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Abstract

Efficient mathematical reasoning under compute and memory constraints is crucial
for deploying large reasoning models (LRMs) in real-world applications. We
propose a framework to quantify the relationship between model similarity and
loss of reasoning fidelity in chain-of-thought (CoT) outputs under pruning. Our
approach introduces ASAND, a similarity metric that combines centered alignment,
sparsity-aware structural measures, and adaptive exponential decay to capture sub-
tle, non-monotonic changes in reasoning fidelity. Experiments on Qwen-0.5B with
the GSM8K dataset demonstrate that light pruning can unexpectedly improve CoT
reasoning, whereas aggressive sparsity leads to catastrophic collapse. Correlation
analyses indicate that ASAND outperforms standard similarity metrics, achieving
the highest predictive power for reasoning fidelity degradation. These findings
provide actionable insights for compression-aware deployment of LRMs, enabling
efficient reasoning on resource-constrained devices without sacrificing correctness.
To validate ASAND we extend our analysis of pruning effects on mathematical
reasoning from grade-school problems (GSM8K) to competition-level mathematics
(MATH dataset).

1 Introduction and Related Work

Deep neural networks’ representational geometry determines computational capabilities, yet com-
pression disrupts these structures unpredictably. CNNs maintain performance at 50% sparsity Han
et al. [2015], Shinde [2024], while language models fail catastrophically at 5% weight removal.

Representational Geometry. Neural representations form high-dimensional manifolds Raghu et al.
[2017], Kornblith et al. [2019]. CKA Kornblith et al. [2019] and SVCCA Raghu et al. [2017] measure
similarity but assume smooth transformations, missing discrete phase transitions under compression.

Pruning and Transformers. Magnitude-based pruning Han et al. [2015], Shinde, 2025] and
structured approaches Li et al. [2016] succeed in CNNs but fail in transformers, where attention
creates globally interconnected structures vulnerable to weight removal discontinuities.

Faithfulness as Geometric Invariance. Chain-of-thought reasoning traverses representational mani-
folds Wei et al. [2022], Kojima et al. [2022]. Faithfulness measures trajectory consistency Lanham
et al. [2023], Turpin et al. [2023], unlike classification’s focus on decision boundaries. This motivates
SAND for detecting reasoning geometry transitions.

Transformer Sensitivity. Attention heads maintain distinct subspaces Clark et al. [2019]; pruning
disrupts inter-head coordination Prasanna et al. [2020], causing 49.5% faithfulness drop at 5%
sparsity.
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Figure 1: Weight distributions of the original model ORG (M0) in FP16 and pruned variants with 10%,
30%, 50%, and 70% pruning ratio’s. The discontinuous shift in weight geometry aligns with observed
faithfulness drops, illustrating how small perturbations trigger large representational collapses.

Contributions. We (i) document non-monotonic faithfulness with initial improvement then catas-
trophic collapse; (ii) propose ASAND metric to correlate weight changes with reasoning fidelity loss;
(iii) establish transformer reasoning’s dependence on continuous weight manifolds. These findings
inform geometry-aware compression for reasoning-critical deployments.

2 Method

2.1 Problem Description

Let (X ,Y) denote the input-label spaces for complex reasoning tasks and P a distribution on X × Y .
A reference language model M0 with parameters θ0 implements a measurable map fM0

: X → T ,
where T represents the generated text or reasoning trace space. We evaluate models on a dataset
S = {(xi, yi)}ni=1 drawn i.i.d. from P . This setup allows us to formally study the impact of parameter
sparsity on reasoning fidelity.

Pruning operator. We apply L1 unstructured pruning to M0, producing Mp with sparsity ratio
λ ∈ [0, 1]. Formally, the operator: P(·;λ) : M → M, Mp,λP(M0;λ), removes weights with the
smallest L1 norm across all linear layers. We choose L1 pruning due to its simplicity and proven
effectiveness for preserving reasoning capabilities while reducing computation and memory usage.
As shown in Fig. 1, pruning progressively reshapes the weight distributions, with early sparsity
introducing sharp zero-centered discontinuities. These discontinuities coincide with the observed
non-monotonic faithfulness behavior, where light pruning removes redundant parameters but higher
sparsity induces catastrophic representational collapse.

Faithfulness metric and degradation. We quantify a model’s faithfulness by evaluating key
reasoning components in its output: numerical consistency, logical connectors, cue phrases, step
completeness, and answer alignment. Each component fk is normalized and combined into a weighted
score:

F (q, r) =

5∑
k=1

wk · fk(q, r), w = (0.30, 0.20, 0.20, 0.15, 0.15), (1)

where wk reflects the relative importance of each reasoning aspect. Faithfulness degradation due to
pruning is computed as:

∆Fλ = F (M0)− F (Mp,λ) ∈ [−1, 1]. (2)

Model similarity. To quantify the effect of pruning, we measure similarity between baseline and
pruned weights using cosine similarity, L1/L2 distances, and linear CKA. These metrics capture
both magnitude and structural changes, allowing us to assess how weight modifications translate into
reasoning performance shifts.

