
Synergy over Discrepancy: A Partition-Based
Approach to Multi-Domain LLM Fine-Tuning

Hua Ye1,2, Siyuan Chen3, Haoliang Zhang4, Weihao Luo5, Yanbin Li6, Xuan Zhang2,7†
1Nanjing University 2Airon Technology CO., LTD 3University of Bristol

4The University of Oklahoma 5Donghua University
6Beijing University of Posts and Telecommunications 7Carnegie Mellon University

Abstract

Large language models (LLMs) demonstrate impressive generalization abilities,
yet adapting them effectively across multiple heterogeneous domains remains
challenging due to inter-domain interference. To overcome this challenge, we
propose a partition-based multi-stage fine-tuning framework designed to exploit
inter-domain synergies while minimizing negative transfer. Our approach strate-
gically partitions domains into subsets (stages) by balancing domain discrepancy,
synergy, and model capacity constraints. We theoretically analyze the proposed
framework and derive novel generalization bounds that justify our partitioning
strategy. Extensive empirical evaluations on various language understanding tasks
show that our method consistently outperforms state-of-the-art baselines.

1 Introduction

Large language models (LLMs) have propelled natural language processing (NLP) to unprecedented
capabilities [Kumar, 2024, Karanikolas et al., 2023, Hu et al., 2025, Zhang et al., 2025, Shi et al.,
2025], owing largely to their extensive pretraining on massive, diverse textual corpora [Wu et al.,
2022, Li et al., 2024a, Chen et al., 2025, Zhang et al., 2024a]. Fine-tuning these pretrained models
for a specific downstream domain has been widely explored and proven highly effective; notable
approaches include adapter-based modules [Houlsby et al., 2019, Zhang et al., 2024b], parameter-
efficient fine-tuning via low-rank updates [Hu et al., 2021], and instruction-based fine-tuning meth-
ods [Cao et al., 2024]. These methods have also accelerated the application of LLMs in many sce-
narios, such as healthcare[Tong et al., 2025, Liu et al., 2025, Wang et al., 2025b], transportation[Yao
et al., 2023, Wang et al., 2025a], and robotics[Xiao et al., 2025a, Li et al., 2025].

However, while these methods excel in adapting to a single domain, practical scenarios frequently
require simultaneous adaptation to multiple distinct domains-a scenario far less studied and substan-
tially more challenging. Consider, for instance, a scenario where a single pretrained model must
be simultaneously adapted to clinical texts [Thirunavukarasu et al., 2023], social media posts [Yang
et al., 2024a, Jiang et al., 2024, 2025], and legal documents [Seabra et al., 2024]. Naive approaches
such as jointly fine-tuning the model across all domains or independently fine-tuning separate mod-
els per domain often yield suboptimal results[Xiao et al., 2025b, Zhang et al., 2023, Wang and Zhang,
2024]: domain-specific features may negatively interfere, causing one domain to overshadow others
or impair overall generalization capabilities [Lu et al., 2024, Zheng et al., 2024, Van Veen et al.,
2023, Tan et al., 2025]. This motivates our central research question: how can we effectively and
efficiently fine-tune a single LLM across multiple heterogeneous domains, exploiting inter-domain
synergies while mitigating negative interference?

†Corresponding author(xuanzhang2199@gmail.com)

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
1

A natural strategy to mitigate these challenges is to add adapter modules specialized for each do-
main [Houlsby et al., 2019, Zhang et al., 2024b, Tao et al., 2023]. While adapters reduce the need for
full fine-tuning, they do not fully address the complexity of managing multiple source domains with
potentially large discrepancies. In such cases, the learned model has to juggle both shared features
(common linguistic properties across domains) and domain-specific features (rare words, styles, or
content). Existing approaches often handle these competing demands by imposing either domain
adversarial objectives [Ganin and Lempitsky, 2015], distribution alignment [Peng et al., 2019], or
low-rank parameter updates [Hu et al., 2021]. However, these techniques may still fail to exploit
synergistic relationships-where certain domains are complementary and can reinforce each other’s
accuracy-and do not fully capture how best to “partition” domains to avoid negative interference.

Motivated by this gap, we propose a partition-based multi-stage framework for multi-domain LLM
fine-tuning. Instead of jointly or separately adapting to all domains, our method clusters synergistic
domains while isolating highly distinct ones. Our approach integrates practical constraints-memory
budgets, domain shifts, and synergy opportunities-with theoretical insights on generalization bene-
fits from restricted updates and strategic domain grouping. The main contributions are:

1) We introduce a novel partitioning algorithm that clusters domains according to their synergy and
discrepancy, then fine-tunes the LLM in multiple stages. This orchestrated process prevents cross-
domain contamination while leveraging beneficial interactions.

2) We derive new bounds that capture domain discrepancy, synergy offsets, and adapter complexity,
establishing conditions under which multi-stage partitioning yields provably tighter guarantees than
single-stage or naive multi-domain methods.

3) Our experiments demonstrate that partition-based multi-stage fine-tuning outperforms state-of-
the-art baselines, improving accuracy across different domains and tasks while reducing memory
usage.

2 Related Works

2.1 LLM Fine-Tuning

The success of LLMs such as GPT-3 [Brown et al., 2020], LLaMA [Touvron et al., 2023], and
Falcon [Almazrouei et al., 2023] has underscored the importance of efficient fine-tuning. Fully
updating model parameters incurs high computational costs [Zhang et al., 2024b, Hu et al., 2021],
prompting parameter-efficient methods that modify only a small subset of parameters. Examples
include adapter modules [Houlsby et al., 2019], low-rank projections (LoRA) [Hu et al., 2021], and
tightly integrated adapters for LLaMA [Zhang et al., 2024b]. However, most methods assume a
single domain; adapting LLMs efficiently to multiple domains remains challenging. Another related
field is continual learning [Xu et al., 2025], but it assumes a sequential arrival of tasks, which differs
from the setting in this paper.

2.2 Multi-Domain Data Learning

Real-world data often originate from disparate sources with distinct distributions and vocabular-
ies [Zhang et al., 2024c, Ganin and Lempitsky, 2015, Sener and Koltun, 2018, Xiao, 2024, Xiao
and Liu, 2025]. Traditional multi-domain methods align representations through adversarial train-
ing [Pei et al., 2018, Ganin and Lempitsky, 2015], moment matching [Peng et al., 2019], or multi-
task objectives [Royer et al., 2024], yet typically neglect inter-domain synergies. Adapting LLMs
further complicates this via memory overhead, forgetting pretrained knowledge, and cross-domain
contamination. Adapter-based solutions partially address these concerns [Houlsby et al., 2019] but
rarely exploit domain partitioning to maximize synergy. Our partition-based multi-stage approach
systematically clusters domains to leverage synergy and minimize discrepancy, providing theoretical
guarantees.

2.3 LLM Data Selection

The efficacy of supervised fine-tuning (SFT) heavily depends on the quality and composition of
training data[Yao et al., 2024]. Recent advances have introduced diverse metrics for data selection:
instance-level criteria like perplexity [Cao et al., 2024], reward scores [Gou and Nguyen, 2024],

2

and loss disparities [Li et al., 2024b], trajectory-based clustering via small proxy models [Yang
et al., 2024b], as well as token-level selection methods [Lin et al., 2024]. Existing works largely
overlook one critical factor: domain interactions, where diversity metrics operate at instance/token
levels [Pang et al., 2024] without modeling cross-domain compatibility. Our approach addresses this
gap by systematically clustering domains for joint tuning.

3 Theoretical Analysis

3.1 Preliminaries and Notation

Let us consider k distinct source domains {D1, . . . ,Dk}, each containing samples (x, y) drawn from
some distribution over X × Y . We have a large language model LLMθ∗ pretrained on a massive
corpusDpretrain, and we assume θ∗ ∈ Rp lies in a high-dimensional parameter space. Our goal is to
adapt θ∗ (often minimally) to each domainDj by introducing or modifying a small set of parameters
(e.g., adapter modules) denoted by ϕj ∈ Rqj , where qj ≪ p.
Definition 1 (Multi-Source Fine-Tuned Model). A multi-source fine-tuned model is given by

fθ,{ϕj}(x) = LLMθ∗+∆θ

(
ϕ1, . . . , ϕk

)
(x), (1)

where ∆θ ∈ Rp is a (potentially small) update to the pretrained backbone θ∗. Each ϕj may represent
additional parameters specialized to domain j. The model internally selects or combines relevant ϕj

based on domain context or training strategy.

Loss and Risk. We let ℓ
(
f(x), y

)
be a nonnegative loss function (e.g., cross-entropy) measuring

the prediction error on a sample (x, y). For a single domain Dj , the expected risk is

L(θ, {ϕj};Dj) = E(x,y)∼Dj

[
ℓ
(
fθ,{ϕi}(x), y

)]
. (2)

When training on multiple domains jointly, we typically minimize an aggregated objective:

Lagg(θ, {ϕj}) =

k∑
j=1

αj L
(
θ, {ϕi};Dj

)
, (3)

where αj ≥ 0 with
∑

j αj = 1. If αj =
1
k for all j, we obtain a simple average risk.

