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Abstract
Modality gap between RGB and thermal infrared (TIR) images is a
crucial issue but often overlooked in existing RGBT tracking meth-
ods. It can be observed that modality gap mainly lies in the image
style difference. In this work, we propose a novel Coupled Knowl-
edge Distillation framework called CKD, which pursues common
styles of different modalities to break modality gap, for high per-
formance RGBT tracking. In particular, we introduce two student
networks and employ the style distillation loss to make their style
features consistent as much as possible. Through alleviating the
style difference of two student networks, we can break modality
gap of different modalities well. However, the distillation of style
features might harm to the content representations of two modali-
ties in student networks. To handle this issue, we take original RGB
and TIR networks as the teachers, and distill their content knowl-
edge into two student networks respectively by the style-content
orthogonal feature decoupling scheme. We couple the above two
distillation processes in an online optimization framework to form
new feature representations of RGB and thermal modalities without
modality gap. In addition, we design a masked modeling strategy
and a multi-modal candidate token elimination strategy into CKD
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to improve tracking robustness and efficiency respectively. Exten-
sive experiments on five standard RGBT tracking datasets validate
the effectiveness of the proposed method against state-of-the-art
methods while achieving the fastest tracking speed of 96.4 FPS.
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1 Introduction
In recent years, the field of RGBT tracking attracts great attention
due to its wide range of applications in surveillance, object recog-
nition and other fields [1, 6, 17, 27, 28, 40, 42, 53, 56, 57]. RGBT
tracking aims to take advantage of the complementary advantages
of RGB and thermal modalities to achieve robust object tracking.
However, visible spectrum and thermal infrared data are collected
by cameras in different imaging bands, reflecting different prop-
erties of the target object. As a result, they differ significantly in
appearance style, which inevitably leads to the issue of modality
gap.

Current research on RGBT tracking focuses on three categories,
including multi-modal fusion design, multi-modal representation
learning, and prompt learning. The first category of studies [26, 27]
are usually devoted to designing a reliable late fusion module for
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The Performance vs.  Speed on LasHeR

ProTrack [ACM MM'22]
ViPT [CVPR'23]
TBSI [CVPR'23]

CMD [CVPR'23]
QAT [ACM MM'23]
TATrack [AAAI'24]

SDSTrack [CVPR'24]
CKD [Ours]

Figure 1: Comparison of performance and speed for state-of-
the-art tracking methods on LasHeR [23]. We visualize the
Precision Rate (PR) to the Frames Per Second (FPS). CKD is
able to rank the 1st in PR while running at 96.4 FPS.

the collaboration between RGB and thermal infrared (TIR) modal-
ity features. For instance, Liu et al. [26] proposes a quality-aware
fusion module that carefully designs two independently weighted
prediction branches to guide the fusion of multi-modal features.
The second category of research [5, 17, 28, 45] focus on integrating
multi-layer feature interaction modules into backbone network,
thus can leverage modality complementary information to enhance
the representation of each modality. For example, Hui et al. [17]
introduce a Transformer-based multi-layer feature interaction mod-
ule, which effectively enhances the exchange of information be-
tween modalities. The third category of methods [1, 47, 58] explore
the concept of prompt learning in multi-modal feature interaction.
For example, Cao et al. [1] design a bi-directional adapter for mutual
prompting of modality information. However, existing studies have
long overlooked the influence of modality gap, thus limiting the
performance and efficiency of current RGBT tracker.

To address this challenge, we propose a novel Coupled Knowl-
edge Distillation framework (CKD), which pursues common styles
of different modalities to break modality gap, for high performance
RGBT tracking. Figure 1 presents the advantages of CKD compared
to existing state-of-the-art methods in two different dimensional
metrics, which suggest a powerful potential in breaking modality
gap. Specifically, we analyse the impact of modality style on the
modality gap in Figure 2, which can be seen that the modality gap is
significantly reduced after removing the modality style. Therefore,
the modality style plays an important factor in breaking modality
gap. However, the structure of the modal feature distribution is also
affected, which may harm the modal content representation.

To this end, we introduce two student networks and design a
style distillation scheme between the style features of the two stu-
dents to make their style features as consistent as possible, aiming
to eliminate the modality gap. Here, we utilize the feature mean
and standard deviation to represent the style features of a modality,
which has been proven to be effective in many studies [15, 16].
However, style feature distillation may harm modality content rep-
resentations of both student branches. We further introduce the
original RGB and TIR networks as teachers, and design a content
distillation scheme to pursue the consistency between the con-
tent features of the teacher branch and the corresponding student

(a) (b)

Figure 2: Illustration of the influence of modality style on
modality gap. Here, (a) denotes the feature distribution of
the two modalities, and (b) denotes the feature distribution
of the two modalities after removing the style information
using instance normalization.

branch. To alleviate the constraints on student style features, we
employ a style-content orthogonal feature decoupling strategy that
obtains content features by performing instance normalization on
the original features. Consequently, we couple the above two distil-
lation processes in an online optimization framework to pursue the
common style of the two modalities while avoiding the damage to
the modality content representation.

