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ABSTRACT

Inductive biases are what allow learners to make guesses in the absence of con-
clusive evidence. These biases have often been studied in cognitive science using
concepts or categories – e.g. by testing how humans generalize a new category
from a few examples that leave the category boundary ambiguous. We use these
approaches to study generalization in foundation models during in-context learn-
ing. Modern foundation models can condition on both vision and text, and differ-
ences in how they interpret and learn from these different modalities is an emerg-
ing area of study. Here, we study how their generalizations vary by the modality
in which stimuli are presented, and the way the stimuli are described in text. We
study these biases with three different experimental paradigms, across three dif-
ferent vision-language models. We find that the models generally show some bias
towards generalizing according to shape over color. This shape bias tends to be
amplified when the examples are presented visually. By contrast, when examples
are presented in text, the ordering of adjectives affects generalization. However,
the extent of these effects vary across models and paradigms. These results help to
reveal how vision-language models represent different types of inputs in context,
and may have practical implications for the use of vision-language models.

1 INTRODUCTION

It is impossible for a learner to see every piece of data during training – they must generalize beyond
their experience. Yet the ‘right’ way to generalize is fundamentally under-determined; generaliza-
tion relies on a system’s inductive biases. Many studies show striking differences in how artificial
systems and humans generalize (e.g. Szegedy et al., 2014; Geirhos et al., 2019), thus demonstrating
a mismatch in inductive biases between models and humans, and motivating attempts to bridge this
gap (Shafahi et al., 2019; Geirhos et al., 2021; Muttenthaler et al., 2024; Fu et al., 2024).

One exciting capability of modern foundation models is “in-context learning” – the ability to learn
a new concept or task from a few examples (or other cues) presented in context (Brown et al.,
2020; Alayrac et al., 2022; Lampinen et al., 2024). Few-shot learning involves a particular kind of
in-context inductive reasoning. There has been substantial exploration of when models generalize
well or poorly from few-shot examples (Wei et al., 2023; Zhang et al., 2023); these works essentially
examine the fit between the inductive biases of the model’s learning, the presented examples, and the
intended generalization. For example, Chan et al. (2022) show that models have different inductive
biases for generalizing from information learned in context or in weights.

Thus, modern vision-language models (VLMs) present an interesting dimension to few-shot learn-
ing that has not been thoroughly explored—the effect of the presentation modality and format. If
we present examples through images, or as textual descriptions, do these presentation details change
how the models generalize? This question is important both practically (understanding how to en-
courage the generalizations we want) and conceptually (to study differences between the representa-
tions of information across modalities). In this work we therefore study how inductive generalization
differs depending on the modality (vision vs. text) in which the data is presented to a vision language
model. We also examine the effect of feature order presentation in textual stimuli.

We focus on a well-studied inductive bias: the difference between color and shape features in cate-
gory learning. Many studies show that humans prefer to generalize along shape rather than dimen-
sions like color or texture, from a very young age (Bornstein, 1985; Landau et al., 1988). That is,
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(a) Category-generalization paradigms (b) Evaluating different modalities and formats

Figure 1: Conceptual overview of our experimental paradigms.

in ambiguous situations where either shape or color could be the feature determining a category,
humans will generally assume that shape is the correct feature to generalize. This tendency in hu-
mans has been contrasted with that in convolutional vision models, which tend to prefer lower-level
features like texture or color over shape (Geirhos et al., 2019; 2020; Hermann & Lampinen, 2020).
Recent studies on more modern vision-language models have found that they have recovered some
human-like shape bias (Gavrikov et al., 2024)—and some steerability from language. However,
these studies examine the generalization of these models from their training data; not their gen-
eralization from categories learned in context. Here, we instead study the shape-color-bias from
in-context examples. We also compare to model behavior when the equivalent stimuli are presented
described in text rather than directly provided to the model as an image.