3.2 Assumptions and Domain Discrepancies

To handle multi-source adaptation rigorously, we introduce assumptions on data distributions,
smoothness, and domain overlaps.
Assumption 3.1 (Lipschitz Loss and Smoothness). Assume ℓ(ŷ, y) is L-Lipschitz in ŷ. Moreover,
suppose for any (θ, {ϕj}) and (θ′, {ϕ′

j}), the difference in model outputs is bounded by a constant
factor in terms of ∥θ − θ′∥2 and ∥ϕj − ϕ′

j∥2. Formally, there exists a constant B > 0 such that

∥∥fθ,{ϕj}(x)− fθ′,{ϕ′
j}(x)

∥∥ ≤ B
(
∥θ − θ′∥2 +

k∑
j=1

∥ϕj − ϕ′
j∥2

)
. (4)

Definition 2 (Domain Discrepancy). Let d(Di,Dj) be the H∆H-distance between two domain
distributions Di and Dj . Concretely,

d(Di,Dj) = sup
h∈H

∣∣∣ Pr
x∼Di

[
h(x) = 1

]
− Pr

x∼Dj

[
h(x) = 1

] ∣∣∣, (5)

whereH is a suitable hypothesis class.

3.3 Complexity of Multi-Source Adapter Updates

To preserve the implicit regularization from pretraining (i.e., the beneficial “low-complexity” region
θ∗ has converged to), one typically restricts either ∆θ or {ϕj} or both. We quantify this through
norms/penalties:

3

Assumption 3.2 (Restricted Adapter Complexity). There exist constants ρθ, ρϕ > 0 such that
∥∆θ∥2 ≤ ρθ, ∥ϕj∥2 ≤ ρϕ ∀ j ∈ {1, . . . , k}. (6)

If ρθ is very small (or zero), this means the backbone remains near θ∗; if ρϕ is small, each domain
adapter is limited in capacity.

Consider a Transformer-based large language model (LLM) with L layers, each layer containing a
multi-head attention (MHA) sub-layer and a feed-forward network (FFN) sub-layer, plus optional
adapter modules for each of k domains. Suppose each attention weight matrix W

(ℓ)
attn and feed-

forward matrix W
(ℓ)
ffn is constrained by a spectral norm bound (or operator norm) ∥W∥σ ≤ Ωcore.

Each domain adapter ϕ(ℓ)
j at layer ℓ is constrained by ∥ϕ(ℓ)

j ∥F ≤ Ωadapt. We assume a bounded input
embedding norm ∥x∥ ≤ Cin for sequences of finite length m, the nonlinear activations (e.g., GELU,
ReLU) are 1-Lipschitz on the relevant domain of outputs. Under these constraints, we can derive
uniform convergence or PAC-Bayes-style bounds. The following lemma refines standard results to
the multi-domain setting with partial or structured updates.
Lemma 3.1 (Rademacher Complexity for Multi-Adapter Transformers). Let F be the hypothesis
class of all such multi-adapter Transformers that respect these norm constraints. Then for n i.i.d.
samples per domain from k source domains {D1, . . . ,Dk}, there exists a constant CT > 0 (depend-
ing on L, Ωcore, Ωadapt, m, k, Cin) such that the empirical Rademacher complexity satisfies

R̂n(F ; {Dj}kj=1) ≤ CT

√
1

n
, (7)

indicating that limiting both the core Transformer parameters and the adapter parameters yields a
class F whose complexity grows on the order of 1/

√
n.

Proof. Because ∥W (ℓ)
attn∥σ, ∥W

(ℓ)
ffn ∥σ ≤ Ωcore and activations are 1-Lipschitz, each layer ℓ can be

shown to be (C · Ω2
core)-Lipschitz for some constant C.

Lℓ ≤ C (Ω2
core) . (8)

Each adapter matrix ϕ
(ℓ)
j satisfies ∥ϕ(ℓ)

j ∥F ≤ Ωadapt. Hence, adapter operations contribute a bounded
perturbation at each layer, maintaining overall Lipschitz continuity. The total Lipschitz constant
satisfies

Ltotal =

L∏
ℓ=1

Lℓ ≤
(
C Ω2

core

)L
, (9)

and inputs are bounded by Cin.

By standard covering-number or PAC-Bayes arguments for neural networks [Bartlett and Mendelson,
2002, Neyshabur et al., 2017], any class of Ltotal-Lipschitz functions on inputs of norm at most
Cin has empirical Rademacher complexity O(Ltotal Cin/

√
n). Absorbing constants (including k for

multi-domain) into CT yields R̂n(F ; {Dj}) ≤ CT

√
1
n .

3.4 Multi-Source Generalization Bounds

Theorem 3.1 (Multi-Source Concurrent Generalization). Let {D1, . . . ,Dk} be k source domains,
each with nj i.i.d. samples, and let n =

∑k
j=1 nj . Assume each domain distribution Dj is over

(x, y) ∈ X × Y , and consider a multi-domain LLM fθ,{ϕj} satisfying Assumptions 3.1 (Lipschitz-
ness) and 3.2 (bounded backbone and adapters). Let d(Di,Dj) be a domain-discrepancy measure
(Definition 2), and let F denote the hypothesis class of all (θ, {ϕj}) that respect these constraints.

Then for any confidence level δ > 0, with probability at least 1− δ over the choice of {(xi, yi)}ni=1

from
⋃k

j=1Dj , every model fθ,{ϕj} in F satisfies:
k∑

j=1

αj L
(
θ, {ϕi};Dj

)
≤

k∑
j=1

αj L̂
(
θ, {ϕi};Dj

)
+ Γ

(
ρθ, ρϕ, {αj}, k

)
+

β

k

k∑
i,j=1

d
(
Di,Dj

)
+O

(√
ln(1/δ)

n

)
,

(10)

4

where L̂(θ, {ϕi};Dj) is the empirical risk on samples from domain j. The constant β > 0 de-
pends on the Lipschitz parameters (L,B) and the number of domains k. The explicit function
Γ
(
ρθ, ρϕ, {αj}, k

)
can be chosen as

Γ
(
ρθ, ρϕ, {αj}, k

)
= 2LB

 ρθ +

k∑
j=1

αj ρϕ

 , (11)

reflecting how large backbone updates (ρθ) and adapter norms (ρϕ) can inflate the multi-domain
generalization bound.

Proof Sketch. The bound is the sum of three classic ingredients. (i) Uniform-convergence: using
Rademacher complexity for the norm-restricted class F , the difference between the weighted ex-

pected risk
∑

j αjL and its empirical counterpart is O
(
LB(ρθ +

∑
j αjρϕ)+

√
ln(1/δ)

n

)
, giving the

term Γ(ρθ, ρϕ, {αj}, k) = 2LB(ρθ +
∑

j αjρϕ). (ii) Domain-shift: standard multi-source adapta-
tion results add a penalty proportional to the average pairwise discrepancy β

k

∑
i,j d(Di,Dj). (iii)

Combining these with the empirical risk yields inequality (10). Refer to Section C.1 for the complete
proof.

Remark 3.1 (Domain Similarity vs. Model Capacity). Let Dmax := maxi,j d(Di,Dj) and recall that
the discrepancy penalty in Theorem 3.1 is β

k

∑
i,j d(Di,Dj) ≤ βDmax. Hence, when all domains

are similar (Dmax≪ 1) the extra cost is small and the bound is dominated by the complexity term
Γ(ρθ, ρϕ,α, k) = 2LB(ρθ +

∑
j αjρϕ). This means one can keep ρθ, ρϕ—and thus Γ—small

without under-fitting. Conversely, if the domains are very different (Dmax large) the discrepancy
term becomes the bottleneck; the learner must allow a larger parameter budget (bigger ρθ, ρϕ⇒Γ)
so that each domain receives enough specialised capacity to avoid under-fitting.

To trade off discrepancy, synergy, and per-stage capacity, we partition the k domains into M disjoint
stages S1, . . . , SM and maximise

G
(
S1, . . . , SM

)
=−

M∑
t=1

[∑
i,j∈St
i<j

d(Di,Dj)

︸ ︷︷ ︸
total discrepancy

− λ
∑

i,j∈St
i<j

s(Di,Dj)

︸ ︷︷ ︸
total synergy

+ µθ∥∆θt∥22 + µϕ

∑
j∈St

∥ϕt
j∥22︸ ︷︷ ︸

capacity cost Cap(St)

]
,

(12)

where d(Di,Dj) := JS
(
Pi, Pj

)
∈ [0, 1] is the Jensen-Shannon divergence between the empirical

token-distribution of the two domains; s(Di,Dj) := 1
2

(
Jacc(Vi, Vj)︸ ︷︷ ︸

vocab-overlap

+ cos(µi, µj)︸ ︷︷ ︸
mean-embedding cosine

)
∈ [0, 1]

combines lexical and semantic affinity (higher = more synergy); λ > 0 balances “rewarding” synergy
against “penalising” discrepancy; µθ, µϕ > 0 weight the squared-norm budget of the backbone drift
∆θt := θt − θt−1 and the stage-specific adapters {ϕt

j}.
A larger value of G therefore corresponds to: (i) smaller internal discrepancies, (ii) larger construc-
tive synergy, and (iii) lower per-stage parameter cost. Maximising (12) over all M -partitions yields
the partition that minimises the generalisation upper-bound derived in Theorem 3.2.
Theorem 3.2 (Multi-Stage Partition with Synergy-Capacity Maximisation). Let the k source do-
mains be split into M disjoint stages S1, . . . , SM and let the stage-objective G(S1, . . . , SM) be
defined in (12). Write (S∗

1 , . . . , S
∗
M) := argmax⊔

t St={1:k} G(S1, . . . , SM). Then, under Assump-
tions 3.1 and 3.2, the predictor obtained after the last stage, fθM ,{ϕM

j }, satisfies with probability at
least 1− δ:

Rmax

(
S∗
1 , . . . , S

∗
M

)
≤

[
1− G(S∗

1 , . . . , S
∗
M)

]
+

+ O
(√ ln(1/δ)

N

)
(13)

where N =
∑k

j=1 nj , Rmax := maxt
∑

j∈St
αt
j LDj

(
f
)
, and [u]+ := max{0, u}. Any other

partition attains a larger right-hand side.

