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Abstract

Today’s methods for uncovering causal relationships from observational data either constrain
functional assignments (linearity/additive noise assumptions) or the data generating process
(e.g., non-i.i.d. assumptions). We assume non-i.i.d. data to develop a framework for causal
discovery that works for general non-linear dependencies. We use nonlinear Independent
Component Analysis (ICA) to infer the underlying sources from the observed variables.
Unlike previous works, which use conditional independence tests, we rely on the Jacobian of
the inference function to determine the causal relationships. In particular, we prove that,
under strong identifiability, the inference function’s Jacobian captures the sparsity structure
of the causal graph; thus generalizing the classic LiNGAM method to the nonlinear case. Our
approach avoids the cost of exponentially many independence tests and makes our method
end-to-end differentiable. We demonstrate that the proposed method can infer the causal
graph on multiple synthetic data sets, and in most scenarios outperforms previous work.

1 Introduction
Traditional statistical learning methods model correlations in data. Though they have achieved super-human
performance in multiple fields they have limited value in understanding cause-effect relationships. A
prevalent consequence of this shortcoming is the observed tendency for models to learn from spurious
features or shortcuts (Geirhos et al., 2020) (e.g., classifying objects based on their backgrounds). In contrast,
causal models (Pearl, 2009a) construct the world according to the Independent Causal Mechanisms (ICM)
principle (Peters et al., 2017), where building blocks (mechanisms) neither influence nor inform each other.
Modeling temperature T and altitude A is a classic example (Peters et al., 2017): changing A affects T ,
but not vice versa—this relationship is described by the Directed Acyclic Graph (DAG) A → T . The ICM
principle means that the same mechanism p(T |A) describes how altitude affects temperature for different
p(A), but the same cannot be said about p(A|T ) and p(T ).
Causal Discovery (CD) describes the process of extracting causal structure from data in the form of a DAG.
Having interventional data—such as in the form of Randomized Controlled Trials (RCTs)—is desirable as
it enables answering questions of interventional nature, such as ’What will happen if variable X is changed?’.
However, RCTs can be costly, infeasible (Eberhardt et al., 2012), or even unethical. Thus, developing effective
CD methods reliant on observational data alone is of significant interest. In general, inferring the causal
direction is provably impossible without additional constraints or assumptions (Zhang et al., 2015); therefore,
existing methods constrain either the model class (i.e., the functions generating the observations) or the
data distribution. On the model side, these constraints include linear (Shimizu et al., 2006; Tashiro et al.,
2014; Shahbazinia et al., 2021; Zheng et al., 2018) or specific nonlinear relationships (e.g., with additive
noise) (Hoyer et al., 2008; Peters et al., 2011; Schölkopf et al., 2021; Yu et al., 2019; Shen et al., 2020;
Lachapelle et al., 2020; Ng et al., 2019). On the data side, assumptions include non-stationarity (Schölkopf
et al., 2012; Monti et al., 2019) or exchangeability (Guo et al., 2022).
CD aims to infer the ground-truth cause-effect relationships, which connects it to the identifiability literature,
where the goal is to learn a model equivalent to the ground truth (up to indeterminacies, such as permutations
or element-wise nonlinearities).
An extensively studied method for learning identifiable representations is Independent Component Analysis
(ICA) (Comon, 1994; Hyvärinen et al., 2001), which requires that the inferred components (sources) are
independent. Recent work has relied on nonlinear Independent Component Analysis (NLICA) (Zimmermann
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Figure 1: The Jacobian of the inference network Jf−1 informs about the DAG. We show that if
observations X are generated from noise variables N via a general nonlinear Structural Equation Model
(SEM) f , then the corresponding DAG can be inferred from the Jacobian of a model that identifies N under
certain assumptions on N

et al., 2021; Klindt et al., 2021; Hyvärinen & Morioka, 2016; Willetts & Paige, 2021; Khemakhem et al.,
2020a; Hyvärinen et al., 2019; Morioka et al., 2021; Monti et al., 2019; Khemakhem et al., 2020b; Gresele
et al., 2019; Hyvärinen & Morioka, 2017; Hyvärinen et al., 2010; Hälvä & Hyvärinen, 2020; Lachapelle et al.,
2022) for identifiability.
Our work builds on the NonSENS method (Monti et al., 2019), which showed that NLICA can be used for
CD with general nonlinear functions and observational data. Instead of using pairwise independence tests, we
draw inspiration from the Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al., 2006), which uses
a weight matrix to infer the DAG of a linear causal model. We extend this approach to the nonlinear case
by showing that the Jacobian of the inference function (mapping from observations X to noise variables N)1

captures the sparsity structure of the DAG, provided that strong identifiability is fulfilled (Khemakhem et al.,
2020b, Def. 1). Relying on the Jacobian improves scalability, since it removes the cost of d2 independence
tests for a DAG with d nodes. We train our model with NLICA, and show in Lem. 1 that the assumption
on the Data Generating Process (DGP) to be structured according to a DAG provides an inductive bias
to resolve the permutation indeterminacy of NLICA.
Our contributions can be summarized as follows:

1. We show that causal models allow us to resolve the permutation indeterminacy of ICA (Lem. 1);
2. Our main result (Prop. 1) proves that we can infer the DAG from the Jacobian of the inference

function and also improve scalability by removing the need for independence tests;
3. We propose an end-to-end multivariable CD method for general nonlinear functions from observational

data;
4. We experimentally show that our proposed method can infer the DAG across multiple synthetic data

sets.

2 Background
Here, we describe causal models and connect their estimation to ICA and defer the details to Appx. A.

Structural Equation Models (SEMs). Given d-dimensional observed X=(X1, . . . , Xd) and noise
(independent) variables N=(N1, . . . , Nd), their causal relationship is given by d deterministic functional
assignments (Peters et al., 2017),

Xi : = f i (P ai, N i) ∀i, (1)

where P ai ⊂ X are the parents of Xi and f i are the components of the vector-valued function f . We describe
the computation of X for a given N with an iterative process (denoting the iteration step with a superscript),

1In our paper, inference refers only to this process and not to amortized inference for direct graph discovery as proposed
in Lorch et al. (2021)
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which is a useful concept for justifying our proposal (§ 3). Initially, N is drawn from its density. To calculate X
for N , the functional assignment f needs to be applied d times. Namely, according to (1), each Xi requires that
its parents P ai are calculated. After sampling N , only the (empty) parent sets of root nodes are calculated.
Thus, the first application of f yields the Xi values for such nodes. In the second iteration, the children
of root nodes can be calculated (since we have all parents from the first iteration), and so on. This yields
an iterative algorithmic formulation of the SEM, describing the computational graph given by the DAG as:

X = Xd := f (d) (
X0, N

)
= f

(
X(d−1), N

)
= f

(
f . . .

(
f

(
X0, N

)
, N

)
, N

)
, (2)

where X0 is the initial value (w.l.o.g., we assume X0 = 0, since calculating the functional assignments will over-
write every Xi). We will also denote X = X(N) to indicate that X is deterministically determined by a par-
ticular N . As in most previous works (Vowels et al., 2022, Table 1), we assume no confounders (all variables are
observed) and faithfulness (loosely speaking, the coefficients/functions will not cancel an edge, cf. Assum. A.2).

