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Abstract

This work adapts a neuroscientific contrast localizer to pinpoint causally
relevant units for Theory of Mind (ToM) and mathematical reasoning tasks
in large language models (LLMs) and vision-language models (VLMs).
Across 11 LLMs and 5 VLMs ranging in size from 3B to 90B parameters,
we localize top-activated units using contrastive stimulus sets and assess
their causal role via targeted ablations. We compare the effect of lesioning
functionally selected units against low-activation and randomly selected
units on downstream accuracy across established ToM and mathematical
benchmarks. Low-activation units sometimes produced larger performance
drops than the highly activated ones, and units derived from the mathe-
matical localizer often impaired ToM performance more than those from
the ToM localizer. These findings call into question the causal relevance of
contrast-based localizers and highlight the need for broader stimulus sets
and more accurately capture task-specific units.

1 Introduction

Recent breakthroughs in LLMs have shown their ability to perform more than language
processing tasks, showing their ability to accomplish mathematical, problem-solving tasks
(Sun et al., 2024; Giadikiaroglou et al., 2024) and even mimicking social understanding
(Street et al., 2024). Although their internal workings are still poorly understood and can
be seen as a black box, a growing body of work, such as mechanistic interpretability, has
been dedicated to understanding the components that encode specific types of knowledge
(Geiger et al., 2021; Wang et al., 2022). Recent advances in neuroscience—particularly
in mapping cognitive networks—have opened new avenues for exploring the internal
mechanisms of language models (Schrimpf et al., 2018; 2021). Unlike the human brain,
artificial neural networks offer the unique advantage of allowing targeted perturbations
(Schrimpf et al., 2024) to individual units, enabling precise investigations of their functional
roles. Central to this emerging direction is the study by AlKhamissi et al. (2024), which
leverages a neuroscientific approach for identifying task-relevant units in LLMs. Drawing
on methods traditionally used to localize functional regions in the brain, the authors applied
a “localizer” paradigm to LLMs. For instance, a language network localizer—typically used
in fMRI to identify language-selective areas in the human cortex—successfully pinpointed a
subset of model units whose ablation resulted in significant impairments on linguistic tasks.
The study further presented preliminary findings for other tasks related to mathematical
reasoning and ToM by using localizers used to identify the multiple demand (MD) and ToM
brain regions respectively.

Building on this foundation, we conduct a comprehensive set of experiments using 11 LLMs
and 5 VLMs ranging from 3B to 90B parameters to systematically identify and evaluate
causal units associated with ToM and MD tasks. To assess the functional significance of
these units, we compare the performance impact of ablating them against two baselines:
randomly selected units and those with minimal activation during the task. Recognizing the
multimodal nature of many real-world problems, we further extend our analysis to include
vision-language models (VLMs), exploring whether similar functional localization emerges
across modalities.
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2 Related Work

Theory of mind (ToM) is a specialized brain system — primarily involving regions in the
bilateral temporo-parietal junction and along the cortical midline (Gallagher et al., 2000; Saxe
& Powell, 2006) — that becomes active when individuals think about others mental states
and understand that they may differ from their own’s. It plays a significant role in moral
judgment (Leslie et al., 2006; Sosa et al.), anticipation of other’s action (Baker et al., 2009;
2017) and in understanding sarcasm (Spotorno et al., 2012; Hsu & Cheung, 2013; Bischetti
etal., 2023).

Multiple Demand (MD) is a brain system closely linked to working memory, cognitive
control, and attention, all of which are critical for goal-directed behavior (Assem et al., 2020;
Woolgar et al., 2010) and includes bilateral frontal and parietal regions, medial prefrontal
areas, and posterolateral inferior temporal regions (Cole & Schneider, 2007). These areas
become active with stronger activation observed in more difficult tasks (Duncan & Owen,
2000; Fedorenko et al., 2013; Shashidhara et al., 2020), a pattern that extends to various task
types, including learning new tasks, memory, math problems, and logic puzzles (Duncan &
Owen, 2000; Fedorenko et al., 2013; Shashidhara et al., 2020). This contribution naturally
leads us to leverage the MD network as a prism for studying the mathematical reasoning
task of models.