We adapt three distinct category learning paradigms (described in detail below) that have been ap-
plied in the cognitive literature to study how people represent and generalize concepts. We find that
various VLMs show substantial differences in inductive biases across modalities. We find that mod-
els show consistent modality biases across different tasks. We also find that the model generalization
is affected by the order in which features are mentioned in the text description. However, the exact
direction of the biases is idiosyncractic to each model.

In summary, our contributions are:

1. VLMs exhibit different in-context inductive biases when learning from images vs text.
2. In most cases, models are more shape-biased when learning from images than from text.
3. Adjective order in text also affects inductive biases: the first descriptor is favored.
4. However, both the patterns above are overall tendencies which vary in magnitude and even

direction across models, task paradigms, and task configuration variables.

2 METHODS

We give an overview of methods here; see Appx. A for details.

Image data collection: The images were collected from a set of toy geometric shapes. The stimuli
in previous shape-bias studies in machine learning models tend to be relatively abstract and difficult
to represent in text. To this end, we create a new dataset of simple objects (inspired by category-
learning experiments in developmental psychology) with factorial design over color, shape, and
angle of photography to enable our study. Creating this dataset from scratch also ensures that the
images do not exist in the model pretraining data, and thereby avoids concerns about contamination.

Textual descriptions of the objects: When we present the objects in text, we use a few phrasing
variations. For our primary comparisons we use the standard adjective ordering description, e.g. “a
red cube.” However, in order to assess whether adjective order affects the model biases, we create
descriptions that vary the ordering of adjectives of the form “an object that has color red and shape
cube” or “an object that has shape cube and color red.” For the odd-one-out task, we also explore an
alternative phrasing “an object that is red and is cube” but we observe similar results.
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Evaluation: We prompt the models with the possible answers and an instruction to produce their
answer before any explanation, and then evaluate the model outputs by performing a regex search
for answers that match the answer pattern.

Shape vs. color bias plotting: We plot our main analyses in terms of the shape-vs-color bias by
subtracting the proportion of color generalizations from the proportion of shape generalizations,
which makes the comparison clearer across the different task paradigms.

2.1 TASK PARADIGMS

We consider three main types of tasks (Fig. 1): generalizing a single category along different dimen-
sions, generalizing two categories to new instances that have some conflicting features from each of
the original categories, and judging which object is the odd-one-out given objects that vary along
both features. Note that in every paradigm the correct generalization is ambiguous—there is no di-
rect evidence in the context as to whether shape or color (or their conjunction) is the discriminative
feature. Thus, the model generalization in these paradigms offers a measure of which features it
prefers to use to form categories in context. Our three paradigms are:

One-category generalization: We present three images or textual representations of objects with
the same color and shape, associated with a nonsense category label. We then evaluate whether the
model generalizes this label to objects that match only in shape and objects that match only in color.

Two-category cue conflict: We present examples of two different categories that differ in both
color and shape; e.g. a green cube as a ‘dax,’ and a yellow sphere as a ‘fep.’ Following Chan et al.
(2022), we then test which feature the model uses to generalize to conflicting examples by presenting
exemplars that mixes the features of the two categories, e.g. a yellow cube and a green sphere.

Odd-one-out: We present a set of objects and ask which is the “odd-one-out”—i.e., the one that
does not match the others. We instantiate our odd-one-out tasks to have several objects that are
unique in different ways. For example, we might have one object that is a cylinder while the rest are
cubes, and another object that is yellow while the rest are green. We can thereby assess whether the
model tends to group objects by shape or color by which feature it uses to choose the odd-one-out.

3 RESULTS

One category Two category Odd one out

Gemini
1.5 Pro

Claude 3.5
Sonnet

GPT 4o
Mini

Gemini
1.5 Pro

Claude 3.5
Sonnet

GPT 4o
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Figure 2: Across three category-generalization paradigms, VLMs generalize more by shapes than
colors overall (bars above the midline). This bias tends to be amplified when the categories are
presented as images (blue), compared to when they are presented in text (orange). However, this
pattern is flipped for the odd-one-out task for some models.