Causal Discovery (CD). In CD, the data is assumed to be generated by a causal process, and the aim
is to infer the corresponding DAG, which enables reasoning about interventions (without the DAG, the
joint distribution p(N) only admits observational queries) (Peters et al., 2017; Pearl, 2009b). Algorithmic
approaches include combinatoric search (Shimizu et al., 2006; Hoyer et al., 2008; Hyttinen et al., 2013;
Mitrovic et al., 2018; Raskutti & Uhler, 2018; Spirtes et al., 2000; Vowels et al., 2022), continuous
optimization (Zheng et al., 2018; Lee et al., 2019; Wei et al., 2020; Ng et al., 2020; Vowels et al., 2022), and
neural networks (Yu et al., 2019; Ng et al., 2019; Khemakhem et al., 2021; Yang et al., 2020; Goudet et al.,
2018; Kalainathan et al., 2018; Vowels et al., 2022; Kyono et al., 2020; Moraffah et al., 2020)—we focus
on the latter. Zhang et al. (2015) proved that identifying the causal direction in a general SEM is impossible
without constraints on the function class and/or data distribution.
Functional constraints can include linear (Shimizu et al., 2006; Zheng et al., 2018), additive nonlinear
(Xi = f i(P ai) + N i) (Hoyer et al., 2008; Ng et al., 2019; Lachapelle et al., 2020; Schölkopf et al., 2021), or
affine nonlinear (Xi = f i(P ai) + hi(N i)) (Khemakhem et al., 2021; Shen et al., 2020) models. Regarding
the data distribution, some models require access to interventions (Brouillard et al., 2020; Ke et al., 2020;
Lippe et al., 2021); others assume that N is Gaussian (Kalainathan et al., 2018; Lachapelle et al., 2020) or
non-Gaussian (Shimizu et al., 2006); or require non-stationarity (Monti et al., 2019), exchangeability (Guo
et al., 2022), or discreteness (Ke et al., 2020) of N . Our work was inspired by (Monti et al., 2019), which
provides a bivariate CD method for general nonlinear functions and non-stationary data. The authors
leverage recent results in NLICA (cf. next section for details) to identify the causal direction. Although
they demonstrate applicability to multivariable problems, the use of pairwise independence tests constrains
scalability. In our work, we extend these results with a more scalable end-to-end solution in § 3.

Identifiability and ICA. Independent Component Analysis (ICA) (Comon, 1994; Hyvärinen et al., 2001)
models the observed variables X as a mixture of independent variables N via a deterministic function f ,
and focuses on defining models that are identifiable—i.e., N can be recovered up to indeterminacies (e.g.,
scaling, permutation, sign flips, element-wise transformations). Since this is provably impossible in the
nonlinear case without further assumptions (Darmois, 1951; Hyvärinen & Pajunen, 1999; Locatello et al.,
2019), recent work has focused on incorporating auxiliary variables (Hyvärinen et al., 2019; Gresele et al.,
2019; Khemakhem et al., 2020a; Gassiat et al., 2022), exploiting temporal structure in the data (Hyvärinen &
Morioka, 2017; 2016; Hälvä & Hyvärinen, 2020; Morioka et al., 2021; Monti et al., 2019; Hyvärinen et al.,
2010; Klindt et al., 2021; Zimmermann et al., 2021), or restricting the model class (Shimizu et al., 2006;
Hoyer et al., 2008; Zhang & Hyvärinen, 2012; Gresele et al., 2021). Several works have related (nonlinear)
ICA to SEM estimation (Gresele et al., 2021; Monti et al., 2019; Shimizu et al., 2006; von Kügelgen et al.,
2021) by inverting the DGP—i.e., estimating f−1 with an inference model.

3 Proposed methods
3.1 Intuition
The method we propose can be intuitively understood as a nonlinear extension of LiNGAM (Shimizu
et al., 2006; Hoyer et al., 2008; Peters et al., 2011). LiNGAM assumes a linear causal relationship between
observations X and the noise variables N , i.e., X = WN . Since the noise variables are assumed to be
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statistically independent, linear ICA can uncover the sources N from the observations X, which in turn
allows us to extract the DAG from W−1 as we show in the following example.
Example 1 (Motivating example for linear SEMs). Assume a linear causal model with three variables, the DAG
X1→X2→X3, and functional relationships: X1 := N1; X2 := aX1 +N2; X3 := bX2 +N3 : a, b ∈ R\{0}. The
DGP generates samples according to the DAG and has the matrix form on the left—we focus on the elements
below the main diagonal as for recovering the DAG, only the paths (i.e., series of directed edges) between Xi

and Xj are required and the main diagonal expresses the N i → Xi edges. Inverting the DGP with an inference
model (i.e., expressing N i as a function of Xj ; LiNGAM uses ICA to estimate the DGP) yields the matrix on
the right with elements below the main diagonal capturing the DAG’s Xi → Xj edges (as shown by color coding):X1

X2
X3

=

 1 0 0
a 1 0
ab b 1

N1
N2
N3

;

N1
N2
N3

=

 1 0 0
−a 1 0
0 −b 1

X1
X2
X3


Our method extends LiNGAM to nonlinear DGPs. First, we learn an inference model to uncover N from the
observations X using nonlinear ICA and then analyse the Jacobian structure of the inference model to extract
the underlying DAG. Because NLICA only identifies the ground-truth DGP up to certain indeterminancies
like scaling, permutation, and sign flips, we need to introduce the notion of structural equivalence in § 3.2 and
a way to resolve permutation indeterminacies in § 3.3 before introducing our main theoretical result in § 3.4.

3.2 DAG equivalence
To justify using the Jacobian of the inference network f−1, akin to LiNGAM’s use of a weight matrix, we first
connect the DAG and Jf−1 via fundamental concepts from graph theory. The adjacency matrix A of a graph
with d nodes is a binary d × d matrix where each matrix element indicates the presence, or absence, of an edge
(i.e., a direct connection) between a pair of nodes Xi, Xj (Defn. A.4). The connectivity matrix C of a graph
with d nodes is a binary d×d matrix where each matrix element indicates the presence, or absence, of a directed
path between two nodes Xi, Xj (Defn. A.5). For DAGs, both A and C are strictly lower-triangular—this is
why we considered only the elements below the main diagonal in Ex. 1. Furthermore, the main diagonal of
Jf−1 has non-zero elements (Ex. 1). We describe the relationship between J

f̂
−1 and (Id − A) for a DAG via

structural equivalence, and investigate its symmetries. Similar to the linear case (and shown more formally
below), Jf−1 and (Id − A) have the same sparsity structure, meaning ∀i, j (Jf−1)ij = 0 ⇔ (Id − A)ij = 0.
We denote this structural equivalence more formally as Jf−1 ∼DAG (Id − A), with the full definition and its
properties outlined in Defn. C.1. Ex. 1 intuits why our claim refers to A and not C: in the matrix mapping
from X to N only the edges (captured by A) are present.

