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ABSTRACT

Optimizing objective functions under constraints is a fundamental problem in many
real-world applications. However, constraints are often not explicitly provided
and must be inferred from the observed behavior of expert agents. The problem
is known as Inverse Constraint Inference (ICI). A common solver, Inverse Con-
strained Reinforcement Learning (ICRL) seeks to recover the optimal constraints
in complex environments in a data-driven manner. Existing ICRL algorithms col-
lect training samples from an interactive environment. However, the efficacy and
efficiency of these sampling strategies remain unknown. To bridge this gap, we in-
troduce a strategic exploration framework with guaranteed efficiency. Specifically,
we define a feasible constraint set for ICRL problems and investigate how expert
policy and environmental dynamics influence the optimality of constraints. Moti-
vated by our findings, we propose two exploratory algorithms to achieve efficient
constraint inference via 1) dynamically reducing the bounded aggregate error of
cost estimation and 2) strategically constraining the exploration policy. Both algo-
rithms are theoretically grounded with tractable sample complexity. We empirically
demonstrate the performance of our algorithms under various environments.

1 INTRODUCTION

Constrained Reinforcement Learning (CRL) addresses sequential decision-making problems within
safety constraints and achieves considerable success in various safety-critical applications (Gu et al.,
2022). However, in many real-world environments, such as robot control (García & Shafie, 2020;
Thomas et al., 2021) and autonomous driving (Krasowski et al., 2020), specifying the exact constraint
that can consistently guarantee the safe control is challenging, which is further exacerbated when the
ground-truth constraint is time-varying and context-dependent.

Instead of utilizing a pre-defined constraint, an alternative approach, Inverse Constrained Reinforce-
ment Learning (ICRL) (Malik et al., 2021; Liu et al., 2024a), seeks to learn the constraint signals
from the demonstrations of expert agents and imitate their behaviors by adopting the inferred con-
straint. ICRL effectively incorporates expert experience into the online CRL paradigm and thus better
explains how expert agents optimize cumulative rewards under their empirical constraints. Under this
framework, existing ICRL algorithms often assume the presence of a known dynamics model (Scobee
& Sastry, 2020; McPherson et al., 2021), or a generative transition model that responds to queries
for any state-action pair (Papadimitriou et al., 2023; Liu et al., 2023). However, this setting has
a considerable gap with scenarios in practice where the transition models are often not available,
or even time-varying, necessitating agents to physically navigate to new states to learn about them
through exploration.

To mitigate the gap, some recent studies (Malik et al., 2021; Qiao et al., 2023; Baert et al., 2023)
explicitly maximized the policy entropy throughout the learning process, yielding soft-optimal policy
representations that favor less-selected actions. Unfortunately, such an uncertainty-driven exploration
largely ignores the potential estimation errors in dynamic models or policies. To date, it still lacks
a theoretical framework to demonstrate how well the maximum entropy approaches facilitate the
accurate estimation of constraints.

In this paper, we introduce a strategic exploration framework to solve ICRL problems with guaranteed
efficiency. Recognizing the inherent challenge in uniquely identifying the exact constraint from expert
demonstration, the objective of our framework is to recover the set of feasible constraints where each
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element can accurately align with expert preferences, rather than to identify an exact constraint. By
explicitly representing these constraint sets with the reward advantages and the transition model, we
manage to confine the constraint estimation error with the discrepancy by comparing the estimated
environmental dynamics and expert policy with the ground-truth ones. This strategy provides a
quantifiable measure of error for our constraint estimation, linking it directly to a computationally
tractable upper bound.

Under our framework, we design two strategic exploration algorithms for solving ICRL problems:
1) A Bounded Error Aggregate Reduction (BEAR) strategy, which guides the exploration policy
to minimize the upper bound of discounted cumulative constraint estimation error; and 2) Policy-
Constrained Strategic Exploration (PCSE), which diminishes the estimation error by selecting an
exploration policy from a predefined set of candidate policies. This collection of policies is rigorously
established to encompass the optimal policy, thereby promising to accelerate the training process
significantly. For both algorithms, we provide a rigorous sample complexity analysis, furnishing a
deeper understanding of the training efficiency of these algorithms.

To empirically study how well our method captures the accurate constraint, we conduct evaluations
under different environments. The experimental results show that PCSE significantly outperforms
other exploration strategies and is applicable to continuous environments.

2 RELATED WORK

In this section, we introduce previous works that are most related to our algorithms. Additional
discussions can be found in Appendix B.

Exploration in Inverse Reinforcement Learning (IRL). Compared with the exploration strategies
in RL for forward control (Amin et al., 2021; Ladosz et al., 2022), the exploration algorithms in IRL
have relatively limited studies. Balakrishnan et al. (2020) utilized Bayesian optimization to identify
multiple IRL solutions by efficiently exploring the reward function space. To learn a transferable
reward function, Metelli et al. (2021) introduced an active sampling methodology that is designed to
target the most informative regions with a generative model to facilitate effective approximations of
the transition model and the expert policy. A subsequent research (Lindner et al., 2022) expanded
this concept to finite-horizon MDPs with non-stationary policies, crafting innovative strategies to
accelerate the exploration process. To better quantify the precision of recovered feasible rewards,
Metelli et al. (2023) recently provided a lower bound on the sample complexity for estimating the
feasible reward set in the finite-horizon setting with a generative model. However, these methods
study only reward functions under a regular MDP without considering the safety of control or the
constraints in the environments.

Inverse Constrained Reinforcement Learning (ICRL). Unlike IRL which solely focuses on the re-
covery of reward functions, ICRL seeks to elucidate the preference of expert agents by inferring which
constraints they follow. The majority of ICRL algorithms update the cost functions by maximizing the
likelihood of generating the expert dataset under the maximum (causal) entropy framework (Scobee
& Sastry, 2020). This method can be efficiently scaled to both discrete (McPherson et al., 2021)
and continuous state-action space (Malik et al., 2021; Baert et al., 2023; Liu et al., 2023; Qiao et al.,
2023; Xu & Liu, 2024). To improve training efficiency, recent studies combined ICRL with bi-level
optimization techniques (Liu & Zhu, 2022; Gaurav et al., 2023). However, current ICRL methods
have not explored exploration strategies or conducted theoretical studies about the sample complexity
of their algorithms.

3 PRELIMINARIES

Notation. Let X and Y be two sets. YX represents the set of functions f : X → Y . Let ∆X denote
the set of probability measures over X . Let ∆X

Y denote the set of functions: Y → ∆X . We define the
vector infinity norm as ||a||∞ = maxi|ai| and the matrix infinity norm as ||A||∞ = maxi

∑
j |Aij |.

We define min+x∈X f(x) to return the minimum positive value of f over X . The complete notation is
given in Appendix A.
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Constrained Markov Decision Process (CMDP). We model the environment as a stationary CMDP
M∪ c := (S,A, PT , r, c, ϵ, µ0, γ), where S and A are the finite state and action spaces, with the
cardinality denoted as S= |S| and A= |A|; PT (s

′|s, a)∈∆S
S×A defines the transition distribution;

r(s, a) ∈ [0, Rmax] and c(s, a) ∈ [0, Cmax] denote the reward and cost functions; ϵ defines the
threshold (budget) of the constraint; µ0∈∆S denotes the initial state distribution; and γ∈ [0, 1) is
the discount factor. M denotes the CMDP without cost (i.e., CMDP\c). The agent’s behavior is
modeled by a policy π∈∆A

S . Π∗
M∪c denotes the set of all optimal policies for a CMDP. The expert

policy πE is optimal, i.e., πE ∈ Π∗
M∪c. Let f ∈RS and g ∈ RS×A, we slightly abuse PT and π

as operators: (PT f)(s, a)=
∑

s′∈S PT (s
′|s, a)f(s′) and (πg)(s)=

∑
a∈A π(a|s)g(s, a). Moreover,

the expansion operator (Ef)(s, a) = f(s). In our work, we assume a discrete finite state-action
space within an infinite horizon setting.

Given the CMDP, we define the discounted normalized occupancy measure (Altman, 2021) as
ρπM(s, a) = (1 − γ)

∑∞
t=0 γ

tPπ
µ0
(St = s,At = a) so that (1 − γ)V π(r, µ0) = ⟨ρπM, r⟩ and

(1 − γ)V π(c, µ0) = ⟨ρπM, c⟩, where (1 − γ) is the normalizer for ρπM to be a probability measure
and V π is a reward or cost state-value function under the policy π and the initial distribution µ0.

Constrained Reinforcement Learning (CRL). Within a CMDP environment, CRL learns a policy
π that maximizes the cumulative rewards subject to a known constraint:

argmax
π

Eµ0,π,pT

[ ∞∑
t=0

γtr(st, at)
]

s.t. Eµ0,π,pT

[ ∞∑
t=0

γtc(st, at)
]
≤ ϵ. (1)

In this paper, we primarily focus on the cumulative constraint as in (1) instead of instantaneous
constraints due to its broader applications (Wachi et al., 2024). In particular, since c ≥ 0, by setting
ϵ > 0, the constraint in (1) denotes a soft constraint, enabling its application to the environment with
stochastic dynamics. On the other hand, we convert this constraint into a hard one when setting ϵ = 0,
which facilitates the enforcement of absolute constraints at each decision step.

Value and advantage functions. We define the reward action-value functions as Qc,π
M and

Qr,π
M . The superscript r specifies the actual costs or rewards evaluated. The reward action-

value function is Qr,π
M (s, a) = Eπ,PT [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a] , and the reward advan-
tage function follows Ar,π

M (s, a) = Qr,π
M (s, a)− V r,π

M (s), where the reward state-value function is
V r,π
M (s) = Eπ[Q

r,π
M (s, a)]. The subscript specifies the environmentM that contains reward function

r. The superscript specifies the actual rewards under evaluation. We define the cost action-value
function as Qc,π

M∪c(s, a) = Eπ,PT [
∑∞

t=0 γ
tc(st, at)|s0 = s, a0 = a]. The subscript specifies the

CMDP environmentM∪ c. The superscript specifies the actual costs under evaluation. The cost
state-value function follows V c,π

M∪c(s) = Eπ[Q
c,π
M∪c(s, a)].

4 LEARNING FEASIBLE CONSTRAINTS

This section introduces the feasible cost set, essential for resolving the unidentifiability issue (Ng
et al., 2000; Metelli et al., 2021) in formulating the ICRL problem. Furthermore, we outline how to
quantify the accuracy of an estimated cost set, demonstrating how its estimation error can be bounded
by imperfections in estimating environmental dynamics and the expert policy.

Figure 1: Illustrating the trajectories of the expert policy (black) and exploratory policies (red and
blue) in the grid-worlds. The constraint set (gray) is not observable. In the left scenario, exploratory
policies reach the goal in shorter paths and thus have larger rewards. In the middle scenario, the
exploratory policies’ rewards match the expert’s. Their trajectories can overlap (red) or mismatch
(blue). In the right scenario, exploratory policies result in longer paths that gain fewer rewards.
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4.1 FEASIBLE COSTS IN CMDP

Since the expert policy satisfies constraints while achieving the highest cumulative rewards, we define
feasible cost functions based on two intuitions: 1) if a policy achieves higher rewards than the expert
policy (shorter path in Figure 1, left), the underlying constraints must be violated, and we can detect
unsafe state-action pairs by examining these infeasible trajectories; 2) if a policy achieves the same or
lower rewards than the expert policy (equal or longer path in Figure 1, middle & right), this suggests
an absence of notable constraint-violating actions, implying that the underlying constraints may or
may not be violated. To minimize the impact of constraints on the reward-maximizing policy, ICRL
focuses on identifying the minimal set of constraints necessary to explain expert behaviors (Scobee &
Sastry, 2020). In this sense, policies in case 2 are not employed to expand the cost set.
Lemma 4.1. Suppose the expert policy πE of a CMDPM∪ c is known and the current state is s.
Let AE(s) denote the set containing all expert actions at state s, i.e., AE(s)={a ∈A | πE(a|s)>0}.
Then, at least one of the following two conditions must be satisfied: 1) The cost function ensures
Eµ0,πE ,PT

[∑∞
t=0 γ

tc(st, at)
]
= ϵ; 2) ∀a′ /∈ AE(s), Ar,πE

M (s, a′) ≤ 0.

The above lemma shows that if there exists an action yielding greater rewards than the expert action,
the expert policy’s cumulative costs must reach the threshold. Thus, enforcing that any higher-reward
action must incur greater costs than the expert action is sufficient to establish a constraint-violation
condition (i.e., expected return of costs > ϵ). LetQc = {(s, a)|Qc,πE

M∪c(s, a)−V c,πE

M∪c(s) > 0} denote
the set of state-action pairs with higher costs than the expert, given a cost function c. In scenarios
with hard constraints, it simplifies to: Qc = {(s, a)|c(s, a) > 0}. While capturing cost functions that
align with the expert policy, ICRL minimizes |Qc| by excluding state-action pairs from case 2 to
derive a minimal set of constraints. We formally define the ICRL problem as follows.
Definition 4.2. (ICRL problem (Malik et al., 2021)). An ICRL problem is a pair P = (M, πE).
A cost representation c ∈ [0, Cmax]

S×A is feasible for P if πE is an optimal policy for the CMDP
M∪ c, i.e., πE ∈ Π∗

M∪c. Let FP = {c|πE ∈ Π∗
M∪c} denote a general set of feasible cost functions.

We denote by CP the minimal set of feasible cost functions for P, named feasible cost set that satisfies
CP =

{
c∗|c∗ =argminc∈FP

|Qc|
}

.

Before formulating the cost function, we introduce the necessary assumptions for different constraints.
Assumption 4.3. Either of the following two statements holds:
(i) The constraint in (1) is a hard constraint such that ϵ = 0;
(ii) The constraint in (1) is a soft constraint such that ϵ > 0, and the expert policy is deterministic.

The rationale behind case (ii) is that when the expert policy πE is stochastic at state s, we only know
Ea′∼πE [Qc,πE

M∪c(s, a
′)] = V c,πE

M∪c(s) ≥ 0. In order to determine the value of Qc,πE

M∪c(s, a) for a specific
expert action a, additional information is required, such as whether the budget is used up and reward
signals of other expert actions. Furthermore, note that in some states, expert policy is not defined
if all actions lead to constraint violation. Since feasible cost functions are defined to explain expert
behaviors, we do not utilize them to explain the non-existing expert policy in such states. In this
work, S denotes all the states where the expert policy is available. Based on these findings, we are
ready to establish the implicit formulation of feasible cost sets.
Lemma 4.4. (Feasible Cost Set Implicit). Under Assumption 4.3, let P = (M, πE) be an ICRL
problem. c is a feasible cost function, i.e., c ∈ CP if and only if ∀(s, a) ∈ S ×A:

(1) Expert Consistent (s, a): If πE(a|s) > 0, Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) = 0;

(2) Constraint-Violating (s, a): If πE(a|s) = 0 and Ar,πE

M (s, a) > 0, Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) > 0;

(3) Non-Critical (s, a): If πE(a|s) = 0 and Ar,πE

M (s, a) ≤ 0, Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) ≤ 0.

