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ABSTRACT

The precise segmentation of intracranial aneurysms and their parent vessels (IA-
Vessel) is a critical step for hemodynamic analyses, which mainly depends on
computational fluid dynamics (CFD). However, current segmentation methods
predominantly focus on image-based evaluation metrics, often neglecting their
practical effectiveness in subsequent CFD applications. To address this deficiency,
we collect and annotate the Intracranial Aneurysm Vessel Segmentation (IAVS)
dataset, a comprehensive, multi-center collection comprising 641 3D MRA images
with 587 annotations of aneurysms and IA-Vessels. In addition to image-mask
pairs, the dataset includes detailed hemodynamic analysis outcomes, addressing
the limitations of existing datasets that neglect topological integrity and CFD
applicability. To facilitate the development and evaluation of clinically relevant
techniques, we construct two evaluation benchmarks including global localization
of aneurysms (Stage I) and fine-grained segmentation of IA-Vessel (Stage II) and
develop a simple and effective two-stage framework, which can be used as a out-
of-the-box method and strong baseline. The first stage utilizes a detection network
with dynamic queries to globally locate aneurysms. The second stage implements a
topology-aware segmentation network for localized IA-Vessel delineation, designed
to minimize geometric inaccuracies. For comprehensive evaluation, we establish
a standardized CFD applicability evaluation system that enables the automated
and consistent conversion of segmentation masks into CFD models, offering an
applicability-focused assessment of segmentation outcomes. The data, code, and
model will be made publicly available upon acceptance.

1 INTRODUCTION

Intracranial aneurysm (IA) is a pathological dilation of blood vessels, mainly occurring at the branches
and bifurcations of arteries (Schievink, 1997). IA is usually small and initially asymptomatic, but may
gradually enlarge over time and lead to symptomatic manifestations, and even rupture in severe cases,
resulting in a high incidence of morbidity and mortality (Cebral et al.} 2005)). Accurate assessment of
rupture risk of IA is essential for medical intervention of neurovascular diseases (Etminan & Rinkell
2016). Computational Fluid Dynamics (CFD) provides key biomechanical evidence for clinical
decision-making by quantifying hemodynamic parameters such as wall shear stress and pressure
distribution, which have been widely applied in various biomedical researches (Li et al.,2025; Morris
et al.| 20165 Wang et al., [2025)).

Magnetic resonance angiography (MRA) serves as a non-invasive, high-resolution imaging modality
that facilitates the detailed visualization of aneurysms, enabling the identification of their anatomical
characteristics, including location, size, and complex morphological features (Pierot et al.| [2013).
Accurate segmentation of intracranial aneurysm and parent vessels (IA-Vessel) from MRA is an
important step for subsequent CFD analysis (Patel et al.,2023). As manual localization and delineation
remain a labor-intensive and time-consuming procedure for radiologists (Jiao et al.,[2023), it is highly
desirable to develop automated segmentation methods in clinical applications. With the unprecedented
developments of deep learning, state-of-the-art segmentation methods have achieved comparable
results with inter-rater variability (Isensee et al.,[2021). As deep learning-based methods require
labeled data for training, high quality open-source datasets have become a crucial foundation for the
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Table 1: Summary of existing 3D MRA datasets for intracranial aneurysm segmentation tasks.

TA-Vessel TA-Vessel CFD
Dataset Volumes IAs STL . esh
Mask Centerline Results
ADAM 113 156 X X X X X
INSTED 191 68 X X X X X
Royal 63 85 v 4 X X X
TAVS(Ours) 641 587 v v v v v

development of segmentation algorithms for various modalities of medical imaging (Antonelli et al.|
2022; |Gatidis et al., 2022 J1 et al., 2022} |[Ma et al.} 2022} |Qu et al.} 2023)).

Despite the existence of several datasets for intracranial aneurysm segmentation, challenges persist
when applying these datasets to hemodynamic analysis. First, there are structural deficiencies in the
annotations of these datasets. Existing public datasets, such as ADAM (Timmins et al.,[2021) and
Royal(de Nys et al.,[2024), generally lack refined annotations of the parent vessels and geometric
validation labels. Additionally, they do not include records of hemodynamic results, which makes it
challenging to support the end-to-end analysis process from image segmentation to CFD modeling.
Second, the evaluation of segmentation results is limited. Most existing medical image segmentation
models are assessed using region overlap-based metrics, such as the Dice coefficient. However,
these metrics are insensitive to geometric topological abnormalities, including vessel adhesion and
surface irregularities. These abnormalities usually fail CFD validation because of issues such as
mesh generation failure or flow field distortion. Moreover, insufficient localization accuracy for
small-sized aneurysms and the limited capability to maintain vascular connectivity further exacerbate
the challenges in transitioning from image segmentation to biomechanical modeling.

To address these challenges, this study presents a systematic solution for segmenting intracranial
aneurysms and vessels applicable to CFD, innovating across three sub-tasks: dataset construction,
benchmark design, and evaluation system. The main contributions are outlined as follows.

* We collect and curate a large-scale multi-centre Intracranial Aneurysm Vessel Segmentation
(IAVS) dataset, comprising 641 3D MRA images and 587 annotations of aneurysms and IA-
Vessels, including CFD analysis results. This dataset addresses the limitations of previous
datasets that lack topological integrity and CFD applicability.

