
Published as a conference paper at ICLR 2025

TOWARDS HYPERPARAMETER-FREE OPTIMIZATION
WITH DIFFERENTIAL PRIVACY

Ruixuan Liu ∗

Emory University
ruixuan.liu2@emory.edu

Zhiqi Bu ∗

Amazon
woodyx218@gmail.com

ABSTRACT

Differential privacy (DP) is a privacy-preserving paradigm that protects the train-
ing data when training deep learning models. Critically, the performance of mod-
els is determined by the training hyperparameters, especially those of the learn-
ing rate schedule, thus requiring fine-grained hyperparameter tuning on the data.
In practice, it is common to tune the learning rate hyperparameters through the
grid search that (1) is computationally expensive as multiple runs are needed, and
(2) increases the risk of data leakage as the selection of hyperparameters is data-
dependent. In this work, we adapt the automatic learning rate schedule to DP
optimization for any models and optimizers, so as to significantly mitigate or even
eliminate the cost of hyperparameter tuning when applied together with automatic
per-sample gradient clipping. Our hyperparameter-free DP optimization is almost
as computationally efficient as the standard non-DP optimization, and achieves
state-of-the-art DP performance on various language and vision tasks.

1 INTRODUCTION

The performance of deep learning models relies on a proper configuration of training hyperparam-
eters. In particular, the learning rate schedule is critical to the optimization, as a large learning rate
may lead to divergence, while a small learning rate may slowdown the converge too much to be
useful. In practice, people have used heuristic learning rate schedules that are controlled by many
hyperparameters. For example, many large language models including LLaMa2 (Touvron et al.,
2023) uses linear warmup and cosine decay in its learning rate schedule, which are controlled by 3
hyperparameters. Generally speaking, hyperparameter tuning (especially for multiple hyperparam-
eters) can be expensive for large datasets and large models.

To address this challenge, it is desirable or even necessary to determine the learning rate schedule
in an adaptive and data-dependent way, without little if any manual effort. Recent advances such as
D-adaptation (Defazio & Mishchenko, 2023), Prodigy (Mishchenko & Defazio, 2024), DoG (Ivgi
et al., 2023), DoWG (Khaled et al., 2023), U-DoG (Kreisler et al., 2024), and GeN (Bu & Xu,
2024) have demonstrated the feasibility of automatic learning rate schedule, with some promising
empirical results in deep learning (see a detailed discussion in Section 2.3).

While data-dependent learning rate are evolving in the standard non-DP regime, the adaptive data
dependency can raise the privacy risks of memorizing and reproducing the training data. As an
example, we consider the zeroth-order optimizer (ZO-SGD),

wt+1 = wt − ηZO-SGDzt

where wt is the model parameters, zt is a random vector that is independent of any data, and
ηZO-SGD ≈ ∂L

∂wt

⊤
zt ∈ R is the effective learning rate, with L being the loss value. In Malladi

et al. (2023), ZO-SGD can effectively optimize models such as OPT 13B∼60B in the few-shot
and many-shot settings. Hence, by using an adaptive hyperparameter ηZO-SGD, the models are able
to learn and possibly memorize the training data even if the descent direction is data-independent.
In fact, the private information can also leak through other hyperparameters and in other models,

∗Equal contribution. This work does not relate to ZB’s position at Amazon.

1

Published as a conference paper at ICLR 2025

where an outlier datapoint can be revealed via the membership inference attacks in support vector
machines (Papernot & Steinke, 2021).

Specifically, in the regime of deep learning with differential privacy (DP), the privacy risks from the
non-DP hyperparameter tuning could render the privacy guarantee non-rigorous. In practice, most
work has leveraged the DP optimizers Abadi et al. (2016) to offer the privacy guarantee, where the
privatization is only on the gradients, but not on the hyperparameters such as the clipping threshold
Rg and the learning rate η. A common approach is to trial-and-error on multiple (Rg, η) pairs and
select the best hyperparameters, as showcased by (Li et al., 2021; Kurakin et al., 2022) in Figure 8.

