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Abstract

Large reasoning models (LRMs) can do com-
plex reasoning via long chain-of-thought (CoT)
involving cognitive strategies such as back-
tracking and self-correction. Recent stud-
ies suggest that some models inherently pos-
sess these long reasoning abilities, which may
be unlocked via extra training. Our work
investigates whether we can elicit such be-
havior without any training. To that goal,
we propose a decoding-time approach, THIN-
KLOGIT, which utilizes logits arithmetic (Liu
et al.,, 2024) to tune a target large LM for
long reasoning using a substantially smaller
model as the guider. We then show that we
can further boost its performance by training
the guider model with preference optimiza-
tion over correct/incorrect reasoning pairs sam-
pled from both the target and guider model—a
setup we refer to as THINKLOGIT-DPO. Our
experiments demonstrate that THINKLOGIT
and THINKLOGIT-DPO achieve a relative im-
provement in pass@1 by 24.5% and 29.1%,
respectively, over five mathematical and sci-
entific reasoning datasets using the Qwen2.5-
32B when guided by R1-Distill-Qwen-1.5B—
a model 21x smaller. Ablation studies con-
firm that THINKLOGIT-DPO succeeds only
when it couples a preference-learning objec-
tive with training pairs drawn from both the
target and guider models. Our work presents a
computationally-efficient method to elicit long
reasoning in large models with minimal or no
additional training.

1 Introduction

Large reasoning models (LRMs), such as
DeepSeek-R1 (DeepSeek-Al et al., 2025), Ope-
nAl ol (OpenAl, 2024), and Qwen3 (Qwen Team,
2025), have significantly advanced reasoning by
leveraging inference-time compute (Snell et al.,
2024; Brown et al., 2024). These models generate
very long chain-of-thought (CoT) traces involving
planning, reflection, and self-correction (Gandhi

et al., 2025). It is widely believed that such be-
havior requires training, either through reinforce-
ment learning with verifiable rewards (DeepSeek-
Al et al., 2025; Lambert et al., 2024; Shao et al.,
2024) or supervised distillation (Muennighoff et al.,
2025; Li et al., 2025b). However, this training is
costly due to the length of reasoning traces and ex-
tensive sampling. While such costs are prohibitive
for large models, small models can be trained with
modest compute (Dang and Ngo, 2025; Luo et al.,
2025). This observation motivates our central re-
search question: Can a small reasoning model
elicit long CoT behavior in a larger model at in-
ference time, without training the larger model?

We address this question with a decoding-time
technique, enabling a small reasoning model to
guide a target model, mainly by manipulating its
logits. Specifically, we use logit arithmetic (Liu
et al., 2021, 2024; Mitchell et al., 2024; Fan et al.,
2024a) to combine the output distributions of both
models, allowing the target model to benefit from
the guider model’s long-chain-of-thought capabili-
ties, without any additional training. We call this
base approach THINKLOGIT. Furthermore, as the
output distribution of both models may substan-
tially differ, we align them by further training the
small guider model. This training process uses Di-
rect Preference Optimization (DPO; Rafailov et al.,
2023) on preference pairs sampled from the guider
and target models, thereby making THINKLOGIT
more on-policy, and then applies logit arithmetic
using the fine-tuned guider. We refer to this ap-
proach as THINKLOGIT-DPO and show that such
training can further boost performance compared
to THINKLOGIT.

We evaluate our methods on five challenging
benchmarks covering mathematical and scientific
reasoning. Our results show that fusing the log-
its of a small reasoning model (DeepSeek-R1-
Distill-Qwen-1.5B) with those of a large target
(Qwen2.5-32B) improves pass@1 by 24.5% with
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Figure 1: Overview of our THINKLOGIT and THINKLOGIT-DPO approaches to elicit long chain-of-thought

reasoning from a large pre-trained model.

THINKLOGIT and by 29.1% with THINKLOGIT-
DPO over the frozen target. We further demon-
strate cross-domain (from math to scientific rea-
soning) and cross-model (from 32B to 72B target
model) generalizability of our DPO-trained guider
model. We also conduct extensive ablation studies
on the preference-pair construction and alignment
objectives of the guider, showing that including
pairs with complementary strengths of both the
guider and target, and optimizing via the DPO ob-
jective instead of supervised fine-tuning is essential
for maximal performance gains. Our work sheds
light on the power of small, trainable reasoning
models to unlock long CoT behavior in much larger
non-reasoning models at inference time, offering
a practical and efficient alternative to costly model
fine-tuning. Our main contributions are as follows.