3.3 Permutation indeterminacies

The inference model f̂
−1

we learn from the observed data generally differs from the true inverse of f up to
certain indeterminacies depending on the NLICA algorithm we use. Most commonly, this includes scaling,
permutation, sign flips, and monotonic element-wise transformations (Hyvärinen et al., 2001; Khemakhem
et al., 2020a; Zimmermann et al., 2021). While element-wise transformations such as scaling or sign-flips do
not influence the sparsity structure of the Jacobian, permutations break our structural equivalence between
the Jacobian and the ground-truth adjacency matrix. To this end, we note that with the right ordering(s)2 the
Jacobian J

f̂
−1 features a lower-triangular structure. The following lemma shows that this property determines

the ordering of the noise variables such that they yield a lower-triangular Jacobian, i.e., all possible causal
orderings that ensure structural equivalence to the ground-truth adjacency matrix (the proof is deferred to
Appx. D.1):
Lemma 1. [DAG DGPs resolve the permutation ambiguity of ICA] When f describes a DAG, then the
permutation indeterminacy of ICA πICA can be accounted for such that the Jacobian of the inference network
will have a lower-triangular Jacobian, even with unknown causal ordering π.

Proof (Sketch). Given that the DGP is structured by a DAG, the adjacency matrix A is lower triangular
and Assum. A.2 ensures that diagonal elements are nonzero. The permutation indeterminacy of ICA (which

2The causal ordering does not need to be unique, e.g., in the DAG Xi ← Xj → Xk the nodes Xi and Xk are interchangeable.
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is expressed as a left-multiplication, i.e., affects the rows) comprises matrices that do not violate lower-
triangularity. This gives us a single permutation (for a unique causal ordering) or a set of permutations, each
of which ensures a lower triangular A.

We emphasize that Lem. 1 refers to two permutations: the permutation indeterminacy of ICA (Lem. 1 makes
a claim about this) and the causal ordering of the SEM. These can be thought of as permuting the rows and
columns of the inference model’s Jacobian.

3.4 Main result
Relying on the properties of ∼DAG and Lem. 1, we prove that J

f̂
−1 can be used to extract the DAG for

general nonlinear functions (akin to the linear case shown in Ex. 1; the proof is deferred to Appx. D.2):
Proposition 1. [J

f̂
−1∼DAG(Id − A)]The suitably permuted inference network Jacobian J

f̂
−1 is structurally

equivalent to (ID − A) if f−1 is strongly identified (Khemakhem et al., 2020b, Def.1) up to scalings, sign
flips, permutations, and zero-preserving transformations, when Assum. A.2 holds.

Proof (Sketch). From the iterative formulation of the SEM in eq. (2), we note that X (or more precisely,
X(N)), is a fixpoint of f . Thus, when we apply the chain rule to calculate Jf , we will only have two types
of terms (on both sides), namely:

A : = ∂f(X,N)
∂X

∣∣
X,N

; B := ∂f(X,N)
∂N

∣∣
X,N

. (3)

This expression leads us to a closed form of Jf . Then we apply the inverse function theorem at (X, N) to
get Jf−1 . As the last step, we incorporate the indeterminacies—coming from strong identifiability—and show
based on the properties of ∼DAG that the statement of the proposition holds.

Prop. 1 implies that we can extract the DAG when f−1 can be strongly identified (Khemakhem et al.,
2020b, Def.1)—i.e., we can reason about interventions (cf. § 2). We note that if B = Id, then (19) describes
Additive Noise Models (ANMs) (Hoyer et al., 2008), whereas when additionally A is constant, we recover
LiNGAM (Shimizu et al., 2006).

3.5 Algorithm for CD and determining π

Based on Lem. 1 and Prop. 1, we propose a two-step approach for extracting the DAG from observational
data for general nonlinear f :

1. First, we use a suitable nonlinear ICA algorithm to estimate f−1 up to permutations and zero-
preserving element-wise nonlinearities with an inference model J

f̂
−1 .

2. Second, we resolve the permutation indeterminacy by accounting for the causal graph structure.
Regarding the second step, we learn the permutations after training with an objective that enforces the
estimated Jacobian to be lower-triangular. To this end, we need to learn both a permutation π for the causal
ordering as well as a permutation πICA that resolves the indeterminacy in the noise variables introduced by
ICA. We use the permuted absolute Jacobian K defined as

K :=
∣∣∣SICAJ

f̂
−1Sπ

∣∣∣ (4)

where SICA, Sπ are doubly-stochastic matrices that represent a soft permutation on both noise and observation
variables, which we learn after ICA training. We then introduce a training loss inspired by LiNGAM (Shimizu
et al., 2006) that encourages K to be lower-triangular by simultaneously maximizing i) the sum of the main
diagonal and ii) the lower-triangular part, while also iii) minimizing the stricly-upper triangular part of K,

Lπ =
∑
i,j

[
αd (K)−1

ii + αu (K)i<j − αl (K)i≥j

]
. (5)

The full learning algorithm is presented in Alg. 1.
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Algorithm 1 Algorithm for multivariable CD and determining the causal order π

Input: dataset D, network parameters θ, Sinkhorn networks SICA, Sπ, contrastive loss LCL

Initialize θ
while LCL not converged do

calculate LCL for a batch from D
update θ

end while
extract J

f̂
−1

while Lπ not converged do
K =

∣∣∣SICAJ
f̂

−1S
∣∣∣

Lπ =
∑

i,j

[
αd (K)−1

ii + αu (K)i<j − αl (K)i≥j

]
update SICA, Sπ

end while

4 Experiments

4.1 Experimental setup.

Data Generating Process (DGP) We experiment with three DGPs: i) linear and ii) nonlinear SEMs
(in the form of X = f(WN), as well as with iii) Multi-Layer Perceptrons (MLPs) with triangular weight
matrices (as used in (Monti et al., 2019)). In all cases, the nonlinear activations (i.e., f) are leaky ReLUs
(with a slope of 0.25 for the SEMs and 0.1 for the triangular MLPs). For the SEM DGPs, we exlore three
options: a) no permutation w.r.t. the causal ordering (i.e., only the ICA permutation remains); b) a sparse
DGP (with each Xi − Xj edge being nonzero with a 0.25 probability); and c) permuted causal ordering
(with dense A). Additionally, we ensure that the ordering of N i is unique (all cases), and that the DGP
weights are ≫ 0 (for the SEM DGPs) as otherwise we would be unable to distinguish weak connections
from small elements in the Jacobian. That is, the estimate of a weak connection could be the same order
of magnitude as the estimate of a zero element due to the stochasticity of training—we do not enforce this
property for the triangular MLPs to compare to the results of (Monti et al., 2019), where such modification
was not present. For the permuted SEM DGPs, we sample 6 different orderings and 5 seeds for each problem
dimensionality {3; 5; 8; 10}—the number of seeds is 10 for non-permuted and sparse SEMs. For the triangular
MLP, we use d = 6 and 5 seeds to compare to (Monti et al., 2019, Fig. 2) and vary the number of layers
in the mixing. To use contrastive NLICA for training the inference model, the DGPs needs to satisfy the
assumptions underlying the proof of identifiability (Zimmermann et al., 2021, Thm. 6)): the latent space is
a hyperrectangle in Rd, the marginal p(N) is uniform, the conditional p(Ñ |N) is Laplace, X is generated by
a smooth and bijective mapping;