* We conduct two evaluation benchmarks including global localization of aneurysms (Stage
I) and fine-grained segmentation of IA-Vessel (Stage II) and develop a two-stage frame-
work as a strong baseline for the accurate detection and segmentation of IA-Vessel, which
significantly reduces geometric errors in segmentation masks and enhances CFD usability.

* We establish an standardised CFD applicability evaluation system that enables standardized
estimation of CFD success probability given segmentation results. Additionally, we intro-
duce a novel evaluation metric, the CFD-Applicability Score (CFD-AS), to facilitate a more
comprehensive assessment of segmentation results.

2 RELATED WORK

Intracranial Aneurysm Datasets. To accelerate the development of deep learning-based aneurysm
and vessel segmentation, several segmentation datasets are evolved. However, existing public
intracranial aneurysm datasets exhibit substantial limitations when applied to CFD studies. Regarding
annotation completeness, the ADAM (Timmins et al., 2021) and INSTED (Chen et al., 2024)) datasets
offer 3D MRA images with aneurysm masks. However, they lack annotations of the parent vessels,
which are essential for constructing CFD models. Conversely, the AneuX (Juchler et al., [2022)
project provides preprocessed STL models for CFD but omits the original medical images and
segmentation masks. In terms of anatomical accuracy, the Royal (de Nys et al., 2024) dataset includes
both aneurysm outlines and vessel annotations. Nevertheless, several samples feature vessel adhesion,
which undermine the validity of CFD boundary conditions. Similarly, the COSTA dataset (Mou et al.|
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Figure 1: (a) Whole intracranial vasculature and local parent vessels. (b) IA-Vessel ground truth. (c)
Despite the Dice score is relatively low (0.7648), no topological errors are present. (d) Although the
Dice similarity coefficient is high (0.9869), topological errors are present which is unusable for CFD.

contains whole-brain vessel annotations, but suffers from adhesion errors in numerous distal
branches of vessels, which inaccuracies directly impede the precision of CFD simulations. Overall,
these works fail to provide a comprehensive database from image segmentation to CFD analysis,
which underscores the necessity of developing application-oriented segmentation dataset.

Aneurysm Vessel Segmentation. Deep learning methods have shown excellent performance on sev-
eral medical image segmentation tasks, yet aneurysm vessel segmentation presents unique challenges.
Mainstream segmentation networks like 3D UNet (Cicek et al.l [2016) and nnUNet
[2021) prioritize global voxel-wise accuracy but lack mechanisms for reliable small-target detection,
essential for accurately segmenting both small aneurysms and fine vessels. Glia-Net
enhances aneurysm delineation via global context fusion but does not extend to parent-vessel segmen-
tation. Object detection frameworks such as nnDetection (Baumgartner et al.l 2021)) achieve robust
3D lesion localization but falter on sub-voxel scale targets. Sphere-based detectors like CPM-Net
2020) and SCPM-Net 2022) help stabilize small-object training dynamics but
remain untested on vascular structures. Keypoint detection methods like MedLSAM
demonstrate promise for anatomical localization but have not been adapted for variable-size aneurysm
center points. While AA-Seg pioneers joint aneurysm-vessel segmentation, it still
permits vessel adhesion across the aneurysm neck, highlighting the ongoing need for methods that
can accurately and jointly segment both structures while respecting anatomical boundaries.

Evaluation Metrics. Conventional segmentation metrics inadequately capture the requirements
of downstream CFD analysis. The Dice similarity coefficient (DSC) quantifies volumetric overlap
but is insensitive to topological errors such as spurious vessel connections. Boundary IoU
(2021) improves edge accuracy assessment yet remains blind to global connectivity flaws.
Centerline-aware metrics (clDice) incorporate explicit topological constraints but
do not directly reflect mesh-generation feasibility or flow-convergence behavior. While innovative
research into differentiable CFD solvers (2024b) aims to integrate physical simulations
directly into the training loop, these methods are not yet directly applicable to the clinical task of
intracranial aneurysm analysis due to the complex geometries and the non-differentiable nature of the
traditional high-fidelity meshing and simulation pipeline required for clinical validation. To bridge
this gap and provide a pragmatic solution, we propose a novel CFD applicability metric to measure
whether a segmentation can be successfully applied for CFD analysis, establishing a necessary first
step towards application-oriented evaluation.