5

Proof Sketch. Apply the single-stage bound (Theorem 3.1) stage-wise. For stage t the risk is con-
trolled by empirical loss + capacity+ discrepancy−λ synergy. Summing the worst stage and noting
that empirical losses are ≤ 1 yields (13). Because −G(·) appears inside the bracket, maximising G
minimises the bound, proving optimality of the partition (S∗

1 , . . . , S
∗
M). A full derivation is given in

Appendix C.2.

Corollary 3.1 (High-Synergy Subset Tends to be Grouped Together). Let {D1, . . . ,Dk} be k do-
mains with a synergy-discrepancy-capacity objective G({St}) as defined in (12). Suppose there
exists a nonempty subset U ⊆ {1, . . . , k} such that any pair (i, j) in U satisfies

d
(
Di,Dj

)
≤ γ and Synergy

(
Di,Dj

)
≥ Λ, (14)

where Λ is large relative to γ and to the capacity penalty Cap(U). Then, in the optimal partition
argmax {S1,...,SM} G

(
{S1, . . . , SM}

)
, the domains in U will typically be placed in a single stage

S∗
t , provided

Λ > λ−1
(
γ +Cap(U)

)
. (15)

That is, if the synergy within U is sufficiently large compared to its internal discrepancy and added
capacity cost, then clustering those domains together in the same stage yields a higher objective G,
thereby tightening the final multi-stage generalization bound.

Proof. Assume, for contradiction, that U is split across multiple stages in the supposed optimal
partition. Because synergy offsets discrepancy by λ Synergy(·, ·), each pair (i, j) ∈ U that lies in
different stages forfeits this positive synergy benefit. Thus, the total contribution to G(·) from U
decreases by at least λ(Λ− γ

λ) per cross-stage pair, which outweighs any savings in capacity usage
provided that Λ > γ+Cap(U)

λ . Hence, merging U into a single stage increases G and yields a strictly
better partition, contradicting optimality. Thus U must remain in one stage in {S∗

1 , . . . , S
∗
M}.

4 Algorithm

We now present a practical procedure implementing our theoretical insights from Section 3. Algo-
rithm 1 details the steps to: (1) partition k domains into up to M stages (sets) to maximize synergy
and control discrepancy/capacity, and (2) perform stage-wise adapter tuning under bounding norms
for both the LLM backbone and the domain-specific adapters.

Algorithm 1 Multi-Stage Adapter Tuning for LLMs
Require: Pretrained LLM parameters θ∗ ∈ Rp; k source domains {D1, . . . ,Dk}; discrepancy mea-

sure d(Di,Dj); synergy measure Synergy(Di,Dj); capacity cost Cap(·); norm bounds ρθ, ρϕ;
number of stages M ; (optional) mixing weights {αt

j}.
Ensure: Final backbone parameters θM ; domain adapter parameters {ϕM

j }kj=1.

1: Partition step: Select disjoint subsets {S1, . . . , SM} of {1, . . . , k} to approximately solve the
objective given in the theoretical section (see (12) and Theorem 3.2).

2: Initialize: θ0 ← θ∗, ϕ0
j ← 0 for j = 1, . . . , k.

3: for t = 1 to M do
4: Stage-t domains: St determined by the partition in Line 1.
5: Form the stage objective: Use the multi-domain loss from Equation (10), enforcing ∥θt −

θt−1∥2 ≤ ρθ and ∥ϕt
j∥2 ≤ ρϕ.

6: Optimize:
(θt, {ϕt

j}j∈St) ← Optimizer
(
θt−1, {ϕt−1

j },DSt

)
.

7: Outside-stage adapters:
ϕt
j = ϕt−1

j for j /∈ St.

8: end for
9: Output: θM , {ϕM

j }kj=1.

6

Computational complexity. The only extra overhead of our method occurs during the partition
step. Forming the discrepancy and synergy matrices requires O(k2) pairwise computations, each
obtained once from cached token or embedding statistics. We maximise G with a single-link ag-
glomerative search, which runs in O(k2log k) time and O(k2) memory; an exact ILP solver gives
the same split for our k ≤ 10 domains in under 0.1s, but the heuristic is already within 1% of the
optimum. Afterwards, each stage performs supervised fine-tuning (SFT) of the LLM on its assigned
data once-no replay or re-weighting-so runtime and GPU memory are identical to a standard single-
pass SFT run, apart from the tiny adapter parameters (< 1% of the backbone). Overall complexity
is therefore O(k2log k) + (single-pass SFT); with the moderate domain counts typical in practice,
the partition phase is negligible in both time and memory.

5 Experiments

Datasets We evaluate our method on four representative multi-domain language understanding
tasks: 1) News Summarization (NSum) Hermann et al. [2015]. A dataset of news articles paired
with short summaries. We measure summarization quality via ROUGE-L. 2) Sentiment Classifica-
tion (Sent) Socher et al. [2013]. Sentences labeled with positive/negative sentiment. We measure
accuracy (ACC). 3) Question Answering (Q&A) Rajpurkar [2016]. Documents and question-answer
pairs. We measure exact-match (EM) and F1 scores. 4) Topic Categorization (Topic) Zhang et al.
[2015]. Short text passages assigned to 5 coarse-grained topics. We measure classification accu-
racy (ACC). We partition each dataset into training, validation, and test splits. Statistics (number of
samples, average text length, etc.) are presented in Appendix A.1.

Pretrained Models We employ three popular open-source large language models (LLMs), all
of which are publicly available via the HuggingFace Transformers library: 1) LLaMA2-7B Tou-
vron et al. [2023]: A 7-billion-parameter model trained on a large, diverse corpus. 2) LLaMA2-
13BTouvron et al. [2023]. A 13-billion-parameter model offering improved capacity and perfor-
mance over the 7B variant. 3) Falcon-40BAlmazrouei et al. [2023]. A 40-billion-parameter model
pretrained on the RefinedWeb dataset, demonstrating state-of-the-art generative abilities. Each
model is pretrained on diverse textual sources. We use their publicly released checkpoints for all
experiments.

Table 1: Performance comparison on three LLM backbones. PMS-FTP denotes our proposed
Partition-Based Multi-Stage Fine-Tuning. Best results are in bold.

LLaMA2-7B LLaMA2-13B Falcon-40B
Method NSum Q&A Sent Topic NSum Q&A Sent Topic NSum Q&A Sent Topic

Base Methods
FULL 41.2 64.7 89.0 86.5 42.1 66.3 89.8 87.1 43.2 68.2 90.4 88.3
FIXED 38.9 59.5 87.4 85.2 39.6 61.2 88.3 85.7 40.7 63.0 88.9 86.1

Domain Adaptation
MDAN [Pei et al., 2018] 39.7 62.8 88.1 85.9 40.5 64.0 88.9 86.3 41.7 66.1 89.3 87.0
M3SDA [Peng et al., 2019] 40.5 63.1 88.6 86.1 41.7 64.9 89.4 86.7 42.3 66.6 89.9 87.4
GMDI [Ling et al., 2024] 40.8 63.5 88.7 86.4 42.0 65.4 89.6 87.0 42.7 67.1 90.0 87.6

Single-Domain LLM Fine-tuning
LoRA [Hu et al., 2021] 41.0 63.9 88.4 86.2 42.0 65.1 89.1 86.9 42.5 66.5 89.8 87.7
Adapter [Houlsby et al., 2019] 41.3 64.1 88.9 86.3 42.3 65.7 89.5 87.2 42.9 67.0 90.2 88.0
LLaMA-Adapter [Zhang et al., 2024b] 41.5 64.3 89.1 86.7 42.6 65.9 89.7 87.5 43.1 67.3 90.3 88.1
Q-LoRA [Dettmers et al., 2023] 41.7 64.4 89.0 86.5 42.4 65.6 89.5 87.3 43.0 67.2 90.1 87.9
Tag-LLM [Shen et al., 2024] 41.6 64.6 89.2 86.8 42.7 66.1 89.8 87.6 43.3 67.5 90.5 88.2

Data Selection
INSTRUCTMINING [Cao et al., 2024] 41.8 64.5 89.3 86.9 42.8 66.0 89.9 87.7 43.4 67.6 90.6 88.3
S2L [Yang et al., 2024b] 41.9 64.7 89.4 87.0 42.9 66.2 90.0 87.8 43.5 67.8 90.7 88.4

PMS-FTP (Ours) 42.5 65.5 89.7 87.3 43.4 67.2 90.2 88.0 44.2 69.1 91.1 89.0

Baselines We compare PMS-FTP against the following baselines: 1) Base Methods: Full Fine-
Tuning (FULL), Fixed Backbone (FIXED); 2) Domain Adaptation: Multi-Domain Adversarial Net-
work (MDAN) [Pei et al., 2018], Moment Matching (M3SDA) [Peng et al., 2019], Bayesian Gaus-
sian Mixture (GMDI) [Ling et al., 2024]; 3) Single-Domain LLM Fine-tuning: LoRA [Hu et al.,
2021], Adapter [Houlsby et al., 2019], LLaMA-Adapter [Zhang et al., 2024b], Q-LoRA [Dettmers
et al., 2023], Tag-LLM [Shen et al., 2024]; 4) Data Selection: INSTRUCTMINING (IT) [Cao et al.,
2024], S2L [Yang et al., 2024b]. Please refer to A.2 for more details on the baselines.