Inference model To (strongly) identify the SEM, we use contrastive NLICA (Zimmermann et al., 2021)
to estimate f̂

−1
with a hyperrectangle latent space in Rd and the contrastive loss uses the same metric as

the conditional, which is L1 for our case (Assum. E.1). Our architecture for the inference model is the same
MLP as in (Zimmermann et al., 2021) (Tab. 5). To account for the permutation indeterminacies, we use
two Sinkhorn networks (Mena et al., 2018), which are differentiable models for learning doubly-stochastic
matrices. We observed that setting the lowest d (d − 1) /2 elements (for dense DAGs) to zero and converting
the resulting K matrix to binary often helped the convergence of the Sinkhorn networks. Moreover, instead
using max to aggregate the different Jacobians over the batch, we found using the mean operator more stable
in practice.

Metrics We measure learning the correct ordering by the ordering accuracy (Accπ, only for the permuted
case)—i.e., the ratio of causal variable pairs ∀i < j : (N i, N j), such that the ranking (expressed by sign (i − j))
matches that in the inferred (permuted) ordering π, i.e., sign (π (i) − π (j)). To normalize, we divide by the
number of distinct edge pairs (1/2(d − 1)d) We also report the accuracy (Acc) and the Structural Hamming
Distance (SHD) (we use 1e−3 as the threshold in all scenarios) for inferring the edges of the DAG, as is
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Table 1: Validation of Lem. 1 for linear and nonlinear SEMs with unknown causal ordering to measure how
well our method recovers the causal ordering. Mean Correlation Coefficient (MCC) measures identifiability,
|E∗| is the maximum number of edges in a DAG, Accπ is the accuracy of recovering the pairwise causal
ordering π, whereas π gives the ratio of learning a (any) paermutation in Sπ

Linear Nonlinear
|E∗| d MCC Acc Accπ π MCC Acc Accπ π

6 3 1. 1. 1. 1. 1. 1. 1. 1.
15 5 0.989±0.039 0.998±0.009 0.974±0.078 0.76 0.988±0.039 0.994±0.021 0.957±0.129 0.583
36 8 0.834±0.238 0.935±0.081 0.851±0.183 0.414 0.781±0.219 0.934±0.051 0.889±0.15 0.345
55 10 0.852±0.251 0.931±0.051 0.921±0.147 0.233 0.794±0.255 0.924±0.073 0.739±0.252 0.276

Table 2: Causal discovery performance for linear and nonlinear SEMs with known causal ordering. Mean
Correlation Coefficient (MCC) measures identifiability, |E∗| is the maximum number of edges in a DAG, Acc
is accuracy, Ours is our proposal, HSIC refers to using HSIC independence tests, and SHD is the Structural
Hamming Distance

Linear Nonlinear
|E∗| d MCC Acc(Ours) Acc(HSIC) SHD MCC Acc(Ours) Acc(HSIC) SHD

6 3 1. 1. 0.7±0.1 0. 1. 1. 0.741±0.105 0.049±0.14

15 5 0.969±0.066 0.928±0.131 0.828±0.116 0.072±0.131 0.94±0.09 0.858±0.172 0.8±0.102 0.142±0.171

36 8 1. 1. 0.682±0.17 0. 0.982±0.029 0.872±0.198 0.823±0.142 0.128±0.198

55 10 0.965±0.03 0.832±0.176 0.551±0.003 0.168±0.176 0.962±0.025 0.636±0.239 0.638±0.134 0.364±0.239

standard practice in the literature (Lachapelle et al., 2020; Monti et al., 2019; Ke et al., 2020; Vowels et al.,
2022).

Figure 2: Hinton diagrams
(d = 5): ground truth (left),
estimate (right). Size equals
magnitude.

Comparison We use the linear and nonlinear SEM DGPs to showcase that
our method can infer the DAG while also learning the correct ordering. Then,
we compare to NonSENS (Monti et al., 2019), which, unlike our proposal,
does CD on an edge-by-edge basis. Thus, the causal ordering π does not affect
how NonSENS operates. We use the HSIC independence test (Gretton et al.,
2005) on top of contrastive NLICA (Zimmermann et al., 2021) to provide
a close comparison with NonSENS (Monti et al., 2019). Notably, since our
assumptions provide identifiability up to generalized permutations, there is
no need to perform linear ICA on top of contrastive NLICA. Thus, we test
independence between the observations Xi and the inferred noise variables
N̂ j—although the number of tests is d2, we use a Bonferroni correction factor
of 4, since each edge is determined based on four tests (Monti et al., 2019).

4.2 Results.
In all experiments except those in Tab. 1, we used the output of the matching problem as an oracle (solved
via the Hungarian algorithm (Kuhn, 1955)) to correct for the permutation indeterminacy of ICA.

The permutation indeterminacies can be resolved (verifying Lem. 1). Tab. 1 corroborates the
result of Lem. 1: it is possible to resolve the permutation indeterminacy by assuming a DAG DGP. However,
Accπ strongly depends on the performance of NLICA, measured by Mean Correlation Coefficient (MCC). As
MCC deteriorates, the correct causal ordering cannot be recovered. Nonetheless, erroneous solutions resulting
from training stochasticity (the most frequent problem according to our observations) can be simply filtered
out: in this case the doubly stochastic matrices usually do not converge to a permutation matrix. Inspecting
their elements or automatically rejecting such solutions is straightforward. Thus, we report two quantities in
Tab. 1: Accπ is the ratio of inferring the order of causal variable pairs when the Sinkhorn networks converged
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to permutation matrices; π (with a slight abuse of notation), on the other hand, reports the ratio of the
successful attempts to recover permutation matrices. Clearly, failing to converge to a permutation matrix is
the bottleneck of this step, since despite failing to scalably recover π, in case of converging to a permutation
matrix the captured graph reflects most of the edges. This is reported by the Accπ column that is calculated
after applying the learned (not necessarily correct) permutations.

Figure 3: Precision vs recall for thresh-
olds in [1e−7; 1e0] for linear (dashed)
and nonlinear (solid) sparse SEMs

Competitive performance on linear and nonlinear SEMs.
Tab. 2 demonstrates (with π being known) that our method outper-
forms HSIC in the linear case and is at least comparable to HSIC in
the nonlinear case—note that the entries in J

f̂
−1 were ordered by

absolute value and the smallest ones were zeroed out—namely, these
are the elements of the Jacobian that most probably correspond to
the zeros in the true Jacobian. However, this modification might
require additional knowledge about the sparsity of the DAG. Fig. 3
describes how precision and recall changes for threshold values from
[1e−7; 1e0] for sparse DAGs. Notably, the nonlinear curves are
better than the linear ones. For additional results on sparse SEMs
(Tab. 6) and SEMs with unknown causal ordering (Tab. 7, evalu-
ation is done after accounting for the causal ordering), cf. Appx. E.
For sparse SEMs, HSIC is slightly better for larger graphs, whereas
in the case of unknown causal ordering, our proposal has better
accuracy in most cases. To visualize the inferred graph structure, we plot a Hinton diagram of the true and
estimated Jacobians in Fig. 2, showing that J

f̂
−1 can capture the edges of an underlying sparse DAG.