3 TAVS DATASET

Motivation and Details. Existing intracranial aneurysm datasets have structural deficiencies in the
annotation and lack applicability in CFD applications. To bridge this gap, our IAVS dataset contains
641 3D MRA images and 587 aneurysms and IA-Vessels annotations with CFD analysis results,
which is adapted from three existing datasets including ADAM (Timmins et al}, [2021), INSTED
(Chen et al.} [2024) and Royal (de Nys et al.} 2024), and a new in-house dataset from [hidden for
review]. An overview of TAVS dataset is shown in Figure 2] For public datasets, the original ADAM
and INSTED datasets only provide annotations of IAs. Despite the Royal dataset contains IA-Vessel
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Figure 2: An overview of the IAVS dataset and the annotation workflow. Each case encompasses
seven types of standardized data: (1) whole-brain MRA images, (2) IA mask, (3) IA-Vessel mask, (4)
STL models with cut inlets/outlets, (5) vascular centerlines, (6) mesh files with boundary annotations,
(7) CFD analysis results.

mask and STL models, several samples feature vessel adhesion and are not applicable for CFD
analysis. In contrast, our dataset contains CFD applicable segmentation masks and CFD analysis
results, including 3D MRA images (1), voxel-level segmentation masks (2)-(3), geometric models
(4)-(6) and CFD analysis results (7). More detailed information of the dataset is presented in the

Appendix [A]

Annotation. After integrating medical imaging resources from three public and private datasets,
we conduct annotations of IA and IA-Vessels for CFD applicable segmentation. The annotation
workflow can be observed in Figure 2} IA annotations from the existing datasets are used if available.
For in-house dataset, the annotations are completed and checked by experienced radiologists. For
annotation of parent vessels of TA, we first use a pre-trained model using COSTA (de Nys et al.}, [2024)
to preliminary segment whole-brain vessels of all MRA images. The pre-trained coarse-vessel model
achieves Dice of 0.9204 on the official COSTA test set. Subsequently, focusing on the aneurysm-
related vessel regions, the parent vessels are cropped and refined from the coarse segmentation of
whole-brain vessels using 3D Slicer. The model-generated vessel segmentation mask is refined and
verified by one CFD specialist and one board-certified radiologist instead of directly used without
human correction. The refinement process strictly adheres to clinical anatomical principles, including
eliminating abnormal geometric features and implementing an adaptive truncation strategy based
on vascular bifurcation topology. When the parent vessel extends to the bifurcation, if the length of
this segment of the vessel exceeds its diameter, truncation processing is performed. This strategy
effectively avoids adhesion issues of distal small branches while ensuring the learnability of vessel
length for the model.

To further validate the CFD usability of annotations, other than conducting voxel-level segmentation
masks, all cases are conducted vascular geometric annotations for CFD analysis, including STL files
of cut inlet/outlet sections, vascular centerline data, and mesh grid files labeled with fluid boundary
conditions. Besides, CFD applicability of the segmentation masks are evaluated to validate whether
the pressure and velocity residuals in the blood flow dynamics analysis achieve convergence. We
perform a rigorous quality check and screening, annotations not applicable for CFD are further refined
and validated, or removed from the final dataset.
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Figure 3: Our proposed two-stage framework for IA-Vessel segmentation. Stage I utilizes a detection
network for global localization of aneurysms. After cropping out candidate patches, Stage II utilizes
a topological-aware segmentation network for IA-Vessel segmentation to reduce topology errors.

4 BENCHMARK DESIGN

Our benchmark design follows a two-stage approach. In Stage I, a global localization step identifies
regions of interest containing aneurysms, setting the stage for more precise analysis. Stage II
then focuses on fine-grained, topology-aware segmentation of the IA-Vessel within these localized
regions. This approach is specifically designed to evaluate segmentation performance in the context
of topological consistency and CFD applicability. As illustrated in Figure[3] we develop a simple and
effective two-stage framework, which can be used as a out- of-the-box method and strong baseline
for the benchmark.

Stage I: Aneurysm Detection. To overcome the difficulty of directly segmenting small aneurysms
from full MRA volumes, we first use a detection network to pinpoint their locations. The network is
designed to simultaneously predict a heatmap, indicating the probability of an aneurysm center, and a
density map, estimating the number of aneurysms. The training loss is shown in Formula[I} which
consists of two parts. The first part is the heatmap loss, inspired by the focal loss used for centroid
prediction in Zhou et al.|(2019). Due to the extreme sparsity of positive voxels (aneurysm centers),
each ground truth center point is supervised using a 3D Gaussian heatmap ty, with a peak value of 1.
To address the severe foreground-background imbalance, a weighting scheme is applied. For positive
voxels (tyy, > 0.9), the loss is (1 — pyy,)® - log(pxyz). For all other voxels (negatives), the loss is
(1- txyz)ﬁ PRy log(1 — pyyz). Here, pyy, is the predicted heatmap value, « is a focusing parameter
that down-weights easily classified examples, and the (1 — txyz)ﬁ term for negatives places more
emphasis on ambiguous regions near the Gaussian boundaries. The total heatmap loss is normalized
by the number of positive voxels Npos. The second part is a standard cross-entropy loss for the
aneurysm count classification, where the number of aneurysms per case is treated as a classification
problem with classes ranging from 0 to 5.

L:Stagel = - + ECE(Cpredy C(true) s (D
—_————

Count Classification Loss

L (1 - pxyz)a log(pxyz) if tyyz > 0.9
Npos T,y (1 - tXYZ)ﬁpxayz log(l - pxyz) otherwise

Heatmap Loss
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During inference, candidate center points are extracted from aggregated heatmaps and density maps.
We employ a dynamic selection mechanism where the number of candidates is adaptively determined
by the connected components in the density map, effectively reducing false positives. This point-
based detection is less sensitive to variations in aneurysm size compared to standard segmentation or
bounding-box detection.