Similarity-faithfulness coupling. We aim to measure how well similarity sλ between M0 and Mp,λ

predicts ∆Fλ across sparsity levels λ. Correlation is quantified using Pearson (PLCC), Spearman
(SRCC), and Kendall (KRCC) coefficients over the sets {sλ}λ∈[0,1] and {∆Fλ}λ∈[0,1].

2.2 Proposed Model Quality Metric: ASAND

Motivation. Faithfulness degradation exhibits non-monotonic trends under pruning, which standard
metrics often fail to capture. To address this, we propose the Adaptive Sparsity-Adjusted Normalized
Distance (ASAND), designed to robustly correlate weight changes with reasoning fidelity loss.
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ASAND Components. ASAND integrates multiple complementary components to robustly capture
pruning-induced changes in reasoning models. Centered Alignment (CA) captures directional
alignment of pruned weights relative to the baseline, while Sparsity-based Structural Similarity (SSS)
quantifies structural perturbations in critical layers. Adaptive Exponential Decay of Differences
(AEDD) emphasizes weight differences that disproportionately affect low-sparsity performance.
Volatility (VOL) measures distributional stability, improving chain-of-thought coherence, and the
Low-Pruning Gain Booster (LPGB) enhances sensitivity to early pruning phases, capturing non-linear
gains. The final ASAND score is a weighted combination of these components: sASAND =

∑
i αi ·

Componenti, αi tuned for high correlation with ∆Fλ. Detailed formulation in Appendix A.

Efficiency and Robustness. ASAND operates on flattened weights with O(|θ|) complexity, com-
puting similarities in milliseconds for models like Qwen-0.5B (|θ| ≈ 500M). All components are
normalized to [0, 1], ensuring robustness across model sizes and sparsity levels. This enables rapid,
deployable reasoning evaluation under tight compute constraints.

3 Experimental Setup

Dataset. Experiments are initially conducted on the GSM8K dataset Cobbe et al. [2021], consisting of
8, 792 grade-school mathematical reasoning problems. We evaluate on test splits Stest = {(xi, yi)}ni=1
with n ∈ {5, 50, 200} for ablation studies. GSM8K is particularly suited for evaluating multi-
step reasoning under resource constraints, as it requires both arithmetic computation and logical
step-by-step deductions, making faithfulness metrics meaningful proxies for reasoning fidelity.To
comprehensively evaluate pruning effects across mathematical complexity,We validated ASAND
from grade-school problems (GSM8K) to competition-level mathematics (MATH dataset Hendrycks
et al. [2021]). The MATH dataset, containing 12,500 problems from mathematical competitions
(AMC, AIME), provides a critical testbed for understanding how reasoning degradation scales with
problem difficulty. This dual-dataset approach reveals that reasoning sensitivity to pruning increases
super-linearly with mathematical complexity.

Model Architecture. We adopt Qwen-0.5B-Instruct Yang et al. [2024], a 494M parameter transformer
with 24 layers, hidden dimension 1024, and 16 attention heads. This model balances reasoning
capacity with computational efficiency, making it ideal for pruning analyses in low-latency, memory-
constrained settings. Our study indicate that this method could be extended to other models like
Qwen2.5-1.5B-Instruct and TinyLlama-1.1B-Chat-v1.0.

Training Implementation Details. All experiments are implemented in PyTorch on NVIDIA Tesla
P100 GPUs(16 Gb) Kaggle , with models loaded in torch.float16 precision. L1 unstructured
pruning is applied via prune.l1_unstructured on all linear layers, followed by permanent weight
removal using prune.remove. Random seed is fixed at 42 to ensure reproducibility. This setup
isolates the effect of sparsity on reasoning fidelity without confounding training variability. Hyper-
parameter Settings. Faithfulness component weights are set as w = (0.30, 0.20, 0.20, 0.15, 0.15) to
balance contributions from numerical consistency, logical connectors, cue phrases, step completeness,
and answer alignment. Logic word threshold is 3 and step coherence normalized by 3 expected steps.
These fixed settings provide consistency across experiments and ensure interpretability of ∆Fλ.