Overall differences between images and text: In Fig. 2 we show an overview of the differences
between the inductive biases of the models when learning concepts through image or text modality,
across the three different paradigms. The first pattern to note is simply that there is a difference be-
tween the modalities; that is, the models’ inductive biases seem to differ between the modalities. The
overall pattern is for models to exhibit a stronger shape bias when concepts are presented visually
than when they are presented in text (i.e., the blue bars are generally higher on the shape bias axis

3
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Figure 3: The order in which the features are presented in text shifts the VLMs generalization biases;
models show some generalization preference toward the feature that is mentioned first (green bars
are higher than yellow bars). For one-category tasks, Claude & GPT refuse all generalizations.

than the orange bars). This is true for all models for both the explicit category-learning tasks, and
for the Gemini model for the odd-one-out task. However, the other two models show a surprising
inversion of the pattern for the odd-one-out task, with stronger shape biases from text than images.

Feature order in text affects generalization: In Fig. 3 we show that the order in which features are
presented in text has a strong effect on how the models generalize. In general, the models are more
shape-biased when shape is mentioned first, and less shape-biased if color is mentioned first. Thus,
the models seem to be somewhat biased towards generalizing in accordance with the feature that is
mentioned first. However, there is still a weak overall tendency to be shape biased on average.

Exploring tasks in more detail: In Appx. B we present results in more detail for the odd-one-
out and one-category tasks (as well as some other variations). We show that there are non-trivial
interactions, such as a change in inductive biases depending on set size in the odd-one-out task.

4 DISCUSSION

In this work, we studied the in-context inductive biases of VLMs for concepts presented in images
or text. Across three experimental paradigms from the cognitive literature, and three VLMs, we find
some commonalities and some idiosyncracies. We find that the models show a moderate shape-over-
color bias on average. This shape bias is enhanced when the models are presented with concepts
through visual stimuli; when presented with textual stimuli the models are biased by the order in
which the features appear in the text. These findings suggest that the way the models represent the
input examples is different depending on the format in which they are presented—with the repre-
sentations from different modalities (or word orders) producing different patterns of generalization.

One possible explanation of these results could relate to the pragmatic interpretation of language
(as opposed to vision). In an image, all features are implicitly captured; thus, the presence of a
feature does not necessarily indicate that it is meaningful. However, human language (like the text
these models are trained) on follows pragmatic conventions, that include an emphasis on stating
only relevant and useful information (e.g. Grice, 1975). Indeed, human adjective ordering can be
pragmatically determined and interpreted, in some cases with the most discriminative adjectives
provided first (e.g. Fukumura, 2018). Thus, the models might be making a pragmatic inference that
if the color of an object is mentioned before its shape in describing a category, then color is more
important than if shape is mentioned first. It would be interesting to study this hypothesis with a
broader set of dimensions and task contexts, as well as relating it to the prevalence of adjectives and
their orders in internet text. We leave these possible investigations to future work.

Many multimodal models are text first, vision later (e.g. Alayrac et al., 2022); however, all natural
systems start with vision and then (in humans) become text-enabled. This fundamental difference
posits many interesting questions comparing the two. As foundation models become increasingly
capable – and start to consume information in the myriad ways that humans do – their similarities
and differences to humans will increase, and analyzing them through the lens of cognitive science
will become more and more fruitful.
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A SUPPLEMENTAL METHODS

A.1 TASK PARADIGMS

We describe each paradigm in detail below.

One-category generalization: Our first task involves a simple kind of underspecified generaliza-
tion: learning a single category and then testing how models generalize it according to different
features. Variations of this paradigm are often used in the cognitive literature (e.g. Landau et al.,
1988; Xu & Tenenbaum, 2007). In our instantiation, we present several images or textual represen-
tations of objects that have the same color and shape, and associate them with a novel category label.
We then evaluate whether the model generalizes this label to objects that match only in shape and
objects that match only in color.