At high level, there are two approaches to accommodate the privacy risk in hyperparameter tuning:
(1) The more explored approach is to assign a small amount of privacy budget to privatize the hyper-
parameter tuning. Examples include Renyi-DP tuning (Papernot & Steinke, 2021), DP-Hypo (Wang
et al., 2023), DP-ZO-SGD (Tang et al., 2024; Liu et al., 2024; Zhang et al.) and many more (Liu &
Talwar, 2019; Panda et al., 2024; Koskela & Kulkarni, 2023). However, these methods may suffer
from worse performance due to larger DP noise addition from the reduced privacy budget, or high
computation overhead. (2) The less explored approach is to adopt hyperparameter-free methods.
For instance, (Bu et al., 2023b; Yang et al., 2022) replace the per-sample gradient clipping with
the per-sample gradient normalization (i.e. setting Rg ≈ 0+), so as to remove the tuning of the
hyperparameter Rg in DP optimizers.

In this work, we work towards the hyperparameter-free optimization with DP, by adapting learning-
rate-free methods in DP optimization:

DP-SGD =⇒

Vanilla: wt+1 = wt − ηmanual

(∑
i∈B min{ Rg

||gi|| , 1}gi + σRgz
)

Hyperparameter-free: wt+1 = wt − ηGeN-DP

(∑
i∈B

gi

||gi|| + σz
)

(1)

Our contributions are summarized as follows:

1. We propose HyFreeDP, a hyperparameter-free DP framework that rigorously guarantees
DP on the hyperparameter tuning of (Rg, ηt), and works with any optimizer.

2. We apply the loss privatization to leverage GeN learning rate under DP, with a specific
auto-regressive clipping threshold Rl that aims to minimize the clipping bias.

3. We give an end-to-end privacy accounting method that adds < 1% more gradient noise,
while accurately capturing the loss curvature to determine the adaptive learning rate.

4. We show the strong performance and high efficiency of our method empirically.

2 PRELIMINARIES AND RELATED WORKS

2.1 DIFFERENTIALLY PRIVATE OPTIMIZATION

Overview of DP optimization. We aim to minimize the loss
∑

i L(w,xi) where w ∈ Rd is the
model parameters and xi is one of data points with 1 ≤ i ≤ N . We denote the per-sample gradient
as gi(w) := ∂L(w,xi)

∂w ∈ Rd and the mini-batch gradient at the tth updating iteration as mt ∈ Rd:
for a batch size B ≤ N ,

mt({gi}Bi=1;Rg, σg) := [

B∑
i

ci(Rg)gi + σgRg · zg]/B (2)

where zg ∼ N (0, Id) is the Gaussian noise, and ci(Rg) = min(Rg/||gi||, 1) is the per-sample
gradient clipping factor in (Abadi et al., 2016; De et al., 2022) with Rg being the clipping threshold.

In particular, mt reduces to the standard non-DP gradient
∑

i gi/B when σg = 0 and Rg is suffi-
ciently large (i.e., no clipping is applied). The clipped and perturbed batch gradient becomes the DP
gradient m ≡ mDP whenever σg > 0, with stronger privacy guarantee for larger σg . On top of m,
models can be optimized using any optimizer such as SGD and AdamW through

wt+1 = wt − ηt ·Gt(mt({gi}Bi=1)) (3)

2

Published as a conference paper at ICLR 2025

in which Gt is the post-processing such as momentum, adaptive pre-conditioning, and weight decay.