Case (1) in the above lemma justifies the rationale behind case (ii) in Assumption 4.3. We proceed to
the explicit form of feasible cost sets.
Lemma 4.5. (Feasible Cost Set Explicit). Let P = (M, πE) be an ICRL problem. c is a feasible
cost, i.e., c ∈ CP if and only if there exists ζ ∈ RS×A

>0 and V c ∈ RS
≥0, ∀(s, a) ∈ S ×A:

c = Ar,πE

M ζ + (E − γPT )V
c, (2)
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where the expansion operator E : RS → RS×A satisfies (Ef)(s, a) = f(s). Furthermore,
∥V c(s)∥∞ ≤ Cmax/(1− γ) and ∥ζ∥∞ ≤ Cmax/min+(s,a) |A

r,πE

M |.

Intuitively, the first term in (2) penalizes constraint-violating movements that not only deviate from
the expert’s preference but also have larger rewards (i.e., Ar,πE

M > 0). This penalty ensures the
violation of constraint condition in (1), thereby prohibiting any policies following these movements.
The second term V c ∈ RS can be interpreted as a cost-shaping operator that depends on the CMDP
but not on the expert policy. To represent hard constraints, V c is a zero matrix whose entries are all
zeros, i.e., V c = 0S . However, if the target constraint is soft, we must ensure that V c(s) = V c,πE

M∪c(s).

4.2 ERROR PROPAGATION

Our primary objective is to minimize the estimation error of constraints (i.e., the feasible cost sets CP).
To define this error, based on Lemma 4.5, we first bound the estimation error of the cost functions
(i.e., elements in the set) with some theoretically manageable terms in the following.

Lemma 4.6. (Error Propagation). Let P = (M, πE) and P̂ = (M̂, π̂E) be two ICRL problems
where M̂ = (M\PT ) ∪ P̂T . For any c ∈ CP satisfying c = Ar,πE

M ζ + (E − γPT )V
c and

∥c∥∞ ≤ Cmax there exists ĉ ∈ CP̂ satisfying ∥ĉ∥∞ ≤ Cmax:

ĉ = Ar,π̂E

M̂
ζ

1 + χ/Cmax
+ (E − γP̂T )

V c

1 + χ/Cmax
, (3)

where χ=max(s,a)∈S×A χ(s, a) with χ(s, a)=γ
∣∣∣(PT − P̂T )V

c
∣∣∣ (s, a)+∣∣∣Ar,πE

M −Ar,π̂E

M̂

∣∣∣ ζ(s, a),
such that element-wise it holds that:

|c− ĉ| (s, a) ≤ 2χ

1 + χ/Cmax
. (4)

This lemma states the existence of a cost ĉ in the estimated feasible set CP̂ fulfilling the bound
composed by two terms. The first term concerns the estimation error of the transition model. The
second term depends on both the expert policy approximation and the estimated MDP, which can be
further decomposed as follows:

Lemma 4.7. For a given policy π, let Ar,π
M denote the reward advantage function based on the

original CMDPM∪ c. For an estimated policy π̂, let Ar,π̂

M̂
denote the reward advantage function

based on the estimated MDP M̂ and estimated cost function ĉ. Then, we have∣∣∣Ar,π
M −Ar,π̂

M̂

∣∣∣ ≤ 2γ

1− γ

∣∣∣(P̂T − PT )V
r,π̂

M̂

∣∣∣+ γ(1 + γ)

1− γ

∣∣∣(π − π̂)PT V
r,π
M

∣∣∣.
With the estimation error of cost functions bounded as in Lemma 4.6, we next analyze the estimation
errors of optimal policies π∗ between CMDP with true cost and estimated cost, i.e.,M∪ c andM∪ ĉ.
This error quantifies the extent to which the estimated cost function captures expert behaviors.

Lemma 4.8. For every given policy π, the first inequality below holds element-wise. For every
optimal policies π∗ ∈ Π∗

M∪c and π̂∗ ∈ Π∗
M̂∪ĉ

of CMDPsM∪ c and M̂∪ ĉ respectively, the second
inequality below holds. ∣∣Qc,π

M∪c −Qc,π
M∪ĉ

∣∣ ≤ ∣∣(IS×A − γPT π)
−1|c− ĉ|

∣∣ ,
max

π∈{π̂∗,π∗}

∥∥Qc,π
M∪c −Qc,π

M∪ĉ

∥∥
∞ ≤

1

1− γ
∥c− ĉ∥∞.

With the above results, we can define the optimality of the estimated cost sets based on the Probably
Approximately Correct (PAC) condition (Haussler, 1992; Mohri et al., 2018). The estimated feasible
set CP̂ is “close” to the exact feasible set CP, if for every cost c ∈ CP, there exists one estimated cost
ĉ ∈ CP̂ that is “close” to c, and vice versa.
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Definition 4.9. (Optimality Criterion). Let CP be the exact feasible set and CP̂ be the feasible set
recovered after observing n ≥ 0 samples collected in the sourceM and πE . We say that an algorithm
for ICRL is (ε, δ, n)-correct if with probability at least 1− δ, it holds that:

inf
ĉ∈C

P̂

sup
π∗∈Π∗

M∪c

∣∣∣Qc,π∗

M∪c(s, a)−Qc,π∗

M∪ĉ(s, a)
∣∣∣ ≤ ε,∀c ∈ CP,

inf
c∈CP

sup
π̂∗∈Π∗

M̂∪ĉ

∣∣∣Qc,π̂∗

M∪c(s, a)−Qc,π̂∗

M∪ĉ(s, a)
∣∣∣ ≤ ε,∀ĉ ∈ CP̂,

where π∗ is an optimal policy inM∪ c and π̂∗ is an optimal policy in M̂ ∪ ĉ.

The above definition aims to ensure the estimation error of cost does not compromise the optimality
of the expert policy. The first condition manifests completeness, since the recovered feasible cost
set needs to track every potential true cost function. The second condition expresses accuracy since
any recovered cost function must be in close proximity to a viable true cost function, preventing an
unnecessarily large recovered feasible set. The dual requirements are inspired by the PAC optimality
criterion in (Metelli et al., 2021; Lindner et al., 2022).

5 EFFICIENT EXPLORATION FOR ICRL

In this section, we introduce algorithms for efficient exploration by leveraging the aforementioned
cost set and estimation error. Our objective is to collect high-quality samples from interactions
with the environment, thereby improving the accuracy of our cost set estimations. Unlike most
existing ICRL works (Papadimitriou et al., 2023; Liu et al., 2022a) that rely on a generative model
for collecting samples, our exploration strategy must determine which states require more frequent
visits and how to traverse to them starting from the initial state s0. To achieve this goal, we first
define the estimated transition model and the expert policy (Section 5.1), based on which we develop
a BEAR (Bounded Error Aggregate Reduction) strategy algorithm (Section 5.2) and a PCSE (Policy-
Constrained Strategic Exploration) algorithm (Section 5.3) for solving ICRL problems, respectively.

5.1 ESTIMATING TRANSITION DYNAMICS AND EXPERT MODEL

We consider a model-based setting where the agent strategically explores the environment to learn
transition dynamics and expert policy. These components are vital for bounding the estimation error
of the feasible cost set (Lemma 4.6). To achieve this, we record the returns of a state-action pair
(s, a) by observing a next state s′ ∼ P (·|s, a), and the preference of expert agents aE ∼ πE(·|s)
in each visited state. For iteration ∀k, we denote by nk(s, a, s

′) the number of times we observe
the transition (s, a, s′). Denote nk(s, a) =

∑
s′∈S nk(s, a, s

′) and nk(s) =
∑

a∈A nk(s, a). For the
expert policy and the transition model estimation, we define the cumulative counts Nk(s, a, s

′) =∑k
j=1 nj(s, a, s

′), Nk(s, a) =
∑k

j=1 nj(s, a) and Nk(s) =
∑k

j=1 nj(s). Accordingly, we can
represent the estimated transition model and expert policy as:

P̂T k(s
′|s, a) = Nk(s, a, s

′)

N+
k (s, a)

, π̂E
k (a|s) =

Nk(s, a)

N+
k (s)

, (5)

where x+ = max{1, x}. With these estimations, we derive the confidence intervals for the transition
model and expert policy using the Hoeffding inequality (see Lemma C.5). We prove that the true
transition model and the expert policy fall into these intervals with high probability. Based on these
results, we derive an upper bound on the estimation error of feasible cost sets and prove that this
upper bound can be guaranteed with high probability as follows:
Lemma 5.1. Let δ ∈ (0, 1), with probability at least 1− δ, for any pair of cost functions c ∈ CP and
ĉk ∈ CP̂k

at iteration k, we have

|c(s, a)− ĉk(s, a)| ≤ Ck(s, a), Ck(s, a) = min


2σ

√
ℓk(s,a)

2N+
k (s,a)

1 + σ/Cmax

√
ℓk(s,a)

2N+
k (s,a)

, Cmax

 . (6)

where σ =
γCmax

(
Rmax(3+γ)/min+

∣∣Ar,πE

M

∣∣+(1−γ)
)

(1−γ)2 and ℓk(s, a) = log
(

36SA(N+
k (s,a))2

δ

)
.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

It is worth noting that Ck(s, a) typically decreases after the number of samples collected for a specific
(s, a) pair reaches a peak. To efficiently allocate a fixed number of samples to meet the demand of
Definition 4.9, we introduce the exploration strategy next.

5.2 EXPLORATION VIA REDUCING BOUNDED ERRORS

Based on the above upper bound, we are ready to design algorithms for efficiently solving the
ICRL problem. Since our primary goal is to fulfill the PAC-condition in Definition 4.9, we begin
by establishing an upper bound on the estimation error, which pertains to the disparity for the
performance of optimal policy π∗ between CMDP with true cost and CMDP with estimated cost at
iteration k, i.e.,M∪ c andM∪ ĉk. Our key results are presented as follows:

Lemma 5.2. At iteration k, let ek(s, a;π∗) = |Qc,π∗

M∪c(s, a)−Qc,π∗

M∪ĉk
(s, a)| defines the estimation

error of discounted cumulative costs within the true CMDP\cM. For any policy π∗ ∈ Π∗
M∪c, we

upper bound the above estimation error ek(·) as follows:

∥ek(s, a;π∗)∥∞≤
∥∥µT

0 (IS×A−γPT π)
−1Ck

∥∥
∞ . (7)

To reduce this error bound, we introduce BEAR exploration strategy for ICRL in Algorithm 1
(represented in teal color), which explores to reduce the bounded error. This is equivalent to solving
the RL problem defined byMCk = (M\r)∪ Ck, where we replace the reward r in MDPM with Ck.
We can use any RL solver to find the exploration policy in practice. We show in Corollary C.6 that
the exploration algorithm converges (satisfies Definition 4.9) when either of the following statements
is satisfied:

(i)
1

1− γ
max

(s,a)∈S×A
Ck(s, a) ≤ ε, (ii)

∥∥µT
0 (IS×A − γPT π)

−1Ck
∥∥
∞ ≤ ε. (8)

Sample Complexity. Next, we analyze the sample complexity of Algorithm BEAR. The updated
accuracy εk in Algorithm 1 equals to (i) of (8). Let ηhk (s, a|s0), h ∈ [nmax] be the probability of
state-action pair (s, a) reached in the h-th step following a policy πk ∈ ΠMCk starting in state s0.
We can compute it recursively:

η0k(s, a|s0) := πk(a|s)1{s=s0}, ηh+1
k (s, a|s0) :=

∑
a′,s′

πk(a|s)PT (s|s′, a′)ηhk (s′, a′|s0),

where πk is the exploration policy in iteration k. We then define the pseudo-counts that are crucial to
deal with the uncertainty of the transition dynamics in our analysis.
Definition 5.3. (Pseudo-counts) We introduce the pseudo-counts of visiting a specific state-action
pair (s, a) in the h-th step within the first k iterations as:

N̄k(s, a) = µ0

nmax∑
h=1

k∑
i=1

ηhi (s, a|s0).

Similar to (5), we define N̄+
k (s, a) = max{0, N̄k(s, a)}. The following lemma upper bounds the

estimation error of feasible costs with the pseudo-counts under a certain confidence interval.
Lemma 5.4. With probability at least 1− δ/2, ∀s, a, h, k ∈ S ×A× [0, nmax]× N+, we have:

min

{
σ

√
ℓk(s, a)

2N+
k (s, a)

, Cmax

}
≤ σ̌

√
2ℓ̄k(s, a)

N̄+
k (s, a)

, (9)

where ℓ̄k(s, a) = log(36SA(N̄+
k (s, a))2/δ) and σ̌ = max{σ,

√
2Cmax}.

Subsequently, the sample complexity of Algorithm 1 is presented as follows:
Theorem 5.5. (Sample Complexity of BEAR). If Algorithm BEAR terminates at iteration K with the
updated accuracy εK , then with probability at least 1− δ, it fulfills Definition 4.9 with a number of
samples upper bounded by

n ≤ Õ
(

σ̌2SA

(1− γ)2ε2K

)
.

The above theorem has taken into account the sample complexity of the RL phase. In fact, further
improvements can be made to enhance the algorithm’s performance.
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5.3 EXPLORATION VIA CONSTRAINING CANDIDATE POLICIES

The above exploration strategy has limitations, as it explores to minimize uncertainty across all
policies, which is not aligned with our primary focus of reducing uncertainty for potentially optimal
policies. As a result, this approach places an additional burden on sample efficiency. To address these
limitations, we propose PCSE for ICRL in Algorithm 1 (represented in purple color). Specifically,

Algorithm 1 BEAR and PCSE for ICRL in an unknown environment
Input: significance δ∈(0, 1), target accuracy ε, maximum number of samples per iteration nmax;
Initialize k ← 0, ε0 = 1

1−γ ;
while εk > ε do

Solve RL problem defined byMCk to obtain the exploration policy πk;
Solve optimization problem in (10) to obtain the exploration policy πk;
Explore with πk for ne episodes;
For each episode, collect nmax samples from (s, a);
Update accuracy εk+1 = max(s,a)∈S×A Ck+1(s, a)/(1− γ);
Update accuracy εk+1 = ∥µT

0 (IS×A − γPT π)
−1Ck∥∞;

Update π̂E
k+1 and P̂T k+1 in (5);

k ← k + 1.
end while

we intentionally constrain the search for policies to those yielding a value function at iteration k close
to the estimated optimal one. Thus we focus only on the plausibly optimal policies and formulate the
optimization problem as:

εk+1 = sup
µ0∈∆S

π∈Πk

µT
0 (IS×A − γPT π)Ck+1, s.t. Πk = Πc

k ∩Πr
k, (10)

Πc
k =

{
π ∈ ∆A

S : sup
µ0∈∆S

µT
0

(
V c,π

M̂k∪ĉk
− V c,∗

M̂k∪ĉk

)
≤ 4εk + ϵ

}
,

Πr
k =

{
π ∈ ∆A

S : inf
µ0∈∆S

µT
0

(
V r,π

M̂k
− V

r,π̂∗
k

M̂k

)
≥ Rk

}
,

where Rk = 2γRmax

(1−γ)2 ∥PT − P̂T k∥∞ + γRmax

(1−γ)2 ∥(π
∗ − π̂∗

k)∥∞.