Pruning Setup. L1 magnitude pruning Han et al. [2015] is applied with sparsity ratios:
{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. No fine-tuning is performed post-pruning, isolat-
ing the direct effect of weight sparsity on reasoning performance. Evaluation Protocols. We assess
reasoning robustness using two prompting strategies: Chain-of-Thought (CoT): “Solve this step by
step: Question: {q} Step 1:” with a 150 token limit, and Direct Answer: “Question: {q} Answer:”
with a 30 token limit. The CoT prompt evaluates stepwise reasoning fidelity, while Direct Answer
tests overall solution accuracy, allowing us to distinguish effects of pruning on different reasoning
modes. Evaluation Metrics. Models are evaluated using the following: Faithfulness Score F ∈ [0, 1],
Faithfulness Drop ∆Fλ = F (M0)−F (Mp,λ), and Similarity Metrics including cosine similarity, L2,
L1 distances, and linear CKA. Correlations between similarity and faithfulness drop are quantified
via PLCC, SRCC, and KRCC. We also visualize weight distributions using 256-bin histograms over
[−0.1, 0.1] to provide intuitive insight into pruning effects on model parameters.
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4 Results and Discussion

We evaluate Qwen-0.5B on GSM8K and MATH datasets under various unstructured pruning ratios
and examine how different similarity metrics capture faithfulness degradation.

Faithfulness and Efficiency Analysis. Table 1 summarizes faithfulness scores (F ), memory usage,
runtime, and token throughput across pruning ratios. Light pruning (1% − 5%) increases CoT
faithfulness from 0.637 to 0.723, suggesting that removing redundant or noisy weights can enhance
reasoning consistency. Beyond moderate sparsity (≥ 30%), faithfulness collapses sharply, with F
dropping to 0.087 at 80% sparsity, indicating that critical weights essential for logical consistency
are removed. Non-CoT responses show smaller initial gains but follow a similar collapse pattern
at high sparsity. Memory usage grows slightly due to model replication overhead, while token
throughput improves modestly at moderate sparsity before decreasing at extreme pruning. These
trends reveal a critical sparsity threshold where efficiency gains are outweighed by catastrophic
reasoning degradation, underscoring the importance of balancing pruning and reasoning fidelity.

Similarity-Faithfulness Correlation. Table 2 reports PLCC, SRCC, and KRCC between similarity
metrics and faithfulness degradation. Traditional metrics (cosine similarity, L1, L2, linear CKA)
achieve moderate correlations (PLCC 0.7023–0.8974) for CoT responses, but fail to fully capture
non-linear drops at high sparsity. ASAND achieves the highest PLCC of 0.9483, effectively tracking
sparsity-induced non-linear behavior. For non-CoT responses, correlations are generally lower,
indicating that chain-of-thought reasoning amplifies sensitivity to structural perturbations, which
ASAND accurately captures.

Discussion. Low-level pruning can enhance CoT faithfulness by removing interfering parameters,
while high sparsity beyond 30% − 40% triggers abrupt collapses in reasoning fidelity. ASAND
consistently outperforms traditional similarity metrics in predicting these degradation patterns,
particularly in the non-linear decline phase. The higher correlations for CoT highlight that stepwise
reasoning magnifies the impact of pruning, emphasizing the utility of adaptive similarity metrics in
evaluating model robustness under efficiency constraints.

Limitations. This study focuses on unstructured L1 pruning; structured pruning or quantization may
exhibit different patterns. Observations are based on GSM8K and Qwen-0.5B and validated on
MATH Dataset Hendrycks et al. [2021] can be seen in Table 2; results may vary with larger models
or alternative reasoning datasets. Memory and runtime metrics reflect specific sparse weight handling
implementations and may not reflect ideal hardware efficiency. Despite these constraints, the analysis
provides actionable insights for designing and evaluating metrics that reliably predict reasoning
degradation under model compression.Experiments are performed under a resource-constrained
environment.

5 Conclusion

We investigated the impact of unstructured pruning on the faithfulness of Qwen-0.5B, revealing a
non-monotonic behavior where light pruning can enhance chain-of-thought reasoning, while high
sparsity leads to catastrophic collapse. Standard weight similarity metrics capture only part of the
degradation, whereas adaptive, sparsity-aware measures such as ASAND achieve strong correlation
with output fidelity by incorporating structural sensitivity and magnitude-aware weighting. These re-
sults emphasize the importance of designing similarity metrics that account for sparsity and structural
perturbations to guide safe compression, particularly for reasoning tasks under efficiency constraints.
Future work will extend this analysis to structured pruning, quantization, and larger models, with
the goal of generalizing these insights to deployable, resource-constrained reasoning systems and
informing adaptive pruning strategies that maintain both efficiency and logical consistency.
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Table 1: Performance and efficiency for
Qwen-0.5B on GSM8K. F : Faithfulness
[0, 1]; Mem: MB; Time: s; T/s: Tokens/s.