For our main experiments, we use three example instances that all have the same shape and color.
In Appx. B we also present further experiments, inspired by Xu & Tenenbaum (2007), on how the
model generalizes depending on the variability of features in the exemplars presented in context.

Two-category cue conflict: In this task, we present examples of two different categories to the
model, that differ in both color and shape. For example, we might present a green cube as a ‘dax,’
and a yellow sphere as a ‘fep.’ We then test which feature the model uses to generalize to conflicting
examples by presenting exemplars that mix the features of the two categories, e.g. a yellow cube
and a green sphere). This follows the inductive generalization paradigm used in (Chan et al., 2022).

Odd-one-out: Odd-one-out tasks are a longstanding paradigm in cognitive science in which a set
of several objects (or images) is provided and participants are asked which is the “odd-one-out”—
i.e., the one that is least like the others (e.g. Crutch et al., 2009; Hebart et al., 2020; Muttenthaler
et al., 2024). In contrast to the category paradigms above, odd-one-out tasks provide a way of
assessing inductive biases without attaching explicit labels to the categories: choosing an object as
the odd-one-out effectively implies that the other objects are closer to forming a category. To make
an interesting test, we instantiate our odd-one-out tasks to have several objects that are unique in
different ways. For example, we might have one object that is a cylinder while the rest are cubes,
and another object that is yellow while the rest are green. We can thereby assess whether the model
tends to group objects by shape or color by which feature it uses to choose the odd-one-out.

We vary the number of objects in the set n between 3 and 6—in all cases, there are n−2 objects that
have the reference shape and color, one that has the reference shape but a different color (the color
odd-one-out), and one that has the reference color but a different shape (the shape odd-one-out).

A.2 STIMULUS IMAGES

The images in the dataset consisted of manually taken images of 10 shapes (cone, cube, cylinder,
hemisphere, hexagonal prism, pyramid, rectangular prism, sphere, tetrahedron, and triangular prism)
in 4 colors (red, yellow, green, and blue), from various sides and the top, taken on a plain white
background. See Fig. 4 for some examples.

A.3 PROMPTS

The prompt formats used in the experiments are given below:

Odd one out

OOO PROMPT = [ ’ Which of t h e s e o b j e c t s i s t h e odd one o u t ( t h a t i s ,
t h e one t h a t does n o t match t h e o t h e r s ) ? I s t h e odd one o u t

t h e f i r s t , second , t h i r d , f o u r t h , f i f t h , o r s i x t h ? ’ ] +
i m a g e s o r d e s c r i p t o r s l i s t

7
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Figure 4: Example stimuli used in our experiment, showing some of the range of colors, shapes, and
viewpoints presented in the dataset. The variation in viewpoints is intended to ensure that the model
is truly recognizing 3D shape rather than relying on canonical orientations.
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One category generalization

SINGLE CATEGORY PROMPT = [
f ’We a r e go ing t o p l a y a game where I g i v e you t h r e e o b j e c t s

t h a t b e l on g t o a c a t e g o r y and you have t o g u e s s i f a new
o b j e c t i s a l s o p a r t o f t h a t c a t e g o r y . \ nThese o b j e c t s a r e
a l l {name1 } : ’

] + i m a g e s o r d e s c r i p t o r s l i s t + [
’ Th i s i s t h e new o b j e c t : ’

] + n e w i m a g e o r d e s c r i p t o r + [
f ” I s t h i s o b j e c t {name1}?\ n I t ’ s ok i f you ’ r e n o t su re , j u s t

answer wi th your b e s t g u e s s .\ n ” ,
” Answer i n t h e f o l l o w i n g f o r m a t : ’ANSWER: {YES / NO} . \

nEXPLANATION : \\\{X} ’\n ”
]