Functional Localizer (Fedorenko et al., 2010) commonly used to identify cognitive networks
rely on contrasting brain activity between two conditions. The positive condition refers to
the task that robustly engages the cognitive network of interest, while the negative condition
serves as a control condition that minimizes or omits such engagement. This distinction is
essential for isolating signals specific to the task of interest, as the subtraction of overlapping
or redundant neural activity common to both conditions preserves only the significant
and relevant activation. By focusing on the differential activity between these positive and
negative tasks, the functional localizer by contrast provides a robust and generalizable
framework for mapping specialized cognitive networks across individuals.

3 Methods

In this section, we present our approach for identifying and characterizing the causal units
related to ToM and MD tasks in large-scale models. Figure 1a outlines the primary steps of
the workflow.

Models. As an input, we consider either LLMs or VLMs. Imported from Huggingface
(Wolf et al., 2020), we focused on instructed-tuned versions and we selected 11 LLMs, all
among the most downloaded and performant in online benchmarks. These include Llama-
3.1-{8, 70}B, Llama-3.2-11B-Vision (Dubey et al., 2024), Qwen2.5-{3, 7, 14, 32, 72} B-Instruct
(Qwen et al., 2025), Mistral-Nemo-Instruct-2407, Mistral-Small-24B-Instruct-2501, and phi-
3.5-mini-instruct (Abdin et al., 2024). Additionally, for vision-language tasks, we considered
Llama-3.2-{11, 90} B-Instruct (Dubey et al., 2024) and Qwen2.5-VL-{3, 7, 72} B-Instruct (Bai
et al., 2025) models. Overall, our selection spans a wide range of parameter sizes, from 3 to
90 billions.

Localizer Type & Contrast Localizer. ToM localizer distinguishes cognitive engagement by
contrasting 10 False-Belief (Positive) and 10 False-Photograph (Negative) stories (Dodell-
Feder et al., 2011). Since MD-system engagement scales with task difficulty, we define the
MD localizer by contrasting hard-arithmetic (Positive) versus easy-arithmetic (Negative)
problems (see more details in Appendix B). For each cognitive task, the positive and negative
stimulus will be passed independently through the Language Model in a prompt format.
For each stimulus, the output activation units are extracted from each transformer block (see
more details in Appendix A). The top condition refers to the units that exhibit the highest
activation during the tasks. The bottorn condition serves as a control and includes units with
the lowest activation for a given task, while the random condition consists of units randomly
selected from the model; this random selection was repeated 15 times for each model to
ensure robustness.
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Figure 1: (a) Framework workflow outlines the general process for identifying causal units
that underpin ToM or MD task in language models. The items highlighted in red represent
the various options available at each step (e.g., different localizer types, benchmarks, and
lesion methods). (b) Comparing the performance drop by lesioning 1% of Top, Bottom,
Random units. In each barplot, the black dots indicate the accuracy change—of the 5 VLMs
for MathVista & MMStar and 11 LLMs for the others. n.s.: not significant; * p < 0.05; **
p < 0.01.

Lesioned Model & Benchmarks. Once we have identified the units to lesion for each
condition, we lesion them by setting their activations to zero and then assess the model on
benchmarks in a multiple-choice format. For ToM, we consider three unimodal datasets
that are stories-based tasks, which consisted of a narrative, question and two candidate
options. The three benchmarks assess false-belief ability and the narrative of these datasets
are as follows: ToMi has a short narrative (Le et al., 2019; Sap et al., 2022); OpenToM has
a complex narrative (Xu et al., 2024); FanToM has a dialogue based narrative between
several characters (Kim et al., 2023). For MD tasks, we include the unimodal MATH dataset
(Hendrycks et al., 2021; Zhang et al., 2024) and two multimodal datasets: MathVista (Lu et al.,
2024) and MMStar (Chen et al., 2024). These benchmarks pose multiple choice questions on
mathematical topics such as algebra, geometry, and statistics. See details in Appendix C.