7

Table 2: Domain-specific performance improvements (LLaMA2-13B backbone).

Domain Grouping Synergy Score Discrepancy Score Avg. Baseline PMS-FTP Performance Gain (%)
NSum & Q&A 0.88 (High) 0.12 (Low) 64.3 66.1 +1.8%
Sent & Q&A 0.85 (High) 0.15 (Low) 89.5 91.2 +1.7%
Q&A & Topic 0.80 (High) 0.20 (Low) 76.7 78.3 +1.6%
Sent & Topic 0.65 (Moderate) 0.30 (Moderate) 88.1 89.4 +1.3%
NSum & Sent 0.60 (Moderate) 0.40 (Moderate) 65.2 66.4 +1.2%
Q&A & Sent & Topic 0.58 (Moderate) 0.42 (Moderate) 77.8 79.0 +1.2%
NSum & Topic 0.40 (Low) 0.60 (High) 64.6 65.5 +0.9%
Sent & NSum & Topic 0.35 (Low) 0.65 (High) 80.5 81.3 +0.8%

5.1 Experimental Results

Overall Comparison. Table 1 summarizes the test-set performance for each model and method
on all four tasks. PMS-FTP consistently surpasses baseline methods across all tasks and model
sizes. Compared with strong data-selection (S2L) and single-domain adapter methods (LLaMA-
Adapter, Tag-LLM), PMS-FTP achieves improvements by strategically exploiting domain synergies
and mitigating negative interference. On LLaMA2-13B vs. LLaMA2-7B, every method sees a mod-
erate performance jump, but PMS-FTP consistently maintains the largest margin above the best
baseline. Falcon-40B pushes the absolute scores even higher, suggesting that synergy-driven parti-
tioning scales effectively with model size. Table 10 in Appendix B presents additional experimental
results, analyzing why conventional DA baselines lag behind FULL.

Domain-specific performance improvements. We analyze domain synergies and discrepancies
(Table 2). High synergy pairs (e.g., NSum & Q&A, Sent & Q&A) show substantial gains (+1.8%,
+1.7%), indicating effective leveraging of complementary domains. Moderate synergy pairs (e.g.,
Sent & Topic) also show meaningful improvements (+1.3%), while even high-discrepancy pairs (e.g.,
NSum & Topic) achieve modest gains (+0.9%). This highlights PMS-FTP’s strategic partitioning to
exploit synergy and mitigate interference effectively.

Figure 1: Training loss curves on the Q&A do-
main with LLaMA2-13B.

Loss Analysis. Figure 1 illustrates the
training-loss curves on the Q&A domain
using LLaMA2-13B for several representative
methods (FULL, LoRA, LM, Adapter, and
our PMS-FTP). We observe that PMS-FTP
converges more rapidly than the baselines
and achieves a consistently lower final loss.
This supports our theoretical argument that
multi-stage partitioning preserves beneficial
pretrained knowledge (via restricted adapter
updates), while concurrently aligning domain-
specific nuances. In contrast, FULL and LoRA
exhibit slower convergence, suggesting that
updating all parameters or relying solely on
low-rank attention adjustments may overlook
important domain-specific cues or disrupt
pretrained representations more aggressively.

Table 3: Peak GPU memory (in GB) during Q&A
fine-tuning on LLaMA2-7B.

Method Peak GPU (GB) Relative Reduction

FULL 27.2 –
LoRA 19.6 27.9%
LLaMA-Adapter 17.2 37.1%
PMS-FTP (Ours) 18.4 32.4%

Memory Usage. Table 3 reports the peak al-
located memory (in GB) during fine-tuning on
the Q&A task with LLaMA2-7B. We measure
memory usage using a single NVIDIA A100
GPU. The FULL method requires the largest
memory footprint due to updating all model pa-
rameters. LORA and LLAMA-ADAPTER both
yield substantial savings via sparse or low-rank
updates. Our PMS-FTP approach limits the
backbone and adapter updates in each stage,
keeping overall memory usage about 32% lower than full fine-tuning, albeit slightly higher than

8

LLaMA-Adapter. Nonetheless, the stronger accuracy (see Table 1) indicates a favorable trade-off
between memory efficiency and final performance.

5.2 Ablation Study

We further examine how each design choice in PMS-FTP impacts final performance. Specifically,
we investigate (i) the number of stages, (ii) the partition strategy (synergy-based vs. random), (iii) the
effect of limiting update norms (i.e., ∥∆θ∥2 ≤ ρθ, ∥ϕj∥2 ≤ ρϕ), and (iv) synergy metric sensitivity.
Experiments in this section use the LLaMA2-7B backbone and evaluate on a subset of domains
(NSum and Q&A) for brevity.

Table 4: Ablation on the number of stages (M) and partition
strategies. PMS-FTP with synergy-based grouping (M = 2)
outperforms a random partition and single-/all-domain stage ex-
tremes.
Setting Partition Strategy NSum (ROUGE-L) Q&A (EM)

M = 1 All domains in one stage 41.2 63.1
M = 2 (Random) Random domain grouping 41.7 63.9
M = 2 (Synergy) Synergy-driven 42.2 64.8
M = 4 One domain per stage 42.0 64.2

Effect of Number of Stages
(M). In Table 4, we compare
M = 1 (single-stage updates),
M = 2, and M = 4 (one
stage per domain). We also in-
clude a random domain group-
ing for M = 2 to illustrate the
importance of synergy-driven
partitioning. Specifically, we
measure ROUGE-L on NSum
and EM on Q&A. Single-stage
(M = 1) fine-tuning, akin to
multi-task learning without adapter updates, underperforms on both tasks. A two-stage synergy-
based partition achieves the best results, balancing synergy and discrepancy. In contrast, four stages
(M = 4) over-fragment data, reducing synergy benefits.

Table 5: Restricting update norms improves
stability and performance. We report average
scores (ROUGE-L for NSum, EM for Q&A).

ρθ ρϕ NSum (ROUGE-L) Q&A (EM)

0.05 0.05 41.2 63.9
0.05 0.10 41.7 64.5
0.05 0.20 41.5 64.1
0.10 0.05 41.6 64.3
0.10 0.10 42.2 64.9
0.10 0.20 42.0 64.6
0.20 0.05 41.4 64.1
0.20 0.10 42.1 64.7
0.20 0.20 42.1 64.8

Effect of Norm Constraints (ρθ, ρϕ). We next
examine how restricting the update magnitudes in-
fluences performance. By default, we set ∥θt −
θt−1∥2 ≤ ρθ and ∥ϕt

j∥2 ≤ ρϕ to preserve the pre-
trained backbone’s inductive bias . In Table 5, we
vary ρθ and ρϕ in {0.05, 0.1, 0.2}, measuring av-
erage performance across NSum/Q&A. Too small
norms (e.g. ρθ = ρϕ = 0.05) hamper the model’s ca-
pacity to adapt, leading to suboptimal performance
on NSum and Q&A. Larger norms (0.2) let the
model deviate more from θ∗ but risk overfitting. Em-
pirically, (ρθ, ρϕ) = (0.1, 0.1) or (0.1, 0.2) deliver
the best results, suggesting a moderate capacity fos-
ters the best balance of preserving pretrained knowl-
edge vs. domain-specific adaptation.

Figure 2: Synergy metric sensitivity.

Synergy Metric Sensitivity. Our partition-
based approach applies a synergy coefficient
λ to balance domain synergy against dis-
crepancy (Equation (12)). We vary λ ∈
{0.0, 0.25, 0.5, 0.75, 1.0} to observe its impact
on partitioning and final performance. Fig-
ure 2 (LLaMA2-7B, M = 2 stages) reports
ROUGE-L (NSum) and EM (Q&A). When
λ = 0.0, synergy is ignored and only discrep-
ancy is minimized, giving suboptimal results
(40.8 ROUGE-L). Excessively large λ (e.g. 1.0)
overemphasizes synergy, risking the merging
of fundamentally distinct domains. A moder-
ate λ ∈ [0.25, 0.50] achieves the best trade-off,
aligning with Theorem 3.2.

9

6 Conclusion

In this work, we introduced a partition-based multi-stage fine-tuning framework to systematically ad-
dress multi-domain adaptation in large language models. By quantifying each domain’s discrepancy
and synergy and jointly optimizing a partition objective, we balance shared feature learning with
domain-specific specialization. Our theoretical analysis shows how restricting parameter updates
and clustering synergistic domains improves convergence, lowers capacity overhead, and fosters ro-
bust adaptation. Extensive experiments on different tasks and backbones confirm these advantages.

In future work, we aim to adapt this stage-wise procedure to a continual learning setting, where new
domains arrive sequentially, thereby offering a more flexible lifelong learning framework for large
language models.

Acknowledgements

We would like to thank Hunan Airon Technology Co., Ltd. for providing data preprocessing services
and computing resources.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-

jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
et al. The falcon series of open language models. arXiv preprint arXiv:2311.16867, 2023.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

John Blitzer. Domain adaptation of natural language processing systems. PhD thesis, University of
Pennsylvania, 2008.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection
for tuning large language models. In First Conference on Language Modeling, 2024.

Xiaohong Chen, Canran Xiao, Wenzhi Cao, Weiwei Zhang, and Yongmei Liu. Framework and
pathway for the construction of a unified data-element market in china. Strategic Study of Chinese
Academy of Engineering, 27(1):40–50, 2025.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
Proceedings of the 32nd International Conference on Machine Learning (ICML), pages 1180–
1189, 2015.

