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ABSTRACT

The precise segmentation of intracranial aneurysms and their parent vessels (IA-
Vessel) is a critical step for hemodynamic analyses, which mainly depends on com-
putational fluid dynamics (CFD). However, current segmentation methods pre-
dominantly focus on image-based evaluation metrics, often neglecting their prac-
tical effectiveness in subsequent CFD applications. To address this deficiency, we
present the Intracranial Aneurysm Vessel Segmentation (IAVS) dataset, the first
comprehensive, multi-center collection comprising 641 3D MRA images with 587
annotations of aneurysms and IA-Vessels. In addition to image-mask pairs, IAVS
dataset includes detailed hemodynamic analysis outcomes, addressing the limita-
tions of existing datasets that neglect topological integrity and CFD applicability.
To facilitate the development and evaluation of clinically relevant techniques, we
construct two evaluation benchmarks including global localization of aneurysms
(Stage I) and fine-grained segmentation of IA-Vessel (Stage II) and develop a sim-
ple and effective two-stage framework, which can be used as a out-of-the-box
method and strong baseline. For comprehensive evaluation of applicability of seg-
mentation results, we establish a standardized CFD applicability evaluation sys-
tem that enables the automated and consistent conversion of segmentation masks
into CFD models, offering an applicability-focused assessment of segmentation
outcomes. The data, code, and model will be made publicly available upon accep-
tance.

1 INTRODUCTION

Intracranial aneurysm (IA) is a pathological dilation of blood vessels, mainly occurring at the
branches and bifurcations of arteries (Schievink, T997). IA is usually small and initially asymp-
tomatic, but may gradually enlarge over time and lead to symptomatic manifestations, and even
rupture in severe cases, resulting in a high incidence of morbidity and mortality (Cebralefall, PO0S).
Accurate assessment of rupture risk of IA is essential for medical intervention of neurovascular dis-
eases (Efminan & Rinkel, P0T6). Computational Fluid Dynamics (CFD) provides key biomechanical
evidence for clinical decision-making by quantifying hemodynamic parameters such as wall shear
stress and pressure distribution, which have been widely applied in various biomedical researches
(Ciefall, PO7S; Morris_ef all, POT6; Wang et all, 2025).

Magnetic resonance angiography (MRA) serves as a non-invasive, high-resolution imaging modality
that facilitates the detailed visualization of aneurysms, enabling the identification of their anatomical
characteristics, including location, size, and complex morphological features (Pierof_ef all, DOT3).
Accurate segmentation of intracranial aneurysm and parent vessels (IA-Vessel) from MRA is an
important step for subsequent CFD analysis (Patelef-all, 2023). As manual localization and delin-
eation remain a labor-intensive and time-consuming procedure for radiologists (liao_ef-all, 2073), it
is highly desirable to develop automated segmentation methods in clinical applications. With the
unprecedented developments of deep learning, state-of-the-art segmentation methods have achieved
comparable results with inter-rater variability (Isenseeefall, Z0ZT). As deep learning-based methods
require labeled data for training, high quality open-source datasets have become a crucial founda-
tion for the development of segmentation algorithms for various modalities of medical imaging
(Anfonellief all, P027; Gafidis_ef all, P027; lef-all, DO272; Maef all, P027; Qu et all, 2073).
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Table 1: Summary of existing 3D MRA datasets for intracranial aneurysm segmentation tasks.

TA-Vessel TA-Vessel CFD
Dataset Volumes IAs STL . esh
Mask Centerline Results
ADAM 113 156 X X X X X
INSTED 191 68 X X X X X
Royal 63 85 v 4 X X X
TAVS(Ours) 641 587 v v v v v

Figure 1: (a) Whole intracranial vasculature and local parent vessels. (b) IA-Vessel ground truth.
(c) Despite the Dice score is relatively low (0.7648), no topological errors are present. (d) Although
the Dice similarity coefficient is high (0.9869), topological errors are present which is unusable for
CFD.

Despite the existence of several datasets for intracranial aneurysm segmentation, challenges persist
when applying these datasets to hemodynamic analysis. First, there are structural deficiencies in
the annotations of these datasets. Existing public datasets, such as ADAM (Timmins_ef all, PO2T)
and Royal(de Nys et all], 20074), generally lack refined annotations of the parent vessels and geo-
metric validation labels. Additionally, they do not include records of hemodynamic results, which
makes it challenging to support the end-to-end analysis process from image segmentation to CFD
modeling. Second, the evaluation of segmentation results is limited. Most existing medical image
segmentation models are assessed using region overlap-based metrics, such as the Dice coefficient.
However, these metrics are insensitive to geometric topological abnormalities, including vessel ad-
hesion and surface irregularities. These abnormalities usually fail CFD validation because of issues
such as mesh generation failure or flow field distortion. Moreover, insufficient localization accu-
racy for small-sized aneurysms and the limited capability to maintain vascular connectivity further
exacerbate the challenges in transitioning from image segmentation to biomechanical modeling.

To address these challenges, this study presents a systematic solution for segmenting intracranial
aneurysms and vessels applicable to CFD, innovating across three sub-tasks: dataset construction,
benchmark design, and evaluation system. The main contributions are outlined as follows.

* We collect and curate a large-scale multi-centre Intracranial Aneurysm Vessel
Segmentation (IAVS) dataset, comprising 641 3D MRA images and 587 annotations of
aneurysms and IA-Vessels, including CFD analysis results. This dataset addresses the lim-
itations of previous datasets that lack topological integrity and CFD applicability.

* We establish an standardised CFD applicability evaluation system that enables standard-
ized estimation of CFD success probability given segmentation results. Additionally, we
introduce a novel evaluation metric, the CFD-Applicability Score (CFD-AS), to facilitate a
more comprehensive assessment of segmentation results.