Table 3: Causal discovery performance for the trian-
gular MLP from (Monti et al., 2019) with d = 6. |l|
denotes the number of MLP layers, Acc the accuracy,
Ours is our proposal, HSIC refers to using HSIC inde-
pendence tests. Chance level is (for the dense MLP)
21/36 = 0.583

|l| MCC Acc (Ours) Acc (HSIC)

1 1. 0.933±0.042 0.583
2 1. 0.944 0.583
3 0.997±0.003 1. 0.583
4 0.978±0.016 0.922±0.097 0.6±0.033

5 0.603±0.062 0.711±0.054 0.589±0.011

Competitive performance on triangular MLPs
from (Monti et al., 2019). Tab. 3 summarizes
our results with the triangular MLP of (Monti et al.,
2019). Despite having small weights (appr. 1e−2)
in the ground truth Jacobian Jf−1 , our method was
able to infer most edges in the DAG. Importantly,
the resulting accuracies are larger than those of our
adapted version of NonSENS (Monti et al., 2019).
Moreover, our method has the advantage of simul-
taneously inferring all edges based on the structure
of J

f̂
−1—thus, it does not require d2 pairwise inde-

pendence test for a DAG with d nodes. Our appli-
cation of HSIC independence tests resulted in sur-
prisingly low accuracy, despite utilizing an NLICA
method with identifiability guarantees up to gener-
alized permutations. Interestingly, HSIC resulted in
(close-to) chance-level performance in our repeated
experiments—by careful inspection of the DGP, we found that the weights are in the order of 1e−4, which
might explain such bad performance. As noted above, since Monti et al. (2019) did not constrain the weights,
we used a uniform initialization scheme, which might led to mismatching experimental conditions. Though
the use of HSIC was inspired by NonSENS (Monti et al., 2019), since we made different assumptions on the
DGP, the results only represent HSIC’s (but not NonSENS’s) performance.

5 Related work
Independence tests for CD. Traditional CD methods (Pearl, 2009b; Spirtes & Zhang, 2016; Spirtes et al.,
2000; Peters et al., 2017) rely on statistical (conditional) independence tests to infer the graph structure.
Recent works also leverage such tests (Shimizu et al., 2006; Monti et al., 2019; Guo et al., 2022; Karlsson &
Krijthe, 2022) to uncover hidden confounders (Karlsson & Krijthe, 2022), for bivariate (Janzing et al., 2009;
Monti et al., 2019) or multivariable CD (Guo et al., 2022) for nonlinear SEMs. LiNGAM (Shimizu et al.,
2006), which inspired our work, also relies on independence tests to prune edges. Although independence
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tests provide additional information via significance values, they are not differentiable and can be costly,
as d latents require d2 tests.

Optimization-based CD. Zheng et al. (2018) introduced the continuous optimization-based NOTEARS
algorithm for linear SEMs, which has inspired further research (Khemakhem et al., 2021; Lorch et al., 2021;
Ng et al., 2019; Schölkopf et al., 2021; Yu et al., 2019; Lachapelle et al., 2020; Kalainathan et al., 2018) to
provide differentiable methods for CD in neural networks. Most of the differentiable solutions (Khemakhem
et al., 2021; Ng et al., 2019; Schölkopf et al., 2021; Yu et al., 2019) constrain the function class, some of
them (Lachapelle et al., 2020; Kalainathan et al., 2018) both the function class and the data distribution.

Using the adjacency matrix A. Several methods leverage the adjacency matrix for CD: Shimizu et al.
(2006) use a weight matrix to infer the DAG in the linear case, Zheng et al. (2018) use A as a regularizer in
NOTEARS, Ng et al. (2019) reformulates the SEM with an adjacency matrix for additive models, Schölkopf
et al. (2021) models A with an LSTM in a variational framework, whereas Lachapelle et al. (2020) calculates
the Jacobian of the inference network to enforce acyclicity, generalizing to nonlinear additive models. Rolland
et al. (2022) consider the same model class as Lachapelle et al. (2020), but they rely on the Jacobian of the
score function. In (Brouillard et al., 2020), A appears for the interventional case. Our work reasons about
the Jacobian of the inference network, but it extends to general nonlinear functions for observational data.

CD from interventions. Many algorithms can incorporate interventions (Brouillard et al., 2020; Ke et al.,
2020; Lippe et al., 2021; 2022; Lorch et al., 2021). Interestingly, (Ke et al., 2020) provide an extension of (Yu
et al., 2019; Zheng et al., 2018) to interventional data, and of the bivariate method of (Bengio et al., 2020)
to a multivariable one. It is remarkably similar to our proposal, as both make assumptions only on the data
(i.e., admitting general nonlinear functional relationships), but as (Ke et al., 2020) requires interventions,
its path is orthogonal to ours. So is the work of (Lippe et al., 2021), which removes any requirement on
the data, scales to multiple variables, but requires interventions.
We provide a detailed comparison the properties of related CD methods in Tab. 4 in Appx. B.

6 Discussion
Limitations. Our theory requires the guarantees of strong identifiability but not the use of a specific
(NLICA) algorithm. Though our experiments demonstrate that fulfilling strong identifiability is sufficient
for CD, we do not vary the NLICA algorithm. Our method’s applicability is limited for inferring weak
edges, similar to (Shimizu et al., 2006; Tashiro et al., 2014; Shahbazinia et al., 2021; Lachapelle et al., 2020).
As demonstrated in § 4, despite its competitive performance, the success of our proposed method highly
relies on the performance of NLICA, which can be limited for higher-dimensional problems. Nonetheless,
based on our comparisons, this seems to be an issue for the HSIC independence test as well. A possible
explanation could be that the class of SEMs is harder to learn with specific NLICA algorithms; indeed, we
observed that deploying contrastive NLICA (Zimmermann et al., 2021) achieves much better MCC on general
(non-triangular) invertible MLPs. To ensure that particular entries in the Jacobian are non-zero everywhere,
our assumptions require that the underlying DAG for the DGP is the same for all data points, which
might be restrictive . For instance, if the DAG models the interaction of physical objects, then cause-effect
relationships are only present when, e.g., the objects are touching each other or their magnetic/electric fields
affect each other—in the literature, this setting is considered in (Sontakke et al., 2021; Seitzer et al., 2021).