Stage I1: IA-Vessel Segmentation. Using the center points from Stage I, we crop candidate patches to
focus the segmentation task. In Stage II, we apply a topology-aware segmentation network built upon
the robust nnUNet (Isensee et al., 2021) backbone. To ensure the resulting vessel geometry is suitable
for CFD analysis, we incorporate a loss function that preserves vascular connectivity. As shown in
Equation 2] the total loss combines a standard segmentation loss (Dice and cross-entropy) with a
clDice loss term. The clDice component enhances the model’s sensitivity to vascular topology by
explicitly supervising on centerline connectivity, which is critical for preventing spurious connections
or breaks in the vessel structure.

Lster] = — 2 Zz Digi
e dibit 2 g

Segmentation Loss
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clDice Loss

+(=) g 1ogpi)+/\( 2
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5 CFD APPLICABILITY EVALUATION SYSTEM

To achieve automated and standardized conversion from segmentation mask to CFD model, we
establish a standardised CFD applicability evaluation system as shown in Figure [d The pipeline
consists of the following steps, including vascular topology inspection, morphological preprocessing,
geometric model conversion, centerline generation, end face cutting, mesh enhancement, surface
fitting, boundary labeling, mesh generation, and CFD computation. The detailed procedure for each
step is shown in the Appendix [B]

Based on the evaluation system, we propose a novel applicability-based evaluation metric entitled
CFD applicability score (CFD-AS) to enable more comprehensive evaluation of segmentation results,
which is defined as follows:

TP
ASern = 75 T FP+FN 3)
o N
TP=Y (y=1)AH=1)A(AE@H) =1) )
=1

1
AE; =
Y {0, if (VTAy) =0V (MGAy)

N
0V ®)

where T'P represents true positive cases that can be successfully applicable for CFD analysis.
Specifically, VT A; € {0,1}, MGA; € {0,1}, and BFA; € {0, 1} represent the vascular topology
availability, mesh generation availability, and blood flow availability of the segmentation mask
7, indicating, respectively, whether there are geometric topological abnormalities in the vessels,
whether geometric errors occur during the conversion process that interrupt subsequent operations,
and whether the generated mesh file can be successfully used for CFD analysis. The computation of
all three indices above can be automated via scripts.

6 EXPERIMENTS

We systematically evaluate the proposed framework compared with existing state-of-the-art methods
on the TAVS dataset, including the evaluation of aneurysm detection for Stage I, the evaluation of
IA-Vessel segmentation for Stage II, and the comprehensive evaluation of end-to-end segmentation
with CFD applicability score. We split the test set into Set A for evaluation from multiple public
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Figure 4: Overview of our automated and standardized conversion pipeline from segmentation masks
to CFD models, which realizes the entire chain process from medical imaging to flow field simulation.
The pipeline consists of following steps, including vascular topology inspection, morphological pre-
processing, geometric model conversion, centerline generation, end face cutting, mesh enhancement,
surface fitting, boundary labeling, mesh generation, and CFD computation.

datasets, and Set B for evaluation in clinical scenarios from our private dataset. More experimental
and implementation details are shown in the Appendix [C]

6.1 EVALUATION OF ANEURYSM DETECTION

To address the challenge of localizing small aneurysms, we conduct a comprehensive evaluation
of proposed method with existing approaches. Specifically, we use three different task settings to
achieve the localization of aneurysms, including utilizing state-of-the-art detention model nnDetection
(Baumgartner et al, [2021)), and segmentation models SwinUNETR (Hatamizadeh et al., 2021) and
nnUNet (Isensee et al., 2021)), where the segmentation results is processed to generate the center
point of output targets. As illustrated in Table 2} our proposed method stands out with remarkable
performance in multiple metrics. We achieve a PR of 0.8286 and 0.8785, ACC of 0.6170 and 0.7402,
and Fl-scores of 0.7632 and 0.8507 in Set A and Set B, respectively. Although our method exhibits
a slightly lower RE compared to nnDetection, our innovative dynamic candidate point selection
mechanism plays a crucial role. This mechanism effectively controls the false positive rate, preventing
the generation of an excessive number of false detections. As a result, it alleviates the computational
burden and complexity of subsequent processing stages, providing a more efficient and reliable
solution for small aneurysm localization. Overall, our method significantly outperforms the existing
detection and segmentation methods, demonstrating its strong competitiveness and potential for
practical applications in medical imaging analysis.

In addition, we conduct new experiments on the publicly available GLIA-Net (Bo et al, 2021) dataset
for aneurysm detection. The experimental results are presented in Appendix [D} The experiments
demonstrate that our method achieves optimal performance across all evaluation metrics.

6.2 EVALUATION OF IA-VESSEL SEGMENTATION

To evaluate the effectiveness of proposed topological-aware segmentation framework, we conduct
ablations of clDice loss for the segmentation. For the training of Stage II, input patches cropped based
on ground truth IA are utilized for localization to avoid error accumulation in Stage I. As observed
in Table. [3] the results show that the introduction of cIDice loss significantly enhances the vascular
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Table 2: Comparison of different strategies for aneurysm localization in Stage I.