The rationale in Πk can be attributed to the intersection of two aspects: 1) Πc
k constrains exploration

policies to visit states within an additional budget, thereby ensuring resilience to estimation error
when searching for optimal policies; 2) Πr

k states that exploration policies should focus on states
with potentially higher cumulative rewards, where possible constraints lie. As the estimation error
decreases, the gap (i.e., Rk) also diminishes, eventually converging to zero, which ensures the
optimality of constrained policies. We have shown in Appendix C.12 that optimality policies can be
captured by subsequent Πk.

To solve the optimization problem (10), we represent its Lagrangian objective as L(ρπM, λ) =

−⟨ρπM, Ck+1⟩+λ2

(
(1−γ)(V π̂∗

k

M̂k
+Rk)−⟨ρπM, r⟩

)
+λ1

(
−(1−γ)(V c,∗

M̂k∪ĉk
+4εk+2ϵ)+⟨ρπM, ĉk⟩

)
,

where λ = [λ1, λ2]
T records two Lagrangian multipliers. The dual problem of (10) can be defined as

min
ρπ
M

max
λ≥0

L(ρπM, λ). (11)

To solve this dual problem, we assume that Slater’s condition is fulfilled and we follow the two-
timescale stochastic approximation (Borkar & Konda, 1997; Konda & Tsitsiklis, 1999). The following
two gradient steps are alternately conducted until convergence,

ρπM,k+1 = ρπM,k − ak(L
′
ρ(ρ

π
M,k, λk) +Wk), λk+1 = λk + bk(L

′
λ(ρ

π
M,k, λk) + Uk),

where coefficients ak ≪ bk, satisfying
∑

k ak =
∑

bk = ∞,
∑

a2k < ∞ and
∑

b2k < ∞. Wk

and Uk are two zero-mean noise sequences. Under this condition, the convergence is guaranteed

8
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in the limit (Borkar, 2009). At each time step k, the exploration policy is calculated as: πk(a|s) =
ρπM,k(s, a)/

∑
a ρ

π
M,k(s, a).

Sample Complexity. In the following theorem, we prove that PCSE for ICRL fulfills the
PAC-condition in Definition 4.9 and we show its sample complexity. To present this result,
we define the cost advantage function Ac,∗

M̂∪c̃
(s, a) = Qc,∗

M̂∪c̃
(s, a) − V ∗,c

M̂∪c̃
(s), in which c̃ ∈

argminc∈CP
max(s,a)∈S×A |c(s, a)− ĉK(s, a)| is the cost function in the exact cost feasible set CP

closest to the estimated cost function ĉK(s, a) at the terminating iteration K.
Theorem 5.6. (Sample Complexity of PCSE). If Algorithm PCSE terminates at iteration K with
accuracy εK and the accuracy of previous iteration is εK−1, then with probability at least 1− δ, it
fulfills Definition 4.9 with a number of samples upper bounded by

n≤Õ

(
min

{
σ̌2SA

(1− γ)2ε2K
,

σ2(6εK−1 + ϵ)2SA

min(s,a)

(
Ac,∗

M̂∪c̃
(s, a)

)2
ε2K

})
.

The first term matches the sample complexity of the BEAR strategy since both strategies explore for
the same purpose. The second term depends on the ratio (6εK−1 + ϵ)/εK and the minimum cost
advantage function min(s,a) A

c,∗
M̂∪c̃

. The ratio depends on both nmax and ne. If the two values are
high, the ratio is high and the algorithm tends to uniformly sample every state-action pair. Otherwise,
the ratio is small due to the fact that εK−1 is an accumulation of CK−1 (generally larger than CK ). A
smaller ϵ, namely a tighter constraint, benefits the sample efficiency. The cost advantage function
min(s,a) A

c,∗
M̂∪c̃

shows that the larger the suboptimality gap, the easier to infer the constraint.

6 EMPIRICAL EVALUATION
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Figure 2: Four different Gridworld environments.

We empirically compare our algorithms against
other methods across both discrete and continu-
ous environments, where the agent aims to nav-
igate from a starting location to a target location
(where it receives a positive reward) while sat-
isfying the constraint condition.

Experiment Settings. The evaluation metrics include: 1) discounted cumulative rewards, which mea-
sure the optimality of the learned policy; 2) discounted cumulative costs, which assess the safety of the
learned policy; and 3) Weighted Generalized Intersection over Union (WGIoU) (see Appendix D.2),
which evaluates the similarity between inferred constraints and ground-truth constraints.

Comparison Methods. We compare our exploration algorithms, i.e., BEAR and PCSE, with four
other exploration strategies. Results of two baselines: random exploration and ϵ-greedy exploration
are demonstrated in Figure 3. Results of two other baselines: maximum-entropy exploration and
upper confidence bound exploration are shown in Appendix Figure 5.

6.1 EVALUATION UNDER DISCRETE ENVIRONMENTS

Figure 2 illustrates four discrete testing environments, each characterized by distinct constraints. The
white, red, and black markers indicate the starting, target, and constrained locations, respectively. The
expert policy is trained under ground-truth constraints, while the ICRL algorithms are examined when
these constraints are not available. Note that these environments are stochastic so that the environment
executes a randomized sampled action with a specific probability (p = 0.05). Figure 3 shows the
training process of three metrics for six exploration strategies in four Gridworld environments, along
with the performance of expert policy (represented by the grey line). It can be shown that the
performance of the optimal policy inM∪ ĉ gradually converges to the performance of the optimal
policy inM∪ c. Also, we find that PCSE (represented by the red curve) exhibits the highest sample
efficiency while achieving similar performance among the six exploration strategies. In Gridworld-2
and Gridworld-4, WGIoU converges to a degree of similarity less than 1 (ground-truth). This is
because ICRL emphasizes the identification of the minimal set of constraints necessary to explain
expert behaviors. We demonstrate the learned constraints in the rightmost column of Figure 8 and 10.
The learned constraints are captured because visiting these states leads to higher cumulative rewards,

9
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Figure 3: Training curves of discounted cumulative rewards (top), costs (middle), and WGIoU
(bottom) for four exploration strategies in four Gridworld environments.

whereas other uncaptured ground-truth constraints do not influence the optimality of expert behavior.
Constraint learning processes of six strategies are demonstrated in Figure 7 to 10 in Appendix E.1.

6.2 EVALUATION UNDER CONTINUOUS ENVIRONMENTS
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Figure 4: Point Maze environment, inferred constraints, discounted cumulative rewards and costs.

Figure 4 (leftmost) illustrates the continuous Point Maze environment, where the green agent has a
continuous state space. The agent’s goal is to reach the red ball inside the maze with pink walls. The
environment is stochastic due to the noises imposed on the observed states. Figure 4 (middle left)
demonstrates the inferred constraints (represented by blue dots) obtained through PCSE, with the
center of the maze designated at (0, 0). Figure 4 (middle right and rightmost) reports the discounted
cumulative rewards and costs during training. Check Appendix E.2 for more experimental details.

7 CONCLUSIONS

This paper introduces a strategically efficient exploration framework for ICRL problems. We
conduct theoretical analysis to investigate the influence of estimation errors in expert policy and
environmental dynamics on the estimation of constraints. Building upon this, we propose two
exploration strategies, namely BEAR and PCSE. Both algorithms actively explore the environment to
minimize the aggregated bounded error of cost estimation. Moreover, PCSE goes a step further by
constraining the exploration policies to plausibly optimal ones, thus enhancing the overall efficiency.
We provide tractable sample complexity analyses for both algorithms. To validate the effectiveness
of our method, we perform empirical evaluations in various environments. Several future research
directions deserve attention to address the limitations of this paper: 1) extending this work to
finite-horizon settings and deriving lower bounds for sample complexities, and 2) analyzing the
transferability of constraint information.
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A NOTATION AND SYMBOLS

In Table 1, we report the explicit definition of notation and symbols applied in our paper.

Table 1: Overview of notation and symbols
Symbol Name Signature

M CMDP without knowing the cost (CMDP\c) (S,A, PT , r, ϵ, µ0, γ)
M∪ c CMDP (S,A, PT , r, c, ϵ, µ0, γ)
S State space /
A Action space /
PT Transition model ∆S

S×A
s0 Initial state S
π Policy ∆A

S
πE Expert policy ∆A

S
r Reward function [0, Rmax]

S×A

c Cost function [0, Cmax]
S×A

ϵ Threshold of constraint RS

V r,π
M Reward state-value function of π inM RS

Qr,π
M Reward action-value function of π inM RS×A

Ar,π
M Reward advantage function of π inM RS×A

V c,π
M∪c Cost state-value function of π inM∪ c RS

Qc,π
M∪c Cost action-value function of π inM∪ c RS×A

Ac,π
M∪c Cost advantage function of π inM∪ c RS×A

CP Exact feasible set /
CP̂ Recovered feasible set /

ηhk (s, a|s0) State action pair visitation frequencies ∆S×A

ρπM Occupancy measure of π inM ∆S×A

ε Target accuracy R+

δ Significancy (0, 1)
ne Number of exploration episodes N+

E Expansion operator RS → RS×A

IS×A Identity matrix on S ×A /
IS Identity matrix on S /
[a] Set that contains integers from 0 to a {0, 1, . . . , a}, a ∈ N

B ADDITIONAL RELATED WORKS

Sample Efficiency. Sample-efficient algorithms have been explored across various RL directions,
yielding significant advancements. To find the minimal structural assumptions that empower sample-
efficient learning, Jin et al. (2021) introduced the Bellman Eluder (BE) dimension and proposed a
sample-efficient algorithm for problems with low BE dimension. Liu et al. (2024b) introduced a
sample-efficient RL framework called Maximize to Explore (MEX), which reduces computational
cost and enhances compatibility. In the field of imitation learning, Liu et al. (2022b) addressed
both online and offline settings, proposing optimistic and pessimistic generative adversarial policy
imitation algorithms with tractable regret bounds. In the realm of model-free RL, Jin et al. (2018)
developed a Q-learning algorithm with Upper Confidence Bound (UCB) exploration, achieving a
regret bound of

√
T in episodic MDPs. Wachi et al. (2018) modeled state safety values using a

Gaussian Process (GP) and proposed a more efficient approach to balance the trade-off between
exploring the safety function, exploring the reward function, and exploiting knowledge to maximize
rewards. In the context of constrained reinforcement learning (CRL), Miryoosefi & Jin (2022) bridged
reward-free RL and CRL, providing sharp sample complexity results for CRL in tabular Markov
Decision Processes (MDPs). Focusing on episodic finite-horizon Constrained MDPs (CMDPs),
Kalagarla et al. (2021) established a probably approximately correct (PAC) guarantee on the number
of episodes required to find a near-optimal policy, with a linear dependence on the state and action
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spaces and a quadratic dependence on the time horizon. From a meta-learning perspective, Liu
& Zhu (2023) framed the problem of learning an expert’s reward function and constraints from
few demonstrations as a bi-level optimization, introducing a provably efficient algorithm to learn
a meta-prior over reward functions and constraints. In terms of sample efficiency in IRL, (Lazzati
et al., 2024a) redefines offline IRL by introducing the feasible reward set to address limited data
coverage, proposing approaches to ensure inclusion monotonicity through pessimism. (Lazzati
& Metelli, 2024) extends IRL to Utility Learning (UL), introducing a framework for capturing
agents’ risk attitudes via utility functions. (Lazzati et al., 2024b) tackles scalability in online IRL by
introducing reward compatibility and a state-space-independent algorithm for Linear MDPs, bridging
IRL and Reward-Free Exploration (RFE). For misspecification in IRL, (Skalse & Abate, 2023)
provides a framework and tools to evaluate the robustness of standard IRL models (e.g., optimality,
Boltzmann rationality) to misspecification, ensuring reliable inferences from real-world data. (Skalse
& Abate, 2024) quantifies IRL’s sensitivity to behavioral model inaccuracies, showing that even small
misspecifications can result in significant errors in inferred reward functions.

Constraint Inference. Constraint learning in reinforcement learning has advanced significantly
to address shared safety requirements and improve scalability and efficiency. Chou et al. (2018)
introduced a method to infer shared constraints across tasks using safe and unsafe trajectories,
leveraging hit-and-run sampling and integer programming with theoretical guarantees. Kim & Oh
(2022) proposed Off-Policy TRC, a sample-efficient RL method with CVaR constraints that addresses
distributional shift via surrogate functions and trust-region constraints, achieving high returns and
safety in complex tasks. To ensure stable convergence, Moskovitz et al. (2023) developed ReLOAD,
which guarantees last-iterate convergence and overcomes limitations of gradient-based methods in
CRL. For scenarios with unknown rewards and dynamics, Lindner et al. (2024) introduced a CMDP
method that constructs a convex safe set from safe demonstrations, enabling task transferability
and outperforming IRL-based approaches. Kim et al. (2024) extended IRL framework to infer
tighter safety constraints from diverse expert demonstrations, addressing the ill-posed nature of
constraint learning and enhancing multi-task generalization. Our approach infers a feasible cost set
encompassing all cost functions consistent with the provided demonstrations, eliminating reliance
on additional information to address the inherent ill-posedness of inverse problems. In contrast,
prior works either require multiple demonstrations across diverse environments or rely on additional
settings to ensure the uniqueness of the recovered constraints. This feasible set approach can focus
on analyzing the intrinsic complexity of the ICRL problem only, without being obfuscated by other
factors, resulting in solid theoretical guarantees (Lazzati et al., 2024b).

C PROOFS OF THEORETICAL RESULTS IN THE MAIN PAPER

In this section, we provide detailed proofs of theoretical results in the main paper.

C.1 PROOF OF LEMMA 4.1

Proof. If neither case happens, i.e., Eµ0,πE ,PT

[∑∞
t=0 γ

tc(st, at)
]
< ϵ and ∃ a′ ∈ A that satisfies

both a′ /∈ AE(s) and Ar,πE

M (s, a′) > 0, we can always construct a new policy, which only differs

from the expert policy πE in state s, as π′(a|s) =

{
θ , a = a′

1− θ, a ∼ πE
. There must ∃ θ ∈ (0, 1] that

uses some (or all) of the leftover budget τ = ϵ−Eµ0,πE ,PT

[∑∞
t=0 γ

tc(st, at)
]

while having a larger

cumulative reward, which makes πE not an optimal policy. This makes a contradiction.

The existence of such θ can be proved as follows. By recursively using the Bellman Equation, we can
obtain

Eµ0

[
V c,πE

M∪c(s0)
]
= α(PT , π

E , γ, c) + β(PT , π
E , γ, c) · EπE

[
Qc,πE

M∪c(s, a
E)
]
. (12)

where coefficients α ≥ 0, β > 0. β can not equal to 0, since state s has to be visited
with at least some probability. Otherwise, we do not need to explain πE(s). Note that if
Qc,πE

M∪c(s, a
′) ≤ EπE

[
Qc,πE

M∪c(s, a
E)
]
, π′ is a strictly better policy than the expert policy for any
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θ ∈ (0, 1] (larger rewards with equal or less costs). This clearly makes a contradiction. Hence, we
focus on Qc,πE

M∪c(s, a
′) > EπE

[
Qc,πE

M∪c(s, a
E)
]
. In this case, we can always obtain a θ > 0, by letting

Eµ0

[
V c,πE

M∪c(s0)
]
+ τ ′ = α(PT , π

E , γ, c) + β(PT , π
E , γ, c) ·

[
(1− θ)EπE

[
Qc,πE

M∪c(s, a
E)
]
+ θQc,πE

M∪c(s, a
′)
]
,

(13)

where τ ′ ∈ [0, τ) denotes the leftover budget after applying π′. By subtracting Eq. (12) from Eq. (13),
we have ∀ Qc,πE

M∪c(s, a
′) > EπE

[
Qc,πE

M∪c(s, a
E)
]
,

θ =
τ ′

β(PT , πE , γ, c)
[
Qc,πE

M∪c(s, a
′)− EπE

[
Qc,πE

M∪c(s
′, aE)

]] . (14)

With this analysis, if Ar,πE

M (s, a′) > 0 , which indicates 2) of Lemma 4.1 is not satis-

fied so 1) must be satisfied, Qc,πE

M∪c(s, a
′) > EπE

[
Qc,πE

M∪c(s, a
E)
]

= V c,πE

M∪c(s) suffices to let

Eµ0,π′′,PT

[∑∞
t=0 γ

tc(st, at)
]
> ϵ with π′′ only differs from πE at state s where π′′(s) = a′,

which is a constraint-violating condition.