In addition, we design a masked modeling strategy to further
enhance the robustness of modality features in challenging scenar-
ios. It involves the random mask to create data pairs of content-
degraded and non-degraded of one modality, and then feed into
the teacher and student branches. We can employ content distil-
lation loss in CKD to effectively learn representations for content
reconstruction. We also design a simple and effective multi-modal
candidate token elimination strategy, which collaboratively con-
siders the information of the two modalities to jointly decide the
candidate elimination tokens in the search region. By drop these to-
kens during the inference phase, we can achieve a balance between
tracking performance and tracking efficiency.

In summary, our major contributions are as follows.
• We propose a novel coupled knowledge distillation frame-
work CKD to handle the modality gap issue by eliminating
the style difference between RGB and thermal images for
high performance RGBT tracking. To the best of our knowl-
edge, this research is the first effort to break the modality
gap in RGBT tracking.

• We design a style-content coupled distillation scheme based
on style-content orthogonal feature decoupling, which effec-
tively eliminates modality gap without harming the modality
content representation.

• We present a masked modeling scheme that is seamlessly
integrated into CKD, which effectively enhances the learn-
ing of modality content representation. In addition, a multi-
modal candidate token elimination strategy is designed, which
further improves the tracking efficiency.

• The proposed method achieves an impressive tracking speed
of 96.4 FPS while achieving state-of-the-art results on four
mainstream public datasets. Compared with the existing
methods, the PR/SR scores on RGBT210, RGBT234, LasHeR
and VTUAV datasets are increased by 1.6%/2.7%, 1.6%/3.0%,
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3.0%/2.0% and 10.1%/11.1%, respectively, and the speed is
increased by 60.2 FPS.

2 Related work
2.1 RGBT Tracking
RGBT tracking, as a rapidly growing research field, has witnessed
a significant surge in the development of innovative algorithms.
Existing studies can be broadly classified into three categories,
including multi-modal fusion design, multi-modal representation
learning and prompt learning. The first category [26, 37, 50, 62] is
dedicated to designing diverse fusion strategies that combine the
features of two modalities. Liu et al. [26] employ feature weighted
fusion architectures based on the importance or quality of each
modality. Tang et al. [37] apply modal weighting fusion strategy to
three different levels of pixel, feature and decision. However, the
optimal level of fusion varies in different scenarios. The second
category [17, 22, 27, 28, 45, 51] is devoted to the improvement of
modal representation by feature decoupling or feature interaction.
For instance, Li et al. [22, 27] design a multi-adapter framework
to simultaneously extract modality-shared and modality-specific
features. Similarly, Zhang et al. [51] design a multi-branch chal-
lenge framework to model modality representation under different
challenge scenarios. Lu et al. [28] design multi-layer feature inter-
action modules to enhance the modality representation. The third
category [1, 12, 14, 47, 58] focuses on modal information interaction
in a prompting manner, and is also a recent hot research topic. For
example, Yang et al. [47] and Zhu et al. [58] introduce the concept
of prompt learning at the pixel level and the feature level of RGBT
tracking, respectively, for efficient multi-modal tracking. However,
these methods ignore the impact of modality gap, which limits the
RGBT tracking performance.

2.2 Knowledge Distillation
Knowledge distillation [11] aims to transfer the knowledge from
a pre-trained large-scale teacher model to a small-scale student
model. According to the type of knowledge transferred, the current
research is mainly divided into three categories. Probability-based
methods [11, 36] leverage the teacher model’s predicted probabili-
ties, guiding the student model to emulate the teacher’s log-class dis-
tribution through minimizing KL divergence. Conversely, Feature-
based methods [3, 9, 49] harness the mid-layer output feature map
of the network for supervising the training of the student model.
Relation-based methods [32, 59] emphasize inter-sample relation-
ships over single instances. While simple to implement, it requires
complex teacher modeling and significant training time. To address
these issues, some studies [34, 35] utilize a mutual learning strategy
for knowledge transfer. In addition, cross-modality knowledge dis-
tillation aims to transfer knowledge between different modalities.
Some studies [33, 54] use dominant modality to guide weaker ones,
while others [7, 18] investigate inter-modal complementarity. In
contrast to existing methods, the coupled knowledge distillation
method proposed in this paper distills coupled modality content
and modality style knowledge from different modalities, thus facil-
itating modality style transfer for modality content preservation
achievable by student models.

3 Methodology
In this section, we first introduce the overall architecture of Cou-
pled Knowledge Distillation (CKD) and then describe the coupled
knowledge distillation approach. Subsequently, mask modeling and
multi-modal candidate token elimination are introduced. Finally,
the training process and implementation details are given.

3.1 Framework Overview
We provide a detailed description of CKD framework, and its over-
all structure is shown in Figure 3. During the training phase, our
CKD framework comprises four branches (including a RGB teacher
branch, a TIR teacher branch, a RGB student branch, and a TIR
student branch) as well as three tracking heads (including a multi-
modal tracking head and two single-modal tracking heads). In the
testing phase, CKD consists of two student branches and one multi-
modal tracking head. In specific, for the given RGB and TIR modal
frames, the search and template frames are first partitioned into
patches with the size of 𝑝 × 𝑝 using four independent learnable
patch embedding layers, and flattened to obtain four search token
sequences (𝑆𝑡

𝑟𝑔𝑏
, 𝑆𝑡

𝑡𝑖𝑟
, 𝑆𝑠

𝑟𝑔𝑏
, 𝑆𝑠

𝑡𝑖𝑟
), and four template token sequences

(𝑇 𝑡
𝑟𝑔𝑏

,𝑇 𝑡
𝑡𝑖𝑟

,𝑇 𝑠
𝑟𝑔𝑏

,𝑇 𝑠
𝑡𝑖𝑟

). Following [48], we also add learnable position
embeddings to the above tokens to provide positional prior infor-
mation. Note that we add random mask to the search frame token
sequences (𝑆𝑠

𝑟𝑔𝑏
, 𝑆𝑠

𝑡𝑖𝑟
) in the two student branches during training.