Set A Set B
PR? RE1 Acct F11 PR? RE?1 Acct F11
nnDetection | 0.3737 0.9250 0.3627 0.5324 | 0.5440 0.9292 0.5224 0.6863
SwinUNETR | 0.3472 0.6098 0.2841 0.4425 | 0.5145 0.7807 0.4495 0.6202
nnUNet 0.5778 0.6341 0.4333 0.6047 | 0.6942 0.7368 0.5563 0.7149
Ours 0.8286 0.7073 0.6170 0.7632 | 0.8785 0.8246 0.7402 0.8507

Method

o N e
Ours \
A
nnUNet \ - .6 -
» \ T

2D Visualization 3D Visualization

Figure 5: Visualization of IA-Vessel segmentation results of different methods.

topology maintenance ability, which improves the clDice performance from 0.8555 to 0.8629 on Set
A and 0.8538 to 0.8616 on Set B.

6.3 EVALUATION OF CFD APPLICABILITY

To make a comprehensive evaluation of our framework for CFD applicable IA-Vessel segmentation
from MRA images, we integrate the localization results of Stage I with the segmentation procedure of
Stage II to enable end-to-end segmentation. In comparison, we conduct direct end-to-end IA-Vessel
segmentation using state-of-the-art nnUNet (Isensee et al}[2021)) as baseline performance, and ground
truth aneurysm localization for patch cropping as an upperbound comparison. As shown in Table 4
end-to-end nnUNet segmentation yields Dice coefficients of 0.1548 on Set A and 0.4557 on Set B.
Due to an excessive number of false positives over 120 and fewer than 10 true positives, we conclude
that the end-to-end segmentation approach is not suitable for the segmentation task. As shown in
Table 5} among comparison of two-stage frameworks, we observe that our method achieve a high
applicability score of 57.45% and 54.76%, significantly outperforms other comparing methods by a
large margin. As shown in Figure[5] we observe that proposed method can generate mask predictions
align more accurately with ground truth masks with less topologic errors and false positive predictions
of backgound vessels.
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Table 3: Ablation experiments of topological-aware loss for IA-Vessel segmentation in Stage II.

Model | clDice Loss Set A Set B

Dicet HD95] cIDicet BloU?T | Dicet HD95] cIDicet BloU?t
nnUNet X 0.8533  3.2187 0.8555 0.7527 | 0.8363 4.2557 0.8538 0.7368
nnUNet v 0.8563 3.2809 0.8629 0.7576 | 0.8368 4.2134 0.8616 0.7388

Table 4: Performance of different methods for IA-Vessel segmentation from MRA images.

Set A Set B
Framework - - - -
Dicet HD95| cIDicet BloU7 | Dicet HD95| cIDicef BloU?T
nnUNet Baseline 0.1548 48.8495 0.1552 0.1088 |0.4557 37.2055 0.4323 0.3395

Stage I nnDetection + Stage I1 | 0.4285 15.9663 0.4311 0.3477 |0.6611 19.6505 0.6846 0.5344
Stage I nnUNet + Stage 11 0.4864 50.5446 0.4943 0.4174|0.6186 65.7056 0.6477 0.5286
Stage I Ours + Stage I1 0.6324 27.8342 0.6361 0.5482|0.7442 15.8149 0.7706 0.6391
Stage I GT + Stage II 0.8563 3.2809 0.8629 0.7576|0.8368 4.2134 0.8616 0.7388

Table 5: Evaluation of CFD Applicability Score of different [A-Vessel segmentation masks.
Set A Set B

Framework

TP FP FN | TP | AScrp | TP FP FN | TP | AScrp
Stage I nnDetection + Stage I | 37 62 4 | 30 | 29.13% | 105 88 9 | 74 | 36.63%
Stage I nnUNet + Stage II 26 19 15| 23 | 3833% | 84 37 30 | 65 | 43.05%
Stage I Ours + Stage 11 29 6 12| 27 | 5745% | 94 12 20 | 69 | 54.76%
Stage I GT + Stage 1T 41 0 0 | 35| 8537% |114 0 O | 88 | 77.19%
TA-Vessel GT 41 0 0 | 41 |100.00% | 114 0 O | 114 | 100.00%

7 DISCUSSION AND CONCLUSION

In this work, we introduce a systematic solution for CFD-applicable IA-Vessel segmentation. To over-
come the limitations of existing datasets, we construct IAVS, a large-scale multi-centre dataset with
comprehensive annotations and CFD analysis results, providing a solid foundation for subsequent
research. Our proposed two-stage framework for detection and segmentation effectively reduces
geometric errors and enhances the CFD usability of segmentation masks, making a breakthrough
in improving the accuracy and reliability of segmentation. Additionally, the establishment of a
standardized CFD applicability evaluation system, along with the introduction of the CFD appli-
cability score, enables a more comprehensive and standardized evaluation of segmentation results.
Experimental results demonstrate that our proposed method achieves a high CFD applicability score
of 57.45% and 54.76% on different test sets, which is significantly higher than that of existing
state-of-the-art methods, verifying its clinical applicability in CFD analysis, so as to assist in clinical
decision-making.