C.2 PROOF OF LEMMA 4.4

Proof. In this proof, we distinguish two cases as in Assumption 4.3.
In the first case, the constraint n (1) is hard, i.e., ϵ = 0.

(i) By definition of expert policy πE , we have V c,πE

M∪c(s) = 0. On one hand, if c is feasible,

V c,πE

M∪c = EπE [Qc,πE

M∪c] = 0. Also, since c ∈ [0, Cmax]
S×A, Qc,πE

M∪c ≥ 0. As a result,

Qc,πE

M∪c = 0 = V c,πE

M∪c . On the other hand, any c ∈ [0, Cmax]
S×A that satisfies Qc,πE

M∪c =

V c,πE

M∪c = 0 makes πE an optimal policy under this condition.

(ii) By definition of expert policy πE , we have V c,πE

M∪c(s) = 0. On one hand, since Ar,πE

M (s, a) >

0, if c is feasible, Qc,πE

M∪c(s, a) > 0, otherwise πE is not optimal. On the other hand, any

cost function c ∈ [0, Cmax]
S×A that satisfies Qc,πE

M∪c(s, a) > 0 = V c,πE

M∪c(s) ensures action
a violates the constraint, and makes πE an optimal policy under this condition.

(iii) By definition of expert policy πE , we have V c,πE

M∪c(s) = 0. On one hand, since Ar,πE

M (s, a) ≤
0, any c ∈ [0, Cmax]

S×A ensures the expert’s optimality. However, in terms of the minimal
set CP in Definition 4.2, c(s, a) = 0 and Qc,πE

M∪c(s, a) = 0 = V c,πE

M∪c(s). On the other hand,

any c(s, a) ∈ [0, Cmax]
S×A that satisfies Qc,πE

M∪c(s, a) = 0 = V c,πE

M∪c(s) ensures πE an
optimal policy under this condition.

In the second case, the constraint in (1) is soft, i.e., ϵ > 0, and the expert policy is deterministic.

(i) Since the expert policy πE is deterministic, we have Qc,πE

M∪c(s, a) = V c,πE

M∪c(s). On one

hand, if c is feasible, Qc,πE

M∪c(s, a) = V c,πE

M∪c(s). On the other hand, any c ∈ [0, Cmax]
S×A

that satisfies Qc,πE

M∪c(s, a) = V c,πE

M∪c(s) makes πE an optimal policy under this condition.

(ii) In this case, since Ar,πE

M (s, a) > 0, situation 2) of Lemma 4.1 is not satisfied. As a

result, 1) of Lemma 4.1 must be satisfied. On one hand, if c is feasible, Qc,πE

M∪c(s, a) >

Qc,πE

M∪c(s, a
E) = V c,πE

M∪c(s) suffices to let Eµ0,πE ,PT

[∑∞
t=0 γ

tc(st, at)
]
> ϵ. On the other

hand, any cost function c ∈ [0, Cmax]
S×A that satisfies Qc,πE

M∪c(s, a) > V c,πE

M∪c(s) ensures
action a violates the constraint, and makes πE an optimal policy under this condition.

(iii) On one hand, since Ar,πE

M (s, a) ≤ 0, any relationship between Qc,πE

M∪c(s, a) and V c,πE

M∪c(s)
ensures the expert’s optimality. However, in terms of the minimal set CP in Definition

4.2, Qc,πE

M∪c(s, a) ≤ V c,πE

M∪c(s). On the other hand, any c ∈ [0, Cmax]
S×A that satisfies

Qc,πE

M∪c(s, a) ≤ V c,πE

M∪c(s) ensures πE an optimal policy under this condition.
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C.3 PROOF OF LEMMA 4.5

Lemma C.1. Let P = (M, πE) be an ICRL problem. A Q-function satisfies the condition of
Lemma 4.4 if and only if there exist ζ ∈ RS×A

>0 and V c ∈ RS
≥0 such that:

Qc
M∪c = Ar,πE

M ζ + EV c, (15)

where the expansion operator E satisfies (Ef)(s, a) = f(s).

Here, the term ζ ensures 1) (when Ar,πE

M > 0) the constraint condition in (1) is violated at (s, a)

pairs that achieve larger rewards than the expert policy, and 2) (when Ar,πE

M ≤ 0) only necessary cost
functions are captured by feasible cost set CP.

Proof. We prove both the ’if’ and ’only if’ sides.

To demonstrate the "if" side, we can easily see that all the Q-functions of the form Qc
M∪c(s, a) =

Ar,πE

M (s, a)ζ(s, a) + EV c(s) satisfies the conditions of Lemma 4.4 in the following:

1) Let s ∈ S and a ∈ A such that πE(a|s) > 0, then we have Qc
M∪c(s, a) = V c(s) = V c

M∪c(s).
This is the condition (i) in Lemma 4.4. Note that V c(s) = V c

M∪c(s) holds true for the following two
cases since each state s ∈ S has an expert policy such that πE(a|s) > 0.

2) Let s ∈ S and a ∈ A such that πE(a|s) = 0 and Qr,πE

M (s, a) > V r,πE

M (s), then we have

Qc
M∪c(s, a) = Ar,πE

M (s, a)ζ(s, a) + V c(s) = Ar,πE

M (s, a)ζ(s, a) + V c
M∪c(s) > V c

M∪c(s). This is
the case (ii) in Lemma 4.4.

3) Let s ∈ S and a ∈ A such that πE(a|s) = 0 and Qr,πE

M (s, a) ≤ V r,πE

M (s), then we have

Qc
M∪c(s, a) = Ar,πE

M (s, a)ζ + V c(s) = Ar,πE

M (s, a)ζ(s, a) + V c
M∪c(s) ≤ V c

M∪c(s). This is the
case (iii) in Lemma 4.4.

To demonstrate the "only if" side, suppose that Qc
M∪c satisfies conditions of Lemma 4.4, we take

V c(s) = V c
M∪c(s) since we are proving the existence of V c ∈ RS

≥0.

1) In the critical region and follows the expert policy, where Qr,πE

M (s, a) = V r,πE

M (s), 0ζ(s, a) =
Qc

M∪c − EV c
M∪c = 0. Hence, there definitely exists ζ(s, a) > 0.

2) In the constraint-violating region with more rewards, where Qr,πE

M (s, a) > V r,πE

M (s),

Ar,πE

M (s, a)ζ(s, a) = Qc
M∪c − EV c

M∪c > 0. Hence, there definitely exists ζ(s, a) > 0.

3) In the non-critical region with less rewards, where Qr,πE

M (s, a) ≤ V r,πE

M (s), Ar,πE

M (s, a)ζ(s, a) =
Qc

M∪c − EV c
M∪c ≤ 0. Hence, there definitely exists ζ(s, a) > 0.

Proof of Lemma 4.5

Proof. Recall that Qc
M∪c = (IS×A − γPT π

E)−1c and based on Lemma C.1, we can show that:

c =
(
IS×A − γPT π

E
)(

Ar,πE

M ζ + EV c
)

= Ar,πE

M ζ + EV c − γPT π
EAr,πE

M ζ − γPT π
EEV c

Since πEAr,πE

M = 0S and πEE = IS ,

c = Ar,πE

M ζ + (E − γPT )V
c

We now bound the infinity norm of ζ and V c. First, from Eq. (15), we know that
EV c(s) = Qc

M∪c(s, a
E). Hence, intuitively ∥V c(s)∥∞ ≤ Cmax

1−γ . Second, from Eq. (2),

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

c(s, a) = Ar,πE

M (s, a)ζ(s, a) + (E − γPT )V
c(s). 1) When Ar,πE

M > 0, ζ = (c(s, a) −
(E − γPT )V

c(s))/Ar,πE

M (s, a) ≤ Cmax/min+(s,a) A
r,πE

M (s, a). 2) When Ar,πE

M < 0, ζ =

(−c(s, a) + (E − γPT )V
c(s))/(−Ar,πE

M (s, a)). Since (E − γPT )V
c(s) = c(s, aE) ≤ Cmax,

ζ ≤ Cmax/
(
−max+(s,a) A

r,πE

M (s, a)
)
. 3) When Ar,πE

M = 0, we define ζ(s, a) = 0. To combine all

the three conditions, ∥ζ∥∞ ≤ Cmax/min+(s,a) |A
r,πE

M |.

C.4 PROOF OF LEMMA 4.6

Proof. From Lemma 4.5, ∀(s, a) ∈ S ×A, we can express the cost functions belonging to CP and
CP̂ as:

c(s, a) = Ar,πE

M ζ(s, a) + (E − γPT )V
c(s, a)

ĉ(s, a) = Ar,π̂E

M̂
ζ̂(s, a) + (E − γP̂T )V̂

c(s, a)

where (ζ, ζ̂) ∈ RS×A
>0 and V, V̂ ∈ RS

≥0. Since we look for the existence of ĉ ∈ CP̂ satisfying

∥ĉ∥∞ ≤ Cmax, we provide a specific choice of V̂ and ζ̂: ζ̂(s, a) = ζ(s,a)
1+χ/Cmax

, V̂ c(s, a) = V c(s,a)
1+χ/Cmax

,

where χ=max(s,a)∈S×A χ(s, a) with χ(s, a)=γ
∣∣∣(PT − P̂T )V

c
∣∣∣ (s, a)+∣∣∣Ar,πE

M −Ar,π̂E

M̂

∣∣∣ ζ(s, a).
Next, we prove ∥ĉ∥∞ ≤ Cmax. Let c̃ = (1 + χ/Cmax)ĉ, ∀(s, a) ∈ S ×A we have:

|c̃(s, a)| ≤ |c(s, a)|+ |c̃(s, a)− c(s, a)|

≤ Cmax + γ
∣∣∣(PT − P̂T )V

c
∣∣∣ (s, a)+∣∣∣Ar,πE

M −Ar,π̂E

M̂

∣∣∣ ζ(s, a)
≤ Cmax + |χ(s, a)|
≤ Cmax + χ (16)

As a result, ∥ĉ∥∞ = ∥c̃∥∞/(1 + χ/Cmax) ≤ Cmax. Thus, we have:

|c(s, a)− ĉ(s, a)| = |c(s, a)− c̃(s, a)

1 + χ/Cmax
|

≤ 1

1 + χ/Cmax

(
|c(s, a)− c̃(s, a)|+ χ/Cmax|c(s, a)|

)
≤ 2χ

1 + χ/Cmax
. (17)

C.5 PROOF OF LEMMA 4.7

Lemma C.2. (Simulation Lemma for action-value function.) LetM = (S,A, PT , r, µ0, γ) and
M̂ = (S,A, P̂T , r, µ0, γ) be two MDPs. Let π̂ ∈ ∆A

S be a policy. The following equality holds
element-wise:

Qr,π̂
M −Qr,π̂

M̂
= γ(IS×A − γPT π̂)

−1(PT − P̂T )V
r,π̂

M̂
(18)

Proof. The proof can be shown as follows:

Qr,π̂
M −Qr,π̂

M̂
= (IS×A − γPT π̂)

−1r − (IS×A − γPT π̂)
−1(IS×A − γPT π̂)Q

r,π̂

M̂

= (IS×A − γPT π̂)
−1(IS×A − γP̂T π̂)Q

r,π̂

M̂
− (IS×A − γPT π̂)

−1(IS×A − γPT π̂)Q
r,π̂

M̂

= γ(IS×A − γPT π̂)
−1(PT − P̂T )π̂Q

r,π̂

M̂

= γ(IS×A − γPT π̂)
−1(PT − P̂T )V

r,π̂

M̂
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Lemma C.3. (Simulation Lemma for state-value function.) Let M = (S,A, PT , r, µ0, γ) and
M̂ = (S,A, P̂T , r, µ0, γ) be two MDPs. Let π̂ ∈ ∆A

S be a policy. The following equality holds
element-wise:

V r,π̂
M − V r,π̂

M̂
= γ(IS − γπ̂PT )

−1π̂(P̂T − PT )V
r,π̂

M̂
(19)

Proof. The proof can be shown as follows:

V r,π̂
M − V r,π̂

M̂
= (IS − γπ̂PT )

−1r − (IS − γπ̂PT )
−1(IS − γπ̂PT )V

r,π̂

M̂

= (IS − γπ̂PT )
−1(IS − γπ̂P̂T )V

r,π̂

M̂
− (IS − γπ̂PT )

−1(IS − γπ̂PT )V
r,π̂

M̂

= γ(IS − γπ̂PT )
−1π̂(PT − P̂T )V

r,π̂

M̂

= γ(IS − γπ̂PT )
−1π̂(PT − P̂T )V

r,π̂

M̂

Lemma C.4. (Policy Mismatch Lemma.) LetM = (S,A, PT , r, µ0, γ) be an MDP. Let π, π̂ ∈ ∆A
S

be two policies. The following equality holds element-wise:

V r,π
M − V r,π̂

M = γ(IS − γπ̂PT )
−1(π − π̂)PT V

r,π
M

Proof. The proof can be shown as follows:

V r,π
M − V r,π̂

M = (IS − γπ̂PT )
−1(IS − γπ̂PT )V

r,π
M − (IS − γπ̂PT )

−1r

= (IS − γπ̂PT )
−1(IS − γπ̂PT )V

r,π
M − (IS − γπ̂PT )

−1(IS − γπPT )V
r,π
M

= γ(IS − γπ̂PT )
−1(π − π̂)PT V

r,π
M

Proof of Lemma 4.7

Proof. By utilizing the triangular inequality of norms, we can obtain:∣∣∣Ar,π
M −Ar,π̂

M̂

∣∣∣ ≤ ∣∣∣Ar,π̂
M −Ar,π̂

M̂

∣∣∣+ ∣∣∣Ar,π
M −Ar,π̂

M

∣∣∣
I,II

≤ 2γ

1− γ

∣∣∣(P̂T − PT )V
r,π̂

M̂

∣∣∣+ γ(1 + γ)

1− γ
|(π − π̂)PT V

r,π
M | , (20)

where the second inequality is derived by the following two parts.