* A decoding-time approach (THINKLOGIT)
based on logit arithmetic (Liu et al., 2024) that
injects long CoT guidance from a small, rea-
soning model into a frozen large LLM without
any additional training.

* An alignment enhancement (THINKLOGIT-
DPO) that uses Direct Preference Optimiza-
tion to better match the guider’s signals to the
target distribution, yielding further gains.

» Extensive ablations on the training data and
objectives in THINKLOGIT-DPO and hyper-
parameters in THINKLOGIT, demystifying
our success recipe for long CoT elicitation
and enhancement.

2 Methodology

Our goal is to elicit long CoT reasoning capabili-
ties from a large, frozen language model without
expensive training (see Figure 1). We introduce
two lightweight decoding-time techniques: THIN-
KLOGIT, which transfers long CoT behavior from
a small guider via simple logit arithmetic (Liu et al.,
2024), and THINKLOGIT-DPO, which further
refines the guider using Direct Preference Opti-
mization (DPO; Rafailov et al., 2023) to align its
guidance with the target model.

2.1 THINKLOGIT

Let z1.4 = 21,..., 2 be the partially decoded se-
quence of reasoning tokens at step ¢. For any lan-
guage model f, denote its pre-softmax logits at the
next step by Eii)l = f(z14) € RV, where V is
the vocabulary. We assume three models during

inference:

* large (target) L, a pre-trained LLM lacking
long CoT capability;

» small base S, a pre-trained model without
reasoning fine-tuning;

* small reasoning (guider) S*, obtained via
long CoT post-training to S.

At decoding step t+1, we compute

Iy =5 + a(85) = 19)), where o > 0
controls the guidance strength. The delta term
005") — ¢(9) encodes the probability shift that turns



a short-CoT model into a long-CoT one. Intuitively,
adding this delta to L induces analogous long rea-
soning behavior without altering its weights.

Warm-up for Stable Decoding. We empirically
observe that directly applying logit arithmetic at
each decoding step would cause many repetitive
generations in the long-CoT scenario. To stabilize
generations, we defer guidance until a prefix of
length 7:

; 1_{£§ﬂ, t+1<T,
+1 = L S* S
£§+)1 + O‘(&E—H) - £§+)1)7 t+1>T,
(D

We set T'=100 tokens in all experiments unless
otherwise specified.

2.2 THINKLOGIT-DPO

The effectiveness of THINKLOGIT can be limited
by mismatches between the output distributions of
the guider and target models. We therefore con-
struct preference pairs that capture complementary
strengths:

Type-1: (z, ™, y°*) — The large model’s cor-
rect (short) CoT is preferred over the small
model’s incorrect (long) one. This encourages
the guider to preserve the correctness of the
target model and avoid introducing new errors.

Type-2: (z, y°Y, y**) — The small model’s cor-
rect (long) CoT is preferred over the large
model’s incorrect (short) one, teaching the
guider to be more confident at fixing the large
model’s reasoning errors.

We gather these pairs from training queries x
by independently sampling CoTs from L and S*
and labeling correctness based on the final answer.
Let 0 denote the parameters of the preference-
optimized guider, initialized from S*. We train
0 with a DPO objective function that mixes the two
pair types:

»CDPO(G) = AE(%yL‘/’ySX)NDl 69(55; yL/7 ySX)

+(1 =) E(x,yS/vyLX)Nlb fg(x; yS\/’ yLX>’
(2

where lo(z; yT,y7) = logo(re(z,y™) —
ro(z,y™)), o is the sigmoid function, ry(z,y) =
Bllog me(y | ) — log met(y | )] is the implicit re-
ward of trajectory y, and A € [0, 1] balances the
two datasets D; (Type-1) and D, (Type-2). We

[Dy] by default, directly concatenating

use /\:‘|Dl\+m2|

two datasets as DPO training data without further
rebalancing. After fine-tuning, we replace S™* in
THINKLOGIT with the optimized guider to obtain
THINKLOGIT-DPO.