Limitations. Firstly, our framework employs independent training procedure of each stage, which
may limit further performance improvement of the model. Future work could explore an end-to-end
joint training mechanism. By sharing encoder-layer features and jointly optimizing the loss functions,
the tasks of localization and segmentation could be synergistically enhanced. Besides, existing loss
functions for training segmentation models primarily rely on image-based segmentation metrics,
which have a semantic gap with the CFD applicability. Future work could focus on utilizing the
applicability-based evaluation for optimization of segmentation networks to enhance the applicability
of segmentation results for CFD applications.

Currently, CFD validation needs to be performed independently of the segmentation process. Future
research could introduce physics-informed neural networks to build an end-to-end predictive model
from segmentation results to hemodynamic parameters, achieving a closed-loop optimization between
segmentation and simulation.(Lu et al.||2019;|Yao et al.| 2024b)).
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ETHICS STATEMENT

The authors of this paper have read and adheres to the ICLR Code of Ethics. This research involves
the use of sensitive medical data and aims for a direct clinical application; therefore, we have taken
several steps to ensure our work is conducted with the highest ethical standards.

Human Subjects and Data Privacy: Our study utilizes 3D MRA images from both publicly available
and private, in-house clinical datasets. The collection and use of the in-house patient data were
conducted in full compliance with institutional and national ethical guidelines. The study protocol,
including data collection and anonymization procedures, received formal approval from the relevant
hospital’s Institutional Review Board (IRB) / Ethics Committee. All data were fully anonymized
prior to their use in this research, with all personally identifiable information (PII) removed to protect
patient privacy and confidentiality.

Dataset Curation and Release: We are committed to scientific transparency and reproducibility.
Upon acceptance, the curated IAVS dataset, along with our code and models, will be made publicly
available. We will ensure that the released data is thoroughly de-identified to prevent any potential for
re-identification of individuals, thereby responsibly contributing a valuable resource to the research
community while upholding our duty to protect patient privacy.

Potential for Societal Impact and Misuse: The primary goal of this research is to contribute
positively to human well-being by improving the accuracy and applicability of intracranial aneurysm
segmentation for hemodynamic analysis. This can ultimately aid clinicians in assessing aneurysm
rupture risk and making more informed treatment decisions. However, we acknowledge that any
automated medical analysis tool carries the risk of misuse if not properly validated and deployed.
Our proposed framework is intended to be used as a decision-support tool to assist trained medical
professionals (such as radiologists and neurosurgeons) and is not designed to replace clinical expertise
or serve as a standalone diagnostic system.

Bias and Fairness: Our IAVS dataset is compiled from multiple centers, which helps to mitigate
biases associated with a single institution’s population or imaging hardware. Nonetheless, the
demographic distribution (e.g., race, age, sex) of the patient data may not fully represent the global
population. This could potentially lead to performance disparities when the model is applied to
underrepresented groups. We acknowledge this as a limitation and advocate for future work to
validate and fine-tune our models on more diverse and larger-scale datasets to ensure equitable and
robust performance across all patient populations.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have provided comprehensive details throughout the
paper and its appendices. The construction, annotation workflow, and statistical breakdown of our
proposed IAVS dataset are thoroughly described in Section [3|and Appendix [Al A detailed description
of our proposed two-stage framework, including the network architectures and loss functions for both
detection and segmentation stages, is provided in Section[d All experimental settings, including data
preprocessing, training hyperparameters (e.g., optimizer, learning rate, patch sizes), and the specific
evaluation metrics used, are detailed in Appendix [C] The procedure for our novel CFD applicability
evaluation system, which automates the conversion from segmentation masks to CFD models, is
outlined step-by-step in Section[5]and Appendix [B] As stated in the abstract, we are committed to
transparency and will make our source code, the complete IAVS dataset, and the pre-trained models
publicly available upon acceptance of this manuscript to facilitate verification and further research in
the community.
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A DATASET DETAILS

The IAVS dataset is partitioned meticulously to meet the practical requirements of clinical research.
Statistics of the proposed IAVS dataset in Table[6|reveals that the distribution of aneurysm quantity
and size across cases closely mirrors clinical epidemiological patterns. This congruence effectively
guarantees the representativeness of the dataset, enhancing the generalizability of the research findings.
Additionally, all data underwent strict anonymization procedures and were rigorously reviewed and
approved by the hospital ethics committee, ensuring full compliance with ethical standards.

We split the images into 467 cases for training and validation, 76 cases from public datasets as Set A
for internal evaluation, and 98 cases from in-house dataset as Set B for evaluation in clinical scenarios.
For the training of Stage I, 373 cases are used for training and 94 cases are used for validation.
In Stage II, candidate patches cropped based on IA annotation are used for training of IA-Vessel
segmentation network. Following the same split of MRA images in Stage I, 357 patches are used for
training and 99 patches are used for validation.

Table 6: Statistics of the proposed IAVS dataset including data source, number and diameter of TAs.