Hyper-parameters matter for DP optimization. Previous works (De et al., 2022; Li et al., 2021)
reveal that the performance of DP optimization is sensitive to the hyper-parameter choices. On the
one hand, DP by itself brings extra hyper-parameters, such as the gradient clipping threshold Rg ,
making the tuning more complex. An adaptive clipping method (Andrew et al., 2021) proposes
to automatically learn Rg at each iteration, with an extra privacy budget that translates to worse
accuracy. There are methods that do not incur extra privacy budget. Automatic clipping (or per-
sample normalization) (Bu et al., 2023b; Yang et al., 2022) uses ci = 1/||gi|| to replace the Rg-
dependent per-sample clipping, and thus removes the hyperparameter Rg from DP algorithms. On
the other hand, hyper-parameter tuning for DP training has different patterns than non-DP training
and cannot borrow previous experience on non-DP. For example, previous works (Li et al., 2021; De
et al., 2022) observe that there is no benefit from decaying the learning rate during training and the
optimal learning rate can be much higher than the optimal one in non-DP training.

2.2 END-TO-END DP GUARANTEE FOR OPTIMIZATION AND TUNING

However, hyper-parameter tuning enlarges privacy risks (Papernot & Steinke, 2021), and it is neces-
sary to provide end-to-end privacy guarantee for DP. There are two existing technical paths to solve
this problem:

• Multiple runs with multiple choices of hyper-parameters, and choose from these choices
in a DP manner (Mohapatra et al., 2022; Papernot & Steinke, 2021; Wang et al., 2023;
Liu & Talwar, 2019). This path requires some knowledge to determine the choices a priori
and consumes a significant privacy budget as well as computation due to the multiple runs.
For instance, (Liu & Talwar, 2019) showed that repeated searching with random iterations
satisfies (3ϵ, 0)-DP if each run was (ϵ, 0)-DP.

• Making DP optimization hyper-parameter free, and only a single run is needed. For ex-
ample, the automatic clipping (Bu et al., 2023b; Yang et al., 2022) eliminates the hyper-
parameter Rg . Our work follows the second path, aiming to resolve tuning on η—the last
critical hyper-parameter—by finding a universal configuration across datasets and tasks.

2.3 AUTOMATIC LEARNING RATE SCHEDULE

Automatic learning rate schedules (also known as learning-rate-free or parameter-free methods) have
demonstrated promising performance in deep learning, with little to none manual efforts to select
the learning rate. Specifically, D-adaptation (Defazio & Mishchenko, 2023), Prodigy (Mishchenko
& Defazio, 2024), and DoG (Ivgi et al., 2023) (and its variants) have proposed to estimate η ≈ D

G
√
T

where D = ||w0 − w∗|| is the initialization-to-minimizer distance, G is the Lipschitz continuity
constant, and T is the total number of iterations. These methods have their roots in the convergence
theory under the convex and Lipschitz conditions, and may not be accurate when applied in the DP
regime when the gradient is noisy. In fact, the estimation of D and G can deviate significantly from
the truth when ϵ is small and the number of trainable parameters is large, i.e. the DP noise in gradient
is large, as shown in Table 2.

Along an orthogonal direction, GeN (Bu & Xu, 2024) leverages the Taylor approximation of loss to
set the learning rate ηGeN, without assuming the Lipschitz continuity or the knowledge of D. Given
any descent vector m, omitting the iteration index t for a brief notation, we can use the GeN learning
rate in (4) to approximately minimize L:

ηGeN(m) :=
G⊤m

m⊤Hm
= argminηL(w)−G⊤mη +m⊤Hm

η2

2
≈ argminηL(w − ηm) (4)

in which G = ∂L
∂w is the gradient and H = ∂2L

∂w2 is the Hessian matrix. Notice that because L is
approximated by a quadratic function, the minimizer ηGeN is unique and in closed form.

Numerically, ηGeN can be computed up to any precision by curve fitting or finite difference. Under
the non-DP regime, given a series of ηi and loss values L(w − ηim), Bu & Xu (2024) obtains the

3

Published as a conference paper at ICLR 2025

numerator and denominator of ηGeN by solving the problem in (5):

m⊤Hm,G⊤m ≈ argmina,b

∑
i

∣∣∣∣L(w − ηim)−
(
L(w)− bηi + a

η2i
2

)∣∣∣∣2 (5)

Nevertheless, directly applying these non-DP automatic learning rate scheduler with DP gradient in
(2) and using ηGeN(m) will violate DP, because the learning rate estimation is obtained from forward
passes on batches of private data. We defer the explanation and solution to Section 3.