3 Experiments and Results

3.1 Experimental Setup

Benchmarks. We evaluate models on five widely
used reasoning benchmarks. Four of them
are competition math problems sources from
AIME?2024 (30 problems), AIME2025 (30 prob-
lems), AMC23 (40 problems), and a subset of 134
hard problems (level 5) from MATHS500 (Light-
man et al., 2024). We also evaluate on another
scientific reasoning dataset GPQA Diamond (Rein
et al., 2023), consisting of 198 PhD-level science
questions in Biology, Chemistry, and Physics. For
each dataset, we independently sample 8 comple-
tions and compute pass @k (Chen et al., 2021). A
problem is marked as solved if any of the k& sam-
pled outputs is correct, so pass@k helps reveal a
model’s potential to solve a problem. We primarily
use pass@ 1 unless otherwise specified.

Models. Our major target model is Qwen2.5-
32B (Yang et al., 2024a). We utilize a long CoT
post-trained 1.5B models as the guider which is
R1-Distill-Qwen-1.5B (DeepSeek-Al et al., 2025),
a version based on Qwen2.5-Math-1.5B (Yang
et al., 2024b) that has been supervised fine-tuned on
800K long-CoT examples distilled from DeepSeek-
R1. Because all three models use the identical tok-
enizer, their output logits are directly comparable
and can be combined arithmetically.

Preference Data Construction. We use the level
4-5 subset of the MATH training set (Hendrycks
et al., 2021) and independently sample 5 comple-
tions from both the guider model (5*) and the tar-
get model (L). Each completion is checked for
final-answer correctness against the gold label.!
The target model L yields 12,412 correct com-
pletions (yL/) and 16,448 incorrect ones (yL ),
whereas the guider S* produces 18,651 correct
(yS ¥} and 10,209 incorrect (yS *) completions.
Forming the Cartesian product for each question
gives 11,974 Type-1 preference pairs (y=, y%>)
and 43,209 Type-2 pairs (yS vyl ) , for a total of

'We extract answers from \boxed{} and compute
exact match with ground-truths based on this script
https://github.com/openai/prm800k/blob/main/
prm800k/grading/grader.py by (Lightman et al., 2024).
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https://github.com/openai/prm800k/blob/main/prm800k/grading/grader.py

Model # Training # Trainable AIME AIME AMC MATH GPQA Average
Examples Params |2024 2025 23 Level 5 Diamond &

Qwen2.5-32B (Target) - - 146 83 572 447 36.9 32.3

R1-Distill-1.5B (Guider) - - 16.2 18.8 512 475 28.9 32.5

No Fine-tuning of the Target

Target + THINKLOGIT 0 0 225 192 622 553 41.8 40.2

Target + THINKLOGIT-DPO 10K 78M 22.1 21.7 63.7 58.5 42.4 41.7

Full Fine-tuning of the Target

s1.1-32B 1K 32B 329 254 700 722 51.9 44.5

R1-Distill-32B 800K 32B 458 350 769 727 55.6 57.2

Table 1: Comparison of pass@1 performance across five reasoning benchmarks. The best results in each section
are marked in bold. Key takeaways include: (1) fusing target and guider logits (THINKLOGIT) yields substantial
accuracy gains on top of both models; (2) DPO-trained guider (THINKLOGIT-DPO) adds further improvement; (3)
math-only guidance alignment transfers effectively to out-of-domain scientific reasoning (GPQA Diamond); (4)
THINKLOGIT-DPO partially recovers benefits of full fine-tuning with fewer trainable parameters and less training

data.

55,183 pairs. We then randomly select 10K prefer-
ence pairs from the total 55K pairs for DPO fine-
tuning. We applied LoRA (Hu et al., 2022) with a
rank size of 64 for parameter-efficient fine-tuning
of the guider model. For all models, decoding is
performed with a temperature of 0.6, a maximum
length of 8192 tokens, and guidance strength of
a = 1. More training details are in Appendix A.1.

3.2 Main Results

Table 1 presents the pass@1 scores for all systems.
We highlight three key observations. First, THIN-
KLOGIT boosts reasoning accuracy upon both tar-
get and guider model, and THINKLOGIT-DPO
raises it further. Combining the logits of the 32B
target with those of the 1.5B guider (THINKLOGIT)
raises the average pass@1 by 24.5% relative to the
frozen target and by 23.7% relative to the guider.
Replacing the vanilla guider with the DPO-trained
guider (THINKLOGIT-DPO) brings the relative im-
provement to 29.1% over the target model, without
any extra inference cost. The performance gains
are consistent across five tested datasets.