Part I. Let’s consider the first part.∣∣∣Ar,π̂
M −Ar,π̂

M̂

∣∣∣ (i)= ∣∣∣(Qr,π̂
M −Qr,π̂

M̂

)
− E

(
V r,π̂
M − V r,π̂

M̂

)∣∣∣
(ii)

≤
∣∣∣(Qr,π̂

M −Qr,π̂

M̂

)
|+ |E

(
V r,π̂
M − V r,π̂

M̂

)∣∣∣
(iii)
= γ

∣∣∣(IS×A − γPT π̂)
−1(P̂T − PT )V

r,π̂

M̂

∣∣∣+ γ
∣∣∣(IS − γπ̂PT )

−1π̂(P̂T − PT )V
r,π̂

M̂

∣∣∣
(iv)
= γ

∥∥(IS×A − γPT π̂)
−1
∥∥
∞

∣∣∣(P̂T − PT )V
r,π̂

M̂

∣∣∣+ γ
∥∥(IS − γπ̂PT )

−1
∥∥
∞ ∥π̂∥∞

∣∣∣(P̂T − PT )V
r,π̂

M̂

∣∣∣
(v)

≤ 2γ

1− γ

∣∣∣(P̂T − PT )V
r,π̂

M̂

∣∣∣
• (i) exploits the definition of advantage function.

• (ii) applies the triangular inequality.
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• (iii) applies the simulation Lemma for action-value function in Lemma C.2 (a variant of
(Agarwal et al., 2019, Lemma 2.2)) and the simulation Lemma for state-value function in
Lemma C.3.

• (iv) exploits Holder’s inequality and the theorem of matrix infinity norm inequalities that
∥AB∥∞ ≤ ∥A∥∞∥B∥∞.

• (v) exploits the fact that ∥(IS×A − γPT π̂)
−1∥∞ ≤ 1

1−γ , ∥(IS − γπ̂PT )
−1∥∞ ≤ 1

1−γ , and
∥π∥∞ ≤ 1.

Part II. Let’s consider the second part:∣∣∣Ar,π
M −Ar,π̂

M

∣∣∣ = ∣∣∣(Qr,π
M −Qr,π̂

M

)
− E

(
V r,π
M − V r,π̂

M

)∣∣∣
(i)
=
∣∣∣γ(PT V

r,π
M − PT V

r,π̂
M

)
− E

(
V r,π
M − V r,π̂

M

)∣∣∣
(ii)
= γ

∣∣∣PT

(
V r,π
M − V r,π̂

M

)∣∣∣+ ∣∣∣E(V r,π
M − V r,π̂

M

)∣∣∣
(iii)

≤ (1 + γ)
∣∣∣E(V r,π

M − V r,π̂
M

)∣∣∣
(iv)

≤ γ(1 + γ)
∣∣(IS − γπ̂PT )

−1(π − π̂)PT V
r,π
M
∣∣

≤ γ(1 + γ)
∥∥(IS − γπ̂PT )

−1
∥∥
∞ |(π − π̂)PT V

r,π
M |

(v)

≤ γ(1 + γ)

1− γ
|(π − π̂)PT V

r,π
M |

• (i) applies the Bellman equation Q = r + γPT V .

• (ii) applies the triangular inequality.

• (iii) holds since ∥PT ∥∞ ≤ 1.

• (iv) applies the policy mismatch Lemma for state-value function in Lemma C.4.

• (v) exploits the fact that∥(IS − γπ̂PT )
−1∥∞ ≤ 1

1−γ

C.6 PROOF OF LEMMA 4.8

Proof. We can show that:∣∣∣Qc,π∗

M∪c −Qc,π̂∗

M∪c

∣∣∣ (a)= ∣∣(IS×A − γPT π)
−1c− (IS×A − γPT π)

−1ĉ
∣∣

=
∣∣(IS×A − γPT π)

−1|c− ĉ|
∣∣ (21)

• (a) results from the matrix representation of Bellman equation, i.e., Qc,π
M∪c = (IS×A −

γPT π)
−1c.

By definition of infinity norm, we have

|Qc,π
M∪c −Qc,π̂

M∪ĉ| ≤ ∥Q
c,π
M∪c −Qc,π

M∪ĉ∥∞. (22)

Further, we derive the error upper bound of the action-value function by that of cost.

∥Qc,π
M∪c −Qc,π

M∪ĉ∥∞
(b)
=
∥∥(IS×A − γPT π)

−1|c− ĉ|
∥∥
∞

(c)
=
∥∥(IS×A − γPT π)

−1
∥∥
∞ ∥c− ĉ∥∞

(d)

≤ 1

1− γ
∥c− ĉ∥∞
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• (b) uses Eq. (21)

• (c) exploits the theorem of matrix infinity norm inequalities that ∥AB∥∞ ≤ ∥A∥∞∥B∥∞

• (d) results from ∥(IS×A − γπPT )
−1∥∞ ≤ 1

1−γ .

C.7 PROOF OF LEMMA 5.1

Lemma C.5. (Good Event). Let δ ∈ (0, 1), define the good event Ek as the event at iteration k such
that the following inequalities hold simultaneously for all (s, a) ∈ S ×A and k ≥ 1:∣∣∣(P̂T k − PT

)
V

r,π̂E
k

M̂k

∣∣∣ (s, a) ≤ Rmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

∣∣∣(PT − P̂T k

)
V r,πE

M

∣∣∣ (s, a) ≤ Rmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

∣∣∣(π − π̂E
k

)
PT V

r,πE

M

∣∣∣ (s, a) ≤ Rmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

∣∣∣(π̂E
k − πE

)
P̂T kV

r,π̂E
k

M̂k

∣∣∣ (s, a) ≤ Rmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

∣∣∣(PT − P̂T k)V
c
∣∣∣ (s, a) ≤ Cmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

∣∣∣(PT − P̂T k)V̂
c
k

∣∣∣ (s, a) ≤ Cmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

where V r,π̂E

M̂k
, V r,πE

M , V c and V̂ c
k are defined in Lemma 4.6 and Lemma 4.7. ℓk(s, a) =

log(36SA(N+
k (s, a))2/δ). Then, Pr(Ek) ≥ 1− δ.

Proof. We show that each statement does not hold with probability less than δ/6. Let us denote

β3
N+

k (s,a)
(s, a) = Cmax

1−γ

√
ℓk(s,a)

2N+
k (s,a)

and β3
m(s, a) = Cmax

1−γ

√
ℓk(s,a)
2m . Consider the second to last

inequality. The probability that it does not hold is:

Pr
[
∃k ≥ 1,∃(s, a) ∈ S ×A :

∣∣∣(PT − P̂T k)V
c
∣∣∣ (s, a) > β3

N+
k (s,a)

(s, a)
]

(a)

≤
∑
(s,a)

Pr
[
∃k ≥ 1 :

∣∣∣(PT − P̂T k)V
c
∣∣∣ (s, a) > β3

N+
k (s,a)

(s, a)
]

(b)
=
∑
(s,a)

Pr
[
∃m ≥ 0 :

∣∣∣(PT − P̂T k)V
c
∣∣∣ (s, a) > β3

m(s, a)
]

(c)

≤
∑
m

∑
(s,a)

Pr
[∣∣∣(PT − P̂T k)V

c
∣∣∣ (s, a) > β3

m(s, a)
]

(d)

≤
∑
m

∑
(s,a)

2 exp

−2(β3
m(s, a))2m2

m
(

Cmax

1−γ

)2


=
∑
m

∑
(s,a)

2 exp (−ℓk(s, a))
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=
∑
m

∑
(s,a)

2δ

36SA(m+)2

=
δ

18
(1 +

π2

6
) ≤ δ

6
(23)

• (a) and (c) use union bound inequalities over (s, a) and m.

• (b) assumes that we visit a state-action pair (s, a) for m times, and only focus on these m
times that the transition model is updated.

• (d) applies the Hoeffding’s inequality and ∥V c∥∞ ≤ Cmax/(1 − γ) in Lemma 4.6. The
factor m2 in the numerator results from dividing by 1/m to average over samples, and the
factor m in the denominator results from the sum over m in the denominator of Hoeffding’s
bound.

Similarly, we have β1,2

N+
k (s,a)

(s, a) = Rmax

1−γ

√
ℓk(s,a)

2N+
k (s,a)

and β1,2
m (s, a) = Rmax

1−γ

√
ℓk(s,a)
2m for Lemma’s

first and second, third and fourth inequalities, respectively. Lemma’s last inequality employs
β3
N+

k (s,a)
(s, a) and β3

m(s, a) again. A union bound over the six probabilities results in Pr(Ēk) ≤
(δ/6 + δ/6 + δ/6 + δ/6 + δ/6 + δ/6) = δ. Thus, Pr(Ek) = 1− Pr(Ēk) ≥ 1− δ.

Proof of Lemma 5.1

Proof.

χ(s, a)
(a)

≤ γ
∣∣∣(PT − P̂T )V

c
∣∣∣+ ∣∣∣Ar,πE

M −Ar,π̂E

M̂

∣∣∣ ζ
(b)

≤ γ (Rmax(3 + γ)ζ(s, a) + Cmax(1− γ))

(1− γ)2

√
ℓk(s, a)

2N+
k (s, a)

≤ γ (Rmax(3 + γ)∥ζ∥∞ + Cmax(1− γ))

(1− γ)2

√
ℓk(s, a)

2N+
k (s, a)

≤
γCmax

(
Rmax(3 + γ)/min+(s,a) |A

r,πE

M |+ (1− γ)
)

(1− γ)2

√
ℓk(s, a)

2N+
k (s, a)

(24)

= σ

√
ℓk(s, a)

2N+
k (s, a)

(25)

where, for concision, we denote σ =
γCmax

(
Rmax(3+γ)/min+

(s,a)
|Ar,πE

M |+(1−γ)

)
(1−γ)2 .

• (a) uses Lemma 4.6 and the triangular inequality.

• (b) uses Lemma 4.7 and Lemma C.5.

From Lemma 4.6, since 2χ
1+χ/Cmax

increases monotonically with χ , we have

|c(s, a)− ĉk(s, a)| ≤
2χ

1 + χ/Cmax
= max

(s,a)∈S×A

2σ

√
ℓk(s,a)

2N+
k (s,a)

1 + σ/Cmax

√
ℓk(s,a)

2N+
k (s,a)

. (26)

Also, note that

|c(s, a)− ĉk(s, a)| ≤ max{c(s, a), ĉk(s, a)} ≤ Cmax (27)
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Thus, the following formula holds true,

|c(s, a)− ĉk(s, a)| ≤ Ck(s, a),∀ (s, a) ∈ S ×A, (28)

Ck(s, a) = min

 max
(s,a)∈S×A

2σ

√
ℓk(s,a)

2N+
k (s,a)

1 + σ/Cmax

√
ℓk(s,a)

2N+
k (s,a)

, Cmax

, (29)

Taking the supremum of Eq. (28) over all (s, a) pairs, we obtain

∥c(s, a)− ĉk(s, a)∥∞ ≤ max
(s,a)∈S×A

Ck(s, a). (30)

Note that, since

max
(s,a)∈S×A

min

 max
(s,a)∈S×A

2σ

√
ℓk(s,a)

2N+
k (s,a)

1 + σ/Cmax

√
ℓk(s,a)

2N+
k (s,a)

, Cmax

 = max
(s,a)∈S×A

min


2σ

√
ℓk(s,a)

2N+
k (s,a)

1 + σ/Cmax

√
ℓk(s,a)

2N+
k (s,a)

, Cmax

 ,

(31)

we can further simplify Ck as

Ck(s, a) = min


2σ

√
ℓk(s,a)

2N+
k (s,a)

1 + σ/Cmax

√
ℓk(s,a)

2N+
k (s,a)

, Cmax

 . (32)

C.8 UNIFORM SAMPLING STRATEGY FOR ICRL WITH A GENERATIVE MODEL

Corollary C.6. Let CP be the exact feasible set and CP̂k
be the feasible set recovered after k

iterations. The conditions of Definition 4.9 are satisfied, if either of the following statements are
satisfied:

(1)
1

1− γ
max

(s,a)∈S×A
Ck(s, a) ≤ ε;

(2) max
π∈Π†

max
µ0∈∆S

∣∣µT
0 (IS×A − γPT π)

−1Ck
∣∣ ≤ ε, Π† =

 ⋂
c∈CP

Π∗
M∪c

 ∪
 ⋂

ĉ∈C
P̂k

Π∗
M̂k

⋃
ĉk

 .

Proof. For statement (1),

inf
ĉk∈C

P̂k

sup
π∗∈Π∗

M∪c

∣∣∣Qc,π∗

M∪c(s, a)−Qc,π∗

M∪ĉk
(s, a)

∣∣∣ ≤ inf
ĉk∈C

P̂k

sup
π∗∈Π∗

M∪c

∥Qc,π∗

M∪c(s, a)−Qc,π∗

M∪ĉk
(s, a)∥∞

(a)

≤ inf
ĉk∈C

P̂k

1

1− γ
∥c(s, a)− ĉk(s, a)∥∞

(b)
=

1

1− γ
max

(s,a)∈S×A
Ck(s, a) ≤ ε,

inf
c∈CP

sup
π̂∗
k∈Π∗

M̂k∪ĉk

∣∣∣Qc,π̂∗
k

M∪c(s, a)−Q
c,π̂∗

k

M∪ĉk
(s, a)

∣∣∣ ≤ inf
c∈CP

sup
π̂∗
k∈Π∗

M̂k∪ĉk

∥Qc,π̂∗
k

M∪c(s, a)−Q
c,π̂∗

k

M∪ĉk
(s, a)∥∞

(c)

≤ inf
c∈CP

1

1− γ
∥c(s, a)− ĉk(s, a)∥∞

(d)
=

1

1− γ
max

(s,a)∈S×A
Ck(s, a) ≤ ε,
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where step (a) and (c) use Lemma 4.8, step (b) and (d) use Lemma 5.1.

For statement (2),

inf
ĉk∈C

P̂k

sup
π∗∈Π∗

M∪c

∣∣∣Qc,π∗

M∪c(s, a)−Qc,π∗

M∪ĉk
(s, a)

∣∣∣ (e)≤ inf
ĉk∈C

P̂k

max
π∈Π†

∣∣(IS×A − γPT π)
−1|c− ĉ|

∣∣
(f)

≤ max
π∈Π†

∣∣(IS×A − γPT π)
−1Ck

∣∣
≤ max

π∈Π†
max

µ0∈∆S

∣∣µT
0 (IS×A − γPT π)

−1Ck
∣∣ ≤ ε,

inf
c∈CP

sup
π̂∗
k∈Π∗

M̂k∪ĉk

∣∣∣Qc,π̂∗
k

M∪c(s, a)−Q
c,π̂∗

k

M∪ĉk
(s, a)

∣∣∣ (g)≤ inf
c∈CP

max
π∈Π†

∣∣(IS×A − γPT π)
−1|c− ĉ|

∣∣
(h)

≤ max
π∈Π†

∣∣(IS×A − γPT π)
−1Ck

∣∣
≤ max

π∈Π†
max

µ0∈∆S

∣∣µT
0 (IS×A − γPT π)

−1Ck
∣∣ ≤ ε,

where step (e) and (g) use Eq. (21), step (f) and (h) use Lemma 5.1.

Uniform Sampling Strategy for ICRL with a Generative Model

In this part, we additionally consider the problem setting where the agent does not employ any
exploration strategy to acquire desired information, but utilizes uniform sampling strategy to query a
generative model. The problem setting is based on the following assumption, which is stronger than
the assumption in the main paper.
Assumption C.7. The following statements hold:
(i). The agent have access to the generative model ofM;
(ii). The agent can query the expert’s policy πE in any state s ∈ S.