Qi Gou and Cam-Tu Nguyen. Mixed preference optimization: Reinforcement learning with data
selection and better reference model. arXiv preprint arXiv:2403.19443, 2024.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pages 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

10

Wentao Hu, Wengyu Zhang, Yiyang Jiang, Chen Jason Zhang, Xiaoyong Wei, and Li Qing. Re-
moval of hallucination on hallucination: Debate-augmented RAG. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors, Proceedings of the 63rd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
15839–15853, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.770. URL https://aclanthology.org/
2025.acl-long.770/.

Linling Jiang, Xin Wang, Fan Zhang, and Caiming Zhang. Transforming time and space: efficient
video super-resolution with hybrid attention and deformable transformers. The Visual Computer,
pages 1–12, 2025.

Yiyang Jiang, Wengyu Zhang, Xulu Zhang, Xiao-Yong Wei, Chang Wen Chen, and Qing Li.
Prior knowledge integration via llm encoding and pseudo event regulation for video moment
retrieval. In Proceedings of the 32nd ACM International Conference on Multimedia, MM ’24,
page 72497258, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400706868. doi: 10.1145/3664647.3681115. URL https://doi.org/10.1145/3664647.
3681115.

Nikitas Karanikolas, Eirini Manga, Nikoletta Samaridi, Eleni Tousidou, and Michael Vassilakopou-
los. Large language models versus natural language understanding and generation. In Proceedings
of the 27th Pan-Hellenic Conference on Progress in Computing and Informatics, pages 278–290,
2023.

Pranjal Kumar. Large language models (llms): survey, technical frameworks, and future challenges.
Artificial Intelligence Review, 57(10):260, 2024.

Boyi Li, Yue Wang, Jiageng Mao, Boris Ivanovic, Sushant Veer, Karen Leung, and Marco
Pavone. Driving everywhere with large language model policy adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14948–14957,
2024a.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. In Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers), pages 7595–7628, 2024b.

Yanbin Li, Canran Xiao, Hongyang He, Shenghai Yuan, Zong Ke, Jiajie Yu, Zixiong Qin, Zhiguo
Zhang, Wenzheng Chi, and Wei Zhang. Doa: A degeneracy optimization agent with adaptive pose
compensation capability based on deep reinforcement learning. arXiv preprint arXiv:2507.19742,
2025.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao,
Nan Duan, Weizhu Chen, et al. Not all tokens are what you need for pretraining. Advances in
Neural Information Processing Systems, 37:29029–29063, 2024.

Yanfang Ling, Jiyong Li, Lingbo Li, and Shangsong Liang. Bayesian domain adaptation with gaus-
sian mixture domain-indexing. Advances in Neural Information Processing Systems, 37:87226–
87254, 2024.

Jiaqi Liu, Tong Wang, Su Liu, Xin Hu, Ran Tong, Lanruo Wang, and Jiexi Xu. Lightweight baselines
for medical abstract classification: Distilbert with cross-entropy as a strong default. arXiv preprint
arXiv:2510.10025, 2025.

Wei Lu, Rachel K Luu, and Markus J Buehler. Fine-tuning large language models for domain
adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities.
arXiv preprint arXiv:2409.03444, 2024.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
adaptive computation and machine learning, 2018.

11

https://aclanthology.org/2025.acl-long.770/
https://aclanthology.org/2025.acl-long.770/
https://doi.org/10.1145/3664647.3681115
https://doi.org/10.1145/3664647.3681115

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in neural information processing systems, 30, 2017.

Jinlong Pang, Jiaheng Wei, Ankit Parag Shah, Zhaowei Zhu, Yaxuan Wang, Chen Qian, Yang Liu,
Yujia Bao, and Wei Wei. Improving data efficiency via curating llm-driven rating systems. arXiv
preprint arXiv:2410.10877, 2024.

Zhi Pei, Zhen Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial domain adaptation. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 3934–3941, 2018.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 1406–1415, 2019.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Amelie Royer, Tijmen Blankevoort, and Babak Ehteshami Bejnordi. Scalarization for multi-task and
multi-domain learning at scale. Advances in Neural Information Processing Systems, 36, 2024.

Antony Seabra, Claudio Cavalcante, Joao Nepomuceno, Lucas Lago, Nicolaas Ruberg, and Sergio
Lifschitz. Contrato360 2.0: A document and database-driven question-answer system using large
language models and agents. arXiv preprint arXiv:2412.17942, 2024.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Junhong Shen, Neil Tenenholtz, James Brian Hall, David Alvarez-Melis, and Nicolò Fusi. Tag-llm:
repurposing general-purpose llms for specialized domains. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, pages 44759–44773, 2024.

Chuancheng Shi, Shangze Li, Shiming Guo, Simiao Xie, Wenhua Wu, Jingtong Dou, Chao Wu,
Canran Xiao, Cong Wang, Zifeng Cheng, et al. Where culture fades: Revealing the cultural gap
in text-to-image generation. arXiv preprint arXiv:2511.17282, 2025.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pages 1631–1642, 2013.

Huiri Tan, Juyong Jiang, and Jiasi Shen. Profix: Improving profile-guided optimization in compilers
with graph neural networks. In Advances in Neural Information Processing Systems, 2025. URL
https://neurips.cc/virtual/2025/poster/119293.

Hailin Tao, Jinjiang Li, Zhen Hua, and Fan Zhang. Dudb: deep unfolding-based dual-branch feature
fusion network for pan-sharpening remote sensing images. IEEE Transactions on Geoscience and
Remote Sensing, 62:1–17, 2023.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
29(8):1930–1940, 2023.

Ran Tong, Jiaqi Liu, Su Liu, Xin Hu, and Lanruo Wang. Renaissance of rnns in streaming clin-
ical time series: Compact recurrence remains competitive with transformers. arXiv preprint
arXiv:2510.16677, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

12

https://neurips.cc/virtual/2025/poster/119293

Dave Van Veen, Cara Van Uden, Maayane Attias, Anuj Pareek, Christian Bluethgen, Malgorzata
Polacin, Wah Chiu, Jean-Benoit Delbrouck, Juan Manuel Zambrano Chaves, Curtis P Langlotz,
et al. Radadapt: Radiology report summarization via lightweight domain adaptation of large
language models. arXiv preprint arXiv:2305.01146, 2023.

Hua Wang and Fan Zhang. Computing nodes for plane data points by constructing cubic polynomial
with constraints. Computer Aided Geometric Design, 111:102308, 2024.

Siheng Wang, Zhengdao Li, Yanshu Li, Canran Xiao, Haibo Zhan, Zhengtao Yao, Xuzhi Zhang,
Jiale Kang, Linshan Li, Weiming Liu, Zhikang Dong, Jifeng Shen, Junhao Dong, Qiang Sun,
and Piotr Koniusz. C3-owd: A curriculum cross-modal contrastive learning framework for open-
world detection. arXiv preprint arXiv:2509.23316, 2025a.

Yuenan Wang, Hua Wang, and Fan Zhang. A medical image segmentation model with auto-dynamic
convolution and location attention mechanism. Computer Methods and Programs in Biomedicine,
261:108593, 2025b.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Informa-
tion Processing Systems, 35:32353–32368, 2022.

Canran Xiao. Confusion-resistant federated learning via diffusion-based data harmonization on
non-iid data. In Advances in Neural Information Processing Systems, volume 37, pages 137495–
137520, 2024.

Canran Xiao and Yongmei Liu. A multifrequency data fusion deep learning model for carbon price
prediction. Journal of Forecasting, 44(2):436–458, 2025.

Canran Xiao, Liwei Hou, Ling Fu, and Wenrui Chen. Diffusion-based self-supervised imitation
learning from imperfect visual servoing demonstrations for robotic glass installation. In 2025
IEEE International Conference on Robotics and Automation (ICRA), pages 10401–10407. IEEE,
2025a.

Canran Xiao, Chuangxin Zhao, Zong Ke, and Fei Shen. Curiosity meets cooperation: A game-
theoretic approach to long-tail multi-label learning. arXiv preprint arXiv:2510.17520, 2025b.

Mengzhu Xu, Hanzhi Liu, Ningkang Peng, Qianyu Chen, and Canran Xiao. Affordance-
first decomposition for continual learning in video-language understanding. arXiv preprint
arXiv:2512.00694, 2025.

Kailai Yang, Tianlin Zhang, Ziyan Kuang, Qianqian Xie, Jimin Huang, and Sophia Ananiadou.
Mentallama: interpretable mental health analysis on social media with large language models. In
Proceedings of the ACM on Web Conference 2024, pages 4489–4500, 2024a.

Yu Yang, Siddhartha Mishra, Jeffrey Chiang, and Baharan Mirzasoleiman. Smalltolarge (s2l): Scal-
able data selection for fine-tuning large language models by summarizing training trajectories of
small models. Advances in Neural Information Processing Systems, 37:83465–83496, 2024b.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Jiawei Yao, Chuming Li, Keqiang Sun, Yingjie Cai, Hao Li, Wanli Ouyang, and Hongsheng Li. Ndc-
scene: Boost monocular 3d semantic scene completion in normalized device coordinates space. In
2023 IEEE/CVF International Conference on Computer Vision (ICCV), pages 9421–9431. IEEE
Computer Society, 2023.

Jiawei Yao, Chuming Li, and Canran Xiao. Swift sampler: Efficient learning of sampler by 10
parameters. Advances in Neural Information Processing Systems, 37:59030–59053, 2024.

Fan Zhang, Gongguan Chen, Hua Wang, Jinjiang Li, and Caiming Zhang. Multi-scale video super-
resolution transformer with polynomial approximation. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 33(9):4496–4506, 2023.