Second, a guider trained only on mathemat-
ics problems maintains effectiveness on out-of-
domain scientific reasoning. Although the DPO
alignment phase trains the 1.5B guider solely to
mathematics problems, it still maintains and even
slightly improves performance of vanilla logit
arithimetic (THINKLOGIT) from 41.8 to 42.4 on
the out-of-domain GPQA Diamond benchmark,
which spans biology, chemistry, and physics. This

indicates that while DPO shrinks the distribution
gap between guider and target outputs on maths
data, it also makes the guider’s token-level proba-
bilities easier for the target to follow regardless of
subject matter. A recent study by Tang et al. (2025)
also reports a similar domain-general nature of long
CoT based on model representation analysis, rein-
forcing the potential for enhanced guidance from
a math-trained guider to transfer broadly across
disciplines.

Third, our approach recovers most of the ben-
efit of full-parameter fine-tuning while touching
only a small subset of weights and using far less
data. With LoRA, we adjust just 78M adapter pa-
rameters and train on 10K preference pairs, yet
THINKLOGIT-DPO closes 77% of the pass@1
gap between the frozen 32B target and the fully
fine-tuned s1.1-32B (Muennighoff et al., 2025),
which updates all 32B parameters using 1K care-
fully selected long-CoT examples from a corpus of
59K examples. Our pipeline does rely on a 1.5B
guider (R1-distill-1.5B) that was already fine-tuned
on 800K distilled examples from DeepSeek-R1, but
training this smaller model is far cheaper than R1-
distill-32B, and once trained, the same guider can
be reused for many other larger targets, especially
those in the same model family (e.g., Qwen2.5-
72B, with results shown in Figure 4), at no extra
cost. Consequently, the cumulative data and com-
pute requirements of our pipeline remain well be-
low those of fully fine-tuning large models, while
still delivering substantial accuracy gains.
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Figure 2: Test-time scaling on AIME2025. Pass@ k
for k = 1-16 comparing the target, guider, their di-
rect logit fusion (THINKLOGIT), and the DPO-aligned
fusion (THINKLOGIT-DPO). Our methods not only in-
crease sample efficiency but also broaden the reasoning
boundary of the target model.

3.3 Test-Time Scaling Properties

Figure 2 plots pass@k for k = 1-16 on
AIME2025, the dataset where the 32B target per-
forms worst and scaling effects are therefore most
visible. Both THINKLOGIT and THINKLOGIT-
DPO surpass the target’s pass@16 performance
with only four generations, achieving a four-fold
improvement in sample efficiency. The advantage
widens as k grows: at k = 16 our DPO-aligned
guider leads the target by roughly 17 points. Un-
like the baseline’s early plateau, our curve keeps
rising, implying that logits guidance broaden the
reasoning boundary (Yue et al., 2025b) rather than
merely re-ranking similar completions.

3.4 Comparison with Other Training-Free
Methods for Long CoT Elicitation

Figure 3 contrasts our approach against two
training-free baselines for long chain-of-thought
elicitation. First, the budget-forcing heuristic in-
troduced by Muennighoff et al. (2025) replaces
end-of-sentence tokens with a placeholder string
like “Wait” to artificially increase output length.
While this does produce longer completions, it con-
sistently hurts performance, showing that verbosity
alone does not lead to deeper reasoning.” Second,

2We note that while Muennighoff et al. (2025) demonstrate
the effectiveness of budget-forcing on a Qwen2.5-32B-Instruct
model fine-tuned on 1K long CoTs, they do not evaluate this
technique directly on the untuned model.

I Qwen2.5-32B (Target)
[ Target + Budget Forcing

[ Target + Long CoT ICL
[ Target + ThinkLogit

8000 1

[=2]
o
o
o

4000 A

2000 1

# Avg Tokens

0- 0-
AIME2025 AIME2025

AMC23 AMC23

Figure 3: Comparison of our training-free long
chain-of-thought elicitation method (THINKLOGIT)
against two baselines: budget-forcing and one-shot long
CoT in-context learning (ICL). The left panel shows
pass@1 on AIME2025 and AMC23; the right panel
shows the average chain-of-thought length in tokens.
While budget-forcing and long CoT ICL increase ver-
bosity, they degrade accuracy, whereas THINKLOGIT
produces genuinely extended reasoning that boosts per-
formance.

inserting a single long CoT example in the prompt
(sampled from the s1.1-1K dataset (Muennighoff
et al., 2025)) for in-context learning (ICL; Brown
etal.,2020; Min et al., 2022; Dong et al., 2024) also
degrades performance despite of longer outputs
from the target model. In contrast, THINKLOGIT-
DPO uses logit-level guidance from a small rea-
soning model to steer the decoding towards gen-
uine long chain-of-thoughts, which translates into
a clear uplift in downstream accuracy. This shows
that our improvements stem from the quality of the
guidance being applied, rather than the quantity of
tokens generated.