3 LOSS VALUE PRIVATIZATION WITH MINIMAL CLIPPING BIAS

3.1 PRIVATIZED QUADRATIC FUNCTION

We emphasize that the learning rate ηGeN(m) is not DP, because even though m is privatized, the
data is accessed without protection through G and H. To solve this issue, we introduce a privatized
variant of (5),

(m⊤Hm)DP, (G
⊤m)DP := argmina,b

∑
i

∣∣∣∣L̃(w − ηimDP)−
(
L̃(w)− bηi + a

η2i
2

)∣∣∣∣2 (6)

which not only replaces m with the DP gradient mDP but also privatizes the loss by L̃(w− ηimDP)

as in (7). The resulting learning rate is ηGeN-DP = (G⊤m)DP
(m⊤Hm)DP

, which is DP since every quantity
in (6) is DP and because of the post-processing property. We now discuss the specifics of the loss
value privatization L̃(w − ηim) ∈ R. In Table 1, we emphasize that the loss privatization is
distinctively different from the gradient privatization because the loss is scalar, whereas the gradient
is high-dimensional.

Table 1: Difference between the privatization of loss and gradient.
Aspects Loss Privatization Gradient Privatization

Dimension 1 d
Clipping Norm L2 or L1 L2

Noise Magnitude
√

2
π

σlRl

B

√
d
σgRg

B

Key to Convergence Clipping Bias Noise Magnitude
Per-sample Operation Clipping (Rl ≈ L) Normalization (Rg ≈ 0+)

From the perspective of per-sample clipping, the gradient is ubiquitously clipped on L2 norm, be-
cause ||gi||2 ≪ ||gi||1 in large neural networks, and consequently a Gaussian noise is added to
privatize the gradient. In contrast, we can apply L2 or L1 norm for the loss clipping, and add Gaus-
sian (by default) or Laplacian noise to the loss, respectively.

From the perspective of noising, the expected noise magnitude for loss privatization is E|zl|σlRl

B =√
2
π

σlRl

B where zl ∼ N(0, 1) is the noise on loss, and that for gradient privatization is

E||zg||σgRg

B ≈
√
d
σgRg

B where the gradient noise vector zg ∼ N(0, Id) by the law of large num-
bers. On the one hand, the gradient noise zg is large and requires small Rg to suppress the noise
magnitude, as many works have use very small R (Li et al., 2021; De et al., 2022). This leads to the
automatic clipping in Bu et al. (2023b) when the gradient clipping effectively becomes the gradient
normalization as Rg → 0+. In fact, each per-sample gradient (as a vector) has a magnitude and
a direction, and the normalization neglects some if not all magnitude information about the per-
sample gradients. On the other hand, we must not use a small Rl for the loss clipping because the
per-sample loss (as a scalar) only has the magnitude information. We will show by Theorem 1 that
the choice of threshold Rl creates a bias-variance tradeoff between the clipping and the noising for
the loss privatization:

L̃ =
1

B

[∑
i

min(
Rl

Li
, 1)Li + σlRl ·N(0, 1)

]
(7)

4

Published as a conference paper at ICLR 2025

𝜖, 𝛿

Update model

Algorithm 1: Activate auto-tuning when t % K == 0

𝜂

𝜎= GetSigma(𝜖, 𝛿, B, T, N)