Score Assessment. In contrast to AlKhamissi et al. (2024), where negative log-logits were
used to select the best candidate, we instead adopt a generated-token approach—specifically
chosen to assess the model’s ability to comprehend the prompt and accurately select among
the candidate options. The accuracy score is computed by subtracting the baseline accuracy
from the lesioned accuracy.

4 Results

Lesion Assessment. For each model, Top and Bottom units are identified using ToM and
MD localizers. Random units are shared across both tasks. Each model’s performance is
then evaluated on benchmarks aligned with the localizer domain: ToM localizer assesses
FanToM, OpenToM, and ToMi; MD localizer assesses MMStar, MathVista, and MATH. To
test generalizability, paired t-tests compare performance across three conditions: Top vs.
Random and Top vs. Bottom. A significant performance drop when Top units are lesioned
indicates their causal role in ToM or MD task performance. Results are shown in Figure 1b.
Across the benchmarks, The Top condition does not induce a significant performance drop
compared to the control conditions across datasets. Furthermore, lesioning the Bottom units
also affects model performance, which is unexpected given that these units are the least
activated for the tasks. In particular, for the MATH dataset, the Bottom condition leads to a
significantly larger performance drop compared to the Top and Random conditions. These
findings challenge our initial assumption regarding the reliability of the contrast localizer
method in accurately distinguishing units related to ToM and MD tasks.

Cross-task Analysis. To further investigate the task-specificity of the method, we performed
a cross-task analysis where MD localizer is used to assess ToM benchmarks. In Figure 2, we
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Figure 2: Cross-task analysis on ToM tasks. The three plots compare distribution score
across the three ToM datasets for 1% lesioning on Top condition. Paired data points for
each model—shown as black dots and linked by dashed lines—represent the performance
differences between the MD and ToM localizers, and a paired t-test is performed. n.s.: not
significant; * p < 0.05; ** p < 0.01

report the performance impact of lesioning top-ranked units identified by both ToM and MD
localizers across the ToM tasks. Interestingly, for each dataset, lesioning the MD-identified
units leads to a larger performance drop than lesioning the ToM-identified units, raising
additional concerns on the ability to differentiate those two cognitive tasks.

5 Discussion

This research aims to extend the contrast localizer design to ToM and MD tasks. The analysis
on these cognitive tasks has raised many questions on the validity of the method. While the
results here do not causally differentiate between ToM- and MD-relevant units, these results
highlight key directions for underlying the complexity of mapping high-level cognitive
functions onto LLMs!.

Extending the localizer stimulus sets. To refine the identification of sensitive activation
units, it is essential to broaden both the stimulus sets and the aspects of cognitive processing
they encompass for MD and ToM tasks. For the MD localizer, the current contrast is limited
to comparing easy versus hard arithmetic operations (addition and subtraction). Enhancing
this design by incorporating additional operations, such as division and multiplication,
alongside tasks that tap into other dimensions of MD reasoning—such as logic puzzles and
memory challenges—could help differentiate activation units more effectively (Duncan &
Owen, 2000; Fedorenko et al., 2013; Shashidhara et al., 2020). Similarly, the ToM localizer
could be improved by broadening its stimulus array which would provide richer contrast.
Another method, described by (Bruneau et al., 2012), employs an extensive stimulus set
that contrasts 48 stories depicting varying degrees of physical or emotional pain with 48
corresponding versions in which these painful elements have been removed. By applying
the both contrasts and identifying the common activation units across them, one can define a
robust positive set that more reliably reflects ToM units while capturing a broader spectrum
of ToM.