Then, we concatenate search and template frame token sequences
for the four groups, denoted as 𝐼𝑡

𝑟𝑔𝑏
= [𝑆𝑡

𝑟𝑔𝑏
,𝑇 𝑡
𝑟𝑔𝑏

], 𝐼𝑡
𝑡𝑖𝑟

= [𝑆𝑡
𝑡𝑖𝑟

,𝑇 𝑡
𝑡𝑖𝑟

],
𝐼𝑠
𝑟𝑔𝑏

= [𝑆𝑠
𝑟𝑔𝑏

,𝑇 𝑠
𝑟𝑔𝑏

], and 𝐼𝑠
𝑡𝑖𝑟

= [𝑆𝑠
𝑡𝑖𝑟

,𝑇 𝑠
𝑡𝑖𝑟

]. We feed 𝐼𝑡
𝑟𝑔𝑏

and 𝐼𝑡
𝑡𝑖𝑟

into
the RGB and TIR teacher branches, respectively, while 𝐼𝑠

𝑟𝑔𝑏
and

𝐼𝑠
𝑡𝑖𝑟

into the RGB and TIR student branches, respectively. These
branches share an identical structure, consisting of standard Trans-
former blocks [8], but they have independent parameters. Finally,
we concatenate the last layer features of the RGB and TIR student
branches in the channel dimension and input them into the tracking
head [48] for object localization and regression. The last layer fea-
tures of the RGB and TIR teacher branches are separately fed into
two independent tracking head [48] networks for task learning.

3.2 Coupled Knowledge Distillation
The proposed CKD is the first effort in the field of RGBT tracking to
address modality gap. In particular, CKD employs a style distillation
to make the style features of the two modalities as consistent as
possible, thus breaking modality gap. It also introduces a content
distillation to ensure that the modality content representation is
stable. Next, we describe two distillation methods, namely style
distillation and content distillation, in detail.

3.2.1 Style Distillation. Style distillation aims at mutual distilla-
tion between the style features of the two student branches, thus
pursuing a common style for both modalities to break modality
gap. Feature style usually involves the statistical attributes of fea-
tures, and existing studies [16] usually use the mean and standard
deviation of features to represent feature style. Therefore, these
two statistical attributes are adopted as feature styles in this study.
Specifically, given the intermediate feature 𝑓 𝑙

𝑡𝑖𝑟
∈ R𝐵×𝑁×𝐷 from

TIR student branch and 𝑓 𝑙
𝑟𝑔𝑏

∈ R𝐵×𝑁×𝐷 from RGB student branch,
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Figure 3: Overall architecture of the proposed CKD. It mainly consists of a four-branch network, three tracking heads, and a
coupled distillation framework. The four-branch network extracts visual features from the input video frames and performs
style distillation and content distillation in the coupled distillation framework.

where 𝑙 denotes the feature from the 𝑙-th layer, 𝐵, 𝑁 , and 𝐷 repre-
sent the batch size, number of tokens, and channel dimension of
tokens, respectively. For brevity, the 𝐵 dimension is omitted below.
The process of calculating the mean and standard deviation vectors
of the two student branch features is as follows:

𝜇
𝑠 (𝑙 )
𝑟𝑔𝑏

=
1
𝑁

𝑁∑︁
𝑛=1

𝑓
𝑙 (𝑛)
𝑟𝑔𝑏

, 𝜎
𝑠 (𝑙 )
𝑟𝑔𝑏

=

√√√
1
𝑁

𝑁∑︁
𝑛=1

(𝑓 𝑙 (𝑛)
𝑟𝑔𝑏

− 𝜇
𝑠 (𝑙 )
𝑟𝑔𝑏

)2, (1)

𝜇
𝑠 (𝑙 )
𝑡𝑖𝑟

=
1
𝑁

𝑁∑︁
𝑛=1

𝑓
𝑙 (𝑛)
𝑡𝑖𝑟

, 𝜎
𝑠 (𝑙 )
𝑡𝑖𝑟

=

√√√
1
𝑁

𝑁∑︁
𝑛=1

(𝑓 𝑙 (𝑛)
𝑡𝑖𝑟

− 𝜇
𝑠 (𝑙 )
𝑡𝑖𝑟

)2 . (2)

where 𝜇𝑠
𝑟𝑔𝑏

and 𝜎𝑠
𝑟𝑔𝑏

represent the mean and standard deviation
vectors of RGB student features, respectively, while 𝜇𝑠

𝑡𝑖𝑟
and 𝜎𝑠

𝑡𝑖𝑟
indicate the corresponding vectors for TIR student features. Then,
we can compute the style distillation loss, denoted as L𝑆𝐷 , by
quantifying the mean squared error between the style features
across all layers of the two student branches.