Unknown causal ordering. Accounting for the causal ordering is, to the best of our knowledge, only found
in (Shimizu et al., 2006). Binary CD methods such as (Monti et al., 2019) alleviate this step as they work on
an edge-by-edge basis. Other non-ICA-based methods can also avoid this step since the DAG is invariant to
changes in the causal ordering—meaning that reordering Xi in the observation vector X (cf. Defn. A.7) does not
affect the edges of the graph, only their representation in form of an adjacency matrix. However, to resolve the
permutation indeterminacy of ICA, we need to account for the causal ordering, since only then can the Jacobian
be lower-triangular. Although extracting a lower-triangular Jacobian is easier to interpret and potentially bet-
ter suited, e.g., as a building block of causal representation learning (since the causal ordering of N i is always the
same), our method extracts the DAG even without resolving these indeterminacies. That is, our demonstration
that the permutation indeterminacies can be resolved should mostly be considered as corroboration of Lem. 1.
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Extensions to related work. Using neural networks for CD is discussed in several papers (Monti et al.,
2019; Khemakhem et al., 2021; Lachapelle et al., 2020; Lippe et al., 2021; 2022; Brouillard et al., 2020), many
of them uses the adjacency matrix, the Jacobian of the inference network (Shimizu et al., 2006; Schölkopf et al.,
2021; Lachapelle et al., 2020) or that of the score function Rolland et al. (2022). Furthermore, methods that
can handle general nonlinear relationships either require interventions (Brouillard et al., 2020; Lippe et al.,
2021; 2022) or rely on independence tests (Guo et al., 2022; Monti et al., 2019). Our method was inspired by
LiNGAM (Shimizu et al., 2006) to use the Jacobian of the inference network for inferring the DAG and utilizes
NLICA (similar to (Monti et al., 2019)) to provide theoretical guarantees (Prop. 1) for multivariable CD with
arbitrary nonlinear functions. Furthermore, we also prove (Lem. 1) and demonstrate (Tab. 1) that the permu-
tation indeterminacy of ICA—and that of an unknown causal ordering—can be resolved in the nonlinear case.

Conclusion. We introduced a two-step process to leverage strong identifiability for inferring the DAG of mul-
tivariable causal models with general nonlinear functions. Our method uses the Jacobian of the inference func-
tion (mapping from observables to independent variables) and can be thought as a generalization of LiNGAM to
the nonlinear case. We prove that this Jacobian captures the sparsity structure of the DAG, and show that by
working with causal models, we can resolve the permutation indeterminacy of ICA under certain assumptions.
Since we do not use conditional independence tests, but learn the causal ordering with Sinkhorn networks,
our method provides an end-to-end solution for CD and avoids the cost of exponentially many independence
tests. We experimentally demonstrate that our proposal can infer the DAG in multiple synthetic data sets.
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A SEMs
Definition A.1 (SEM). A SEM describes causal relationships via a set of structural assignments (Peters
et al., 2017):

Xi := f i (P ai, N i) , ∀i ∈ I = {, . . . , d} , (6)

where Xi are the endogenous, N i the exogenous/noise variables, P ai ⊆ X \ {Xi} denotes the parent set of
Xi, I the set of indices, and f i the mappings.
Definition A.2 (Reduced form of SEM). The reduced form of the SEM expresses all Xi as a function of
only the N i variables, i.e.:

Xi := f i

(
N i

)
, ∀i ∈ I = {0, . . . , d − 1} , (7)

with the same notation as in Defn. A.1, slightly abusing f i and denoting a subset of N by N i ⊆ N .
Definition A.3 (Causal ordering). The causal ordering π is a bijective automorphism on the index set I.
Namely, π : I → I so that ∀Xi ̸= Xj , it holds that if π (i) < π (j) =⇒ Xj ̸∈ P ai.

The definition means that only a node with a smaller index in π can be a parent of a node with a larger
index. Note that though Xi can be a parent of Xj , it is not necessary, but Xj cannot be a parent of Xi.
Multiple orderings may exist, e.g. if there are multiple Xi so that they only have a single parent. π helps to
have a unique description of the edges in the graph. Namely, if the edges are organized in the adjacency
matrix A according to π, then A will be strictly lower triangular.
Definition A.4 (Adjacency matrix). The adjacency matrix A is a binary d × d matrix, where Aij = 1 ⇐⇒
Xj ∈ P ai. The rows of A are ordered by π; thus, A is strictly lower-triangular.
A only describes the edges of the DAG, which gives the direct cause-effect relationships. Nodes can be
influence each other via paths (i.e., a set of directed edges that can be traversed between the two nodes),
which can be described by the connectivity matrix C
Definition A.5 (Connectivity matrix). The connectivity matrix C is a binary d×d matrix, where C = 1 ⇐⇒
∃p : Xj → · · · → Xi. C =

∑d
k=1 Ak. The rows of C are ordered by π; thus, C is strictly lower-triangular.

Assumption A.1 (Structural faithfulness ). The set of N ’s that induces additional zeroes (i.e., a sparser
DAG) in the Jacobians Jf , Jf−1 has zero measure, i.e., both Jacobians describe the sparsity structure of the
underlying DAG DGP with probability one (Jf w.r.t. C, as shown in Lem. A.1; Jf−1 w.r.t. A). Alternatively,
the structural independencies are reflected in a functional form via Jf /Jf−1 . We call this property structural
faithfulness.
Assumption A.2 (SEM assumptions). We assume that the causal DGP fulfils:

(i) eq. (1) describes a DAG;
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(ii) N i are jointly independent;
(iii) There are no hidden confounders (faithfulness/stability); moreover, the Jacobians Jf , Jf−1 are

structurally faithful (Assum. A.1);
(iv) each f i is a homomorphism (they can be general nonlinear functions); and
(v) each Xi depend on N i (i.e., ∂f(X,N)

∂N

∣∣
X,N

is diagonal with non-zero elements)

Definition A.6 (DGP with known π). The DGP is described by the SEM, when π is known. I.e., the flow
of information is: N

SEM−−−→ X.
Definition A.7 (DGP with unknown π). The DGP with unknown π is given by the SEM, and by a
permutation matrix π (with a slight abuse of notation) applied to X. I.e., the flow of information is:
N

SEM−−−→ X
π−→ X̂.

Lemma A.1 ( Jf ∼DAG (Id + C)). Given Assum. A.2, the partial derivatives of f i w.r.t. N j provide
information about C, as

(Jf )kl = ∂f l

∂Nk
= 0 ⇐⇒ ̸ ∃Xk → · · · → X l

We emphasize that the derivatives are also non-zero in the case of indirect paths, i.e., when ∃Xi ∈ p : i ̸= k, l.
Furthermore, the strictly lower triangular part of Jf has the describes the same DAG as C–or equivalently,
Jf ∼DAG (Id+C).

B Extended related work

Table 4: Comparison of CD methods. Column x indicates multivariability, do (∅) indicates whether the
method can be applied only to observational data, f indicates constraints on the function class of the SEM,
∂/∂ indicates differentiability, and the data column lists restrictions on the data distribution.