13

Fan Zhang, Gongguan Chen, Hua Wang, and Caiming Zhang. Cf-dan: Facial-expression recogni-
tion based on cross-fusion dual-attention network. Computational Visual Media, 10(3):593–608,
2024a.

Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou, Pan Lu, Yu Qiao, Hongsheng Li, and Peng Gao.
Llama-adapter: Efficient fine-tuning of large language models with zero-initialized attention. In
The Twelfth International Conference on Learning Representations, 2024b.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classi-
fication. Advances in neural information processing systems, 28, 2015.

Xiaofeng Zhang, Fanshuo Zeng, Yihao Quan, Zheng Hui, and Jiawei Yao. Enhancing multimodal
large language models complex reason via similarity computation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39(10), pages 10203–10211, 2025.

Zijian Zhang, Shuchang Liu, Jiaao Yu, Qingpeng Cai, Xiangyu Zhao, Chunxu Zhang, Ziru Liu,
Qidong Liu, Hongwei Zhao, Lantao Hu, et al. M3oe: Multi-domain multi-task mixture-of experts
recommendation framework. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 893–902, 2024c.

Jiawei Zheng, Hanghai Hong, Xiaoli Wang, Jingsong Su, Yonggui Liang, and Shikai Wu.
Fine-tuning large language models for domain-specific machine translation. arXiv preprint
arXiv:2402.15061, 2024.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly and accurately present our contributions,
which include a novel partition-based fine-tuning framework, theoretical analysis with gen-
eralization bounds, and extensive experimental validation. All claims are fully supported
by theoretical results in Section 3 and experimental results in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the computational overhead associated with domain partitioning
and provide empirical insights into scalability.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

15

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions required for our theoretical results are explicitly stated. Com-
plete proofs are included in the supplemental material (Appendices), with concise proof
sketches provided in the main text (Section 3, Theoretical Analysis).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed experimental settings, including dataset descrip-
tions, data splits, hyperparameters, model configurations, and optimization procedures,
clearly presented in the main text and appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

16

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Due to institutional restrictions and proprietary considerations, the data and
code used in this study are not publicly available at this time. However, comprehensive de-
tails, including dataset descriptions, model configurations, hyperparameters, and training
procedures, are provided in the main text and supplemental materials to facilitate repro-
ducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper explicitly describes training and test splits, model architectures,
choice of hyperparameters, optimization methods, and computational settings in the exper-
imental sections and appendixs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: The paper reports experimental results with clearly defined error bars, calcu-
lated as the standard deviation across multiple independent runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper clearly specifies the computational resources utilized, including
GPU type, memory requirements, execution time per run, and overall compute needed for
each experimental setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and confirm that
our research fully complies with the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

18

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

19

Justification: All datasets and models used in our experiments are properly credited with
citations to their original sources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

20

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: In this work, LLMs were employed solely for improving language clarity.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Supplementary Description of Experimental Setup

A.1 Datasets

Table 6 presents the detailed statistics of the datasets used in this work.We also provide further
analysis of the selected datasets across the four major tasks.

Table 6: Summary of the multi-domain datasets used in our experiments.

Dataset #Train #Val #Test Metric
NSum (News Summ.) 20,000 2,000 2,000 ROUGE-L
Sent (Sentiment) 10,000 1,000 1,000 ACC
Q&A (Question Ans.) 15,000 1,500 1,500 EM / F1
Topic (Classification) 12,000 1,200 1,200 ACC

Figure 3: Domain discrepancy heatmaps across three dimensions: Token Distribution, Vocabulary
Overlap, and Semantic Similarity.

As shown in Figure 3, we illustrate the domain discrepancies across three distinct dimensions. In the
Token Distribution dimension, NSum and Q&A exhibit a relatively low discrepancy (0.15), indicat-
ing similar token usage patterns, whereas NSum and Topic display a larger discrepancy (0.55). In
the Vocabulary Overlap dimension, NSum and Q&A share more vocabulary (discrepancy of 0.20),
while NSum and Topic have significantly lower vocabulary overlap (discrepancy of 0.65). Regarding
the Semantic Similarity dimension, NSum and Q&A show the highest semantic closeness (discrep-
ancy of 0.10), whereas NSum and Topic present a comparatively larger semantic gap (discrepancy
of 0.40).

A.2 Baselines

Baselines. To give a fair and transparent point of comparison, we implement or re-run every base-
line under exactly one of two backbone-update protocols:

1) Full FT - all LLM parameters are updated (∼100% trainable). This is the strongest-but most
memory-hungry-setting.

2) PEFT - the LLM backbone is frozen; only light-weight adapters (LoRA, Houlsby adapters, etc.)
or newly added heads are trained (<1% of parameters).1

Our PMS-FTP always uses the PEFT protocol: the backbone drift per stage is bounded by ρθ, and
only domain adapters ϕj are newly trained.

The competing methods are grouped as follows:

• Base Methods
– FULL (Full FT): classical end-to-end fine-tuning.

1Frozen-backbone PEFT has become standard practice in recent parameter-efficient fine-tuning work and,
in preliminary tests, performs on par with-or better than-full fine-tuning when data are limited.

22

– FIXED (PEFT): backbone frozen, task head only.

• Domain-Adaptation (Full FT)

– MDAN [Pei et al., 2018]: multi-adversarial domain classifiers.
– M3SDA [Peng et al., 2019]: moment matching across domains.
– GMDI [Ling et al., 2024]: Bayesian Gaussian-mixture domain indexing.

Implementation note: all DA methods update the entire LLM just as FULL, and their extra
losses are added on top of the cross-entropy objective.

• Single-Domain PEFT

– LoRA [Hu et al., 2021]: low-rank adapters in attention projections.
– Adapter [Houlsby et al., 2019]: Houlsby bottleneck adapters.
– LLaMA-Adapter [Zhang et al., 2024b]: zero-init residual adapters.
– Q-LoRA [Dettmers et al., 2023]: 4-bit quantised LoRA layers.
– Tag-LLM [Shen et al., 2024]: task-aware gating with soft prompts.

These methods freeze the backbone; only adapter / prompt parameters are updated.

• Data-Selection PEFT

– INSTRUCTMINING (IT) [Cao et al., 2024]: filters high-quality instructions before
LoRA fine-tuning.

– S2L [Yang et al., 2024b]: curriculum ordering via proxy-model clustering; uses LoRA
layers.

A.3 Implementation Details

Hardware and Software. We conducted all experiments on an internal cluster with NVIDIA
A100 GPUs (80 GB memory per GPU) using Python 3.9, PyTorch 2.0.0, and HuggingFace Trans-
formers 4.30.2. Each experiment was run on a single node with 8 GPUs, though most tasks fit on
1–2 GPUs under our parameter-efficient settings.

Data Splits and Preprocessing. Each dataset is partitioned into train/validation/test splits, as
noted in Table 6. We tokenize with the default HuggingFace tokenizer for each respective LLM
(LLaMA2 or Falcon). For summarization (NSum), we truncate inputs at 512 tokens; for Q&A, we
set a maximum context length of 384 tokens plus question tokens. Other tasks are capped at 256
tokens per sample. All special tokens remain as defined in each LLM’s tokenizer.

Training Configuration. We use AdamW with a linear decay scheduler, a warmup ratio of 10% of
total steps, and gradient clipping at norm 1.0. Table 7 gives key hyperparameters. We generally train
for 3–5 epochs (depending on dataset size), selecting the best checkpoint via validation loss. Unless
otherwise noted, we set the batch size to 32 per GPU for all experiments, and accumulate gradients
across fewer GPUs for smaller tasks if needed. We adopt the default mixed-precision (fp16) training
in PyTorch.

Table 7: Default hyperparameter values.

Hyperparameter Value

Optimizer AdamW
Learning rate (LLaMA2-7B) 3× 10−5

Learning rate (LLaMA2-13B) 1× 10−5

Learning rate (Falcon-40B) 5× 10−6

Batch size (per GPU) 32
Max epochs 5
Warmup ratio 0.1
Gradient clipping 1.0
Precision FP16

23

Partition-Based Multi-Stage Fine-Tuning. We employ two consecutive stages (M=2) by de-
fault: stage 1 adapts the cluster with higher internal synergy, stage 2 covers the remainder. Both the
domain discrepancy d(Di,Dj) and the synergy score Syn(Di,Dj) are computed off-line from raw
text:

Let Pi and Pj be the empirical token distributions (unigram + bigram) of domains Di and Dj . We
define

dJS(Di,Dj) =
1
2 KL

(
Pi∥M

)
+ 1

2 KL
(
Pj∥M

)
, M = 1

2 (Pi + Pj) , (16)
where KL is the Kullback-Leibler divergence. We normalise dJS ∈ [0, 1] by dividing by log 2.

For synergy we linearly blend lexical and semantic overlap:

Syn(Di,Dj) =
1
2

(
Jacc

(
Vi, Vj

)
+ cos

(
µi, µj

))
, (17)

where Vi is the vocabulary set of Di, Jacc(Vi, Vj) = |Vi ∩ Vj |/|Vi ∪ Vj |, and µi is the mean
Sentence-BERT embedding of domain i. Both terms are in [0, 1]; the average is therefore in [0, 1].

Table 8 contrasts four partition criteria on the 4-domain slice (SQuAD, HotpotQA, CNN/DM,
XSum). Replacing our full metric with a single component (JS only or Embedding only) lowers
performance, and random splitting is worst.

Table 8: Impact of different partition metrics (LLaMA2-7B).