Dataset No. of Images No. of IAs per case IAs Diameter of TA

| Total Public Private 0 1 2 >3 | <3mm 3-7mm >7mm
Train 467 175 292 82 345 34 6 | 432 55 272 105
Set A 76 76 0 42 29 3 2| 41 16 17 8
Set B 98 0 9% 0 8 10 3| 114 10 93 11

B PROCEDURE FOR CFD APPLICABILITY EVALUATION

This study establishes a standardized workflow for transforming medical images into computational
fluid dynamics models consists of following steps.

Vascular Topology Inspection The vascular topology of the segmentation results of intracranial
aneurysms and their associated vessels is first screened to detect geometric defects such as abnormal
adhesion, holes, indentations, and protrusions. These voxel-level segmentation errors, although not
affecting traditional segmentation metrics such as the Dice coefficient, can significantly impact the
integrity of vascular geometry and subsequently cause flow field distortions in CFD analysis. Issues
such as discontinuities, holes, and partial adhesions can be identified by computing Betti numbers,
which can detect most topological problems, while a minority of other issues still require manual
verification.

Preprocessing of Segmentation Results Morphological optimization operations are performed using
3D Slicer software, including removal of stretched regions, filling of small holes, and smoothing
of details. A median filter with a kernel size of 1 mm is uniformly applied for surface smoothing
to eliminate discrete segmentation artifacts while ensuring reproducibility. The largest connected
component is extracted after smoothing to exclude isolated noise structures. It should be noted that
approximately 1% of samples may experience abnormal adhesion due to excessive smoothing, which
requires manual correction using the segmentation tools in 3D Slicer.

Conversion to Geometric Models The voxel-represented NIFTI image data is converted into a
three-dimensional geometric STL model, providing a geometric basis for subsequent CFD analysis.

Generation of Vascular Inlet and Outlet Endpoints and Centerlines Based on the generated STL
model, the VMTK toolkit is used to automatically identify the topological endpoints of vascular inlets
and outlets, and to generate vascular centerlines accordingly. When automatic detection deviates,
interactive corrections are made using 3D Slicer.

Cutting of Inlet and Outlet Cross-sections The ptvista library is used to cut vascular cross-sections
based on the normal vectors of the centerlines. The cutting plane is uniformly set at the 1/5 end
position (when the candidate cutting point radius is less than 0.3 mm, it automatically retracts to a
proximal position that meets the radius requirement). This approach retains the complete vascular
structure while avoiding morphological distortion caused by excessive cutting. Experiments have
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shown that approximately 10% of samples fail automatic cutting due to insufficient centerline length,
requiring manual intervention using Geomagic Wrap 2021.

Mesh Enhancement Geomagic Wrap is used to perform mesh optimization processes: first, the
mesh doctor is used to repair non-manifold edges, self-intersections, and highly refractive edges,
followed by mesh re-meshing, refinement, optimization, and enhancement operations. All parameters
are set to the software’s default values to ensure consistency in processing.

Fitting of Surface Geometry Files The STL mesh file is reconstructed into a CAD model with
precise geometric definitions and topological relationships, i.e., a STEP format file. Based on the
STL mesh file, surface patches are constructed, a grid is built, and the surface is fitted to generate the
STEP file. The number of surface patches is set to 1000. At this point, less than 1% of the data may
detect intersecting grids during grid construction, which can be manually repaired by moving surface
patch vertices to eliminate concave polygons. For cases where the surface patches are too large, the
patches can be subdivided to resolve the issue.

Boundary Condition Annotation The STEP model is imported into ANSYS SpaceClaim for
boundary condition definition, including the precise annotation of inlets, outlets, walls, and fluid
regions. The end faces are automatically identified using the previously generated endpoints and
centerline information, and the final model is saved in SCDOC format.

Mesh Generation Fluent Meshing is used to generate unstructured polyhedral meshes, with mesh
quality and computational stability ensured through CFL number control and residual monitoring
mechanisms.

CFD Calculation Blood flow field simulation is performed using the incompressible Newtonian fluid
model. The Navier-Stokes equations are solved using the icoFoam solver in Open Field Operation
and Manipulation (OpenFOAM (Weller et al.||1998)) combined with the PISO algorithm, calculating
the velocity field, pressure field, and wall shear stress distribution under a mass flow rate range of
0.0010-0.0040 kg/s (only steady-state calculations are performed).

Prior to this, there is no fully automated workflow for converting binary segmentation masks to
computational fluid dynamics models. The alternate use of multiple industrial software packages,
as well as the cumbersome and repetitive nature of the operational process, significantly increases
the labor and time costs associated with the annotation process. Moreover, the subjective variability
introduced by manual cutting of vascular inlet and outlet cross-sections directly affects the objectivity
of CFD-AS calculations.

C EXPERIMENTAL SETTINGS

Implementation Details. All of our experiments are implemented in Python with PyTorch, using an
NVIDIA A100 GPU. We use the SGD optimizer with an initial learning rate of 0.01, a weight decay
of 3e-5 and a momentum of 0.99 to update the network parameters with the maximum epoch number
set to 1000. In Stage I, the original images are resampled to a voxel spacing of 0.34 x 0.34 x 0.55
mm?, and then are cropped into patches of size 224 x 224 x 48, with the batch size set to 2. In
Stage II, the patch size is 96 x 96 x 64 and the batch size set to 9. During the training stage, random
cropping, flipping and rotation are used to enlarge the training set and avoid over-fitting. In the
inference stage, the final segmentation results are obtained using a sliding-window strategy. For
other comparing methods, we follow the official implementations as in (Hatamizadeh et al., 2021}
Baumgartner et al., 2021)).