L𝑆𝐷 =
1
𝐿

𝐿∑︁
𝑙=1

((𝜇𝑠 (𝑙 )
𝑡𝑖𝑟

− 𝜇
𝑡 (𝑙 )
𝑟𝑔𝑏

)2 + (𝜎𝑠 (𝑙 )
𝑡𝑖𝑟

− 𝜎
𝑡 (𝑙 )
𝑟𝑔𝑏

)2) . (3)

By minimizing this style distillation loss during training, we can
achieve style consistency across different modality features.

3.2.2 Content Distillation. Although RGB and TIR features of two
student branches can eliminate modal gaps through style distilla-
tion, this process may harm the modal feature content representa-
tion. To alleviate this issue, we perform content distillation between
teacher and student branches with the same modality input. To
avoid imposing constraints on the style features in student branch,

we adopt the classical instance normalization operation to normal-
ize teacher and student features, thus obtaining content features
that are orthogonal to the style features. We can then calculate
the similarity between the content features of the two groups of
teachers and students for content distillation.

In particular, we take the TIR modality as an example and can de-
scribe above process as follows. Firstly, we perform feature instance
normalization along the channel dimension as follows:

𝐹 𝑙𝑡𝑖𝑟 =
𝐹 𝑙
𝑡𝑖𝑟𝑑

− 𝜇𝑡
𝑡𝑖𝑟𝑑

𝜎𝑡
𝑡𝑖𝑟𝑑

, 𝑓 𝑙𝑡𝑖𝑟 =
𝑓 𝑙
𝑡𝑖𝑟𝑑

− 𝜇𝑠
𝑡𝑖𝑟𝑑

𝜎𝑠
𝑡𝑖𝑟𝑑

. (4)

where 𝐹 𝑙
𝑡𝑖𝑟

denotes the intermediate feature fromTIR teacher branch,
𝑑 represents the 𝑑-th channel dimension of each token. 𝐹 𝑙

𝑡𝑖𝑟
rep-

resents the 𝑙-th layer normalized feature (i.e., content feature) of
TIR teacher branch, and 𝑓 𝑙

𝑡𝑖𝑟
denotes the 𝑙-th layer content feature

of student branch. 𝜇𝑡
𝑡𝑖𝑟

, 𝜎𝑡
𝑡𝑖𝑟

, 𝜇𝑠
𝑡𝑖𝑟

, and 𝜎𝑠
𝑡𝑖𝑟

correspond to the mean
and standard deviation, respectively. Subsequently, we calculate the
TIR feature content distillation loss, denoted as L𝑡𝑖𝑟

𝐶𝐷
, by measuring

the mean squared error (MSE) between the content features across
all layers of teacher and student branches:

L𝑡𝑖𝑟
𝐶𝐷 =

1
𝐿

𝐿∑︁
𝑙=1

(𝐹 𝑙𝑡𝑖𝑟 − 𝑓 𝑙𝑡𝑖𝑟 )
2 . (5)

Minimizing this loss during training ensures consistency between
the content features of TIR student branch and those of TIR teacher
branch. Similarly, this approach is applied in RGB student branching
learning by incorporating a constraint from RGB teacher branch to
maintain stability in content features. Therefore, the total content
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distillation loss can be defined as follows:

L𝐶𝐷 = L𝑡𝑖𝑟
𝐶𝐷 + L𝑟𝑔𝑏

𝐶𝐷
. (6)

where L𝑟𝑔𝑏

𝐶𝐷
denotes the RGB feature content distillation loss.

In summary, coupled knowledge distillation is a combination of
style distillation and content distillation that can break the modality
gap in RGBT tracking. Thus, by incorporating CKD into our task,
we can train two student branches that extract style-consistent
features from different modalities while preserving their individual
semantic content features.

3.3 Masked Modeling
Inspired by recent success and scalability of pretrainingwithmasked
reconstruction in different domains [4, 10], we design a novel
masked modeling in the proposed framework to enhance modal-
ity content representation in challenging scenarios. Since there is
natural feature content supervision between teacher and student
branches of the same modality input in CKD, we can implement
mask modeling without introducing any additional loss and design,
simply by applying random mask to the input of student branches.

In particular, we randomly mask some of the input tokens of a
student branch with𝑚 ∈ {0, 1}𝑁 , where 𝑁 is the number of tokens.
Hence the masked tokens are represented as {𝐼𝑠

𝑟𝑔𝑏
|𝑚𝑖 = 1} and

{𝐼𝑠
𝑡𝑖𝑟

|𝑚𝑖 = 1} while the remain tokens are denoted as {𝐼𝑠
𝑟𝑔𝑏

|𝑚𝑖 =

0} and {𝐼𝑠
𝑡𝑖𝑟

|𝑚𝑖 = 0}. Subsequently, we feed these tokens into
the corresponding student branches, respectively. It is noteworthy
that the input tokens for corresponding teacher branch remain
unchanged. Consequently, we can utilize the token features from
two teacher branches to guide the feature learning of the masked
tokens in two student branches. In fact, the aforementioned process
can be realized by minimizing the content distillation loss, which
seeks feature content consistency between the masked student
tokens and the teacher tokens. Therefore, the masked modeling can
be seamlessly integrated into CKD. In addition, we set the mask
ratio as 25% empirically.