Prune Faithfulness Mem Time T/s
No CoT CoT

0.0 0.352 0.637 948.67 2.71 23.80
0.01 0.365 0.723 9.52 2.52 25.03
0.05 0.462 0.697 47.59 2.46 24.22
0.1 0.178 0.670 95.18 2.59 25.41
0.2 0.195 0.698 190.36 2.56 25.94
0.3 0.203 0.455 285.54 2.57 26.63
0.4 0.083 0.367 380.72 2.51 28.59
0.5 0.100 0.100 475.90 2.49 33.10
0.6 0.150 0.013 571.07 2.49 18.66
0.7 0.013 0.163 666.25 2.52 14.20
0.8 0.000 0.087 761.43 2.49 7.30

Table 2: Correlations (PLCC, SRCC, KRCC)
between similarity metrics and faithfulness drop
for Qwen-0.5B on GSM8K and MATH datasets.
ASAND achieves highest PLCC in CoT.

No CoT CoT
Dataset Metric PLCC SRCC KRCC PLCC SRCC KRCC

GSM8K

cosine 0.6676 0.8424 0.7333 0.7718 0.8909 0.7778
L2 -0.7773 -0.8424 -0.7333 -0.8974 -0.8909 -0.7778
L1 -0.7985 -0.8424 -0.7333 -0.8868 -0.8909 -0.7778
CKA 0.6251 0.8303 0.6889 0.7023 0.8667 0.7333
ASAND 0.8137 0.8424 0.7333 0.9483 0.8909 0.7778

MATH

cosine 0.8811 0.9394 0.8222 0.7683 0.9273 0.7778
L2 -0.9629 -0.9394 -0.8222 -0.8888 -0.9273 -0.7778
L1 -0.9656 -0.9394 -0.8222 -0.8911 -0.9273 -0.7778
CKA 0.8402 0.9394 0.8222 0.7225 0.9273 0.7778
ASAND 0.9720 0.9394 0.8222 0.9424 0.9273 0.7778

A Model similarity.

Let Θ(M) = {θj}|θ|j=1 denote flattened parameters from linear layers. For baseline M0 and pruned
Mp,λ, define weight vectors w0,wp ∈ R|θ|. Standard similarity measures include:

scos(M0,Mp,λ) =
⟨w0,wp⟩

∥w0∥2∥wp∥2
, (3)

dL2(M0,Mp,λ) = ∥w0 −wp∥2, (4)
dL1(M0,Mp,λ) = ∥w0 −wp∥1. (5)

Linear CKA. With centered weight matrices W̃0 = W0 − W̄0 and W̃p = Wp − W̄p:

CKA(M0,Mp,λ) =
HSIC(W̃0, W̃p)√

HSIC(W̃0, W̃0) · HSIC(W̃p, W̃p)
, (6)

where HSIC(X,Y ) = tr(XY ⊤)2.

B Detailed ASAND Formulation

ASAND computes a similarity score sASAND(M0,Mp,λ, λ) as a weighted combination of five com-
ponents operating on flattened weight vectors w0,wp ∈ R|θ|.

1. Centered Alignment Captures representation similarity after centering, inspired by simplified
CKA:

scent(w0,wp) =
⟨w0 − w̄0,wp − w̄p⟩

∥w0 − w̄0∥2∥wp − w̄p∥2
, scent ∈ [0, 1]. (7)

2. Jaccard Sparsity Similarity Measures structural similarity via non-zero weight proportions:

sjacc(w0,wp) = 1− |nz(w0)− nz(wp)|
max(nz(w0), nz(wp))

, nz(w) =
|{wi : |wi| > 10−6}|

|w|
. (8)

3. Adaptive Exponential Decay Distance (AEDD) Models non-linear degradation with a sparsity-
dependent scale:

dAEDD(w0,wp, λ) = exp

(
−σ(λ) · ∥w0 −wp∥2

∥w0∥2

)
, σ(λ) =

{
0.8× 1.5 if λ > 0.3

0.8 otherwise
. (9)

4. Volatility Similarity Quantifies stability of weight distributions:

svol(w0,wp) = exp

(
−
|σw0

− σwp
|

σw0

)
, σw = std(w). (10)
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5. Low-Pruning Gain Booster Rewards small pruning improvements at low sparsity:

g(w0,wp, λ) =

{
0.1 ·

(
1− ∥w0−wp∥2

∥w0∥2

)
if λ < 0.1 and ∥w0 −wp∥2 < 0.1∥w0∥2

0 otherwise
. (11)

ASAND Score The final ASAND similarity is a weighted combination of all components:

sASAND(w0,wp, λ) = wb·
[
dAEDD·sjacc·scent

]
+wv ·svol+wt·

[
dAEDD if λ > 0.3 else 1

]
+wg ·g, (12)

with weights wb = 0.4, wv = 0.25, wt = 0.2, and wg = 0.15.
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