* We conduct two evaluation benchmarks including global localization of aneurysms (Stage
I) and fine-grained segmentation of IA-Vessel (Stage II) and develop a two-stage frame-
work as a strong baseline for the accurate detection and segmentation of IA-Vessel, which
significantly reduces geometric errors in segmentation masks and enhances CFD usability.
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2 RELATED WORK

Intracranial Aneurysm Datasets. To accelerate the development of deep learning-based aneurysm
and vessel segmentation, several segmentation datasets are evolved. However, existing public in-
tracranial aneurysm datasets exhibit substantial limitations when applied to CFD studies. Regard-
ing annotation completeness, the ADAM (Iimmins ef all, P0ZT) and INSTED (Chen et all, P074)
datasets offer 3D MRA images with aneurysm masks. However, they lack annotations of the parent
vessels, which are essential for constructing CFD models. Conversely, the AneuX (Iuchleref all,
2077) project provides preprocessed STL models for CFD but omits the original medical images
and segmentation masks. In terms of anatomical accuracy, the Royal (de Nys et all, P074)) dataset
includes both aneurysm outlines and vessel annotations. Nevertheless, several samples feature ves-
sel adhesion, which undermine the validity of CFD boundary conditions. Similarly, the COSTA
dataset (Mon_ef all, 20074)) contains whole-brain vessel annotations, but suffers from adhesion errors
in numerous distal branches of vessels, which inaccuracies directly impede the precision of CFD sim-
ulations. Overall, these works fail to provide a comprehensive database from image segmentation
to CFD analysis, which underscores the necessity of developing application-oriented segmentation
dataset.

Aneurysm Vessel Segmentation. Before the advent of deep learning, aneurysm and vascular seg-
mentation relied mainly on classical vesselness-based methods, most notably the multiscale Hessian
filter Frangi et all (T998), with later benchmarks Camy et al] (Z022) revealing their variability across
anatomical regions. However, these approaches struggle with complex aneurysmparent-vessel con-
figurations and lack the geometric fidelity required for downstream hemodynamic analysis. Deep
learning methods have shown excellent performance on several medical image segmentation tasks,
yet aneurysm vessel segmentation presents unique challenges. Mainstream segmentation networks
like 3D UNet (Cicek et all, P0T6H) and nnUNet (Isensee ef all, PO7T) prioritize global voxel-wise ac-
curacy but lack mechanisms for reliable small-target detection, essential for accurately segmenting
both small aneurysms and fine vessels. Glia-Net (Bo“ef-all, P071]) enhances aneurysm delineation
via global context fusion but does not extend to parent-vessel segmentation. Object detection frame-
works such as nnDetection (Baumgartner et all, Z071)) achieve robust 3D lesion localization but falter
on sub-voxel scale targets. Sphere-based detectors like CPM-Net (Song et all, P02(1) and SCPM-Net
(Chno”ef~all, PO77) help stabilize small-object training dynamics but remain untested on vascular
structures. Keypoint detection methods like MedLSAM (Leiefall, 2075) demonstrate promise for
anatomical localization but have not been adapted for variable-size aneurysm center points. While
AA-Seg (Yaoef all, P0744) pioneers joint aneurysmvessel segmentation, it still permits vessel adhe-
sion across the aneurysm neck, highlighting the ongoing need for methods that can accurately and
jointly segment both structures while respecting anatomical boundaries.

Evaluation Metrics. Conventional segmentation metrics inadequately capture the requirements of
downstream CFD analysis. The Dice similarity coefficient (DSC) quantifies volumetric overlap
but is insensitive to topological errors such as spurious vessel connections. Boundary IoU Cheng
ef_all (Z021) improves edge accuracy assessment yet remains blind to global connectivity flaws.
Centerline-aware metrics (clDice) Shif_ef-all (Z021) incorporate explicit topological constraints but
do not directly reflect mesh-generation feasibility or flow-convergence behavior. While innovative
research into differentiable CFD solvers [Yao ef-all (Z024KF) aims to integrate physical simulations
directly into the training loop, these methods are not yet directly applicable to the clinical task of
intracranial aneurysm analysis due to the complex geometries and the non-differentiable nature of
the traditional high-fidelity meshing and simulation pipeline required for clinical validation.

3 TAVS DATASET

Motivation and Details. Existing intracranial aneurysm datasets have structural deficiencies in the
annotation and lack applicability in CFD applications. To bridge this gap, our [AVS dataset contains
641 3D MRA images and 587 aneurysms and IA-Vessels annotations with CFD analysis results,
which is adapted from three existing datasets including ADAM (immins_ef all, P021), INSTED
(Chen"ef-all, P074)) and Royal (de Nys et all, P074), and a new in-house dataset from [hidden for
review]. An overview of IAVS dataset is shown in Figure . For public datasets, the original ADAM
and INSTED datasets only provide annotations of IAs. Despite the Royal dataset contains IA-Vessel
mask and STL models, several samples feature vessel adhesion and are not applicable for CFD
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Table 2: Statistics of IAVS dataset including data source, number and diameter of TAs.

No. of Images No. of IAs per case Diameter of IA
Dataset 1As
| Total Public Private 0 1 2 >3 <B3mm 3-7mm >7mm
Train 467 175 202 82 345 34 6 | 432 55 272 105
Set A 76 76 0 42 29 3 2 41 16 17 8
Set B 98 0 98 0 85 10 31114 10 93 11
Table 3: Statistics of imaging parameters in the IAVS dataset.
Dataset Statistics Min Median Max
Spacing (mm) (0.21,0.21,0.30) (0.36,0.36,0.50) (0.47,0.47, 1.20)

Volume Size (voxels)  (348,384,44)  (512,512,148) (1024, 1024, 368)

analysis. In contrast, our dataset contains CFD applicable segmentation masks and CFD analysis
results, including 3D MRA images (1), voxel-level segmentation masks (2)-(3), geometric models
(4)-(6) and CFD analysis results (7).

Data Statistics.The IAVS dataset is partitioned meticulously to meet the practical requirements of
clinical research. Statistics of the proposed IAVS dataset in Table [ reveals that the distribution
of aneurysm quantity and size across cases closely mirrors clinical epidemiological patterns. This
congruence effectively guarantees the representativeness of the dataset, enhancing the generalizabil-
ity of the research findings. Additionally, all data underwent strict anonymization procedures and
were rigorously reviewed and approved by the hospital ethics committee, ensuring full compliance
with ethical standards. We split the images into 467 cases for training and validation, 76 cases from
public datasets as Set A for internal evaluation, and 98 cases from in-house dataset as Set B for
evaluation in clinical scenarios. For the training of Stage I, 373 cases are used for training and 94
cases are used for validation. In Stage II, candidate patches cropped based on IA annotation are used
for training of TA-Vessel segmentation network. Following the same split of MRA images in Stage
I, 357 patches are used for training and 99 patches are used for validation.