3.4 Multi-modal Token Elimination
The effectiveness of using candidate elimination strategies to pro-
vide inference efficiency has been demonstrated in [48]. Specifically,
existing RGB trackers determine which tokens to eliminate by lever-
aging the attention weights established by the tokens in target and
search regions. However, this strategy ignores that the elimina-
tion results are unreliable when the input data are of poor quality.
To address this issue, we propose a multi-modal candidate token
elimination strategy, which aims to improve elimination quality
in challenging scenarios by combining attention weights of two
modalities through cooperative decision making. Given the query
vector 𝑞𝑧𝑖𝑟 from RGB template queries and the query vector 𝑞𝑧𝑖𝑡 from
TIR template queries, a scalar ℎ𝑖 is assigned to each token in the
search region, calculated as follows:

ℎ = max(softmax(𝑞𝑧𝑖𝑟 𝑘𝑥𝑟 ), softmax(𝑞𝑧𝑖𝑡 𝑘𝑥𝑡 )) (7)

where 𝑘𝑥𝑟 and 𝑘𝑥𝑡 represent the key vectors of tokens in the search
region. We useℎ to sort the tokens in the search region and keep the
top-k tokens. Therefore, the proposed method not only enhances

the robustness of token elimination in challenging scenarios, but
also improves the inference speed of the model.

3.5 Final Loss
In CKD, we can define the final loss function as a combination of
content distillation, style distillation, and task losses, as follows:

L𝑎𝑙𝑙 = L𝑡𝑎𝑠𝑘 + 𝜆𝑐𝑑 × L𝐶𝐷 + 𝜆𝑠𝑑 × L𝑆𝐷 . (8)

Here, L𝑡𝑎𝑠𝑘 denotes the tracking task loss [48]. 𝜆𝑐𝑑 and 𝜆𝑠𝑑 are the
loss coefficients corresponding to the two loss terms, respectively.
In our study, we set the ratio of 𝜆𝑠𝑑 and 𝜆𝑐𝑑 to 2:1, respectively.

4 Experiments
4.1 Implementation Details
We choose OSTrack [48] as our foundational tracker, employing
ViT [8] as its feature extractor. For parameter initialization, we
utilize the original pre-trained model of OSTrack-base-256 [48].
For each sequence in a given training set, we collect the training
samples and subject them to standard data augmentation operations,
including rotation, translation, and gray-scale, aligning with the
data processing scheme of the base tracker [48]. During training,
the entire model utilizes AdamW to minimize the classification
and regression loss functions. We use the LasHeR training set to
train the entire tracking network in an end-to-end manner, which
is used to evaluate GTOT [19], RGBT210 [24], RGBT234 [20], and
LasHeR [23]. For the evaluation of VTUAV [31], we utilize the
training set from VTUAV as the training data. In addition, we set
the learning rate of the backbone network to 5e-6, and the tracking
head to 5e-5. The CKD implementation is conducted on the PyTorch
platform using two Nvidia A100 GPUs with 40G memory, and a
global batch size of 40. The model fine-tuning takes 30 epochs that
each epoch contains 60000 sample pairs. For VTUAV, we fine-tuned
5 epochs.

4.2 Evaluation Dataset and Protocol
4.2.1 Dataset. GTOT dataset is the earliest RGBT tracking dataset,
consisting of 50 RGBT video sequences with a total of around
15,000 frames. However, the average sequence length of 150 frames
in the dataset limits a comprehensive evaluation of model perfor-
mance. RGBT210 dataset expands the scope by including 210 pairs of
RGBT video sequences, amounting to approximately 209.4K frames.
RGBT234 dataset is an upgrade from RGBT210 consists of 234 highly
aligned RGBT video pairs, totaling approximately 233.4K frames.
Importantly, it provides more accurate bounding box annotations
and annotations for 12 challenge attributes. LasHeR dataset is the
largest RGBT tracking dataset, containing 1224 aligned video se-
quences with a total number of frames up to 1469.6K frames. It
provides 245 test sequences and 979 training sequences, which can
comprehensively evaluate tracking performance. VTUAV dataset
collects RGBT data from UAV scenarios, expanding the applica-
tion of RGBT tracking. Our experiments primarily focus on the
short-term tracking subset of this dataset.

4.2.2 Protocol. In our study, we utilize precision rate (PR) and suc-
cess rate (SR) as the main evaluationmetrics for one-pass evaluation
(OPE), which are commonly employed in current RGBT tracking



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Andong Lu, Jiacong Zhao, Chenglong Li, Yun Xiao, & Bin Luo

tasks. These metrics enable a quantitative analysis of tracking per-
formance. PR evaluates the fraction of frames where the distance
between the tracker’s output position and the true bounding box
value falls below a predetermined threshold. Note that, we set the
threshold to 5 pixels for the GTOT dataset and 20 pixels for other
datasets, thereby calculating a representative PR score. SR the per-
centage of successfully tracked frames whose Intersection over
Union (IoU) is greater than a specified threshold, and then SR met-
ric is calculated by varying the threshold and computing the Area
Under the Curve (AUC) of the resultant curve. To eliminate these ef-
fects, the PR is normalized using the scale of the ground truth box to
calculate the NPR. The normalized accuracy curve can be obtained
by changing the normalization threshold, and the region under the
normalized accuracy curve with the normalization threshold in the
range of [0, 0.5] is calculated as the representative NPR score.