Method x do (∅) f ∂/∂ Data

(Monti et al., 2019) ✗ ✓ ✓ ✗ non-stationary
(Shimizu et al., 2006) ✓ ✓ linear ✗ non-Gaussian
(Guo et al., 2022) ✓ ✓ ✓ ✗ exchageability
(Khemakhem et al., 2021) ✓ ✓ affine/additive ✓ ✓
(Lachapelle et al., 2020) ✓ ✓ additive ✓ Gaussian
(Brouillard et al., 2020) ✓ ✗ ✓ ✓ ✓
(Ke et al., 2020) ✓ ✗ ✓ ✓ discrete
(Lippe et al., 2021) ✓ ✗ ✓ ✓ ✓
(Ng et al., 2019) ✓ ✓ additive ✓ ✓
(Schölkopf et al., 2021) ✓ ✓ linear/additive ✓ ✓
(Zheng et al., 2018) ✓ ✓ linear ✓ ✓
(Yu et al., 2019) ✓ ✓ additive ✓ ✓
(Shen et al., 2020)3 ✓ ✓ additive ✓ ✓
(Kalainathan et al., 2018) ✓ ✓ additive ✓ Gaussian
(Rolland et al., 2022) ✓ ✓ additive ✓ ✓
Ours ✓ ✓ ✓ ✓ Assum. E.1

C Auxiliary theory
Definition C.1 (∼DAG). Two matrices S, R are structurally equivalent if (S)ij = 0 ⇐⇒ (R)ij = 0 : ∀i, j;.
Structural equivalence, denoted as ∼DAG, has the following properties (◦ denotes composition):

(i) D-invariance: a non-singular diagonal matrix D preserves the sparsity structure; thus,
(D ◦ S) ∼DAG S

(ii) h0-invariance: for zero-preserving transformations h0 : (h0(S))ij =0 ⇐⇒ (S)ij = 0 then h(S)∼DAG S
3Supervised
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(iii) π-equivariance: a permutation π affects the positions of zeros; thus, both operands need to be
permuted with the same π to maintain ∼DAG, i.e., S ∼DAG R ⇐⇒ (π ◦ S) ∼DAG (π ◦ R),

(iv) Transitivity: S ∼DAG P ∧ P ∼DAG R =⇒ S ∼DAG R
(v) Commutativity: S ∼DAG R ⇐⇒ R ∼DAG S.

D Proofs
D.1 Proof of Lem. 1
Lemma 1. [DAG DGPs resolve the permutation ambiguity of ICA] When f describes a DAG, then the
permutation indeterminacy of ICA πICA can be accounted for such that the Jacobian of the inference network
will have a lower-triangular Jacobian, even with unknown causal ordering π.

Proof. The unknown causal ordering π of N i implies the right-multiplication of Jf−1 with π−1, the permutation
indeterminacy of ICA the left-multiplication with πICA, yielding the estimated Jacobian J

f̂
−1 :

J
f̂

−1 = πICA ◦ Jf−1 ◦ π−1, (8)

where πICA and π−1 are not necessarily the same.
If π is unique, we only need to show that πICA is also unique. Assume that there exists πICA,1 ̸= πICA,2
such that J

f̂
−1 can be transformed into a lower-triangular Jf−1 by both. This implies that the rows of J

f̂
−1

can be permuted such that it yields a lower-triangular Jf−1 (when π is already accounted for). Assume that
πICA,1 yields a lower-triangular Jf−1 . Then a different πICA,2 means that there are at least two rows i, k in
J

f̂
−1 that can be permuted differently than in πICA,1 such that the resulting matrix is still lower-triangular.

Jf−1 has a non-zero diagonal (cf. the definition of B in eq. (15)); thus, using a different ordering πICA,2
will violate lower-triangularity, for this means that the ith, kth rows after applying πICA,1 will be equal to
the kth, ith rows of πICA,2 (the former being equal to the true Jacobian Jf ):[

π−1
ICA,1 ◦ J

f̂
−1 ◦ π

]
[i,k],:

=
[
Jf−1

]
[i,k],: =

[
π−1

ICA,2 ◦ J
f̂

−1 ◦ π
]

[k,i],:
, (9)

which means that for πICA,2 the resulting matrix has nonzero elements at indices (i, k) and (k, i). This
violates lower-triangularity, since k ̸= i, so one of the above means that there is at least one non-zero element
above the main diagonal, leading to a contradiction.
If π is not unique, we can apply the above argument, resulting in a set of permutation matrices, each
yielding a lower-triangular Jacobian.

D.2 Proof of Prop. 1
Proposition 1. [J

f̂
−1∼DAG(Id − A)]The suitably permuted inference network Jacobian J

f̂
−1 is structurally

equivalent to (ID − A) if f−1 is strongly identified (Khemakhem et al., 2020b, Def.1) up to scalings, sign
flips, permutations, and zero-preserving transformations, when Assum. A.2 holds.

Proof. We start from the functional equation of the SEM and note that if X is the input of f (as P ai from
eq. (1)), then the output is the same X (which deterministically depends on N):

X = X (N) := f (X (N) , N) = f (X, N) . (10)

For a given (X, N) we can evaluate the Jacobian of f via the chain rule—the key point is that since X is a
fix point of f , Jf will apprear on both sides (evaluated at the same point, expressed with the bar notation):

Jf

∣∣
X,N

= ∂X(N)
∂N

∣∣
X,N

= ∂f(X,N)
∂N

∣∣
X,N

= A ∂X
∂N

∣∣
X,N

+ B = AJf

∣∣
X,N

+ B (11)

A : = ∂f(X,N)
∂X

∣∣
X,N

; B := ∂f(X,N)
∂N

∣∣
X,N

. (12)

The above equation can be reordered to yield the expression for Jf (note that A, B depend on X, N):

Jf

∣∣
X,N

= (Id − A)−1 B, (13)
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where A describes the Xi −Xj edges in the DAG (i.e., A ∼DAG A), B is diagonal (as the X values are fixed).
Since we reason about the Jacobian point-wise, we can invoke the inverse function theorem (by assumption,
f is bijective) to express Jf−1 :

Jf−1 = J−1
f = B−1 (Id − A) . (14)

Jf−1 ∼DAG(Id−A) follows as A∼DAG A and B is diagonal (the invariance of ∼DAG follows from Def. C.1(i)).
For proving that J

f̂
−1 ∼DAG (Id−A), we need Jf−1 ∼DAG J

f̂
−1 (Def. C.1(iv)), which requires us to

account for all indeterminacies of strong identifiability: i) Def. C.1(i) accounts for scalings and sign flips;
ii) Def. C.1(ii) for zero-preserving transformations; and iii) Def. C.1(iii) for permutations, which can be
extracted as shown in Lem. 1.

Alternative proof

Proof. The proof consists of two steps: 1) leveraging the iterative formulation of the SEM (2), proving that
Jf−1∼DAG(Id − A) and 2) relying on the properties of ∼DAG and Lem. 1, showing Jf−1 ∼DAG J

f̂
−1 .