More specifically, the agent can always query a generative model about a state-action pair (s, a) to
receive a next state s′ ∼ P (·|s, a) and about a state s to receive an expert action aE ∼ πE(·|s). We
first present Alg. 2 for uniform sampling strategy with the generative model and study the sample
complexity of this algorithm in Theorem C.9.

Algorithm 2 Uniform Sampling Strategy for ICRL
Input: significance δ ∈ (0, 1), target accuracy ε, maximum number of samples per iteration nmax

Initialize k ← 0, ε0 = 1
1−γ

while εk > ε do
Collect ⌈nmax

SA ⌉ samples from each (s, a) ∈ S ×A
Update accuracy εk+1 = 1

1−γ max
(s,a)∈S×A

Ck+1(s, a)

Update π̂E
k+1(a|s) and P̂T k+1(s

′|s, a) in (5)
k ← k + 1

end while

Lemma C.8. (Metelli et al., 2021, Lemma B.8). Let a, b ≥ 0 such that 2a
√
b > e. Then, the

inequality x ≥ a log(bx2) is satisfied for all x ≥ −2aW−1

(
− 1

2a
√
b

)
, where W−1 is the secondary

component of the Lambert W function. Moreover, −2aW−1

(
− 1

2a
√
b

)
≤ 4a log(2a

√
b).

Theorem C.9. (Sample Complexity of Uniform Sampling Strategy). If Algorithm 2 stops at iteration
K with accuracy εK , then with probability at least 1− δ, it fulfills Definition 4.9 with a number of
samples upper bounded by,

n ≤ Õ

(
σ2SA

(1− γ)2ε2K

)
, (33)

where σ =
γCmax

(
Rmax(3+γ)/min+

(s,a)
|Ar,πE

M |+(1−γ)

)
(1−γ)2 and Õ notation suppresses logarithmic terms.
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Proof. We start from Corollary C.6. We further bound:

1

1− γ
max

(s,a)∈S×A
Ck(s, a) =

1

1− γ
max

(s,a)∈S×A
σ

√
ℓk(s, a)

2N+
k (s, a)

After K iterations, based on uniform sampling strategy, we know that NK ≥ 1 for any (s, a) ∈ S×A.
To terminate at iteration K, it suffices to enforce every (s, a) ∈ S ×A:

γCmax

(
Rmax(3 + γ)/min+(s,a) |A

r,πE

M |+ (1− γ)
)

(1− γ)3

√
ℓk(s, a)

2N+
k (s, a)

= εK

=⇒ NK(s, a) =
γ2C2

max

(
Rmax(3 + γ)/min+(s,a) |A

r,πE

M |+ (1− γ)
)2

ℓk(s, a)

2(1− γ)6ε2K
From Lemma C.8, we derive

NK(s, a)

= −γ2 (Rmax(3 + γ)∥ζ∥∞ + Cmax(1− γ))
2

(1− γ)6ε2K
W−1

(
− 2(1− γ)6ε2K
γ2 (Rmax(3 + γ)∥ζ∥∞ + Cmax(1− γ))

2

√
δ

36SA

)

≤ 2γ2 (Rmax(3 + γ)∥ζ∥∞ + Cmax(1− γ))
2

(1− γ)6ε2K
log

(
γ2 (Rmax(3 + γ)∥ζ∥∞ + Cmax(1− γ))

2

(1− γ)6ε2K

√
36SA

δ

)

= Õ

(
γ2 (Rmax(3 + γ)∥ζ∥∞ + Cmax(1− γ))

2

(1− γ)6ε2K

)

= Õ

γ2C2
max

(
Rmax(3 + γ)/min+(s,a) |A

r,πE

M |+ (1− γ)
)2

(1− γ)6ε2K

 (34)

By summing n =
∑

(s,a)∈S×A NK(s, a), we obtain the upper bound.

n ≤ Õ

(
γ2C2

max

(
Rmax(3 + γ)/min+(s,a) |A

r,πE

M |+ (1− γ)
)2
SA

(1− γ)6ε2K

)
(35)

Since σ =
γCmax

(
Rmax(3+γ)/min+

(s,a)
|Ar,πE

M |+(1−γ)

)
(1−γ)2 , we have

n ≤ Õ

(
σ2SA

(1− γ)2ε2K

)
. (36)

Regarding the sample complexity in the RL phase, since the reward function is known, by Corollary
2.7 in Section 2.3.1 from book ’Reinforcement Learning: Theory and Algorithms’ (Agarwal et al.,
2019), the sample complexity of obtaining a ε-optimal policy is O(SA/(1 − γ)3ε2), which is
dominated by the sample complexity in Theorem 5.5. Note that σ also contains 1/(1 − γ). As a
result, Eq. (36) still holds true, after taking the sample complexity of this RL phase into account.

C.9 PROOF OF LEMMA 5.2

Proof.

∥ek(s, a;π∗)∥∞
(a)

≤
∥∥(IS×A − γPT π

∗)−1|c− ĉk|
∥∥
∞

(b)

≤
∥∥µT

0 (IS×A−γPT π)
−1Ck

∥∥
∞ . (37)

• (a) follows Lemma 4.8 (treat π = π∗ and ĉ = ĉk).

• (b) follows Lemma 5.1.
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C.10 PROOF OF LEMMA 5.4

Proof. This results generalizes (Kaufmann et al., 2021, Lemma 7) to our setting. We define event
Gcnt as:

Gcnt =

{
∀k ∈ N⋆,∀(s, a) ∈ S ×A : Nk(s, a) ≥

1

2
N̄k(s, a)− log

(
2SA

δ

)}
. (38)

We calculate the probability of the complement of event Gcnt.

P
((
Gcnt

)c)
(a)

≤
∑

(s,a)∈S×A

P
(
∃k ∈ N : Nk(s, a) ≤

1

2
N̄k(s, a)− log

(
2SA

δ

))
(b)

≤
∑

(s,a)∈S×A

P

(
∃k ∈ N :

nmax∑
h=1

k∑
i=1

1
(
(shi , a

h
i ) = (s, a)

)
≤ 1

2

∑
s0

nmax∑
h=1

k∑
i=1

µ0(s0)η
h
i (s, a|s0)− log

(
2SA

δ

))
(c)

≤
∑

(s,a)∈S×A

δ

2SA
=

δ

2
, (39)

• (a) results from a union bound over (s, a).

• (b) results from Definition 5.3.

• (c) results from (Kaufmann et al., 2021, Lemma 9).

As a result, we have with probability at least 1− δ/2:

Nk(s, a) ≥
1

2
N̄k(s, a)− βcnt(δ), (40)

where βcnt(δ) = log (2SA/δ).

The following proof adapts from (Lindner et al., 2022, Lemma B.18). Distinguish two cases. First,
let βcnt(δ) ≤ 1

4N̄k(s, a). Then Nk(s, a) ≥ 1
4N̄k(s, a), and

min

{
σ

√
ℓk(s, a)

2N+
k (s, a)

, Cmax

}
≤ σ

√
ℓk(s, a)

2N+
k (s, a)

= σ

√
log(36SA(N+

k (s, a))2/δ)

2N+
k (s, a)

≤ σ

√
log(36SA(N̄+

k (s, a)/4)2/δ)

N̄+
k (s, a)/2

≤ σ

√
2ℓ̄k(s, a)

N̄+
k (s, a)

, (41)

where we use that log(36SAx2/δ)/x is non-increasing for x > e
√

δ
36SA , where e is Euler’s number.

For the second case, let βcnt(δ) >
1
4N̄k(s, a). Then,

min

{
σ

√
ℓk(s, a)

2N+
k (s, a)

, Cmax

}
≤ Cmax < Cmax

√
4βcnt(δ)

N̄+
k (s, a)

≤ Cmax

√
4ℓ̄k(s, a)

N̄+
k (s, a)

, (42)

where we use ℓ̄k(s, a) = log
(
36SA(N̄+

k (s, a))2/δ
)
= βcnt(δ) + log

(
18(N̄+

k (s, a))2
)
≥ βcnt(δ).

By combining the two cases, we obtain

min

{
σ

√
ℓk(s, a)

2N+
k (s, a)

, Cmax

}
≤ max{σ,

√
2Cmax}

√
2ℓ̄k(s, a)

N̄+
k (s, a)

= σ̌

√
2ℓ̄k(s, a)

N̄+
k (s, a)

, (43)

where we denote σ̌ = max{σ,
√
2Cmax}.
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C.11 PROOF OF THEOREM 5.5

Proof. We assume BEAR exploration strategy terminates with τ iterations, then

1

1− γ
max
(s,a)
Cτ (s, a)

(a)
=

1

1− γ
max
(s,a)

min

{
σ

√
ℓτ (s, a)

2N+
τ (s, a)

, Cmax

}
(b)

≤ 1

1− γ
max
(s,a)

σ̌

√
2ℓ̄τ (s, a)

N̄+
τ (s, a)

= ετ , (44)

where step (a) follows Lemma 5.1 and step (b) results from Lemma 5.4. Hence, we obtain,

ετ =
σ̌

1− γ
max
(s,a)

√
2ℓ̄τ (s, a)

N̄+
τ (s, a)

=
σ̌

1− γ
max
(s,a)

√
2log(36SA(N̄+

τ (s, a))2/δ)

N̄+
τ (s, a)

≥ σ̌

1− γ

√
2log(36SA(N̄+

τ (s, a))2/δ)

N̄+
τ (s, a)

Thus,

N̄+
τ (s, a) ≥ 2σ̌2log(36SA(N̄+

τ (s, a))2/δ)

(1− γ)2ε2τ

From Lemma C.8, we have

N̄+
τ (s, a) = − 4σ̌2

(1− γ)2ε2τ
W−1

(
− (1− γ)2ε2τ

4γ2σ̌2

√
δ

36SA

)

≤ 8σ̌2

(1− γ)2ε2τ
log

(
4γ2σ̌2

(1− γ)2ε2τ

√
36SA

δ

)

= Õ
(

σ̌2

(1− γ)2ε2τ

)
(45)

By summing over n =
∑

(s,a)∈S×A N̄+
τ (s, a), we obtain the upper bound.

n ≤ Õ
(

σ̌2SA

(1− γ)2ε2τ

)
, (46)

where σ̌ = max{σ,
√
2Cmax}

For consistency with the sample complexity of uniform sampling strategy, we replace τ with K, and
obtain

n ≤ Õ
(

σ̌2SA

(1− γ)2ε2K

)
. (47)

C.12 THEORETICAL RESULTS ON POLICY-CONSTRAINED STRATEGIC EXPLORATION (PCSE)

Definition C.10. We define the optimal policy w.r.t. cost, reward, and safety as follows:

• The cost minimization policy: πc,∗ = argminπ∈Π E[
∑

t γ
tc(st, at)].

• The reward maximization policy: πr,∗ = argmaxπ∈Π E[
∑

t γ
tr(st, at)].

• The optimal safe policy: π∗ = argmaxπ∈Πsafe
E[
∑

t γ
tr(st, at)] where Πsafe = {π :

E[
∑

t γ
tc(st, at)] ≤ ϵ}
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Accordingly, we can have the following relations:

• Eµ0
[V c,πc,∗

(s0)] ≤ Eµ0
[V c,π∗

(s0)] ≤ Eµ0
[V c,πc,∗

(s0)] + ϵ where the equality normally
holds that V c,πc,∗

(s0) = 0.

• Eµ0 [V
r,π∗

(s0)] ≤ Eµ0 [V
r,πr,∗

(s0)].

Let’s define the following symbols:

• ε0 = 1
4(1−γ) .

• επk = supµ0∈∆S×A µT
0 (IS×A − γPT π)Ck

• εk = maxπ∈Πk−1
επk

We can construct a set of plausibly optimal policies as

Πk = Πc
k ∩Πr

k

Πc
k =

{
π ∈ ∆A

S : sup
µ0∈∆S

µT
0 (V

c,π

M̂∪ĉk
− V c,∗

M̂∪ĉk
) ≤ 4εk + 2ϵ

}

Πr
k =

{
π ∈ ∆A

S : inf
µ0∈∆S

µT
0

(
V r,π

M̂
− V r,π̂∗

M̂

)
≥ Rk

}
,

where Rk = 2γRmax

(1−γ)2 ∥PT − P̂T ∥∞ + γRmax

(1−γ)2 ∥(π
∗ − π̂∗)∥∞.

Lemma C.11. (π∗ propagation). Under the good event Ek, if π∗, π̂∗
k ∈ Πc

k−1 then π∗ ∈ Πc
k

Proof. Given a c ∈ CP, we can show:

sup
µ0∈∆S

µT
0

(
V c,π∗

M̂∪ĉk
− V c,∗

M̂∪ĉk

)
= sup

µ0∈∆S
µT
0

(
V c,π∗

M̂∪ĉk
− V c,π∗

M̂∪c
+ V c,π∗

M̂∪c
− V c,∗

M̂∪ĉk

)
(48)

(i)

≤ sup
µ0∈∆S

µT
0

(
εk + V c,π∗

M̂∪c
− V c,∗

M̂∪ĉk

)
(ii)

≤ 2εk + 2ϵ,

which demonstrates that π∗ ∈ Πc
k.

• (i) holds since

|V c,π∗

M̂∪ĉk
− V c,π∗

M̂∪c
| ≤ (IS − γπ∗PT )

−1π∗|ĉk − c|

≤ (IS − γπ∗PT )
−1π∗Ck,

where

– The first inequality follows (Metelli et al., 2021, Lemma B.2) (treat r̂k = −ĉk and
r = −c).

– The second inequality is due to the good event definition in Lemma C.5.

As a result:

sup
µ0∈∆S

µT
0

(
V c,π∗

M̂∪ĉk
− V c,π∗

M̂∪c

)
= επ

∗

k ≤ max
π∈Πc

k−1

επk = εk (49)
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• (ii) holds since

V c,π∗

M̂∪c
− V c,∗

M̂∪ĉk
= V c,π∗

M̂∪c
− V

c,π̂c,∗
k

M̂∪ĉk

≤ V c,πc,∗

M̂∪c
− V

c,π̂c,∗
k

M̂∪ĉk
+ ϵ

= min
π

V c,π

M̂∪c
−min

π
V c,π

M̂∪ĉk
+ ϵ

≤ min
π′∈Πc

k−1

V c,π′

M̂∪c
− min

π′∈Πc
k−1

V c,π′

M̂∪ĉk
+ 2ϵ

≤ max
π∈Πc

k−1

∣∣∣V c,π

M̂∪ĉk
− V c,π

M̂∪c

∣∣∣+ 2ϵ,

where

– The first inequality utilizes Eµ0
[V c,πc,∗

(s0)] + ϵ ≥ Eµ0
[V c,π∗

(s0)].
– The second inequality utilizes ∀c,Eµ0

[V c,πc,∗
(s0)] ≤ Eµ0

[V c,π∗
(s0)] ≤

Eµ0 [V
c,πc,∗

(s0)] + ϵ for ϵ > 0 and the assumption that π∗, π̂∗
k ∈ Πc

k−1.
– The third inequality results from Lemma C.12.