4.3 Quantitative Comparison
We evaluate our algorithm on five popular RGBT tracking bench-
marks and compare its performance with current state-of-the-art
trackers. The effectiveness of our proposed method is demonstrated
in Table 1, which provides a summary of the comparison results.

4.3.1 Evaluation on GTOT dataset. The comparison results on
GTOT dataset are shown in Table 1. Compared to state-of-the-
art trackers, our method exhibits superior performance in GTOT
dataset, achieving gains over QAT [26] by 1.0% in PR. We further
compare our method with CMPP [38], the best-performing tracker
on the PR metric for this dataset. Although the PR of our method is
0.1% below that of CMPP [38], our CKD outperforms CMPP by 2.0%
in SR. As for our low PR, we attribute this to the prevalence of small
objects in the GTOT dataset, for which CMPP’s feature pyramid
strategy aggregates features across all layers to enhance the feature
representation capabilities. Additionally, CMPP builds a historical
information pool using external storage, improving the representa-
tion of the current frame. However, these strategies significantly
affect the efficiency of CMPP, making our CKD approximately 90
times faster than CMPP.

4.3.2 Evaluation on RGBT210 dataset. As shown in Table 1, CKD
exceeds almost state-of-the-art trackers in RGBT210 dataset. Com-
pared to mfDiMP [31], which is the winner of VOT2019-RGBT,
CKD achieves significant improvements in PR/SR with a gain of
9.8%/9.7%. Moreover, compared with TBSI [17], which is the sec-
ond best-performing algorithms in terms of SR, CKD outperforms
it by 2.9%/2.7% on the PR/SR metrics. We further compare CKD
with QAT [26], which are the second best-performing algorithms
in terms of PR, and CKD outperforms it by 1.6%/3.3% on PR/SR.

4.3.3 Evaluation on RGBT234 dataset. To further evaluate the effec-
tiveness of CKD, we conduct a series of experiments on RGBT234
dataset, including overall and attribute-based comparison.

Overall Comparison. RGBT234 dataset is one of the most im-
portant datasets in the field of RGBT tracking, and also the dataset
with the most evaluation results of existing algorithms. There-
fore, we evaluate CKD against 24 state-of-the-art RGBT trackers
on RGBT234 dataset. The evaluation results are presented in Ta-
ble 1. CKD outperforms all state-of-the-art RGBT methods in PR/SR
metrics, and obtains new SOTA results of 90.0%/67.4% in PR/SR.

Compared with QAT [26] and TATrack [39] algorithms, which are
the second best-performing algorithms in terms of PR and SR, re-
spectively, CKD outperforms them by 1.6% and 3.0% in both PR and
SR metrics.

Challenge-based Comparison.We also present the results of
CKD against the most advanced RGBT trackers available, includ-
ing BAT [1], SDSTrack [14], TBSI [17], and ViPT [58], on different
challenge subsets. The evaluation results are shown in 4, where
the marks of each corner represent the attributes of the challenge
subset and the highest and lowest performance under that attribute,
respectively. These attributes include no occlusion (NO), partial
occlusion (PO), heavy occlusion (HO), low illumination (LI), low
resolution (LR), thermal crossover (TC), deformation (DEF), fast
motion (FM), scale variation (SV), motion blur (MB), camera mov-
ing (CM) and background clutter (BC). The results show that our
method performs best in all challenge subsets, and it proves that
CKD has great potential in various complex tracking scenarios.

Figure 4: Attribute-based evaluation on RGBT234 in terms
of SR metric. CKD achieves the best performance on all at-
tribute splits. Axes of each attribute have been normalized.

4.3.4 Evaluation on LasHeR dataset. We compare 16 state-of-the-
art RGBT trackers on LasHeR dataset, which is currently the largest
and most challenging RGBT tracking dataset, and the evaluation
results are shown in Table 1. CKD again outperforms all existing
trackers by a clear margin. For instance, compared to BAT [1], the
second best performing algorithm in this dataset, CKD exhibits a
3.0%/2.0% performance advantage on PR/SR metrics. The exper-
iment further verifies the effectiveness of our approach in more
complex scenarios.

4.3.5 Evaluation on VTUAV dataset. We evaluate the proposed
method CKD on VTUAV dataset, a recently proposed drone per-
spective RGBT tracking dataset. From Table 1, it can be seen that
CKD obtains 90.2%/77.8% on PR and SR metrics, which again con-
firm its effectiveness. Moreover, CKD surpasses the state-of-the-art
MACFT [29] by 10.1% and 11.0% in PR and SR scores, respectively.
The experiment further verifies the effectiveness of our approach
in drone tracking scenarios.

4.4 Ablation Study
To verify the effectiveness of the proposed method, several ablation
studies are performed on RGBT234 and LasHeR datasets.
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Table 1: PR/NPR and SR scores (%) for advanced trackers on five datasets.. The best and second are the result of the 𝑟𝑒𝑑 and 𝑏𝑙𝑢𝑒.