3.5 Cross-Model Transferability of
THINKLOGIT-DPO

We evaluate whether the THINKLOGIT-DPO
guider, optimized for the reasoning preference
of Qwen2.5-32B, can be applied off-the-shelf
to a larger model (Qwen2.5-72B) in the same
family. At inference time, we fuse the
R1-distill-1.5B guider logits with the 72B target
(THINKLOGIT) and then swap in the DPO-trained
guider (THINKLOGIT-DPO), without any addi-
tional fine-tuning on the outputs from the 72B
model. As highlighted in Figure 4, THINKLOGIT-
DPO consistently improves upon THINKLOGIT,
confirming that preference signals learned via
DPO on a 32B model transfer effectively to larger
scales, offering a plug-and-play mechanism to
boost long-chain reasoning in even more capable
LLMs within the same family.
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Figure 4: Pass@1 for eliciting long CoT in a 72B target
model with logits arithmetic. THINKLOGIT-DPO de-
livers larger performance improvements on AIME2025
and AMC23 compared to THINKLOGIT, demonstrating
that preference signals learned on a 32B model transfer
effectively to a larger 72B model.

3.6 Ablation Study of THINKLOGIT-DPO

To further investigate the design choices in
THINKLOGIT-DPO, we ablate both our mixed-pair
data construction and preference-based learning ob-
jective (DPO) against single-source or supervised
fine-tuning alternatives. Results in Table 2 answer
the following research questions.

Are preference pairs sourced from both the tar-
get and the guider necessary to maximize perfor-
mance? We construct the same amount of 10K
preference pairs using only the guider’s correct vs.
incorrect outputs, i.e., (x, ¥°¥, y*). DPO on this
data underperforms markedly on AMC23 (58.8 vs.
63.7), confirming that mixing pairs which highlight
both the target’s and guider’s strengths is crucial
for maximal gains.

Is training on both types of pairs necessary for
the effectiveness of THINKLOGIT-DPO? We
next ablate by training on only one type of pref-
erence pairs at a time: using only Type-2 pairs
(z, y°, y¥*) (i.e., A = 0 in Equation 2) yields
a pass@1 of 57.2, while using only Type-1 pairs
(z, y™, y*) (i.e., A = 1 in Equation 2) drops fur-
ther to 51.9. Both are substantially below the 63.7
achieved by the full mixture, indicating that both
Type-2 pairs (which teach the guider to correct tar-
get errors) and Type-1 pairs (which enforce preser-
vation of correct target outputs) provide comple-
mentary signals necessary for optimal alignment.

Can supervised fine-tuning replace prefer-
ence-based alignment of the guider? We evalu-
ate standard supervised fine-tuning (SFT) against

Guider’s

Model Training Data Pass@l
THINKLOGIT-DPO  (z, y, 45%), 637
(ours) (z, ¥, y*) ’
THINKLOGIT-DPO
w/o dual sources (z, v, y°%) 58.8
w/o Type-1 pairs (z, v, y¥*) 572
w/o Type-2 pairs (z, y=7, y5*) 519
THINKLOGIT-SFT
learning from target (z,y"") 44.7
self-learning (z,y%") 55.6
learning from teacher  (z, ') 60.9

Table 2: Pass@1 on AMC23 under ablations of guider’s
training data and objectives in THINKLOGIT-DPO. We
compare the full DPO regime with mixed Type-1 and
Type-2 pairs against single-source DPO (only guider
outputs, only Type-1, only Type-2) and supervised fine-
tuning variants. The dual-source, mixed-pair DPO
yields the highest accuracy, demonstrating the necessity
of complementary preference signals and preference-
based alignment.