𝜖!"#$ 𝐵, 𝑇, 𝑁, 𝜎% , 𝜎& , 𝐾 =
𝜖 𝐵, 𝑇, 𝑁, 𝜎 , where 𝜎%=1.01 𝜎

𝒎𝒕 𝑮𝑫𝑷= 𝑮𝒕(𝒎𝒕)𝑅(

K

DP-related

w) , ±𝜂𝐺*+ , ±2𝜂𝐺*+ , …

Loss clipping

Loss perturbation

Sample & forward

Curve fitting

𝒘𝒕-𝟏 = 𝒘𝒕 − 𝜼𝑮𝑫𝑷

𝑅!
𝐵, 𝑇,𝑁

Sample a
batch Privatized update

Privacy Accounting

Update
loss
clipping
threshold

Non-DP and Data-independent Data-dependent

Auto-updated
params

𝜎1 𝜎2Solve the equation
for loss noise

Figure 1: HyFreeDP overview with three types of hyper-parameters in the DP training.
HyFreeDP saves tuning efforts via automatically tuning hyper-parameters in red text, and sets other
parameters as default constants. We showcase with 5 points in curve fitting.

We note (7) is a private mean estimation that has been heavily studied in previous works (Biswas
et al., 2020; Kamath et al., 2020), though many use an asymptotic threshold like Rl + O(logB),
whereas Theorem 1 is more suited for our application in practice.

3.2 BIAS-VARIANCE TRADE-OFF IN LOSS PRIVATIZATION

Theorem 1. The per-sample clipping bias of (7) is∣∣∣∣E(L̃)− ∑
i Li

B

∣∣∣∣ =
∣∣∣∣∣ 1B ∑

i

min(
Rl

Li
, 1)Li −

1

B

∑
i

Li

∣∣∣∣∣ =
∣∣∣∣∣ 1B ∑

i

(Li −Rl)I(Li > Rl)

∣∣∣∣∣
which is monotonically decreasing in Rl, and converges to [E(Li|Li > Rl) − Rl] · P(Li > Rl) as
B → ∞. In contrast, the noise variance is Var(L̃) = (σlRl/B)2 which is increasing in Rl.

In words, a large Rl reduces the clipping bias but magnifies the noise, and vice versa for a small
Rl. We propose to use Rl ≈ L so that the clipping bias is close to zero (i.e. L̃ is approximately
unbiased), and the loss noise shown in Table 1 is reasonably small for large batch size.

To put this into perspective, we give the explicit form of clipping bias when Li follows a Gaussian
distribution in Corollary 1.
Corollary 1. Suppose Li ∼ N(µ, ξ2), then the asymptotic clipping bias in Theorem 1 is

[E(Li|Li > Rl)−Rl] · P(Li > Rl) = ξ[ϕ(α)− α(1− Φ(α)], (8)

where α = Rl−µ
ξ , ϕ is the probability density function and Φ is the cumulative distribution function

of standard normal distribution. The term (8) is strictly decreasing in α as well as Rl (see Figure 7).

4 ALGORITHM

4.1 HYPERPARAMETER-FREE DP OPTIMIZATION

We present our algorithm in Algorithm 1, which is DP as guaranteed in Theorem 2, almost as
efficient as the standard non-DP optimization by Section 4.4, and highly accurate and fast in con-
vergence as demonstrated in Section 5. Importantly, we have split the hyperparameters into three
classes, as shown in Figure 1:

• DP-related hyperparameters that do not depend on the tasks, such as the gradient noise σg ,
the loss noise σl, and the update interval K, can be set as default constants For example,
we fix Rg → 0+ and re-scale the learning rate by 1/Rg according to automatic clipping
and set K = 5.

• Training hyperparameters that are robust to different models and datasets, which we view
as data-independent, need-not-to-search, and not violating DP, such as the batch size B
and the number of iterations T . We also fix other hyperparameters not explicitly displayed

5

Published as a conference paper at ICLR 2025

in Algorithm 1, e.g. throughout this paper, we fix the momentum coefficients and weight
decay (β1, β2,weight decay) = (0.9, 0.999, 0.01), which is the default in Pytorch AdamW.