Methods Pub. Info. Backbone GTOT RGBT210 RGBT234 LasHeR VTUAV FPS
PR↑ SR↑ PR↑ SR↑ PR↑ SR↑ PR↑ NPR↑ SR↑ PR↑ SR↑ ↑

MANet [22] ICCVW 2019 VGG-M 89.4 72.4 - - 77.7 53.9 45.5 38.3 32.6 - - 1
DAPNet [61] ACM MM 2019 VGG-M 88.2 70.7 - - 76.6 53.7 43.1 38.3 31.4 - - 2
mfDiMP [50] ICCVW 2019 ResNet-50 83.6 69.7 78.6 55.5 - - 44.7 39.5 34.3 67.3 55.4 10.3
CMPP [38] CVPR 2020 VGG-M 92.6 73.8 - - 82.3 57.5 - - - - - 1.3
CAT [21] ECCV 2020 VGG-M 88.9 71.7 79.2 53.3 80.4 56.1 45.0 39.5 31.4 - - 20

ADRNet [51] IJCV 2021 VGG-M 90.4 73.9 - - 80.7 57.0 - - - 62.2 46.6 25
JMMAC [52] TIP 2021 VGG-M 90.2 73.2 - - 79.0 57.3 - - - - - 4
MANet++ [27] TIP 2021 VGG-M 88.2 70.7 - - 80.0 55.4 46.7 40.4 31.4 - - 25.4
APFNet [45] AAAI 2022 VGG-M 90.5 73.7 - - 82.7 57.9 50.0 43.9 36.2 - - 1.3
DMCNet [28] TNNLS 2022 VGG-M 90.9 73.3 79.7 55.5 83.9 59.3 49.0 43.1 35.5 - - 2.3
ProTrack [47] ACM MM 2022 ViT-B - - - - 78.6 58.7 50.9 - 42.1 - - 30
MIRNet [13] ICME 2022 VGG-M 90.9 74.4 - - 81.6 58.9 - - - - - 30
HMFT [31] CVPR 2022 ResNet-50 91.2 74.9 78.6 53.5 78.8 56.8 - - - 75.8 62.7 30.2
MFG [41] TMM 2022 ResNet-18 88.9 70.7 74.9 46.7 75.8 51.5 - - - - - -
DFNet [30] TITS 2022 VGG-M 88.1 71.9 - - 77.2 51.3 - - - - - -
MACFT [29] Sensors 2023 ViT-B - - - - 85.7 62.2 65.3 - 51.4 80.1 66.8 22
CMD [53] CVPR 2023 ResNet-50 89.2 73.4 - - 82.4 58.4 59.0 54.6 46.4 - - 30
ViPT [58] CVPR 2023 ViT-B - - - - 83.5 61.7 65.1 - 52.5 - - -
TBSI [17] CVPR 2023 ViT-B - - 85.3 62.5 87.1 63.7 69.2 65.7 55.6 - - 36.2
QAT [26] ACM MM 2023 ResNet-50 91.5 75.5 86.8 61.9 88.4 64.4 64.2 59.6 50.1 80.1 66.7 22
BAT [1] AAAI 2024 ViT-B - - - - 86.8 64.1 70.2 - 56.3 - - -

TATrack [39] AAAI 2024 ViT-B - - 85.3 61.8 87.2 64.4 70.2 - 56.1 - - 26.1
OneTracker [12] CVPR 2024 ViT-B - - - - 85.7 64.2 67.2 - 53.8 - - -
Un-Track [44] CVPR 2024 ViT-B - - - - 84.2 62.5 66.7 - 53.6 - - -
SDSTrack [14] CVPR 2024 ViT-B - - - - 84.8 62.5 66.5 - 53.1 - - 20.9

Ours - ViT-B 93.2 77.2 88.4 65.2 90.0 67.4 73.2 69.3 58.1 90.2 77.8 96.4

Table 2: Ablation study on the main components of CKD.

Pretrained model RGBT234 LasHeR
PR SR PR SR

baseline SOT 86.4 64.5 67.8 54.0
w/ SD SOT 86.4 65.0 68.9 54.5

w/ SD CD SOT 87.4 65.5 71.6 56.9
w/ SD CD MM SOT 88.6 66.1 72.3 57.4
w/ SD CD MM DropMAE 90.4 67.8 73.1 58.0

4.4.1 Component Analysis. In Table 2, we conduct ablation studies
on RGBT234 and LasHeR datasets to verify the effectiveness of
different designed modules in CKD. Our baseline structure is the
same as CKD, along with consistent training data and task losses,
to fairly verify the effectiveness of the proposed components.

w/ SD denotes the baseline equipped with style distillation,
which achieves a certain improvement. The experiment shows that
aligning modality styles is effective, but there are limitations.

w/ SD CD indicates that adding content distillation to w/ SD
results in significant performance improvements. The experiment
shows that it is crucial to preserve the stability of modality con-
tent representation, as unconstrained style distillation could harm
modality content representation, which could explain the limita-
tions of w/ SD.

w/ SD CD MM represents that adding masked modeling to
w/ SD CD. The experiment demonstrates the effectiveness of the
masked modeling strategy.