Metric for G Q&A (F1) NSum (ROUGE-L)

Random split 68.1 39.0
JS divergence only 69.3 40.0
Embedding cosine only 69.6 40.3
JS + Vocab/Embed (ours) 70.5 40.9

The joint metric gives a further +1.2 F1 / +0.9 ROUGE-L over its best single-signal variant, con-
firming that both lexical statistics and semantic proximity are needed to capture cross-domain rela-
tionships effectively.

During each stage, we impose norm constraints ∥θt− θt−1∥ ≤ ρθ and ∥ϕt
j∥ ≤ ρϕ (Assumption 3.2).

In practice, we simply project any update exceeding these norms after each gradient step. By default,
we set (ρθ, ρϕ) = (0.1, 0.1) unless specified otherwise.

B Additional experimental results

B.1 Effect of Stage Ordering in Multi-Stage Fine-Tuning.

After domains are optimally clustered into two stages by our G-objective, we can still choose which
stage to run first. To verify that this ordering is an implementation detail, we tried three sequences
on the same 4-domain slice (SQuAD [Rajpurkar, 2016], HotpotQA [Yang et al., 2018], CNN/DM2,
XSum [Narayan et al., 2018]) using LLaMA2-7B: 1) High→Low - the default: high-synergy Q&A
first, summarisation second; 2) Low→High - reverse order; 3) Interleaved - fine-tune one epoch on
stage 1, then one epoch on stage 2, repeating until convergence.

Table 9: Influence of stage ordering (M=2). Metrics: F1 (Q&A) / ROUGE-L (NSum).

Ordering Q&A (F1) NSum (ROUGE-L)

High→Low (default) 70.5 40.9
Low→High 70.4 40.8
Interleaved 70.3 40.7

All three runs land within 0.2 points of one another (Table 9), well inside normal tuning noise,
indicating that stage ordering has negligible impact. This robustness stems from the fact that each
stage updates only its adapter blocks; subsequent stages cannot overwrite earlier domain-specific
parameters, so knowledge learned in any order is preserved.

2https://github.com/deepmind/rc-data

24

B.2 Why conventional DA baselines lag behind FULL.

To investigate why conventional domain adaptation (DA) baselines (MDAN [Pei et al., 2018],
M3SDA [Peng et al., 2019], GMDI [Ling et al., 2024]) consistently underperform relative to FULL
fine-tuning, we performed additional diagnostic analyses. Specifically, we measured (i) cross-
domain gradient conflicts (via cosine similarity), (ii) parameter update magnitudes per domain, and
(iii) the extent of catastrophic forgetting of pretrained knowledge, using the LLaMA2-13B model
on NSum and Q&A domains. Table 10 summarizes the results of these additional experiments:

Table 10: Diagnostic analyses comparing conventional DA methods against FULL and PMS-FTP.

Method Gradient Conflict (Cosine Similarity) Avg. Update Norm Perplexity Increase (%)
FULL 0.43 2.15 +5.6
MDAN 0.12 1.48 +11.5
M3SDA 0.15 1.32 +9.7
GMDI 0.18 1.27 +8.3

PMS-FTP (Ours) 0.57 1.86 +3.2

Our analyses reveal the following insights:

1) Gradient conflicts. DA methods exhibit substantially lower gradient alignment compared to
FULL and our PMS-FTP, indicating significant gradient interference between domains. This conflict
leads to suboptimal convergence, as competing updates negatively affect overall generalization.

2) Parameter update magnitudes. DA methods apply smaller updates due to regularization con-
straints (adversarial or moment-matching objectives), limiting adaptation capacity for complex
domain-specific tasks. In contrast, our PMS-FTP method achieves balanced updates via strategic
domain partitioning and parameter-efficient adapters.

3) Catastrophic forgetting. Conventional DA methods significantly increase perplexity relative
to FULL, indicating stronger forgetting of pretrained representations. Our PMS-FTP maintains
the lowest increase, demonstrating better preservation of pretrained knowledge due to controlled
adaptation.

In summary, DA methods lag behind FULL due to severe gradient conflicts, overly conservative
parameter updates caused by adversarial/matching regularization, and more pronounced forgetting
of pretrained knowledge. Our PMS-FTP framework effectively addresses these challenges through
synergy-aware partitioning, balanced updates, and controlled adaptation, resulting in superior multi-
domain performance.

B.3 Affinity metric alternatives

We replace the default affinity used in the partition objective G with several variants on the same
4-domain slice (LLaMA2-7B). Table 11 shows that our lightweight JS+vocab/embedding signal
consistently outperforms single-source metrics or a random split. The G-guided partition benefits
from combining divergence (distribution gap) and lexical/semantic overlap (potential transfer). Us-
ing either component alone underestimates complementary effects, yielding weaker partitions and
lower task scores.

Table 11: Alternative affinity metrics for G-guided partitioning (LLaMA2-7B, 4-domain slice).

Metric for G Q&A (F1) NSum (ROUGE-L)

Random split 68.1 39.0
JS divergence only 69.3 40.0
Embedding cosine only 69.6 40.3
JS + Vocab/Embed (ours) 70.5 40.9

B.4 Robustness to gradient-based variants and stochastic perturbations

We (i) sweep λ to stress-test synergy weighting, (ii) add a gradient-similarity component (cosine of
per-domain gradients), and (iii) inject Gaussian noise into the heuristic affinities. Table 12 shows all

25

variants remain within≤ 0.3 points of the default in Table 11. he partition is flat around the optimum:
gradient-augmented scores add computational cost but negligible gains; moderate λ values preserve
the best trade-off between synergy and discrepancy.

Table 12: Partition robustness (LLaMA2-7B, 4-domain slice).

Variant Q&A (F1) NSum (ROUGE-L)

λ = 0 (no synergy) 70.3 40.8
λ = 1.0 (synergy-only) 70.2 40.6
Gradient-mix (0.7 heuristic + 0.3 ∇cos) 70.4 40.8
Heuristic + Gaussian noise (σ = 0.05) 70.2 40.7
Default (Table 11) 70.5 40.9

B.5 Scalability to many domains

We synthetically vary the number of domains k and measure CPU partition overheads and peak
GPU memory with 4-bit LoRA. Table 13 indicates sub-second CPU time and practical GPU usage
up to k=50. Partitioning is CPU-side and negligible relative to PEFT training; memory remains
dominated by standard SFT/PEFT, confirming practicality at double-digit k.

Table 13: Large-k partition costs and peak GPU memory (synthetic up to k=50; A100).

k Affinity build (time / RAM) Clustering time Peak GPU (4-bit LoRA)

20 0.47 s / 180 MB 0.14 s 19 GB
35 2.10 s / 620 MB 0.52 s 23 GB
50 3.20 s / 950 MB 0.90 s 26 GB

B.6 Scaling to twelve domains (real mixture)

We combine Wiki-10 (topic classification) and Multi-News (summarization), deduplicated to 12 do-
mains, and keep the same hyper-parameters as the main study. Table 14 shows gains over all-in-one
SFT and over a random 2-stage split while keeping memory low. The synergy-aware split general-
izes beyond four domains to a heterogeneous, double-digit regime with consistent improvements.

Table 14: Twelve-domain mixture (LLaMA2-7B + LoRA).

Split strategy Avg. ACC
(Wiki-10)

ROUGE-L
(Multi-News)

Peak GPU (GB) Partition time (s)

All-in-one SFT 83.1 37.2 27.3 n/a
Random 2-stage 83.7 37.5 18.6 0.6
PMS-FTP (ours) 84.0 38.1 18.7 0.7

B.7 Inference footprint after LoRA merging

After each stage we merge the finished LoRA into the frozen backbone, so only one 4-bit adapter is
carried at inference. Table 15 shows equal-or-lower memory than a single-adapter baseline. Together
with the accuracy gains in Table 1, merging achieves a strictly better accuracy-memory trade-off than
training/keeping multiple adapters.

B.8 Empirical validity of the G objective

We sample 20 random partitions, compute G, and measure worst-domain dev loss. Table 16 reports
Pearson ρ = −0.81 (p < 0.01), i.e., higher G predicts lower worst-domain error. This supports the
practical usefulness of our bound-driven objective: G values correlate strongly with the metric we
aim to improve.

26

Table 15: Measured inference memory (LLaMA2-7B, k=4, A100).

Precision Tag-LLM (1 LoRA) PMS-FTP (merged) ∆

FP16 29.4 GB 28.7 GB −2.4%

INT8 19.1 GB 18.6 GB −2.6%

4-bit 17.2 GB 16.8 GB −0.4 GB

Table 16: Correlation between G and worst-domain dev loss (LLaMA2-7B, 20 random partitions).

Statistic G Worst-Dev Loss

Mean 0.432 1.72
Std 0.057 0.19
Min 0.318 1.38
Max 0.522 2.11

Pearson ρ = −0.81 (p < 0.01, R2≈0.65)

B.9 Reasoning benchmarks and reweighting baselines

We extend evaluation to HellaSwag, MMLU-STEM, ARC-easy, SciQ, and GSM8K, and add
reweighting-based MTL baselines (iMTL, FAMO, ExcessMTL) under identical PEFT budgets. Ta-
bles 17–18 show PMS-FTP achieves the highest average per backbone. Synergy-aware partitioning
is not limited to {NSum, Sent, Q&A, Topic}: it transfers to reasoning-heavy suites and remains
competitive against strong MTL optimizers.

Table 17: Reasoning tasks with 7B backbone (identical PEFT budgets).

Method Hellaswag
(Acc)

MMLU-
STEM
(Acc)

ARC-easy
(Acc)

SciQ (Acc) GSM8K
(Pass@1)

Avg.