Evaluation Metrics. For aneurysm detection, four metrics include precision (PR), recall (RE),
average precision (AP), and the F1 score are used for evaluation. These metrics are defined as
follows: TP

R=—
TP + FP

TP

RE=—
TP + EN

TP

Acc= ——————
TP 4+ FP + FN
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Table 7: Comparison of the three test sets in the GLIA-Net dataset.

. External test A External test B Internal test
Metric

nnUNet GLIA-Net Ours |nnUNet GLIA-Net Ours [ nnUNet GLIA-Net Ours

PR?T 0.0631  0.3008 0.3866| 0.0354  0.3544 0.3981| 0.0681  0.4076  0.4925
RE?T 0.5200  0.7400 0.9200| 0.2941  0.5490 0.8039| 0.4444  0.7698  0.7857
ACCT | 0.0596  0.2721 0.3740| 0.0326  0.2745 0.3628 | 0.0628  0.3633  0.4342
F11 0.1126  0.4277 0.5444| 0.0632  0.4308 0.5325| 0.1181 0.5330  0.6055

PR x RE
X PR 4+ RE
where TP, FP, TN, FN represent true positive (correct detection of an aneurysm), false positive
(incorrect detection of an aneurysm in a healthy case), and false negative (missed detection of an
aneurysm), respectively.

F1 =2

For IA-Vessel segmentation, four metrics including the Dice similarity coefficient (Dice), 95%
Hausdorff Distance (HD95), the centerline Dice (cIDice), and the boundary IoU (BIoU) are used for
evaluation. These metrics are defined as follows:

e 2X 140 B]
|A[ + | B

HDY5 = inf {d > 0 | S C Ny(Ss) and Sg C Ny(Sa)}

clDice = —2 X |Ca N Co|
|Ca| + |CB|
19AN OB
BloU = ———
°~ T 19AauaB|

where A and B represent the predicted segmentation mask and ground truth. Ny(-) denotes the
d-neighborhood around a set, and Spreq/Sg are the predicted/ground truth boundaries. C4/Cp and
0A/0B represent the centerline and the boundary pixels of predicted segmentation mask and ground
truth, respectively.

D EXPERIMENTS ON ANEURYSM DETECTION IN GLIA-NET DATASET

In addition, we conduct new experiments on the publicly available GLIA-Net (Bo et al., [2021)
dataset for aneurysm detection. The internal dataset includes 1338 3D CTA images/1489 IAs from 6
institutions. The external dataset includes 138 3D CTA images/101 IAs from 2 institutions. After
locally retraining nnUNet and our detector, and using the publicly released segmentation weights
from GLIA-Net, the experimental results summarized in Table /| show that our method outperforms
existing approaches across all evaluation metrics on the external test set A, external test set B, and
internal test set as defined by the GITA-Net official split.

E ADDITIONAL EXPERIMENTS

We further demonstrat that the heatmap cascading strategy of detection can effectively enhance
segmentation performance. When the encoder pretrained in our framework are used to initialize
the encoder of nnUNet for aneurysm segmentation, the Dice coefficient of the segmentation model
increases from 0.4841 to 0.5676 as shown in Figure|[8] confirming the position constraint effect of
localization on aneurysms. Ablation experiments show that fixing the encoder of keypoint detection
for feature transfer outperforms the direct cascading of heatmaps (Dice: 0.5676 vs. 0.5148), indicating
that semantic consistency in the feature space is crucial for segmentation accuracy.
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Table 8: Impact of keypoint detection on segmentation performance

Model Set A Set B

Dicet HD95, PR{ RE? | Dicet HD95, PR RE?
SwinUNETR 0.2911 28.82 0.6298 0.4358|0.4780 41.04 0.6374 0.4611
nnUNet 0.3915 43.09 0.6029 0.5056|0.5490 58.51 0.5904 0.5734
Heatmap Cascade 0.4776 48.01 0.6079 0.4736|0.5772 50.69 0.6455 0.5830
Fixed nnUNet encoder |0.3874 33.68 0.6587 0.5763|0.5765 40.32 0.6363 0.6008
Fixed keypoint encoder | 0.5041 33.01 0.6901 0.5586|0.5999 32.56 0.6902 0.5945

F USE OF LARGE LANGUAGE MODELS
In accordance with the conference guidelines, we disclose the use of Large Language Models (LLMs)
in the preparation of this manuscript.

The role of LLMs is strictly limited to that of an assistive tool for language editing and proofreading.
Specifically, LLMs were utilized to improve grammar, correct spelling, refine sentence structure for

better clarity, and suggest alternative word choices to enhance the overall readability of the text.

The LLMs were not used for research ideation, generation of the core scientific content, methodology
design, data analysis, or drawing conclusions. All conceptual and scientific contributions presented
in this paper are exclusively the work of the human authors. The authors have carefully reviewed
and edited all text and take full responsibility for the scientific accuracy and integrity of the final

manuscript.
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