Granularity of Extracted Units. In our study, we focused exclusively on the output acti-
vation units from each transformer block, as these units directly influence the generation
of coherent tokens as shown in AlKhamissi et al. (2024). However, concentrating solely on
these output activations raises the question of whether this level of granularity is sufficient
for dissecting complex reasoning tasks, such as mathematical and social reasoning. These
tasks likely rely on a broader array of internal computations beyond just the final outputs.
A more comprehensive approach would involve examining intermediate representations
and hidden activations within each transformer block. By incorporating these additional
activation units into the analysis, we can gain deeper insights into how reasoning pro-
cesses are distributed throughout the model’s architecture and better understand the neural
mechanisms underlying advanced cognitive functions.

1Code available on GitHub: https://github.com/YassineJamaa/ToM-LargeModel.
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A Contrast Localizer

Built on the approach from (AlKhamissi et al., 2024), the contrast localizer is designed to
characterize the distribution of activation units in response to different stimuli. Specifically,
each unit is assigned a score that quantifies its relative activation level under positive versus
negative stimuli. This score indicates whether a unit is preferentially activated by positive
inputs, by negative inputs, or exhibits consistent activation across both conditions, thereby
providing insight into the unit’s functional role within the model. The subsequent sections
present a comprehensive breakdown of each step, as further illustrated by figure 3.

A.1 Localizer

The contrast localizer consists of two sets of task conditions used to identify a cognitive
network. The positive contrast set, denoted as P, consists of Nj, prompts designed to engage
the targeted cognitive process. Each prompt P; € P is indexed by i, where i € {1,2,...,N,}.
The negative contrast set, denoted as N, consists of N,, prompts that serve as a control
condition, minimizing engagement of the targeted cognitive process. Each prompt N; € N is
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Figure 3: Contrast Localizer method zooms in on the three key decision stages for isolating
specific activation units. First, a localizer contrasts positive and negative samples to pinpoint
relevant regions of the model. Next, a t-distribution is generated to quantify the significance
of each unit’s activation differences. Finally, a unit selection step identifies and ranks the
top candidates for further causal analysis.

indexed by j, where j € {1,2,..., N, }. These two sets, P and N, are processed independently
by the Language Model, yielding output activation units from the M transformer blocks
for each prompt. Specifically, for prompts in the positive contrast set, the activations are
(P)
i

contrast set, they are denoted as A

represented as A; ' € RM*L*H wherei € {1,2,...,N,}, while for prompts in the negative

](N) € RM*LxH where j € {1,2,...,N,}. The activation
units are then averaged along the token sequence, resulting in the final representations

(P) MxH (N) MxH
A7 ER and A j R ,
for the positive and negative contrast sets, respectively. Once the model’s activation units
have been extracted for both the positive and negative prompt sets, their distributions will
be statistically compared, as described in the following section.

A.2 T-distribution Generation

Each activation unit u;; extracted has two population sets— the positive and negative—and
is defined as: .
p N
wij = (U, U )

Py _ (,(,P) (2,P) (Np.P) (N) _ ¢ (LN) _(2N) (Nn,N)
U f(al.j S5y ) U f(al.]. s ,...,al.].” )
(P) (N)
ij ij
activation values in the negative set, of size N,,. Welch's t-test is conducted to statistically
assess the difference in its responses under the positive and negative contrast conditions:

l—[(P) l—[(N )
: ij ij
$2 $2
AT]; + Tﬁ

where U;; ’ represents activation units in the positive set, of size N, and U;; ’ represents
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where: N
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@2_ 1 ZN" (afe) 7U(P>)2 @2 _ 1 ZN” (afe) 7U<N>)2
PUNy—1 4\ i) N T Ng—1 4\ ij

The t-values t;;, with i € {1,..., M} indexing transformer block and j € {1,..., H} indexing
activation units, represent the individual entries of the matrix

T € RMH

which quantifies the difference in activation between the positive and negative contrast
conditions. This t-value distribution reveals the relative importance of individual activation
units under contrasting task conditions, thereby guiding the selection process that is detailed
in the next section.