We start by formulating Jf (recall that X = Xd) based on the iterative SEM expression (2):

Jf

∣∣
Xd−1,N

= ∂Xd

∂N

∣∣
Xd−1,N

= ∂f(Xd−1,N)
∂N

∣∣
Xd−1,N

= Ad−1 ∂Xd−1

∂N

∣∣
Xd−1,N

+ Bd−1 (15)

Ad−1 : = ∂f(Xd−1,N)
∂Xd−1

∣∣
Xd−1,N

; Bd−1 := ∂f(Xd−1,N)
∂N

∣∣
Xd−1,N

, (16)

where A describes the Xi − Xj edges in the DAG (i.e., A ∼DAG A), B is diagonal (as the Xd−1 values are
fixed). Although both A, B are dependent from t (superscript), unless f is linear, they are independent when
seen through the lens of structural equivalence. By Assum. A.1, it holds that Ak ∼DAG Aj ∧ Bk ∼DAG Bj :
∀j, k. Thus, we will omit superscripts for both.
Realizing that (15) gives us a recursive formula, and recalling that X0 = 0 , we can unroll (15) iteratively for
t = d − 1, d − 2, . . . , 0:

Jf = A ∂Xd−1

∂N + B ∼DAG A
[
A ∂Xd−2

∂N + B
]

+ B ∼DAG A

A

. . .

A ∂X0

∂N︸︷︷︸
=0

+B


 + B

 + B (17)

=
d−1∑
i=0

AiB = (Id − A)−1 B, (18)

where the structural equivalences follow by the structural faithfulness of Jf (Assum. A.1), the last equality
expresses the sum of the geometric series with elements Ai (the sum is finite as A is strictly lower triangular).
By invoking the inverse function theorem (by assumption, f is bojective), we can express Jf−1 :

Jf−1 = J−1
f ∼DAG B−1 (Id − A) . (19)

Jf−1 ∼DAG(Id−A) follows as A∼DAG A and B is diagonal (the invariance of ∼DAG follows from Def. C.1(i)).
For proving that J

f̂
−1 ∼DAG (Id−A), we need Jf−1 ∼DAG J

f̂
−1 (Def. C.1(iv)), which requires us to

account for all indeterminacies of strong identifiability: i) Def. C.1(i) accounts for scalings and sign flips;
ii) Def. C.1(ii) for zero-preserving transformations; and iii) Def. C.1(iii) for permutations, which can be
extracted as shown in Lem. 1.

E Experimental details
Assumption E.1 (NLICA assumptions). We assume the setting of (Zimmermann et al., 2021), specifically
that of Thm. 6, under which, an encoder which minimizes a contrastive loss was proven to estimate the
noise variables (often referred to as “sources" in the ICA literature) up to a composition of input independent
permutations, sign flips, and rescaling. For completeness, we restate the assumptions below:
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Table 6: Results for sparse linear and nonlinear SEMs. Mean Correlation Coefficient (MCC) measures
identifiability, |E∗| is the maximum number of edges in a DAG, Acc is accuracy, Ours is our proposal, HSIC
refers to using HSIC independence tests, and SHD is the Structural Hamming Distance

Linear Nonlinear
|E∗| d MCC Acc(Ours) Acc(HSIC) SHD MCC Acc(Ours) Acc(HSIC) SHD

6 3 1. 0.917±0.108 0.708±0.11 0.111 1. 0.889±0.111 0.75±0.144 0.111
15 5 0.961±0.062 0.768±0.121 0.784±0.111 0.256±0.132 0.972±0.059 0.76±0.095 0.84±0.098 0.208±0.0873

36 8 0.844±0.184 0.709±0.084 0.711±0.122 0.322±0.109 0.783±0.155 0.656±0.059 0.708±0.119 0.375±0.081

55 10 0.8±0.217 0.648±0.059 0.715±0.1 0.336±0.055 0.734±0.206 0.618±0.044 0.69±0.086 0.37±0.082

Table 7: Results for permuted (i.e., π is not the identity) linear and nonlinear SEMs. Mean Correlation
Coefficient (MCC) measures identifiability, |E∗| is the maximum number of edges in a DAG, Acc is accuracy,
Ours is our proposal, HSIC refers to using HSIC independence tests, and SHD is the Structural Hamming
Distance

Linear Nonlinear
|E∗| d MCC Acc(Ours) Acc(HSIC) SHD MCC Acc(Ours) Acc(HSIC) SHD

6 3 1. 1. 0.667 0. 1. 1. 0.667 0.
15 5 0.989±0.039 0.949±0.098 0.866±0.088 0.051±0.098 0.988±0.039 0.94±0.087 0.863 0.06±0.087

36 8 0.837±0.252 0.834±0.162 0.624±0.127 0.166±0.162 0.752±0.232 0.794±0.138 0.687±0.139 0.206±0.138

55 10 0.852±0.251 0.761±0.213 0.578±0.086 0.239±0.213 0.794±0.255 0.705±0.16 0.573±0.05 0.295±0.159

(i) the space of sources/latent/noise variables, is a convex body in Rd, i.e. a hyperrectangle/cube.
(ii) p(N), the marginal distribution, is uniform

(iii) p(Ñ |N), the conditional distribution, is a rotationally asymmetric generalized normal distribu-
tion (Subbotin, 1923), i.e. a Laplace distribution.

(iv) the observations are generated by a smooth, bijective (i.e., invertible) mapping
(v) the contrastive objective uses the same metric as p(Ñ |N), i.e., L1 for Laplace (cf. (Zimmermann

et al., 2021, Def. 1)).

Table 5: Hyperparameters for our experiments (§ 4)

Parameter Values

f̂
−1

6-layer MLP
Activation Leaky ReLU
Batch size 6144
Learning rate 1e−4
Rd [0; 1]d
Cp 1
mp 0
Cparam 0.05
mparam 1
p 1
τ 1
α 0.5
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F Notation
Acronyms

ANM Additive Noise Model

CD Causal Discovery
CL Contrastive Learning

DAG Directed Acyclic Graph
DGP Data Generating Process

i.i.d. independent and identically distributed
ICA Independent Component Analysis
ICM Independent Causal Mechanisms

LiNGAM Linear Non-Gaussian Acyclic Model
LSTM Long Short-Term Memory

MCC Mean Correlation Coefficient
MLP Multi-Layer Perceptron

NLICA nonlinear Independent Component Analysis

SEM Structural Equation Model
SHD Structural Hamming Distance

Nomenclature
LCL contrastive loss function
Lπ regularizer for learning π
S Sinkhorn network
E edge set of a graph
L loss function
d problem dimensionality

Algebra
α scalar field
D diagonal matrix
ID D-dimensional identity matrix
J Jacobian matrix

Causality
N noise (independent) variable component
X observation component
N noise (independent) variable vector
P a parent set of X
X observation vector
A adjacency matrix of a SEMs
C connectivity matrix of a SEMs
f structural assignment in SEMs
I index set
π causal ordering
∼DAG structural equivalence
f a component of f

Latents
Z latents
d dimensionality of the latent space Z

Observations
D dimensionality of the observation space X
X observation space
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