DPO by training the guider on three equally sized
sets of high-quality completions: (1) the target
model’s correct outputs yL“, (2) its own correct
outputs y°* (also known as rejection-sampling
fine-tuning (Yuan et al., 2023)), and (3) R1-distilled
completions . Although SFT on (1) and (2)
turns the guider into a better standalone reasoner,
none of these variants rival the performance of the
DPO-aligned guider. This gap demonstrates that
optimizing with pairwise preference comparisons
yields a better guider than optimizing solely for
correctness. While SFT can adapt the guider to-
ward the target’s short—CoT reasoning style in (3)
and thus reduce the distributional gap, it tends to
overwrite the guider’s native strengths. In contrast,
DPO maintains the guider’s intrinsic reasoning
capabilities—preserving its long reasoning capa-
bility—while selectively aligning it to the target’s
preferences through pairwise comparisons.

Overall, the best performance arises when the
guider is aligned with the target via DPO and
trained on a mixture of Type-1 and Type-2 pref-
erence pairs sourced from both models. Naive
SFT—whether on the guider itself, the target’s out-
puts, or a stronger teacher—fails to match these
gains, underscoring key factors behind the effec-
tiveness of THINKLOGIT-DPO.
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Figure 5: Impact of hyperparameter tuning on THINKLOGIT (Figure 5a and 5b) and training data size on

THINKLOGIT-DPO (Figure 5c¢).

3.7 Impact of Hyperparameter Tuning on
THINKLOGIT

In THINKLOGIT, two hyperparameters play a crit-
ical role in balancing stability, accuracy, and gen-
eration efficiency: the warm-up length 7" and the
guidance strength o (Eq. 1). We evaluate their ef-
fects on the AMC23 benchmark, which presents
a suitable mix of problem difficulties and clearly
exhibits both stability and guidance effects.

To assess warm-up, we vary 1 over
{0,50, 100,200, 500, 1000} with « fixed to
1. For each possible values of 7', we sample 8
completions per question and compute pass@ 1
alongside the average number of generated tokens
(Figure 5a). When T' = 0, guidance is applied
immediately from the beginning, causing repetitive
loops in early decoding and yielding the lowest
accuracy. Allowing 50-200 tokens of unguided
generation stabilizes the chain-of-thought, improv-
ing pass@1 over both target and guider models and
reducing generation length. Increasing 7" beyond
200 causes the model to revert to the shorter CoTs
typically produced by the target model, leading to
an accuracy drop and shorter outputs.

With T fixed at 100, we sweep « over
{0.5,0.75,1.0,1.25,1.5} to control how strongly
the guider’s delta-logits modify the target’s distri-
bution (Figure 5b). At a = 1.0, we observe the
highest pass@1 together with moderate generation
length, indicating an optimal trade-off between the
guider’s corrective signal and the target model’s
own priors. Therefore, we set a = 1.0 as the de-
fault guidance strength. Future work might explore
adaptive, context-aware schedules for 7" and o (Fan
et al., 2024a) to optimize this trade-off further.

3.8 Impact of Training Data Size on
THINKLOGIT-DPO

To determine the optimal number of DPO prefer-
ence pairs, we randomly sampled subsets of 5K,
10K, 20K, 30K, 40K, and 50K from our full pool
of 55K Type-1 and Type-2 pairs. Figure 5c plots
pass@1 against training dataset size. With 5K pairs,
THINKLOGIT-DPO ’s pass@1 remains lower than
that of the vanilla THINKLOGIT; increasing to 10K
pairs raises pass@1 above THINKLOGIT while
keeping training cost moderate. Beyond 10K pairs,
adding more data leads to a decline in pass@1.
Since our preference set is constructed via the
Cartesian product of correct and incorrect genera-
tions, we hypothesize that pairs beyond 10K pri-
marily recombine existing chains-of-thought rather
than introduce new solution patterns, resulting in
redundant examples and a higher risk of overfitting.

4 Related Work
4.1 Long Chain-of-Thought (CoT) Reasoning

Large reasoning models, such as OpenAl’s
ol and 03 (OpenAl, 2024, 2025), DeepSeek-
R1 (DeepSeek-Al et al., 2025), and QwQ (Team,
2025), achieve state-of-the-art results on mathe-
matical and coding benchmarks by generating CoT
traces that often extend to thousands of tokens, en-
abling systematic backtracking, verification, and
self-reflection before a final answer is produced
(Gandhi et al., 2025). One way to elicit such long-
form reasoning is through reinforcement learning
with verifiable rewards (Lambert et al., 2024).
Pioneered by Group-Relative Policy Optimization
(GRPO) (Shao et al., 2024) and refined by more sta-
ble and token-efficient variants such as DAPO (Yu