A.3 Units Selection

Based on the computed t-values in the matrix T, activation units are ranked according to
their differential responses under the contrasting task conditions. The top k% of units—those
with the highest t-values—are considered most strongly associated with the targeted cog-
nitive task, while the bottom k% with the lowest t-values are deemed least involved. To
facilitate further analysis, we define a binary mask I € {0, 1}M*H that serves as an indicator
function for unit selection. Specifically, the mask is defined as:

r {1, if unit u;j meets the selection criterion,
ij =

0, otherwise,

wherei € {1,...,M}andj € {1,..., H}. This mask enables us to identify the units most
(or least) associated with the targeted cognitive network. Under the random condition, k%

of the activation units are uniformly sampled from the outputs of all transformer blocks
(from block 1 to block M).

B Localizer Type

B.1 Theory of Mind Localizer

The ToM localizer, developed by (Dodell-Feder et al., 2011), distinguishes cognitive engage-
ment by contrasting False-Belief and False-Photograph stories. False-Belief stories, inspired
by the classic Sally-Ann test (Baron-Cohen et al., 1985), describe scenarios in which a charac-
ter holds incorrect beliefs regarding the actual state of affairs. Conversely, False-Photograph
stories do not involve human agents but rather present an outdated representation of a scene.
The critical difference between the two lies in the requirement to infer another individual’s
mental state—a key aspect of ToM. Their method utilizes 10 False-Belief stories contrasted
with 10 False-Photograph stories. Examples of both types are illustrated in figure 4.

B.2 Multiple Demand Localizer

For this study, we adopt the arithmetic MD localizer introduced by (AlKhamissi et al., 2024),
which presents arithmetic problems in a verbal format. In the easy condition, participants
solve addition and subtraction problems involving small numbers, whereas the hard condi-
tion requires the same operations with larger numbers. In the hard condition (positive set),
arithmetic problems were created by randomly selecting two integers between 100 and 200,
with the operation—either addition or subtraction—also determined at random. Conversely,
in the easy condition (negative set), two integers between 1 and 20 were sampled, and the
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arithmetic operation was similarly chosen at random. Each condition comprised a set of 100
stimuli. An illustrative example of this arithmetic contrast is shown in figure 4.

MD Localizer

Hard Arithmetic Easy Arithmetic
Question: Solve 254 + 1677 Question: Solve 8 + 11?
Answer: 421 Answer: 19
ToM Localizer
. ]
ﬂ False-Belief Story | \ False-Photograph Story
In this experiment, you will read a series of In this experiment, you will read a series of
sentences and then answer True/False questions sentences and then answer True/False questions
about them. Press button 1 to answer 'true’ and about them. Press button 1 to answer 'true’ and
button 2 to answer 'false’. button 2 to answer 'false’.
Story: Expecting the game to be postponed because Story: Accounts of the country's bustling economic
of the rain, the Garcia family took the subway success were recorded in both fiction and non-fiction
home. The score was tied, 3-3. During their books from the early 1900s. Soon after, a horrible
commute the rain stopped and the game soon plague hit the country and the country was sent into
ended with a score of 5-3. an economic depression.
Question: The Garcia family arrives home believing Question: Early 1900s novels portray the country as
the score is 5-3. experiencing economic wealth.
Options: Options:
- True - True
- False - False

erswer: False / ("SWQ’ : True j

Figure 4: Example of positive and negative localizer stimuli. For the MD localizer, the
Hard Arithmetic condition involves more challenging addition or subtraction problems
with larger numbers, while the Easy Arithmetic condition employs simpler arithmetic with
smaller numbers; each condition comprises 100 stimuli. For the ToM localizer, two types
of short stories are presented—False-Belief (left) and False-Photograph (right)—with 10
stimuli per condition.