Annotation. After integrating medical imaging resources from three public and private datasets, we
conduct annotations of IA and IA-Vessels for CFD applicable segmentation. The annotation work-
flow can be observed in Figure D. A annotations from the existing datasets are used if available. For
in-house dataset, the annotations are completed and checked by experienced radiologists. For anno-
tation of parent vessels of IA, we first use a pre-trained model using COSTA (de Nys et all, 024)) to
preliminary segment whole-brain vessels of all MRA images. The pre-trained coarse-vessel model
achieves Dice of 0.9204 on the official COSTA test set. Subsequently, focusing on the aneurysm-
related vessel regions, the parent vessels are cropped and refined from the coarse segmentation of
whole-brain vessels using 3D Slicer. The model-generated vessel segmentation mask is refined and
verified by one CFD specialist and one board-certified radiologist instead of directly used without
human correction. The refinement process strictly adheres to clinical anatomical principles, includ-
ing eliminating abnormal geometric features and implementing an adaptive truncation strategy based
on vascular bifurcation topology. When the parent vessel extends to the bifurcation, if the length of
this segment of the vessel exceeds its diameter, truncation processing is performed. This strategy
effectively avoids adhesion issues of distal small branches while ensuring the learnability of vessel
length for the model.

Quality Control. To further validate the CFD usability of annotations, other than conducting voxel-
level segmentation masks, all cases are conducted vascular geometric annotations for CFD analysis,
including STL files of cut inlet/outlet sections, vascular centerline data, and mesh grid files labeled
with fluid boundary conditions. Besides, CFD applicability of the segmentation masks are evaluated
to validate whether the pressure and velocity residuals in the blood flow dynamics analysis achieve
convergence. We perform a rigorous quality check and screening, annotations not applicable for
CFD are further refined and validated, or removed from the final dataset.
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Figure 2: An overview of the IAVS dataset and the annotation workflow. Each case encompasses
seven types of standardized data: (1) whole-brain MRA images, (2) IA mask, (3) IA-Vessel mask,
(4) STL models with cut inlets/outlets, (5) vascular centerlines, (6) mesh files with boundary anno-
tations, (7) CFD analysis results.

@ Script Automatic Operation

% Manual Verification Operation

Exwact . T % CutInleyOutlet
- Centerlines (f \ Sections
. \
Check e ;
Betti Number
Json st

Bo=1 Bo=1 Bo=1 X Enhance

Bi1=1 B=0 B=0 =S Assign Mesh

B =0 B =0 =0 i, Boundary

1 Conditions Fit Surface

Bo : Components Check % SCdOC Step
° Adheren Vessels Generate
{ By :Tunnels Mesh

Cavi Compute - Hemodynamic
B : Cavites ‘ / CFD \ Analysis

H ¢ N

Positive H : .

H : Mesh CFD Analysis Results Streamline
G x v :

Check Vessel Geometry CFD Conversion Pipeline

Figure 3: Overview of our conversion pipeline from segmentation masks to CFD models, which re-
alizes the entire chain process from medical imaging to flow field simulation. The pipeline consists
of following steps, including vascular topology inspection, morphological preprocessing, geometric
model conversion, centerline generation, end face cutting, mesh enhancement, surface fitting, bound-
ary labeling, mesh generation, and CFD computation.

4 CFD APPLICABILITY EVALUATION SYSTEM

To achieve automated and standardized conversion from segmentation mask to CFD model, we estab-
lish a standardised CFD applicability evaluation system as shown in Figure B. The pipeline consists
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Figure 4: Our proposed two-stage framework for IA-Vessel segmentation. Stage I utilizes a detection
network for global localization of aneurysms. After cropping out candidate patches, Stage II utilizes
a topological-aware segmentation network for IA-Vessel segmentation to reduce topology errors.

of the following steps, including vascular topology inspection, morphological preprocessing, geo-
metric model conversion, centerline generation, end face cutting, mesh enhancement, surface fitting,
boundary labeling, mesh generation, and CFD computation. The detailed procedure for each step is
shown in the Appendix Al

Based on the evaluation system, we propose a novel applicability-based evaluation metric entitled
CFD applicability score (CFD-AS) to enable more comprehensive evaluation of segmentation re-
sults, which is defined as follows:

TP
ASer> = 5 TP T EN M
. N
TP=)Y (y=1)AH=1)A(AE@H) =1) @)
1=1

|0, if(VTAy) =0V (MGA;) =0V (BFA;) =0
where TP represents true positive cases that can be successfully applicable for CFD analysis. Specif-
ically, VT' Ay € {0,1}, MGA; € {0,1}, and BFA; € {0, 1} represent the vascular topology avail-
ability, mesh generation availability, and blood flow availability of the segmentation mask ¢, indicat-
ing, respectively, whether there are geometric topological abnormalities in the vessels, whether geo-
metric errors occur during the conversion process that interrupt subsequent operations, and whether
the generated mesh file can be successfully used for CFD analysis. The computation of all three
indices above can be automated via scripts.

5 BENCHMARK DESIGN

To demonstrate the utility of the IAVS dataset, we adopt two benchmark tasks that mirror the clin-
ical workflow from raw MRA to simulation-ready geometry: Stage I for global localization of



Under review as a conference paper at ICLR 2026

aneurysms and Stage II for fine-grained IA-Vessel segmentation. These benchmarks are designed
to evaluate methods on clinically meaningful tasks. In Stage I, a global localization step identifies
regions of interest containing aneurysms, setting the stage for more precise analysis. Stage II then
focuses on fine-grained, topology-aware segmentation of the IA-Vessel within these localized re-
gions. This approach is specifically designed to evaluate segmentation performance in the context
of topological consistency and CFD applicability. As illustrated in Figure B, we develop a simple and
effective two-stage framework, which can be used as a out-of-the-box method and strong baseline
for the benchmark.