• Training hyperparameters that are data-dependent, which requires dynamical searching
under DP, such as Rl and η. For these hyperparameters, Algorithm 1 adopts multiple
auto-regressive designs, i.e. the variables to use in the t-th iteration is based on the (t− 1)-
th iteration, which has already been privatized. These auto-regressive designs allow new
variables to preserve DP by the post-processing property of DP1.

To be specific, we have used L̃
(0)
t−1 as the loss clipping threshold Rl for the next iteration in Line

7, because loss values remain similar values within a few iterations; In practice, we set a more
conservative loss clipping threshold Rl =

∑
L̃
(k)
t−1 to avoid the clipping bias. We have used the

previous η to construct next-loss in Line 6, which in turn will determine the new η by Line 9.

Algorithm 1 Hyperparameter-free Optimization with Differential Privacy
1: INPUT: initial η=1e-4, initial Rl = 1

2: Forward pass to compute per-sample losses L(0)
t,i = L(wt,xi)

3: Compute the mini-batch loss L(0)
t = 1

B

∑
i L

(0)
t,i

4: Back-propagate from L
(0)
t to compute mDP in (2) with automatic clipping

5: Post-process mDP by any optimizer GDP := G(m) in (3)
6: if t%K == 0 (e.g. K = 10) then
7: Forward pass to get per-sample losses L(±1)

t,i = L(wt ± ηGDP,xi)

8: Privatize losses L̃(k)
t by (7) with Rl = L̃

(0)
t−1 for k ∈ {−1, 0,+1}

9: Fit the quadratic function in (6) from {−η, 0, η} to {L̃(−1)
t , L̃

(0)
t , L̃

(+1)
t }

10: Extract coefficients of the fitted quadratic function (m⊤Hm)DP, (G
⊤m)DP

11: Update η with ηGeN-DP = (G⊤m)DP
(m⊤Hm)DP

≈ argminηL̃(wt − ηGDP)

12: end if
13: Update wt+1 = wt − ηGDP

0.02 0.01 0.00 0.01 0.02
Learning Rate Update

2

3

4

5

6

Lo
ss

 V
al

ue
s

Iteration 10
Curve fitting
w/o clipping w/o noise
w/ clipping w/o noise
w/ clipping w/ noise
Gaussian noise

0.02 0.01 0.00 0.01 0.02
Learning Rate Update

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

 V
al

ue
s

Iteration 20

0.02 0.01 0.00 0.01 0.02
Learning Rate Update

0.8

1.0

1.2

1.4

Lo
ss

 V
al

ue
s

Iteration 40

0.02 0.01 0.00 0.01 0.02
Learning Rate Update

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

 V
al

ue
s

Iteration 50

Figure 2: Impact of loss value clipping and perturbation on curve fitting along different training
iterations on CIFAR100 with Vit-Small fully fine-tuning, with zero in x-axis denotes the current wt.
We use 5 points for the ease of illustration and use 3 points in Algorithm 1 and experiments.

4.2 PRIVACY GUARANTEE

Theorem 2. Algorithm 1 is (ϵours, δ)-DP, where ϵours depends on the batch size B, the number
of iterations T , the noises (σg, σl), and the update interval K. In contrast, vanilla DP-SGD is
(ϵvanilla, δ)-DP, where ϵvanilla depends on B, T, σ. Furthermore, we have ϵours(B, T,N, σg, σl,K) >
ϵvanilla(B, T,N, σ) if σg = σ.

We omit the concrete formulae of ϵ because it depends on the choice of privacy accountants. For
example, if we use µ-GDP as an asymptotic estimation, then we show in Appendix B that

µvanilla =

√(
B

N

)2

T (e1/σ2 − 1), µours =

√
µ2

vanilla +

(
B

N

)2
3T

K
(e1/σ

2
l − 1) (9)

1The post-processing of DP ensures that if X is (ϵ, δ)-DP then g(X) is also (ϵ, δ)-DP for any function g.