By following the inequality (49), we have:

max
π∈Πc

k−1

sup
µ0∈∆S

µT
0

(
V c,π

M̂∪ĉk
− V c,π

M̂∪c

)
+ 2ϵ = εk + 2ϵ

Lemma C.12.

max
x

f(x)−max
x

g(x) ≤ max
x

(f(x)− g(x))

min
x

f(x)−min
x

g(x) ≤ max
x

(f(x)− g(x))

Proof. For the first inequality, suppose x1 = argmax f(x) and x2 = argmax g(x), then we have,

max
x

f(x)−max
x

g(x) = f(x1)− g(x2) ≤ f(x1)− g(x1) ≤ max
x

(f(x)− g(x))

For the second inequality, suppose x3 = argmin f(x) and x4 = argmin g(x), then we have,

min
x

f(x)−min
x

g(x) = f(x3)− g(x4) ≤ f(x4)− g(x4) ≤ max
x

(f(x)− g(x))

Lemma C.13. Under the good event Ek, if π̂∗
k, ξ ∈ Πc

k−1 and ξ /∈ Πc
k, then ξ is suboptimal for some

cost ĉk′ ∈ RP̂k′
for all k′ ≥ k.

Proof. Let’s consider the following decomposition:

V c,ξ

M̂∪ĉk′
− V c,∗

M̂∪ĉk′

(i)

≥ V c,ξ

M̂∪ĉk′
− V

c,π̂c,∗
k

M̂∪ĉk′

= V c,ξ

M̂∪ĉk′
− V c,ξ

M̂∪ĉk
+ V c,ξ

M̂∪ĉk
− V

c,π̂c,∗
k

M̂∪ĉk
+ V

c,π̂c,∗
k

M̂∪ĉk
− V

c,π̂c,∗
k

M̂∪ĉk′

(ii)

≥ −4εk + V c,ξ

M̂∪ĉk
− V

c,π̂c,∗
k

M̂∪ĉk

(iii)
> 2ϵ

which indicates that ξ cannot be optimal for k′ ≥ k.

• (i) holds since V
c,π̂c,∗

k

M̂∪ĉk′
≥ V

c,π̂c,∗
k′

M̂∪ĉk′
= V c,∗

M̂∪ĉk′
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• (ii) holds by following (Metelli et al., 2021, Lemma B.5) (treat π = π̂c,∗
k and π = ξ

respectively, while r̂k = ĉk and r̂k′ = ĉk′ )

sup
µ0∈∆S

µT
0

(
V

c,π̂c,∗
k

M̂∪ĉk′
− V

c,π̂c,∗
k

M̂∪ĉk

)
≤ 2ε

π̂c,∗
k

k ≤ 2εk

sup
µ0∈∆S

µT
0

(
V c,ξ

M̂∪ĉk
− V c,ξ

M̂∪ĉk′

)
≤ 2εξ ≤ 2εk

• (iii) holds since according to the definition of Πc
k and considering our assumption that

ξ /∈ Πc
k, we have:

sup
µ0∈∆S

µT
0

(
V c,ξ

M̂∪ĉk
− V c,∗

M̂∪ĉk

)
> 4εk + 2ϵ

Lemma C.14. If ε0 = 1
4(1−γ) , then for every k ≥ 0, it holds that π∗, π̂∗

k+1 ∈ Πc
k.

Proof. We prove the result by induction on k. For k = 0, for every policy π ∈ ∆A
S , we have

supµ0∈∆S µT
0

(
V c,π

M̂∪ĉ0
− V c,∗

M̂∪ĉ0

)
≤ 1

1−γ ≤ 4ε0 ≤ 4ε0 + ϵ. Thus, Πc
0 contains all the policies, i.e.,

Πc
0 = ∆A

S , and in particular π∗, π̂∗
1 ∈ Πc

0. Suppose that for every 1 ≤ k′ < k the statement holds,
we aim to prove that the statement also holds for k. Let k′ = k − 1, from the inductive hypothesis
we have that π∗, π̂∗

k ∈ Πc
k−1. Then, from Lemma C.11, it holds that π∗ ∈ Πc

k. If π̂∗
k+1 ∈ Πc

k, the
proof is finished. If π̂∗

k+1 /∈ Πc
k, we prove by contradiction. Let 1 ≤ j ≤ k be the iteration such that

π̂∗
k+1 ∈ Πc

j−1 and π̂∗
k+1 /∈ Πc

j . Note that this assumption always holds, since Πc
0 contains all policies.

Recalling the inductive hypothesis, we have that π̂∗
j ∈ Πc

j−1. Thus, from Lemma C.13, it must be that
π̂∗
k+1 is suboptimal for all j′⩾j, in particular for j′ = k + 1, which brings about a contradiction.

Lemma C.15. It holds that π∗ ∈ Πr
k, where:

Πr
k =

{
π ∈ ∆A

S : inf
µ0∈∆S

µT
0

(
V r,π

M̂
− V r,π̂∗

M̂

)
≥ Rk

}
where

Rk =
2γRmax

(1− γ)2
∥PT − P̂T ∥∞ +

γRmax

(1− γ)2
∥(π∗ − π̂∗)∥∞

Proof. We should show if π ∈ Πr
k, we will have V r,π

M ≥ V r,π∗

M .

V r,π

M̂
− V r,π̂∗

M̂
= V r,π

M̂
− V r,π

M + V r,π
M − V r,π∗

M + V r,π∗

M − V r,π̂∗

M + V r,π̂∗

M − V r,π̂∗

M̂
(i,ii,iii)

≤ 2γRmax

(1− γ)2
∥PT − P̂T ∥∞ +

γRmax

(1− γ)2
∥(π∗ − π̂∗)∥∞ + V r,π

M − V r,π∗

M

= Rk + V r,π
M − V r,π∗

M

Since infµ0∈∆S µT
0

(
V r,π

M̂
− V r,π̂∗

M̂

)
≥ Rk, it must hold that infµ0∈∆S µT

0

(
V r,π
M − V r,π∗

M

)
≥ 0

• To show (i), we first follows the simulation Lemma for the state-value function:

V r,π

M̂
− V r,π

M = γ(IS − γπP̂T )
−1π(P̂T − PT )V

r,π
M

Then we derive an upper bound for the difference of these state-values as follows:

V r,π

M̂
− V r,π

M ≤ γ

1− γ
∥π(P̂T − PT )V

r,π
M ∥∞

≤ γRmax

(1− γ)2
∥π(P̂T − PT )∥∞

≤ γRmax

(1− γ)2
∥P̂T − PT ∥∞
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• (ii) holds due to the policy mismatch Lemma C.4:

V r,π∗

M − V r,π̂∗

M = γ(IS − γπ̂∗PT )
−1(π∗ − π̂∗)PT V

r,π∗

M

Then we derive an upper bound for the difference of these state-values as follows:

V r,π∗

M − V r,π̂∗

M ≤ γ

1− γ
∥(π∗ − π̂∗)PT V

r,π∗

M ∥∞

≤ γRmax

(1− γ)2
∥(π∗ − π̂∗)PT ∥∞

≤ γRmax

(1− γ)2
∥(π∗ − π̂∗)∥∞

• (iii) holds due to the derivation to (i):

V r,π̂∗

M − V r,π̂∗

M̂
≤ γRmax

(1− γ)2
∥PT − P̂T ∥∞

Since we can guarantee V π
M ≥ V π∗

M , we know π∗ ∈ {π|V π
M ≥ V π∗

M }. Subsequently, according to
our Lemma 4.4, to find the feasible constraint set, the exploration policy should follow the π that
visits states with larger cumulative rewards.

Lemma C.16. Under the good event Ek, let c̃ ∈ argminc∈CP
max(s,a)∈S×A |c(s, a)− ĉk(s, a)|. If

π ∈ Πk and π∗ ∈ Πk−1, then supµ0∈∆S µT
0

(
V c,π

M̂∪c̃
− V c,∗

M̂∪c̃

)
≤ 6εk + ϵ.

Proof.

sup
µ0∈∆S

µT
0

(
V c,π

M̂∪c̃
− V c,∗

M̂∪c̃

)
≤ sup

µ0∈∆S
µT
0

(
V c,π

M̂∪c̃
− V c,π

M̂∪ĉk

)
︸ ︷︷ ︸

(a)

+ sup
µ0∈∆S

µT
0

(
V c,π

M̂∪ĉk
− V c,∗

M̂∪ĉk

)
︸ ︷︷ ︸

(b)

+ sup
µ0∈∆S

µT
0

(
V c,∗
M̂∪ĉk

− V c,∗
M̂∪c̃

)
︸ ︷︷ ︸

(c)

,

≤ (εk) + (4εk + ϵ) + (εk)

= 6εk + ϵ

where

• (a) holds due to supµ0∈∆S µT
0

(
V c,π

M̂∪c̃
− V c,π

M̂∪ĉk

)
≤ επk ≤ εk.

• (b) results from supµ0∈∆S µT
0

(
V c,π

M̂∪ĉk
− V c,∗

M̂∪ĉk

)
≤ 4εk + ϵ, since π ∈ Πk.

• (c) follows Eq. (49), recalling the definition of c̃.

C.13 PROOF OF THEOREM 5.6

Proof. First of all, note that PCSE for ICRL is optimizing a tighter bound (Corollary C.6 (2)),
compared with that of BEAR exploration strategy (Corollary C.6 (1)). Thus, results of Theorem 5.5,
namely sample complexity of BEAR strategy, still apply to PCSE for ICRL, serving as the sample
complexity in the worst case. Let’s begin the problem-dependent analysis. Recall the definition of
advantage function Ac,∗

M̂∪c̃
(s, a) = Qc,∗

M̂∪c̃
(s, a) − V c,∗

M̂∪c̃
(s). Suppose we have derived a value of

N̄K(s, a) so that for all (s, a) ∈ S ×A, it holds that:

CK(s, a) = min

{
σ

√
ℓK(s, a)

2N+
K(s, a)

, Cmax

}
≤ σ̌

√
2ℓ̄K(s, a)

N̄+
K(s, a)

≤
−mina′∈A Ac,∗

M̂∪c̃
(s, a′)εK

6εK−1 + ϵ
. (50)
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From Lemma C.8, we obtain

N̄+
k (s, a) =

2σ̌2(6εK−1 + ϵ)2ℓ̄K(s, a)

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K

= − 4σ2(6εK−1 + ϵ)2

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K
W−1

(
(mina′∈A Ac,∗

M̂∪c̃
(s, a′))2ε2K

4σ2(6εK−1 + ϵ)2

√
δ

36SA

)

=
8σ2(6εK−1 + ϵ)2

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K
log

(
4σ2(6εK−1 + ϵ)2

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K

√
36SA

δ

)

= Õ

(
σ2(6εK−1 + ϵ)2

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K

)
. (51)

Summing over n =
∑

(s,a)∈S×A N̄+
k (s, a) and recalling the sample complexity of BEAR exploration

strategy in Theorem 5.5, we obtain

n ≤ Õ

(
min

{
γ2σ̌2SA

(1− γ)2ε2K
,

σ2(6εK−1 + ϵ)2SA

(min(s,a) A
c,∗
M̂∪c̃

(s, a))2ε2K

})
. (52)

Next, we explain the rationale for assumption in Eq. (50). We have for every π ∈ Πk,

∥ek(s, a;π∗, π̂∗)∥∞
(a)

≤ γ

∥∥∥∥ max
π∈{π̂∗,π∗}

Ṽ
|c−ĉk|,π
M̂∪|c−ĉk|

∥∥∥∥
∞

(b)

≤ γµT
0 (IS − γπP̂T )

−1πCk
(c)

≤ γεK
6εK + ϵ

µT
0 (IS − γπP̂T )

−1π
(
−Ac,∗

M̂∪c̃

)
(d)
=

γεK
6εK−1 + ϵ

µT
0

(
V c,π

M̂∪c̃
− V c,∗

M̂∪c̃

) (e)

≤ εK , (53)

• (a) follows the step (h) in Lemma 4.8.

• (b) follows the matrix form Bellman equation for value function.

• (c) is based on the assumption in Eq. (50).

• (d) follows (Metelli et al., 2021, Lemma B.3), where we treat r = −c̃ and note that
V π
M̂∪(−c̃)

= −V π
M̂∪c̃

, Qπ
M̂∪(−c̃)

= −Qπ
M̂∪c̃

and Aπ
M̂∪(−c̃)

= −Aπ
M̂∪c̃

.

• (e) results from Lemma C.16 and γ < 1.

C.14 OPTIMIZATION PROBLEM AND THE TWO-TIMESCALE STOCHASTIC APPROXIMATION

We can now formulate the optimization problem.

εk+1 = sup
µ0∈∆S

π∈Πk

µT
0 (IS×A − γPT π)Ck+1

s.t. Πk = Πc
k ∩Πr

k

Πc
k =

{
π ∈ ∆A

S : sup
µ0∈∆S

µT
0 (V

c,π

M̂∪ĉk
− V c,∗

M̂∪ĉk
) ≤ 4εk + 2ϵ

}

Πr
k =

{
π ∈ ∆A

S : inf
µ0∈∆S

µT
0

(
V r,π

M̂
− V r,π̂∗

M̂

)
≥ Rk

}
(54)

where Rk = 2γRmax

(1−γ)2 ∥PT − P̂T ∥∞ + γRmax

(1−γ)2 ∥(π
∗ − π̂∗)∥∞.
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Recall that the discounted normalized occupancy measure is defined by

ρπM(s, a) = (1− γ)

∞∑
t=0

γtPπ
µ0
(st = s, at = a), (55)

where the normalizer (1− γ) makes ρπM(s, a) a probability measure, i.e.,
∑

(s,a) ρ
π
M(s, a) = 1.

The promised relationship between reward value function and occupancy measure is as follows:

(1− γ)V r,π
M

(a)
= (1− γ)Eµ0,π,PT

[ ∞∑
t=0

γtr(st, at)
]

= (1− γ)

∞∑
t=0

γt
∑
(s,a)

Pπ
µ0
(st = s, at = a)r(st = s, at = a)

(b)
=
∑
(s,a)

[
(1− γ)

∞∑
t=0

γtPπ
µ0
(st = s, at = a)

]
·
[
r(st = s, at = a)

]
= ⟨ρπM, r⟩, (56)

where step (a) follows the definition of the reward state-value function, and step (b) exchanges the
order of two summations.