Stage I: Aneurysm Localization. To overcome the difficulty of directly segmenting small
aneurysms from full MRA volumes, we first use a detection network to pinpoint their locations.
We use a counting-guided heatmap formulation to substantially reduce false positives by constrain-
ing the predicted count. Specifically, the network is designed to simultaneously predict a heatmap,
indicating the probability of an aneurysm center, and a density map, estimating the number of
aneurysms. The training loss is shown in Formula B, which consists of two parts. The first part
is the heatmap loss, inspired by the focal loss used for centroid prediction in Zhouefall (2019). Due
to the extreme sparsity of positive voxels (aneurysm centers), each ground truth center point is su-
pervised using a 3D Gaussian heatmap Zyy, with a peak value of 1. To address the severe foreground-
background imbalance, a weighting scheme is applied. For positive voxels (txy, > 0.9), the loss is
(1—pxyz)-1og(pxy.)- For all other voxels (negatives), the loss is (1 —tyy,)"- Pryz 10g(1—pxy). Here,
Dxyz 1s the predicted heatmap value, « is a focusing parameter that down-weights easily classified
examples, and the (1 — txyz)ﬁ term for negatives places more emphasis on ambiguous regions near
the Gaussian boundaries. The total heatmap loss is normalized by the number of positive voxels
Npos. The second part is a standard cross-entropy loss for the aneurysm count classification, where
the number of aneurysms per case is treated as a classification problem with classes ranging from 0
to 5.

1 — Pyyz)® log(pxyz if txy, > 0.9
L:Stagel - — [ E { ( Pry ) g(p ’ ) ’ + LCE(OpredaOlrue) ) 4)
0 .Y,z

1
N, (1 — tyy2)? Deyz 10g(1 — pxy,)  otherwise

Count Classification Loss

Heatmap Loss

During inference, candidate center points are extracted from aggregated heatmaps and density maps.
We employ a dynamic selection mechanism where the number of candidates is adaptively deter-
mined by the connected components in the density map, effectively reducing false positives. This
point-based detection is less sensitive to variations in aneurysm size compared to standard segmen-
tation or bounding-box detection.

Stage I1: IA-Vessel Segmentation. Using the center points from Stage I, we crop candidate patches
to focus the segmentation task. In Stage II, we apply a topology-aware segmentation network built
upon the robust nnUNet (Isensee ef all, P07T) backbone. To ensure the resulting vessel geometry is
suitable for CFD analysis, we incorporate a loss function that preserves vascular connectivity. As
shown in Equation B, the total loss combines a standard segmentation loss (Dice and cross-entropy)
with a clDice loss term. The clDice component enhances the model’s sensitivity to vascular topol-
ogy by explicitly supervising on centerline connectivity, which is critical for preventing spurious
connections or breaks in the vessel structure.

Lstet] = — 2 ZZ Digi
e Sibi Y gi

Segmentation Loss

+(=> 6 1ogpi>+A( ©)

?

23T ()T (94) )
Zi T(pi) + ZZ T (9:)

clDice Loss

6 EXPERIMENTS

We systematically evaluate the proposed framework compared with existing state-of-the-art methods
on the IAVS dataset, including the evaluation of aneurysm detection for Stage I, the evaluation of
IA-Vessel segmentation for Stage II, and the comprehensive evaluation of end-to-end segmentation
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Table 4: Comparison of different strategies for aneurysm localization in Stage I.

Set A
Method PRT RET ACCT FI7
nnDetection | 0.3737 04122 0.9250 + 04926 03627 + 0.4131 0.5324 + 0.4225
SWinUNETR | 03472 £ 04718 0.6098 + 0.5004 0.2841 & 0.4644 04425 + 0.4642
nnUNet 0.5778 + 04754 0.6341 + 0.4853 0.4333 + 04668 0.6047 + 0.4650
Ours 0.8286 + 0.4182 0.7073 + 04238 0.6170 + 04222 0.7632 + 0.4102
Set B
Method PRt RE] ACCT F17
nnDetection | 0.5440 £ 0.3036  0.9292 + 0.1751 05224 + 0.3017 0.6863 + 0.2389
SwinUNETR | 0.5145 + 0.3956 0.7807 + 03792 0.4495 + 0.3884 0.6202 + 0.3650
nnUNet 0.6942 + 0.4046 0.7368 + 0.4033  0.5563 -+ 0.4008 0.7149 + 0.3846
Ours 0.8785 + 02523 0.8246 + 02708 0.7402 + 02871 0.8507 = 0.2491

with CFD applicability score. We split the test set into Set A for evaluation from multiple public
datasets, and Set B for evaluation in clinical scenarios from our private dataset. More experimental
and implementation details are shown in the Appendix B.

Table 5: Ablation experiments of topological-aware loss for IA-Vessel segmentation in Stage II.

Model |Topological-aware Loss -~ Set A -

Dicet HDY95| clDicet BloU?
Zig-RiR X 0.7069 + 0.1366 7.6029 + 4.2749 0.6975 £ 0.1352 0.5626 + 0.1568
nnUNet X 0.8533 + 0.0840 3.2187 £ 2.7283 0.8555 £0.1113 0.7527 4+ 0.1211
nnUNet | Skeleton Recall Loss [0.8401 + 0.0958 3.5820 + 3.4290 0.8447 4+ 0.1269 0.7350 + 0.1330
nnUNet clDice Loss 0.8563 + 0.0878 3.2809 + 3.0868 0.8629 4+ 0.1175 0.7576 + 0.1214
Model |Topological-aware Loss . Set B .