Two category cue conflict

TWO CATEGORY PROMPT = [
’We a r e go ing t o p l a y a game where I g i v e you t h e names o f

some of o b j e c t s and you have t o g u e s s t h e name of a new
o b j e c t .\ n ’

i m a g e o r d e s c r i p t i o n 1 ,
f ’ Th i s o b j e c t i s {name1 } ’ ,
i m a g e o r d e s c r i p t i o n 2 ,
f ’ Th i s o b j e c t i s {name2 } ’ ,
p robe image ,
”What i s t h i s o b j e c t ?\ n I t ’ s ok i f you ’ r e n o t su re , j u s t answer

wi th your b e s t g u e s s .\ nAnswer i n t h e f o r m a t : ’ANSWER: Th i s
o b j e c t i s {X} . ’ ”

]

B DETAILED PERFORMANCE ON INDIVIDUAL TASKS AND OTHER
VARIATIONS

In this section, we break down the performance on the single-category and odd-one-out tasks in
more detail (including additional experiments in other conditions) to show the fuller pattern of model
behavior. We also show the full pattern of choices rather than the simplified bias metric used in the
main plots. There are some quite complex patterns of interaction. Thus, to avoid extremely cluttered
plots, we focus these analyses on one particular model (Gemini 1.5).

B.0.1 SINGLE CATEGORY

In this section, we present results on the single category task and several variations. Specifically,
a classic paper Xu & Tenenbaum (2007) has shown that humans learn categories according to the
variability in the sampled examples—for example, if all the examples are different types of dogs,
the humans will infer that the category is dogs in general, but if all the examples are dalmatians, the
humans will infer that the category is dalmatians specifically. We correspondingly tested a range
of conditions: providing three narrow examples with the same shape and color (the condition used
for the results above), as well four new conditions: only a single example, three examples with
varied colors (but consistent shape), three examples with varied shape (but consistent colors), and
three examples where both attributes vary (but the probe matches one of the examples along one
dimensions).

We show the results in Fig. 5. Overall, the patterns of behavior are very noisy and inconsistent,
though there is an overall tendency to favor shape matches. However, there is a hint of the expected
pattern of generalization when comparing the varied-color and varied shape panels; the model tends
to generalize more to matching shapes when the color of examples varies (irrespective of modality),

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Three varied shape Three both varied

Single example Three narrow Three varied color

Color
match

Shape
match

Color
match

Shape
match

Color
match

Shape
match

0

25

50

75

100

0

25

50

75

100

Probe type

C
ho

ic
es

 (
%

)

Image
Text (standard)
Text (color−shape)
Text (shape−color)

Figure 5: Patterns of generalization of a single category presented with varying stimulus sets. There
are noticeable changes across stimulus sets, and across modalities, but the patterns are not particu-
larly consistent.

but shows a greater degree of color generalization when the colors are consistent. However, the
results when both features vary are surprisingly narrow.

B.0.2 ODD-ONE-OUT CUE CONFLICT

In Fig. 6 we show the pattern of results on the odd-one-out tasks. We break the patterns of perfor-
mance down by set size. While the patterns are quite similar for most set sizes, there is a surprising
difference at the smallest possible set size (3); the model shows stronger shape biases overall (across
modalities) and the opposite pattern of modality effects. There is no obvious reason why the model
would behave differently in this setting, and a qualitative examination of the model outputs does not
reveal the answer.

Note that this figure plots raw choices rather than the bias measure in the main text figures. This
illustrates that the models are consistently choosing one of the unique objects as the odd-one-out.
If the models made incorrect choices of objects that did not have any unique feature, the sum of
the corresponding bars in the left and right panels would be less than 100%. However, the models
almost always choose either the unique shape or unique-color object as the odd-one-out.
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Figure 6: Color and shape choices on the Odd-One-Out tasks across set sizes. With four or more
objects in the set, the model shows a relatively consistent pattern of biases. Surprisingly, however,
when there are three objects in the set, the model shows a stronger shape bias across modalities, and
inverted modality patterns overall.
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