6

Published as a conference paper at ICLR 2025

which can translate into (ϵ, δ)-DP by Equation (6) in Bu et al. (2020). Note in our experiments, we
use the improved RDP as the privacy accountant.

Theorem 2 and (9) show that given the same (B, T, σ), our Algorithm 1 uses more privacy budget
because we additionally privatize the loss, whereas the vanilla DP-SGD does not protect the hyper-
parameter tuning. To maintain the same privacy budget as vanilla DP-SGD, we use ≈ 99% budget
for the gradient privatization and ≈ 1% budget for the loss privatization. Therefore, we need ≈ 1%
larger gradient noise σg = γσ and then select σl based on

ϵours(B, T,N, γσ, σl,K) = ϵvanilla(B, T,N, σ),where we can use γ ≤ 1.01. (10)

4.3 END-TO-END NOISE DETERMINATION

We use autoDP library2 to compute σl based on σg in (10). We give more details of our imple-
mentation in Appendix C. We visualize both noises in Figure 3 with RDP accounting and Gaussian
and mechanisms for loss privatization, dashed line indicates the case when σg and σl are set equally.
More examples for different mechanisms or different accounting are shown in Appendix. Note that
we only add a little more gradient noise, hence σg introduces negligible accuracy drop to Algo-
rithm 1, as empirically shown in Section 5. Additionally, we demonstrate in Figure 2 that σl has
negligible interference with the precision of estimating ηGeN.

4.4 EFFICIENCY OF ALGORITHM

2 4 6 8 10 12 14
Update interval K

101

2 × 100

3 × 100

4 × 100

6 × 100
No

ise
 sc

al
e

fo
r g

ra
di

en
t a

nd
 lo

ss

RDP Composition (Gauss and Gauss)
g with =1.05
l with =1.05
g = l

g with =1.01
l with =1.01

Figure 3: Gradient and loss noise.

We illustrate that Algorithm 1 can be almost as efficient as
the standard non-DP optimization, in terms of training time
and memory cost. We identify three orthogonal components
that are absent from non-DP optimization: (1) Gradient pri-
vatization. DP optimization (including vanilla DP-SGD) al-
ways requires per-sample gradient clipping. Due to the high
dimension of gradients, this could incur high cost in memory
and time if implemented inefficiently. We directly leverage
the recent advances like ghost clipping and book-keeping (BK)
which have allowed DP optimization to be almost as efficient
as non-DP optimization, up to 256 GPUs and 100B parame-
ters. (2) Loss privatization. The cost of loss privatization
alone is O(B) and thus negligible, compared to the forward
passes and back-propagation which are O(Bd). (3) Learning rate computation. The cost of com-
puting ηGeN-DP in (6) mainly comes from the additional forward passes3 for L(±1)

t,i . Given that the
back-propagation approximately costs 2× the training time of forward pass, the optimizer without
GeN learning rate (non-DP or DP) roughly uses 3 units of time at each iteration. In contrast, Algo-
rithm 1 uses 3 + 2/K ≈ 3.2 units if we set K = 10 with < 7% overhead. We emphasize that the
actual overhead to training time is even lower, because the training also includes non-optimization
operations such as data loading and inter-GPU communication. In short, the efficiency gap between
Algorithm 1 and non-DP optimization is negligible in practice.

5 EXPERIMENTS

To comprehensively evaluate the effectiveness of the proposed method, we conduct experiments
on both computer vision tasks and natural language tasks, across different model architectures
(Vit (Yuan et al., 2021), GPT2 (Radford et al., 2019) and LLaMa2-7B (Touvron et al., 2023)) and
fine-tuning paradigms (Full, BitFit (Zaken et al., 2022) and LoRA (Hu et al., 2021)). BitFit only
tunes the bias terms of a pre-trained model, while LoRA only tunes the injected low-rank matrices,
both keeping all other parameters frozen. We use the privacy budget ϵ = {1, 3, 8} with δ ≪ N−1.1

for training dataset with N samples4 and also perform non-DP baseline (ϵ = ∞).