Dicet HD9Y95| clDicet BloU?
Zig-RiR X 0.7536 + 0.1353 6.0273 £+ 4.9289 0.7425 £+ 0.8521 0.6216 4+ 0.7363
nnUNet X 0.8363 = 0.1307 4.2557 £ 5.6929 0.8538 £ 0.1502 0.7368 £ 0.1652
nnUNet | Skeleton Recall Loss |0.8296 + 0.1452 4.1835 + 5.7645 0.8516 + 0.1565 0.7303 £ 0.1769
nnUNet clDice Loss 0.8368 + 0.1368 4.2134 + 5.5734 0.8616 + 0.1524 0.7388 + 0.1693

6.1 EVALUATION OF ANEURYSM DETECTION

To address the challenge of localizing small aneurysms, we conduct a comprehensive evaluation
of proposed method with existing approaches. Specifically, we use three different task settings to
achieve the localization of aneurysms, including utilizing state-of-the-art detention model nnDetec-
tion (Baumgartner et all, P07T), and segmentation models SwinUNETR (Hafamizadeh ef-all, DO2T)
and nnUNet (Isensee ef all, P02T), where the segmentation results is processed to generate the center
point of output targets. As illustrated in Table B, our proposed method stands out with remarkable
performance in multiple metrics. We achieve a PR of 0.8286 and 0.8785, ACC of 0.6170 and 0.7402,
and F1-scores of 0.7632 and 0.8507 in Set A and Set B, respectively. Although our method exhibits a
slightly lower RE compared to nnDetection, our innovative dynamic candidate point selection mech-
anism plays a crucial role. This mechanism effectively controls the false positive rate, preventing
the generation of an excessive number of false detections. As a result, it alleviates the computational
burden and complexity of subsequent processing stages, providing a more efficient and reliable so-
lution for small aneurysm localization. Although heatmap regression itself is a standard technique
in keypoint detection, our modification does not aim to introduce a new general localization the-
ory. Instead, to explicitly address the false-positive issue, we design a loss function that combines a
heatmap regression loss and a count classification loss. Compared with segmentation-based localiza-
tion and bounding-box detection, our design is an engineering optimization tailored to this specific
task to substantially reduce false positives. Overall, our method significantly outperforms the exist-
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Figure 5: Visualization of IA-Vessel segmentation results of different methods.

ing detection and segmentation methods, demonstrating its strong competitiveness and potential for
practical applications in medical imaging analysis.

In addition, we conduct new experiments on the publicly available GLIA-Net (Bo“ef-all, PO2T)
dataset for aneurysm detection. The experimental results are presented in Appendix 0. The experi-
ments demonstrate that our method achieves optimal performance across all evaluation metrics.

6.2 EVALUATION OF IA-VESSEL SEGMENTATION

To evaluate the effectiveness of proposed topological-aware segmentation framework, we conduct
ablations of clDice loss for the segmentation. For the training of Stage II, input patches cropped
based on ground truth IA are utilized for localization to avoid error accumulation in Stage I. As
observed in Table. B, the results show that the introduction of clDice loss significantly enhances
the vascular topology maintenance ability, which improves the clDice performance from 0.8555 to
0.8629 on Set A and 0.8538 to 0.8616 on Set B.

6.3 EVALUATION OF CFD APPLICABILITY

To make a comprehensive evaluation of our framework for CFD applicable IA-Vessel segmentation
from MRA images, we integrate the localization results of Stage I with the segmentation procedure
of Stage II to enable end-to-end segmentation. In comparison, we conduct direct end-to-end IA-
Vessel segmentation using state-of-the-art nnUNet (Isensee_ef all, PO2T) as baseline performance,
and ground truth aneurysm localization for patch cropping as an upperbound comparison. As shown
in Table B, end-to-end nnUNet segmentation yields Dice coefficients of 0.1548 on Set A and 0.4557
on Set B. Due to an excessive number of false positives over 120 and fewer than 10 true positives,
we conclude that the end-to-end segmentation approach is not suitable for the segmentation task.
As shown in Table [, among comparison of two-stage frameworks, we observe that our method
achieve a high applicability score of 57.45% and 54.76%, significantly outperforms other comparing
methods by a large margin. As shown in Figure B, we observe that proposed method can generate
mask predictions align more accurately with ground truth masks with less topologic errors and false
positive predictions of backgound vessels.
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Table 6: Performance of different methods for end-to-end IA-Vessel segmentation from MRA im-
ages.

Set A
DiceT HD95] cIDicet BloUT
nnUNet Baseline 0.1548 + 0.2520 48.8495 + 39.9534 0.1552 + 0.2468 0.1088 4+ 0.1927
Stage I nnDetection + Stage II | 0.4285 £ 0.3753 15.9663 + 17.8063 0.4311 £ 0.3862 0.3477 £ 0.3236
Stage I nnUNet + Stage II 0.4864 + 0.4070 50.5446 4+ 90.9340 0.4943 4+ 0.4124 0.4174 £ 0.3686

Framework

Stage I Ours + Stage I1 0.6324 + 0.3630 27.8342 4+ 65.1445 0.6361 4 0.3682 0.5482 + 0.3356
Stage I GT + Stage 1T 0.8563 +0.0878  3.2809 4 3.0868 0.8629 £ 0.1175 0.7576 £+ 0.1214
Framework Set B

Dicet HD9Y5| cIDicet BloUt
nnUNet Baseline 0.4557 +0.2898 37.2055 4+ 17.9024 0.4323 4 0.2853 0.3395 =+ 0.2496

Stage I nnDetection + Stage II | 0.6611 £ 0.2252  19.6505 4+ 17.8079 0.6846 £ 0.2334 0.5344 + 0.2476
Stage I nnUNet + Stage II 0.6186 £ 0.3499 65.7056 £ 112.9016 0.6477 £ 0.3556 0.5286 + 0.3264
Stage I Ours + Stage II 0.7442 £ 0.2406 15.8149 £+ 36.6947 0.7706 £ 0.2533 0.6391 + 0.2500
Stage I GT + Stage II 0.8368 £ 0.1368  4.2134 + 55734  0.8616 £ 0.1524 0.7388 £ 0.1693

Table 7: Evaluation of CFD Applicability Score of different IA-Vessel segmentation masks.
Set A Set B

TP FP FN | TP | AScrp | TP FP FN | TP | AScrp
Stage I nnDetection + Stage II | 37 62 4 | 30 | 29.13% | 105 88 9 | 74 | 36.63%

Framework

Stage I nnUNet + Stage 11 26 19 15| 23 | 3833% | 84 37 30| 65 | 43.05%
Stage I Ours + Stage II 29 6 12| 27 | 5745% | 94 12 20 | 69 | 54.76%
Stage I GT + Stage 11 41 0 0 | 35| 837% |114 0 0 | 88 | 77.19%
IA-Vessel GT 41 0 0 | 41 |100.00% | 114 0 O | 114 | 100.00%

7 DISCUSSION AND CONCLUSION

In this work, we introduce a systematic solution for CFD-applicable TA-Vessel segmentation. To
overcome the limitations of existing datasets, we construct IAVS, a large-scale multi-centre dataset
with comprehensive annotations and CFD analysis results, providing a solid foundation for sub-
sequent research. Our proposed two-stage framework for detection and segmentation effectively
reduces geometric errors and enhances the CFD usability of segmentation masks, making a break-
through in improving the accuracy and reliability of segmentation. Additionally, the establishment
of a standardized CFD applicability evaluation system, along with the introduction of the CFD appli-
cability score, enables a more comprehensive and standardized evaluation of segmentation results.
Experimental results demonstrate that our proposed method achieves a high CFD applicability score
of 57.45% and 54.76% on different test sets, which is significantly higher than that of existing state-
of-the-art methods, verifying its clinical applicability in CFD analysis, so as to assist in clinical
decision-making.