et al., 2025) and Dr. GRPO (Liu et al., 2025), this
approach optimizes outcome-based rewards for cor-
rectness; nevertheless, mounting evidence shows
that it mainly re-weights reasoning patterns already
latent in the base model (Liu et al., 2025; Yue et al.,
2025a). A complementary line of work demon-
strates that the same capability can be acquired with
data-efficient supervised fine-tuning. Distilled
long CoTs from stronger teacher models allows a
student to extend its reasoning length and thus im-
prove accuracy using only about one thousand ex-
amples (Muennighoff et al., 2025; Xu et al., 2025;
Ye et al., 2025; Li et al., 2025b). Finally, training-
free methods exploit the fact that pretrained LLMs
already exhibit long-CoT behaviours (Liu et al.,
2025; Gandhi et al., 2025). (Tang et al., 2025) in-
ject contrastive long- versus short-CoT represen-
tations into hidden states via representation engi-
neering (Zou et al., 2023), whereas (Zhao et al.,
2025) amplify a handful of key neurons at infer-
ence. Both techniques, however, require domain-
specific long/short traces and white-box access,
limiting their applicability in out-of-domain or
black-box settings. THINKLOGIT sidesteps these
constraints entirely. It keeps the target LLM frozen
and, at inference time, fuses its logits with those
of a lightweight “guider” model trained for long
reasoning. This logit-fusion strategy recovers long-
CoT behaviour induced by training-based methods
while introducing no additional training cost or
curated long-CoT examples.

4.2 Decoding Algorithms for LLLM Reasoning

Decoding-time interventions offer an attractive al-
ternative to full model fine-tuning: they can im-
prove the reasoning capabilities of an off-the-shelf
LLM with only a marginal increase in training or in-
ference cost. The earliest line of work is Chain-of-
Thought (CoT) prompting (Wei et al., 2022), which
simply asks the model to “think aloud.” Subsequent
self-consistency decoding (Wang et al., 2023) sam-
ples a set of diverse CoTs and majority-votes over
their answers, while later work shows that short
CoTs can even be elicited without any prompt-
ing (Wang and Zhou, 2024). Crucially, these traces
are usually brief: they march directly to the answer
without back-tracking or verification, and there-
fore do not unlock the long-form reasoning studied
in our work. A second family, guided decoding,
biases generation toward correctness using either
self-evaluation signals from the model itself (Xie
et al., 2023) or an external discriminator (Khalifa

et al., 2023). Accuracy is further improved by best-
of-n reranking with discriminative reward models
that score either the final answer or the reason-
ing process (Cobbe et al., 2021; Lightman et al.,
2024; Wang et al., 2024). Generative reward objec-
tives extend this idea and generalise better across
tasks (Hosseini et al., 2024; Zhang et al., 2025;
Wang et al., 2025; Khalifa et al., 2025). However,
all of these methods depend on sampling many
complete reasoning traces and scoring them after
they are generated, which both raises costs and
keeps them in the short-CoT regime. Auxiliary-
model approaches modify the output of a frozen
target model on the fly. Contrastive decoding sub-
tracts logits from an “amateur” model or layer
to suppress low-quality outputs (Li et al., 2023;
Chuang et al., 2024), while speculative decoding
speeds inference by letting a small draft model
propose tokens that the expert later accepts or re-
jects (Leviathan et al., 2023; Yang et al., 2025; Liao
et al., 2025). A closely related strand, logits arith-
metic, blends the output distributions of three mod-
els token-by-token (Liu et al., 2021; Ormazabal
et al., 2023; Shi et al., 2024), successfully emulat-
ing task-specific fine-tuning (Liu et al., 2024; Fan
et al., 2024b), scaling laws (Mitchell et al., 2024),
unlearning (Huang et al., 2025) and even overrid-
ing safety filters (Zhao et al., 2024). THINKLOGIT
follows this lightweight pathway by using a com-
pact guider model to unlock long-form reasoning
in a frozen large model, while THINKLOGIT-DPO
additionally aligns the guider’s distribution with
the target model’s, delivering further gains.