FULL 73.4 39.7 78.5 92.6 18.1 60.5
LoRA 73.1 39.3 77.9 92.4 17.5 60.0
Tag-LLM 74.8 41.1 79.6 93.3 19.3 61.6
iMTL 74.6 40.6 79.3 93.0 18.6 61.2
FAMO 73.7 41.3 78.6 92.6 18.7 60.8
ExcessMTL 74.2 40.5 79.7 92.1 17.5 60.8
PMS-FTP (ours) 75.6 42.1 80.6 93.8 19.9 62.4

B.10 Incremental addition of a new domain

After training on the original four domains, we add Legal-QA as a new stage and freeze prior
adapters. Table 19 shows negligible forgetting on old domains and a gain over single-domain LoRA
on the new domain. Disjoint, frozen adapters make PMS-FTP naturally amenable to one-shot do-
main extension without replay.

B.11 Stability of domain centroids

We (i) bootstrap mean SBERT embeddings to gauge centroid noise, and (ii) replace each single
centroid by a K=3 weighted barycenter. Table 20 shows bootstrap deviations are < 3% of the
smallest inter-domain distance; Table 21 shows K=3 centroids change final metrics by ≤ 0.1 pp. A
single mean embedding is a sufficiently stable domain signature for G-guided clustering.

27

Table 18: Reasoning tasks with 13B backbone (identical PEFT budgets).

Method Hellaswag
(Acc)

MMLU-
STEM
(Acc)

ARC-easy
(Acc)

SciQ (Acc) GSM8K
(Pass@1)

Avg.

FULL 77.5 46.3 83.7 94.8 24.5 65.4
LoRA 77.1 45.9 83.2 94.6 23.8 64.9
Tag-LLM 79.0 47.3 84.7 95.4 25.1 66.3
iMTL 77.4 47.2 83.3 95.1 24.8 65.6
FAMO 77.7 47.6 84.5 95.2 24.2 65.8
ExcessMTL 78.1 47.0 83.1 95.0 23.8 65.4
PMS-FTP (ours) 79.9 49.0 85.7 95.8 26.8 67.4

Table 19: One-shot incremental stage (add Legal-QA).

Model Avg. score on original 4 domains Legal-QA (EM)

Before add-on 65.5 –
After add-on (PMS-FTP) 65.4 68.2
Single-domain LoRA n/a 67.6

C Proofs

C.1 Complete Proof for Theorem 3.1

Before formally beginning the proof, we first revisit the setting and present a key lemma:

There are k source domains {Dj}kj=1, each domain Dj with nj samples, total n =
∑k

j=1 nj . We

let αj =
nj

n or any other nonnegative weighting such that
∑k

j=1 αj = 1. Our LLM-based predictor
fθ,{ϕj} is constrained so that

∥θ − θ∗∥2 ≤ ρθ, ∥ϕj∥2 ≤ ρϕ, (18)

for each j. By Assumption 3.1, the model output is L-Lipschitz w.r.t. predictions, and the difference
in outputs for different parameters is bounded by B(∥θ − θ′∥ +

∑
j ∥ϕj − ϕ′

j∥). Thus the entire
class of such (θ, {ϕj}) belongs to a low-capacity function family F .

Lemma C.1. Let F be the class of predictors with backbone/adapters bounded as above. Then for
any δ ∈ (0, 1), with probability at least 1− δ over all n samples,

∣∣Lα(f)− L̂α(f)
∣∣ ≤ 2LB

(
ρθ +

k∑
j=1

αjρϕ
)
+

√
ln(2/δ)

2n ∀ f ∈ F , (19)

where L̂α(f) =
∑

j αjL̂Dj (f).

Proof. Because the loss is L-Lipschitz and the model satisfies the output-difference bound from As-
sumption 3.1, each f ∈ F is LB(ρθ +

∑
j ρϕ)-Lipschitz in its parameters relative to ℓ2. LetRn(F)

be the empirical Rademacher complexity over the pooled sample of size n. Standard contraction
(e.g. Mohri et al., 2018) yields

Rn(F) ≤ LB (ρθ + kρϕ)
1√
n
. (20)

Replacing kρϕ by
∑

j αjρϕ (because losses are weighted by αj) strengthens the constant. Applying
the usual Rademacher tail bound with a union-bound over δ/2 produces the stated inequality.

Proof. Here is the proof of Theorem 3.1.

28

Table 20: Bootstrap deviation of domain mean embeddings and cross-domain distances.

Domain N 95% CI of ∥∆µ∥2 Cross-domain min dist

NSum 12,000 [0.038, 0.065] 1.92
Q&A 15,000 [0.031, 0.060] 2.04
Sent 10,500 [0.042, 0.072] 1.87
Topic 11,200 [0.040, 0.068] 1.99

Table 21: Single centroid vs. K=3 weighted barycenters per domain.

Representation ROUGE-L
(NSum)

EM (Q&A) Sent (ACC) Topic (ACC) ∆ vs.
1-centroid

1 centroid (paper) 43.4 67.2 90.2 88.0 –
3 centroids (K=3) 43.3 67.1 90.1 87.9 −0.1 pp

Uniform convergence (empirical→ true risk) Define Γ
(
ρθ, ρϕ,α, k

)
:= 2LB

(
ρθ+

∑
j αjρϕ

)
.

Lemma C.1 gives

Lα(f) ≤ L̂α(f) + Γ(ρθ, ρϕ,α, k) +

√
ln(2/δ)

2n . (21)

Domain-discrepancy correction Blitzer et al. [Blitzer, 2008] show that for any hypothesis h and
any two distributions P,Q, |LP(h) − LQ(h)| ≤ dH∆H(P,Q). Summing over all pairs and using
triangle inequality,

Lα(f) ≤
k∑

j=1

αjLD∗j (f) +
1

k

k∑
i,j=1

d(Di,Dj), (22)

where D∗j denotes drawing as if every example came from a single mixture domain-hence its empir-
ical risk is exactly L̂α(f), and the additive discrepancy penalty is weighted by β := 1 (absorbing
the Lipschitz loss factor into the definition of d). Restoring the constant gives the β appearing in the
theorem.

Combine bounds Insert (21) into (22):

Lα(f) ≤ L̂α(f) + Γ(ρθ, ρϕ,α, k) +
β

k

k∑
i,j=1

d(Di,Dj) +

√
ln(2/δ)

2n .

Replacing
√

ln(2/δ)/(2n) by the big-O(
√
ln(1/δ)/n) notation and recalling L̂α(f) =∑

j αjL̂Dj (f) yields exactly inequality (10), proving Theorem 3.1.

C.2 Complete Proof for Theorem 3.2

Here is the proof of Theorem 3.2.

Proof. For any fixed stage t training on domains St, Theorem 3.1 with weights αt
j :=

nj∑
i∈St

ni

gives∑
j∈St

αt
j LDj (f

t) ≤
∑
j∈St

αt
j L̂Dj (f

t)︸ ︷︷ ︸
≤1

+ 2LB
(
ρθ + ρϕ

)
+ β

∑
i,j∈St
i<j

d(Di,Dj) + O
(√ ln(1/δ)∑

j∈St
nj

)
.

(23)

Then we inject synergy and explicit capacity weight. Define Cap(St) := µθ∥∆θt∥22 +
µϕ

∑
j∈St
∥ϕt

j∥22. Because ∥∆θt∥≤ρθ and ∥ϕt
j∥≤ρϕ, we upper bound 2LB(ρθ + ρϕ) by Cap(St)

29

after tuning µθ, µϕ. Subtract and add λ
∑

i<j s(Di,Dj) to (23) to obtain∑
j∈St

αt
j LDj (f

t) ≤ 1−
[
−

∑
i<j∈St

(
d− λs

)
− Cap(St)

]
+ O

(√ ln(1/δ)
N

)
. (24)

LetRmax(S1, . . . , SM) := maxt
∑

j∈St
αt
j LDj (f

t). Taking the maximum of (24) over t gives

Rmax(S1, . . . , SM) ≤ 1− G(S1, . . . , SM) + O
(√ ln(1/δ)

N

)
, (25)

because the bracketed term is exactly the t-th summand of G in (12). Define B(u) := [1 − u]+.

ThenRmax

(
S1, . . . , SM

)
≤ B(G(S1, . . . , SM)) +O(

√
ln(1/δ)/N).

Because B is strictly decreasing on (−∞, 1], maximising G minimises the bound. Hence the par-
tition (S∗

1 , . . . , S
∗
M)—the maximiser of G—realises the smallest upper-bound, yielding (13). Any

other split attains a weaker bound, completing the proof.

30

	Introduction
	Related Works
	LLM Fine-Tuning
	Multi-Domain Data Learning
	LLM Data Selection

	Theoretical Analysis
	Preliminaries and Notation
	Assumptions and Domain Discrepancies
	Complexity of Multi-Source Adapter Updates
	Multi-Source Generalization Bounds

	Algorithm
	Experiments
	Experimental Results
	Ablation Study

	Conclusion
	Supplementary Description of Experimental Setup
	Datasets
	Baselines
	Implementation Details

	Additional experimental results
	Effect of Stage Ordering in Multi-Stage Fine-Tuning.
	Why conventional DA baselines lag behind FULL.
	Affinity metric alternatives
	Robustness to gradient-based variants and stochastic perturbations
	Scalability to many domains
	Scaling to twelve domains (real mixture)
	Inference footprint after LoRA merging
	Empirical validity of the G objective
	Reasoning benchmarks and reweighting baselines
	Incremental addition of a new domain
	Stability of domain centroids

	Proofs
	Complete Proof for Theorem 3.1
	Complete Proof for Theorem 3.2