Limitations. Firstly, our framework employs independent training procedure of each stage, which
may limit further performance improvement of the model. Future work could explore an end-to-
end joint training mechanism. By sharing encoder-layer features and jointly optimizing the loss
functions, the tasks of localization and segmentation could be synergistically enhanced. Besides,
existing loss functions for training segmentation models primarily rely on image-based segmenta-
tion metrics, which have a semantic gap with the CFD applicability. Future work could focus on
utilizing the applicability-based evaluation for optimization of segmentation networks to enhance
the applicability of segmentation results for CFD applications.

Currently, CFD validation needs to be performed independently of the segmentation process. Fu-
ture research could introduce physics-informed neural networks to build an end-to-end predictive
model from segmentation results to hemodynamic parameters, achieving a closed-loop optimization
between segmentation and simulation.(Ci“efall, DOTY; [Yao ef all, P074H).
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ETHICS STATEMENT

The authors of this paper have read and adheres to the ICLR Code of Ethics. This research involves
the use of sensitive medical data and aims for a direct clinical application; therefore, we have taken
several steps to ensure our work is conducted with the highest ethical standards.

Human Subjects and Data Privacy: Our study utilizes 3D MRA images from both publicly avail-
able and private, in-house clinical datasets. The collection and use of the in-house patient data were
conducted in full compliance with institutional and national ethical guidelines. The study protocol,
including data collection and anonymization procedures, received formal approval from the relevant
hospital’s Institutional Review Board (IRB) / Ethics Committee. All data were fully anonymized
prior to their use in this research, with all personally identifiable information (PII) removed to pro-
tect patient privacy and confidentiality.

Dataset Curation and Release: We are committed to scientific transparency and reproducibility.
Upon acceptance, the curated IAVS dataset, along with our code and models, will be made publicly
available. We will ensure that the released data is thoroughly de-identified to prevent any poten-
tial for re-identification of individuals, thereby responsibly contributing a valuable resource to the
research community while upholding our duty to protect patient privacy.

Potential for Societal Impact and Misuse: The primary goal of this research is to contribute pos-
itively to human well-being by improving the accuracy and applicability of intracranial aneurysm
segmentation for hemodynamic analysis. This can ultimately aid clinicians in assessing aneurysm
rupture risk and making more informed treatment decisions. However, we acknowledge that any au-
tomated medical analysis tool carries the risk of misuse if not properly validated and deployed. Our
proposed framework is intended to be used as a decision-support tool to assist trained medical pro-
fessionals (such as radiologists and neurosurgeons) and is not designed to replace clinical expertise
or serve as a standalone diagnostic system.

Bias and Fairness: Our IAVS dataset is compiled from multiple centers, which helps to mitigate
biases associated with a single institution’s population or imaging hardware. Nonetheless, the de-
mographic distribution (e.g., race, age, sex) of the patient data may not fully represent the global
population. This could potentially lead to performance disparities when the model is applied to un-
derrepresented groups. We acknowledge this as a limitation and advocate for future work to validate
and fine-tune our models on more diverse and larger-scale datasets to ensure equitable and robust
performance across all patient populations.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have provided comprehensive details throughout
the paper and its appendices. The construction, annotation workflow, and statistical breakdown
of our proposed IAVS dataset are thoroughly described in Section B. A detailed description of
our proposed two-stage framework, including the network architectures and loss functions for both
detection and segmentation stages, is provided in Section B. All experimental settings, including data
preprocessing, training hyperparameters (e.g., optimizer, learning rate, patch sizes), and the specific
evaluation metrics used, are detailed in Appendix B. The procedure for our novel CFD applicability
evaluation system, which automates the conversion from segmentation masks to CFD models, is
outlined step-by-step in Section B and Appendix @Al As stated in the abstract, we are committed to
transparency and will make our source code, the complete IAVS dataset, and the pre-trained models
publicly available upon acceptance of this manuscript to facilitate verification and further research
in the community.
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A  PROCEDURE FOR CFD APPLICABILITY EVALUATION

This study establishes a standardized workflow for transforming medical images into computational
fluid dynamics models consists of following steps.

Vascular Topology Inspection The vascular topology of the segmentation results of intracranial
aneurysms and their associated vessels is first screened to detect geometric defects such as abnormal
adhesion, holes, indentations, and protrusions. These voxel-level segmentation errors, although not
affecting traditional segmentation metrics such as the Dice coefficient, can significantly impact the
integrity of vascular geometry and subsequently cause flow field distortions in CFD analysis. Issues
such as discontinuities, holes, and partial adhesions can be identified by computing Betti numbers,
which can detect most topological problems, while a minority of other issues still require manual
verification.

Preprocessing of Segmentation Results Morphological optimization operations are performed us-
ing 3D Slicer software, including removal of stretched regions, filling of small holes, and smoothing
of details. A median filter with a kernel size of 1 mm is uniformly applied for surface smoothing
to eliminate discrete segmentation artifacts while ensuring reproducibility. The largest connected
component is extracted after smoothing to exclude isolated noise structures. It should be noted
that approximately 1% of samples may experience abnormal adhesion due to excessive smoothing,
which requires manual correction using the segmentation tools in 3D Slicer.

Conversion to Geometric Models The voxel-represented NIFTI image data is converted into a
three-dimensional geometric STL model, providing a geometric basis for subsequent CFD analysis.

Generation of Vascular Inlet and Outlet Endpoints and Centerlines Based on the generated
STL model, the VMTK toolkit is used to automatically identify the topological endpoints of vascu-
lar inlets and outlets, and to generate vascular centerlines accordingly. When automatic detection
deviates, interactive corrections are made using 3D Slicer.