C Benchmarks

To ensure consistency across different benchmarks, candidate answers are enumerated
with letter labels, and the model is prompted to select the correct answer by generating
the corresponding letter rather than the full response. This approach is necessary because
answer formats vary across benchmarks. For example, in datasets such as ToMi and
OpenToM, candidate answers are typically short—consisting of one or two tokens—whereas
FanToM uses full sentences as answer choices, and MD datasets often include candidate
options that consist of mathematical formulas or code snippets written in a formal notation
rather than natural language. By enforcing a one-token response format, we maintain
homogeneity across datasets and ensure that all answers can be processed consistently.
Additionally, this method optimizes inference efficiency; while prompt lengths may vary
depending on the dataset, restricting the model’s prediction to a single token significantly
accelerates response generation. The following sections provide further details on these
ToM and MD datasets.
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C.1 Theory of Mind Benchmarks

Given the inherent complexity of ToM reasoning tasks, our evaluation focuses exclusively
on first-order false-belief questions. In first-order tasks, an agent holds a belief about the
world that may be either true or false (for example, Sally may believe her toy remains in
the basket despite it having been moved). By contrast, second-order tasks require an agent
to infer another individual’s belief (e.g., Sally thinks that Anne believes the toy is in the
basket). Recent studies on LLMs reveal that these models handle first-order false-belief
questions significantly better than more complex second-order questions (Kim et al., 2023;
Van Duijn et al., 2023; Sclar et al., 2023). Given that first-order tasks already present a
substantial challenge under our experimental setup, they serve as a robust baseline for
assessing ToM-like reasoning in LLMs.

ToMi is generated using a stochastic, rule-based algorithm, drawing inspiration from the
Sally-Ann Test. The story structure involves two characters, an object that is relocated,
and two locations—one where the object originates and another where it is moved. These
elements are organized into a narrative, followed by a question asking each character where
they believe the object is located (Le et al., 2019), corresponding to both false-belief and
true-belief scenarios. The ToMi dataset used in this study was preprocessed by Sap et al.
(2022). In our analysis, we consider the 231 false-belief questions.

OpenToM is designed to assess false-belief capabilities in LLMs (Xu et al., 2024). Each story
involves two characters, an entity of interest, and multiple locations or containers where the
entity may be placed. The dataset is constructed using a human-in-the-loop process, where
GPT-3.5-Turbo generates initial narratives, which are subsequently refined through human
annotation. This methodology ensures the incorporation of character personality traits,
intentions, and actions, creating more realistic and contextually grounded interactions. The
datasets comprises 686 false-belief questions.

FanToM evaluates ToM reasoning in multi-party conversations with information asymmetry,
consisting of 256 conversations across various topics where characters enter and leave,
creating knowledge gaps (Kim et al., 2023). The benchmark assesses LLMs’ ability to
track characters’ beliefs through short and full conversations. The dataset comprises 642
questions.

C.2 Multiple Demand Benchmark

The assessment of MD is conducted using a mathematical reasoning task, as this network is
associated with domain-general cognitive control and problem-solving processes (Assem
et al., 2020; Woolgar et al., 2010).

MATH is a unimodal mathematical reasoning benchmark comprising 4,914 questions
covering various topics, including Geometry, Counting & Probability, Calculus, and Algebra
(Hendrycks et al., 2021). Each question is categorized into five levels of difficulty. In this
work, we use the four-choice multiple-answer format introduced by (Zhang et al., 2024).

MMStar is a multimodal benchmark that rigorously evaluates VLMs on their ability to
integrate and reason with both visual and textual information. Comprising 1,500 questions,
the dataset is designed so that correct answers are derived from an analysis of the visual
content, covering various topics that assess advanced multimodal reasoning. These topics
include coarse and fine-grained perception, instance reasoning, logical deduction, and
domain-specific knowledge in science, technology, and mathematics.

MathVista is a multimodal benchmark designed to evaluate the mathematical reasoning
abilities—from algebra and geometry to logical and statistical reasoning—of VLMs within
visual contexts. In our study, we exclusively examine the miniTest subset of MathVista—a
segment that replicates the distribution of the full dataset while offering computational
efficiency. To streamline our evaluation, we further restrict our analysis to questions that
include candidate answer options, resulting in a refined set of 540 questions.
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