4.4.2 Impact of Pretrainedmodel. Wealso explore theDropMAE [43]
pretrained model trained on the Kinetics700 dataset [2] as our
pretrained model, which further achieves significant performance
gains. Compared to the "SOT" pretrained model usually exploited
by existing RGBT tracking methods [1, 12, 17, 44], DropMAE can
bring superior performance to RGBT tracking. The experiment
provides insights to further improve RGBT performance.

4.4.3 Effectiveness of token elimination strategy. To verify the effec-
tiveness of the proposed multi-modal candidate token elimination
strategy, we evaluate different token elimination methods in Table 3.
Here, CKD𝑠𝑙𝑜𝑤 represents the CKD method without a token elimi-
nation strategy, but it is still faster than existing RGBT trackers.

w/ CE [48] indicates that the two student branches individually
apply the candidate token elimination strategy, following [48]. How-
ever, although CE brings an improvement in tracking efficiency, it
also causes a significant performance drop.

w/ MCE indicates that the two student branches follow the
proposed multi-modal candidate token elimination strategy for
collaborative token elimination. It can be seen that MCE achieves a
balance between tracking efficiency and accuracy.

4.4.4 Hyper-parameter sensitivity analysis. We analyze the param-
eter sensitivity as follows.

Impact of loss weights.We explore the influence of different loss
weights between style and distillation losses on CKD performance
in Figure 5. From Figure 5 it can be observed that the two kinds of
losses in CKD are robust to the hyperparameters for these weights.
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Table 3: Ablation study on the different elimination scheme.

RGBT234 LasHeR MACs(G) FPS
PR SR PR SR

CKD𝑠𝑙𝑜𝑤 90.4 67.8 73.1 58.0 57.802 84.8
w/ CE [48] 88.7 66.5 73.0 58.0 42.735 96.4
w/ MCE 90.0 67.4 73.2 58.1 42.735 96.4

Figure 5: Ablation study of loss weights on LasHeR dataset.

Table 4: Ablation study on different masked ratios.

RGBT234 LasHeR
PR SR PR NPR SR

CKD w/ mask 0% 87.4 65.5 71.6 67.5 56.9
CKD w/ mask 25% 88.6 66.1 72.3 68.1 57.4
CKD w/ mask 50% 88.2 65.1 71.4 67.2 56.9
CKD w/ mask 75% 88.2 64.3 70.6 66.7 56.4

Impact of masked ratios. As shown in Table 4, we analyze
the influence of different masked ratios on masked modeling strat-
egy in CKD. It can be observed that the performance of CKD is
always improved after the introduction of mask modeling, but the
performance decreases slightly with the increase of mask modeling.

4.4.5 Analysis of feature decoupling scheme. In Table 5, we design
several variants to verify the effectiveness of feature decoupling.

baseline w/ IN denotes the introduction of instance normaliza-
tion in both student branches, which performs tracking with only
content features. The experiment shows that modality style features
certain discriminative information, which can lead to performance
loss when directly dropped.

baseline w/ FD represents the introduction of non-decoupled
feature distillation (FD) only between two student branches. The
experiment suggests that the non-decoupled distillation scheme
may harm the modality content representation.

baseline w/ SD is to perform distillation only in the style features
between two student branches. The experiment further verifies that
performing distillation for all modal features is unnecessary.

baseline w/ CKD is the coupled distillation scheme proposed in
this paper. The experiment further demonstrating that the impor-
tance of feature decoupling scheme.

4.4.6 Visual analysis. In Figure 6, we visualize and compare the
TIR content features extracted by the models trained with different
distillation methods and not trained with distillation methods, and

Table 5: Ablation study on the feature decoupling scheme.

RGBT234 LasHeR
PR SR PR NPR SR

baseline 86.4 64.5 67.8 64.3 54.0
baseline w/ IN 85.6 63.7 67.1 63.2 53.4
baseline w/ FD 85.2 63.8 67.2 63.4 53.7
baseline w/ SD 86.4 65.0 68.9 64.3 54.5
baseline w/ CKD 87.4 65.5 71.6 67.5 56.9
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Figure 6: Comparison of feature maps and T-SNE visualiza-
tions for different distillationmethods. For T-SNEmaps, they
have the same scale of axes. The hotter color in the first row
indicates more salient features, while in the second row the
hotter color indicates more similar between the non-distilled
(Base features) and distilled features, and vice versa. In the
third row, the yellow and purple color indicate the features
of RGB and TIR modalities respectively.

show their similarity relationships. The experiment shows that the
proposed CKD method achieves a good balance between modality
gap elimination and modality content representation preservation.

5 Conclusion
In this work, we present a novel Coupled Knowledge Distillation
(CKD) for RGBT tracking, which is the first effort to break the
modality gap challenge in RGBT tracking. We first analyze the
influence of modality style on modality gap, and then the pro-
posed CKD can effectively enhance the consistency of modality
style and avoid harming to modality content representation. More-
over, the proposed masked modeling strategy and a multi-modal
candidate token elimination strategy effectively improve tracking
performance and efficiency. Extensive experiments demonstrate the
superiority of the proposed method. In the future, we will explore
the benefits of the proposed CKD in other multi-modal visual tasks,
such as RGBD/RGBE tracking [60, 63], image fusion [25, 55] and
collaborative learning [46].
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