Cutting of Inlet and Outlet Cross-sections The ptvista library is used to cut vascular cross-sections
based on the normal vectors of the centerlines. The cutting plane is uniformly set at the 1/5 end
position (when the candidate cutting point radius is less than 0.3 mm, it automatically retracts to a
proximal position that meets the radius requirement). This approach retains the complete vascular
structure while avoiding morphological distortion caused by excessive cutting. Experiments have
shown that approximately 10% of samples fail automatic cutting due to insufficient centerline length,
requiring manual intervention using Geomagic Wrap 2021.

Mesh Enhancement Geomagic Wrap is used to perform mesh optimization processes: first, the
mesh doctor is used to repair non-manifold edges, self-intersections, and highly refractive edges,
followed by mesh re-meshing, refinement, optimization, and enhancement operations. All parame-
ters are set to the software’s default values to ensure consistency in processing.

Fitting of Surface Geometry Files The STL mesh file is reconstructed into a CAD model with
precise geometric definitions and topological relationships, i.e., a STEP format file. Based on the
STL mesh file, surface patches are constructed, a grid is built, and the surface is fitted to generate
the STEP file. The number of surface patches is set to 1000. At this point, less than 1% of the data
may detect intersecting grids during grid construction, which can be manually repaired by moving
surface patch vertices to eliminate concave polygons. For cases where the surface patches are too
large, the patches can be subdivided to resolve the issue.

Boundary Condition Annotation The STEP model is imported into ANSYS SpaceClaim for
boundary condition definition, including the precise annotation of inlets, outlets, walls, and fluid
regions. The end faces are automatically identified using the previously generated endpoints and
centerline information, and the final model is saved in SCDOC format.

Mesh Generation Fluent Meshing is used to generate unstructured polyhedral meshes, with mesh
quality and computational stability ensured through CFL number control and residual monitoring
mechanisms.

CFD Calculation Blood flow field simulation is performed using the incompressible Newtonian
fluid model. The Navier-Stokes equations are solved using the icoFoam solver in Open Field Op-
eration and Manipulation (OpenFOAM (Weller_ef all, T998) combined with the PISO algorithm,
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calculating the velocity field, pressure field, and wall shear stress distribution under a mass flow rate
range of 0.00100.0040 kg/s (only steady-state calculations are performed).

Prior to this, there is no fully automated workflow for converting binary segmentation masks to
computational fluid dynamics models. The alternate use of multiple industrial software packages, as
well as the cumbersome and repetitive nature of the operational process, significantly increases the
labor and time costs associated with the annotation process. Moreover, the subjective variability in-
troduced by manual cutting of vascular inlet and outlet cross-sections directly affects the objectivity
of CFD-AS calculations.

B EXPERIMENTAL SETTINGS

Implementation Details. All of our experiments are implemented in Python with PyTorch, using an
NVIDIA A100 GPU. We use the SGD optimizer with an initial learning rate of 0.01, a weight decay
of 3e-5 and a momentum of 0.99 to update the network parameters with the maximum epoch number
set to 1000. In Stage I, the original images are resampled to a voxel spacing of 0.34 x 0.34 x 0.55
mm?, and then are cropped into patches of size 224 x 224 x 48, with the batch size set to 2. In
Stage II, the patch size is 96 x 96 x 64 and the batch size set to 9. During the training stage, random
cropping, flipping and rotation are used to enlarge the training set and avoid over-fitting. In the
inference stage, the final segmentation results are obtained using a sliding-window strategy. For
other comparing methods, we follow the official implementations as in (Hafamizadeh ef all, D021,
Baumgartner et all, ZOZT).

Evaluation Metrics. For aneurysm detection, four metrics include precision (PR), recall (RE),
average precision (AP), and the F1 score are used for evaluation. These metrics are defined as
follows: TP

PR= ——
TP + FP

TP
E=—
TP + FN

TP

Acc— —
T TPFFP+EN

PR x RE

PR + RE

where TP, FP, TN, FN represent true positive (correct detection of an aneurysm), false positive
(incorrect detection of an aneurysm in a healthy case), and false negative (missed detection of an
aneurysm), respectively.

F1 =2 x

For TA-Vessel segmentation, four metrics including the Dice similarity coefficient (Dice), 95% Haus-
dorff Distance (HD95), the centerline Dice (clDice), and the boundary IoU (BIoU) are used for
evaluation. These metrics are defined as follows:

Di 2 x |AN B|
ice = —————
Al +[BI

HD95 = inf {d > 0| Sa € N4(Sg) and Sg C N4(Sa)}

clDice = 2x 104005l [€a 0 C|
|Cal + |CB|
19AN OB
BloU= -—— "
Y~ 19AuaB|

where A and B represent the predicted segmentation mask and ground truth. Aj(-) denotes the
d-neighborhood around a set, and Sprea/ S are the predicted/ground truth boundaries. C'4/C'p and
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0A/0B represent the centerline and the boundary pixels of predicted segmentation mask and ground
truth, respectively.

C ADDITIONAL EXPERIMENTS

We further demonstrat that the heatmap cascading strategy of detection can effectively enhance seg-
mentation performance. When the encoder pretrained in our framework are used to initialize the
encoder of nnUNet for aneurysm segmentation, the Dice coefficient of the segmentation model in-
creases from 0.4841 to 0.5676 as shown in Figure B, confirming the position constraint effect of
localization on aneurysms. Ablation experiments show that fixing the encoder of keypoint detec-
tion for feature transfer outperforms the direct cascading of heatmaps (Dice: 0.5676 vs. 0.5148),
indicating that semantic consistency in the feature space is crucial for segmentation accuracy.

