and empirical validation of such cross-family616

fusion to future work.617

Limited Domains of Evaluation. Our experi-618

ments focus on math- and science-oriented reason-619

ing tasks. A broader evaluation suite, including620

coding (Jimenez et al., 2023; Jain et al., 2025),621

planning (Zheng et al., 2024a; Xie et al., 2024),622

and tool-use (Huang et al., 2024; Patil et al., 2025),623

is needed to understand failure modes that may624

emerge in less structurally similar settings.625

Offline alignment. The guider is aligned with the626

target via Direct Preference Optimisation (DPO)627

on a fixed set of preference pairs. This offline for- 628

mulation cannot adapt once deployment uncovers 629

new error patterns or distribution drift. Incorporat- 630

ing online reinforcement learning (Schulman et al., 631

2017; Shao et al., 2024) that updates the guider 632

from streamed on-policy samples could, in prin- 633

ciple, reduce this brittleness. However, on-policy 634

RL introduces training efficiency and stability chal- 635

lenges that remain open research problems. 636
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A Technical Details 1094

A.1 Training Details 1095

Environment. All experiments were conducted 1096

using NVIDIA A40/L40S GPUs with 48GB mem- 1097

ory. The software environment was configured as 1098

follows: 1099

• 360-LLaMA-Factory (Haosheng Zou and 1100

Zhang, 2024) (A long-CoT adapted version of 1101

LLaMA-Factory 0.9.1 (Zheng et al., 2024b)) 1102

• torch 2.7.0 1103

• transformers 4.51.3 1104

• accelerate 1.0.1 1105

• datasets 3.1.0 1106

• trl 0.9.6 1107

• peft 0.12.0 1108

• deepspeed 0.14.4 1109

LoRA Configuration. We applied LoRA (Hu 1110

et al., 2022) for parameter-efficient fine-tuning of 1111

the guider model: 1112

• Rank: 64 1113

• αLoRA: 128 1114

• Target modules: q_proj, k_proj, v_proj, 1115

o_proj 1116

• Bias: None 1117
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DPO Training. For preference optimization with1118

DPO, we used the following settings:1119

• Batch size: 32 (4 GPUs * 8 Gradient Accu-1120

mulation)1121

• Epoch: 11122

• Learning rate: 5e-61123

• Optimizer: AdamW1124

• Learning rate scheduler: cosine with warmup1125

• Warmup ratio: 0.11126

• β (reward scaling): 0.11127

• Cutoff length: 81921128
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