5 Conclusion and Future Work

We introduce THINKLOGIT and THINKLOGIT-
DPO, two decoding-time techniques that unlock
long chain-of-thought (CoT) reasoning in frozen,
non-reasoning LLMs. THINKLOGIT injects logits
from a small, long-CoT guider, boosting accuracy
by 24.5 % on five reasoning benchmarks for only a
1.1x increase in inference-time parameters, while
THINKLOGIT-DPO aligns the guider with target
distribution via Direct Preference Optimization for
even higher gains. Together they offer a compute-
efficient route to deploy long-CoT LLMs. Future
work will combine heterogeneous model families,
and develop context-aware guidance (e.g., adaptive
strength o as in Fan et al. (2024a)) to mitigate
the over-thinking problem in long reasoning (Chen
et al., 2024).



Limitations

Inference-Time Overhead. Deploying THIN-
KLOGIT requires hosting the large target model
along with two smaller models—the base model
S and the DPO-aligned guider S*. In our pri-
mary experimental setup (guiding a 32B target
with a 1.5B guider), the total parameter count in-
creases by approximately 1.1x compared to using
the frozen target alone. Instead of sequentially
querying each model at every inference step, we
implement asynchronous decoding to concurrently
obtain logits from all three models. Profiling on
NVIDIA L40S GPUs indicates a moderate infer-
ence slowdown (approximately 25% fewer tokens
per second) compared to running only the target
model. Since THINKLOGIT-DPO simply replaces
the original guider model used in THINKLOGIT
with a preference-optimized model of the same
size, THINKLOGIT-DPO incurs no additional in-
ference overhead beyond THINKLOGIT itself.

Same-Family Constraint. THINKLOGIT and
THINKLOGIT-DPO computes foken-wise differ-
ences between the guider’s and a base model’s log-
its and then adds that delta to the target model.
Because the three models must share an identical
vocabulary, we currently restrict all three to the
same model family (e.g., Qwen2.5). Although Sec-
tion 3.5 shows that a guider aligned on a 32B target
transfers to a 72B target in the same family, we
have not yet verified that the method generalizes
to other model families. Extending the approach
to heterogeneous families such as Mistral (Ras-
togi et al., 2025), Llama (Dubey et al., 2024), or
Gemma (Kamath et al., 2025) will require a robust
tokenizer alignment algorithm (Fu et al., 2023; Li
et al., 2025a) to ensure delta logits remain semanti-
cally meaningful across models. We leave the de-
sign and empirical validation of such cross-family
fusion to future work.

Limited Domains of Evaluation. Our experi-
ments focus on math- and science-oriented reason-
ing tasks. A broader evaluation suite, including
coding (Jimenez et al., 2023; Jain et al., 2025),
planning (Zheng et al., 2024a; Xie et al., 2024),
and tool-use (Huang et al., 2024; Patil et al., 2025),
is needed to understand failure modes that may
emerge in less structurally similar settings.

Offline alignment. The guider is aligned with the
target via Direct Preference Optimisation (DPO)

on a fixed set of preference pairs. This offline for-
mulation cannot adapt once deployment uncovers
new error patterns or distribution drift. Incorporat-
ing online reinforcement learning (Schulman et al.,
2017; Shao et al., 2024) that updates the guider
from streamed on-policy samples could, in prin-
ciple, reduce this brittleness. However, on-policy
RL introduces training efficiency and stability chal-
lenges that remain open research problems.
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A Technical Details

A.1 Training Details

Environment. All experiments were conducted
using NVIDIA A40/L40S GPUs with 48GB mem-
ory. The software environment was configured as
follows:

* 360-LLaMA-Factory (Haosheng Zou and
Zhang, 2024) (A long-CoT adapted version of
LLaMA-Factory 0.9.1 (Zheng et al., 2024b))

* torch2.7.0

* transformers 4.51.3

* accelerate 1.0.1

* datasets 3.1.0

* tr10.9.6

e peft 0.12.0

e deepspeed 0.14.4
LoRA Configuration. We applied LoRA (Hu
et al., 2022) for parameter-efficient fine-tuning of
the guider model:

* Rank: 64

® (I oRA- 128

* Target modules: q_proj, k_proj, v_proj,
o_proj

* Bias: None
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DPO Training. For preference optimization with
DPO, we used the following settings:

¢ Batch size: 32 (4 GPUs * 8 Gradient Accu-
mulation)

* Epoch: 1

* Learning rate: 5e-6

* Optimizer: AdamW

* Learning rate scheduler: cosine with warmup
e Warmup ratio: 0.1

* [ (reward scaling): 0.1

¢ Cutoff length: 8192
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