Table 8: Impact of keypoint detection on segmentation performance

Model Set A Set B

Dicet HD95| PR{T REf7 | Dicet HD95), PRT RE?T
SwinUNETR 0.2911 28.82 0.6298 0.4358|0.4780 41.04 0.6374 0.4611
nnUNet 0.3915 43.09 0.6029 0.5056|0.5490 58.51 0.5904 0.5734
Heatmap Cascade 0.4776 48.01 0.6079 0.4736|0.5772 50.69 0.6455 0.5830
Fixed nnUNet encoder |0.3874 33.68 0.6587 0.5763|0.5765 40.32 0.6363 0.6008
Fixed keypoint encoder | 0.5041 33.01 0.6901 0.5586|0.5999 32.56 0.6902 0.5945

To evaluate the generalization ability of our framework, we conduct extensive experiments on the
publicly available GLIA-Net (Bo“ef-all, P071)) dataset for aneurysm detection. The internal dataset
includes 1338 3D CTA images/1489 IAs from 6 institutions. The external dataset includes 138 3D
CTA images/101 IAs from 2 institutions. After locally retraining nnUNet and our detector, and using
the publicly released segmentation weights from GLIA-Net, the experimental results summarized in
Table @ show that our method outperforms existing approaches across all evaluation metrics on the
external test set A, external test set B, and internal test set as defined by the GITA-Net official split.

D ADDITIONAL DISCUSSION

D.1 RATIONALE FOR LOCALIZED HEMODYNAMIC ANALYSIS

Our decision to focus the CFD simulations on the aneurysm and its adjacent parent vessels, rather
than the entire segmented vascular network, represents a principled balance between clinical rele-
vance and computational feasibility. This approach aligns with established standards in 3D aneurysm
research, where focusing on local geometry is the mainstream methodology. This is because
aneurysm rupture risk assessment primarily depends on local hemodynamic parameters such as
pressure, velocity, and Wall Shear Stress (WSS) rather than the global flow dynamics of the com-
plete network. Numerous studies have validated that such local vessel models are sufficient for
revealing the key hemodynamic mechanisms essential for pathological analysis. Furthermore, simu-
lating the entire cerebrovascular network, which contains thousands of arterial branches, imposes a
prohibitive computational burden that typically requires weeks of supercomputing resources. Such
demands render global simulations infeasible for large-scale datasets or clinical translation. By ad-
hering to this focused approach, we ensure that our evaluation pipeline remains computationally
efficient, reducing simulation times to hours while maintaining the hemodynamic fidelity necessary
for robust risk assessment and the development of physics-informed metrics.

D.2 NUMERICAL IMPLEMENTATION AND SENSITIVITY ANALYSIS

To ensure the reliability and reproducibility of our CFD results, we adhered to strict engineering as-
sumptions and conducted comprehensive sensitivity analyses regarding mesh generation and solver
convergence. We utilized the PISO algorithm within the OpenFOAM framework for pressure-
velocity coupling, enforcing a strict Courant-Friedrichs-Lewy (CFL) number below 1 to ensure
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Table 9: Comparison of the three test sets in the GLIA-Net dataset.

. External test A External test B Internal test
Metric

nnUNet GLIA-Net Ours |nnUNet GLIA-Net Ours [ nnUNet GLIA-Net Ours

PR?T 0.0631  0.3008 0.3866| 0.0354  0.3544 0.3981| 0.0681  0.4076  0.4925
RE?T 0.5200  0.7400 0.9200| 0.2941  0.5490 0.8039| 0.4444  0.7698  0.7857
ACCT | 0.0596  0.2721 0.3740| 0.0326  0.2745 0.3628 | 0.0628  0.3633  0.4342
F11 0.1126  0.4277 0.5444| 0.0632  0.4308 0.5325| 0.1181 0.5330  0.6055

numerical computation stability and convergence. Convergence was defined by residuals for ve-
locity components (u, v, w) stabilizing at 10~% and pressure (p) residuals below 10~6. Furthermore,
we performed a grid independence study to validate our meshing strategy, testing schemes with
minimum element sizes ranging from 0.30 mm to 0.10 mm. Our analysis demonstrated a clear con-
vergence trend; specifically, refining the mesh from 0.15 mm to 0.10 mm resulted in a negligible
relative difference in Wall Average Shear Stress of approximately 0.25%. Consequently, we adopted
the 0.15 mm scheme as the standard for our dataset, confirming that our hemodynamic outputs are
grid-independent and not artifacts of discretization errors.

D.3 ASSUMPTIONS AND LIMITATIONS OF BOUNDARY CONDITIONS

While our simulation pipeline is rigorous, we acknowledge certain limitations inherent to the ret-
rospective nature of the dataset, particularly regarding patient-specific boundary conditions. Ide-
ally, inlet flow rates should be derived from individual phase-contrast MRI or Doppler ultrasound
measurements. However, since our dataset is constructed from standard non-invasive MRA scans,
patient-specific inlet velocity data was not available. To address this, we adopted a standardized
average inlet flow rate as the inlet boundary condition, combined with zero-pressure outlet and no-
slip wall conditions. Although this simplification prevents the precise replication of an individual
patient’s absolute flow dynamics, it is a necessary and widely accepted approximation in large-scale
computational studies where non-invasive data collection is prioritized. This approach remains ro-
bust for evaluating relative hemodynamic patterns and training deep learning models to learn gener-
alizable physics-based features.

E USE OF LARGE LANGUAGE MODELS

In accordance with the conference guidelines, we disclose the use of Large Language Models
(LLMs) in the preparation of this manuscript.

The role of LLMs is strictly limited to that of an assistive tool for language editing and proofreading.
Specifically, LLMs were utilized to improve grammar, correct spelling, refine sentence structure for
better clarity, and suggest alternative word choices to enhance the overall readability of the text.

The LLMs were not used for research ideation, generation of the core scientific content, method-
ology design, data analysis, or drawing conclusions. All conceptual and scientific contributions
presented in this paper are exclusively the work of the human authors. The authors have carefully
reviewed and edited all text and take full responsibility for the scientific accuracy and integrity of
the final manuscript.

18



	Introduction
	Related Work
	IAVS Dataset
	CFD Applicability Evaluation System
	Benchmark Design
	Experiments
	Evaluation of Aneurysm Detection
	Evaluation of IA-Vessel Segmentation
	Evaluation of CFD Applicability

	Discussion and Conclusion
	Procedure for CFD Applicability Evaluation
	Experimental Settings
	Additional Experiments
	Additional Discussion
	Rationale for Localized Hemodynamic Analysis
	Numerical Implementation and Sensitivity Analysis
	Assumptions and Limitations of Boundary Conditions

	Use of Large Language Models