Similarly, concerning the cost function, the relationship between the cost value function and (the
same) occupancy measure is as follows:

(1− γ)V c,π
M = (1− γ)Eπ,PT

[ ∞∑
t=0

γtc(st, at)
]

= (1− γ)

∞∑
t=0

γt
∑
(s,a)

Pπ
µ0
(st = s, at = a)c(st = s, at = a)

=
∑
(s,a)

[
(1− γ)

∞∑
t=0

γtPπ
µ0
(st = s, at = a)

]
· [c(st = s, at = a)]

= ⟨ρπM, c⟩. (57)

For simplicity, denote the occupancy measure vector ρπM as vector x. As a result, the optimization
problem (54) can be recasted as a linear program.

min
x

− ⟨x, Ck+1⟩

s.t. − (1− γ)(V c,∗
M̂∪ĉk

+ 4εk + 2ϵ) + ⟨x, ĉk⟩ ≤ 0

(1− γ)(V r,π̂∗

M̂
+Rk)− ⟨x, r⟩ ≤ 0

(58)

To solve this linear program, we introduce the Lagrangian function and calculate its saddle points by
solving the dual problem. The Lagrangian of this primal problem is defined as:

L(x, λ) =− ⟨x, Ck+1⟩+ λ1

(
−(1− γ)(V c,∗

M̂∪ĉk
+ 4εk + 2ϵ) + ⟨x, ĉk⟩

)
+ λ2

(
(1− γ)(V r,π̂∗

M̂
+Rk)− ⟨x, r⟩

)
, (59)

where λ = [λ1, λ2]
T is a nonnegative real vector, composed of so-called Lagrangian multipliers. The

dual problem is defined as:

min
x

max
λ≥0

L(x, λ). (60)

To solve this dual problem, we follow a gradient-based approach, known as the two-timescale
stochastic approximation (Szepesvári, 2021), . At time step k, the following updates are conducted,

xk+1 − xk = −ak(L′
x(xk, λk) +Wk), (61)

λk+1 − λk = bk(L
′
λ(xk, λk) + Uk), (62)
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where the two coefficients ak ≪ bk, satisfying
∑

k ak =
∑

bk = ∞,
∑

a2k < ∞ and
∑

b2k < ∞.
Under this condition, the convergence is guaranteed in the limit. As an option, we can set ak =
c/k, bk = c/k0.5+κ, with c being a constant and 0 < κ < 0.5. Wk and Uk are two zero-mean noise
sequences. The two gradients are:

L′
x(xk, λk) = −Ck+1 + λ1ĉk − λ2r, (63)

L′
λ(xk, λk) =

[
L′
λ1
(xk, λk)

L′
λ2
(xk, λk)

]
=

[
−(1− γ)(V c,∗

M̂∪ĉk
+ 4εk + 2ϵ) + ⟨x, ĉk⟩

(1− γ)(V r,π̂∗

M̂
+Rk)− ⟨x, r⟩

]
. (64)

At each time step k, the exploration policy can be calculated as,

πk(a|s) =
xk(s, a)∑
a xk(s, a)

. (65)

D EXPERIMENTAL DETAILS

We ran experiments on a desktop computer with Intel(R) Core(TM) i5-14400F and NVIDIA GeForce
RTX 2080 Ti.

D.1 DISCRETE ENVIRONMENT

More details about Gridworld. In this paper, we create a map with dimensions of 7 × 7 units
and define four distinct settings, as illustrated in Figure 2. We use two coordinates to represent
the location, where the first coordinate corresponds to the vertical axis, and the second coordinate
corresponds to the horizontal axis. The agent aims to navigate from a starting location to a target
location, while avoiding the given constraints. The agent starts in the lower left cell (0, 0), and it has
8 actions which corresponds to 8 adjacent directions, including four cardinal directions (up, down,
left, right) as well as the four diagonal directions (upper-left, lower-left, upper-right, lower-right). The
reward and target location are the same, which locates in the upper right cell (6, 6) for the first, second
and fourth Gridworld environment or locates in the upper left cell (6, 0) for the third Gridworld
environment. If the agent takes an action, then with probability 0.05 this action fails and the agent
moves in any viable random direction (including the direction this action leads to) with uniform
probabilities. The reward in the reward state cell is 1, while all other cells have a 0 reward. The cost
in a constrained location is also 1. The game continues until a maximum time step of 50 is reached.

Comparison Methods. The upper confidence bound (UCB) exploration strategy is derived from
the UCB algorithm, which selects an action with the highest upper bound. The maximum-entropy
strategy selects an action on a state with the maximum entropy given previous choices of actions.
The random strategy uniformly randomly selects a viable action on a state s. The ϵ-greedy strategy
selects an action based on the ϵ-greedy algorithm, balancing exploration and exploitation with the
exploration parameter ϵ = 1/

√
k.

More details about Figure 3. In Figure 3, we plot the mean and 68% confidence interval (1-
sigma error bar) computed with 5 random seeds (123456, 123, 1234, 36, 34) and exploration episodes
ne = 1. The six exploration strategies compared in Figure 3 include: upper confidence bound
(UCB), maximum-entropy, random, BEAR, ϵ-greedy and PCSE. Meanwhile, we utilize the running
score to make the training process more resilient to environmental stochasticity: running_score =
0.2 ∗ running_score+ 0.8 ∗ iteration_rewards (or iteration_costs) (Luo et al., 2022).

D.2 WEIGHTED GENERALIZED INTERSECTION OVER UNION (WGIOU)

In this section, we present the methodology for designing the metric that assesses the similarity
between the estimated and ground-truth cost functions, which we refer to as WGIoU. We commence
our discussion by explaining IoU, followed by GIoU, and ultimately introduce the novel concept of
WGIoU for ICRL.

Intersection Over Union (IoU) score is a commonly used metric in the field of object detection, which
measures how similar two sets are. The IoU score is bounded in [0, 1] (0 being no overlap between
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two sets and 1 being complete overlap). Suppose there are two sets X and Y ,

IoU =
|X ∩ Y |
|X ∪ Y |

.

Note that IoU equals to zero for all two sets with no overlap, which is a rough metric and incurs the
problem of vanishing gradients. To further measure the difference between two sets with no overlap,
Signed IoU (SIoU) (Simonelli et al., 2019) and Generalized IoU (GIoU) (Rezatofighi et al., 2019) are
proposed. Both SIoU and GIoU are bounded in [−1, 1]. However, SIoU is constrained to rectangular
bounding box, which is not the case for cost function. By contrast, GIoU is not limited to rectangular
box. Thus, GIoU is more suitable for comparing the distance between the estimated cost function
and the ground-truth cost function.

GIoU = IoU− |Z\(X ∪ Y )|
|Z|

,

where set Z is the minimal enclosing convex set that contains both X and Y . Taking cost function into
account, the difference between ĉk the estimated cost function at iteration k and c the ground-truth
cost function is calculated as,

GIoU =
|c ∩ ĉk|
|c ∪ ĉk|

− |(c⊕ ĉk)\(c ∪ ĉk)|
|c⊕ ĉk|

,

where ĉk ⊕ c denotes the enclosing convex matrix of c and ĉk.

Note that the estimated cost function ĉk could have different values, but GIoU only reflects spatial
relationship and is unable to represent weight features. To accommodate our settings, weighted GIoU
(WGIoU) is proposed, where we measure the distance between a weighted estimated cost function
and a uniformly valued (or weighted) ground-truth cost function. WGIoU is also bounded in [−1, 1].
To calculate WGIoU, first, remap the cost function to ({0} ∪ [1,+∞))

S×A,

ĉ⋇k (s, a) =
ĉk(s, a)

min
{
min+(s,a)∈S×A ĉk(s, a),min+(s,a)∈S×A c(s, a)

} , (66)

c⋇(s, a) =
c(s, a)

min
{
min+(s,a)∈S×A ĉk(s, a),min+(s,a)∈S×A c(s, a)

} . (67)

where min+(s,a)∈S×A returns the minimum positive value of ĉk or c over all (s, a) pairs. Note that
c must exceed 0 at certain (s, a), otherwise the cost function are all zeros, indicating an absence
of constraint at anywhere. Also note that if ĉk are all zeros, let ĉ⋇k (s, a) = 0 and c⋇(s, a) =

c(s, a)/min+(s,a)∈S×A c(s, a). Besides the two trivial situations, the above two equations (66 and 67)
can be applied naturally.

Then, WGIoU is defined as:

WGIoU =
⟨ĉ⋇k , c⋇⟩

⟨1,max{ĉ⋇k , c⋇, ⟨ĉ
⋇
k , c

⋇⟩}⟩
+
(
e−⟨1,max{ĉ⋇k ,c⋇}⟩ − 1

)
1
{
⟨ĉ⋇k , c

⋇⟩ = 0
}
,

where 1 denotes the vector with appropriate length whose elements are all 1s. The rationale here
can be understood by distinguishing two cases. For the first case, there is overlap between ĉk and c,
so the second term in WGIoU is 0. For the first term, for some (s, a), 1) if both ĉ⋇k (s, a) ≥ 1 and
c⋇(s, a) ≥ 1, WGIoU approaches 1; 2) if either ĉ⋇k (s, a) = 0 or c⋇(s, a) = 0, WGIoU approaches 0.
For the second case, so there is no overlap between ĉk and (s, a), the first term in WGIoU is 0. The
second term is always below 0 and approaches −1 if the estimated and ground-truth cost functions
contain large values.

D.3 CONTINUOUS ENVIRONMENT

Density model. Recall that in Definition 5.3 , the concept of pseudo-counts is introduced to analyze
the uncertainty of the transition dynamics without a generative model. Here, we abuse the concept
of pseudo-counts for generalizing count-based exploration algorithms to the non-tabular settings
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(Bellemare et al., 2016). Let ρ be a density model on a finite space X , and ρn(x) the probability
assigned by the model to x after being trained on a sequence of states x1, . . . , xn. Assume ρn(x) > 0
for all x, n. The recoding probability ρ′n(x) is then the probability the model would assign to x if
it was trained on that same x one more time. We call ρ learning-positive if ρ′n(x) ≥ ρn(x) for all
x1, . . . , xn, x ∈ X . A learning-positive ρ implies PGn(x) ≥ 0 for all x ∈ X . For learning-positive
ρ, we define the pseudo-count as N̂n(x) = ρn(x) · n,where n is the total count.The pseudo-count
generalizes the usual state visitation count function Nn(x), also called the empirical count function
or simply empirical count, which equals to the number of occurrences of a state in the sequence.

Methods. We first train a Deep Q Network (DQN) in advance that stores the Q values of the
constrained Point Maze environment. This DQN induces the expert policy at any given state. We
also train a density model that accounts for calculating the pseudo-count of any given state-action
pairs. The agent then collects samples from an unconstrained Point Maze environment where it could
violate constraints. For algorithm BEAR, Proximal Policy Optimization (PPO) is utilized to obtain
the exploration policy πk. For algorithm PCSE, we rank 8 permissible actions for the exploration
policy, the action that has a high estimated cost or a high reward is assigned with more probability to
choose from. After a rollout of this exploration policy, the density model and accuracy are updated
for the selection of the next exploration policy. Multiple rounds of iterations are conducted until the
target accuracy is achieved.

Point Maze. In this environment, we create a map of 5m × 5m, where the area of each cell is
1m× 1m. The center of the map is the original point, i.e. (0, 0). The constraint is initially set at the
cell centered at (−1, 0). The agent is a 2-DoF ball, force-actuated in the cartesian directions x and y.
The reward obtained by the agent depends on where the agent reaches a target goal in a closed maze.
The ball is considered to have reached the goal if the Euclidean distance between the ball and the goal
is smaller than 0.5m. The reward in the reward state cell is 1, while all other cells have a 0 reward.
The cost in a constrained location is also 1. The game terminates when a maximum time step of 500
is reached. The state space dimension is continuous and consists of 4 dimensions (two as x and y
coordinates of the agent and two as the linear velocity in the x and y direction). The action space is
discrete and at each state there are 8 permissible actions (8 directions to add a linear force), similar
to the action space of Gridworld environment. The environment has certain degree of stochasticity
because there is a sampled noise from a uniform distribution to the cell’s (x, y) coordinates.

E MORE EXPERIMENTAL RESULTS

E.1 GRIDWORLD ENVIRONMENTS

Figure 7, 8, 9 and 10 show the constraint learning process of six exploration strategies in four
Gridworld environments, i.e. Gridwworld-1, 2, 3 and 4. Note that in Figure 8 (Gridworld-2) and
Figure 10 (Gridworld-4) only a fraction of ground-truth constraint is learned. This is attributed
to ICRL’s emphasis on identifying the minimum set of constraints necessary to explain expert
behavior. Venturing into unidentified part of ground-truth constraints will not yield any advantages
for cumulative rewards.

E.2 POINT MAZE ENVIRONMENT

Figure 6 shows the constraint learning process of PCSE in the Point Maze environment.
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Figure 5: Training curves of discounted cumulative rewards (top), costs (middle), and WGIoU
(bottom) for two other exploration strategies in four Gridworld environments.
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Figure 6: Constraint learning performance of PCSE for ICRL in the Point Maze environment.
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Figure 7: Constraint learning performance of six exploration strategies for ICRL in Gridworld-1.
PCSE (1st row), BEAR strategy (2nd row), ϵ-greedy exploration strategy (3rd row), Maximum-
entropy exploration strategy (4th row), Random exploration strategy (5th row), Upper confidence
bound (UCB) exploration strategy (bottom row).
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Figure 8: Constraint learning performance of six exploration strategies for ICRL in Gridworld-2.
PCSE (1st row), BEAR strategy (2nd row), ϵ-greedy exploration strategy (3rd row), Maximum-
entropy exploration strategy (4th row), Random exploration strategy (5th row), Upper confidence
bound (UCB) exploration strategy (bottom row).
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Figure 9: Constraint learning performance of six exploration strategies for ICRL in Gridworld-3.
PCSE (1st row), BEAR strategy (2nd row), ϵ-greedy exploration strategy (3rd row), Maximum-
entropy exploration strategy (4th row), Random exploration strategy (5th row), Upper confidence
bound (UCB) exploration strategy (bottom row).
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Figure 10: Constraint learning performance of six exploration strategies for ICRL in Gridworld-4.
PCSE (1st row), BEAR strategy (2nd row), ϵ-greedy exploration strategy (3rd row), Maximum-
entropy exploration strategy (4th row), Random exploration strategy (5th row), Upper confidence
bound (UCB) exploration strategy (bottom row).
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F DISCUSSION ON SCALING TO PRACTICAL ENVIRONMENTS

Sample complexity analysis has primarily focused on discrete state-action spaces (Agarwal et al.,
2019). Existing algorithms for learning feasible sets (Metelli et al., 2023; Zhao et al., 2023; Lazzati
et al., 2024a) struggle to scale effectively to problems with large or continuous state spaces. This
limitation arises because their sample complexity depends directly on the size of the state space, and
real-world problems frequently involve large or continuous spaces. Scaling feasible set learning to
practical problems with large state spaces remains a pressing challenge in the field (Lazzati et al.,
2024b). One key difficulty is the estimation of the ground-truth expert policy, which is hard to
obtain in an online setting. A potential solution involves extracting the expert policy from offline
datasets of expert demonstrations. However, these datasets often contain a mix of optimal and
sub-optimal demonstrations, leading to sub-optimal expert policies. Addressing this issue could
involve: 1) treating the dataset as noisy and applying robust learning algorithms designed to handle
noisy demonstrations, or 2) combining offline demonstrations with online fine-tuning, where feasible,
to refine the learned policy. Finally, the scalability of learning in continuous spaces is frequently
hindered by the curse of dimensionality. Dimensionality reduction techniques can mitigate this
challenge by simplifying state and action representations while retaining the features essential for
effective policy learning.

To enable our complexity analyses scalable to practical environments, linear Markov Deci-
sion Processes (MDPs) (Jin et al., 2020; Yang & Wang, 2019) offer a straightforward yet robust
framework by assuming that the reward function and transition dynamics can be represented as linear
combinations of predefined features. This assumption allows for theoretical exploration of sample
complexity. In future work, we plan to leverage the Linear MDP framework and its extensions (Jin
et al., 2021; Wang et al., 2020; Du et al., 2021) as a foundation to design scalable methods for
inferring feasible cost sets within the ICRL framework.
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