2https://github.com/yuxiangw/autodp
3The number of {ηi}i in (6) is at least two since there are two unknown variables. More ηi may stabilize

the algorithm, at cost of more forward passes, longer training time, and using more privacy budget.
4https://github.com/lxuechen/private-transformers

7

https://github.com/yuxiangw/autodp
https://github.com/lxuechen/private-transformers

Published as a conference paper at ICLR 2025

Table 2: Performance comparison of HyFreeDP with other baselines. We use cosine learning rate
decay for NonDP-GS w/ LS in the BitFit fine-tuning. Detailed results are provided in the Appendix.

Fully Fine-Tune Vit-Small Vit-Base

Privacy budget Method CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ =1 NonDP-GS 96.49 79.70 89.86 67.00 70.38 95.20 67.18 89.10 81.11 58.80
D-adaptation 23.74 0.80 15.27 1.86 1.17 19.15 0.83 18.56 4.72 1.48

Prodigy 27.54 0.80 15.27 1.86 1.19 19.15 0.83 18.56 4.72 1.43
DP-hyper 92.98 74.63 34.58 28.23 19.06 94.86 6.59 79.94 77.85 57.02
HyFreeDP 96.36 78.17 91.15 74.68 67.98 95.76 67.17 88.24 79.00 58.16

ϵ =3 NonDP-GS 96.86 83.69 91.60 83.08 74.58 95.84 79.03 91.74 91.03 66.87
D-adaptation 40.99 0.94 17.22 2.65 1.37 30.29 1.07 19.77 5.68 1.68

Prodigy 77.18 0.95 18.11 2.68 1.47 30.29 1.07 19.77 5.68 1.65
DP-hyper 95.10 78.82 48.82 42.02 36.21 95.75 19.92 87.82 90.25 66.09
HyFreeDP 96.89 81.62 92.21 89.92 75.24 97.29 80.34 91.71 91.76 73.46

NonDP NonDP-GS 98.33 89.41 95.58 98.66 85.19 98.88 92.40 96.87 98.41 89.61
D-adaptation 54.29 86.35 97.09 97.38 74.75 63.37 88.41 97.02 98.65 78.35

Prodigy 97.85 89.21 96.87 98.31 87.49 98.59 91.01 97.14 98.77 89.47
HyFreeDP 98.32 90.84 96.86 99.00 86.38 98.83 92.58 96.75 97.37 88.73

BitFit Fine-Tune Vit-Small Vit-Base

Privacy budget Method CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ =1 NonDP-GS 96.74 84.22 90.18 86.20 77.39 97.34 84.97 90.91 87.15 76.61
NonDP-GS w/ LS 97.40 81.36 67.95 48.64 74.55 97.90 81.87 79.86 55.66 73.76

Prodigy 96.36 82.23 90.30 86.85 76.36 97.13 84.87 91.08 81.54 78.72
HyFreeDP 96.20 83.84 90.49 88.08 79.27 97.42 84.01 92.21 81.83 79.25

ϵ =3 NonDP-GS 97.13 85.95 91.42 91.50 80.37 97.73 87.00 92.20 91.46 80.06
NonDP-GS w/ LS 97.61 84.87 78.91 60.13 78.08 98.05 85.48 86.22 69.03 78.71

Prodigy 95.72 83.63 91.90 91.64 79.20 96.96 86.26 92.13 90.27 81.98
HyFreeDP 97.09 86.07 91.64 92.38 84.55 97.65 87.04 92.37 90.67 84.53

NonDP NonDP-GS 97.91 89.39 91.88 95.20 86.29 98.56 91.59 94.42 92.87 88.37
NonDP-GS w/ LS 97.89 89.40 91.98 90.31 86.27 98.56 91.61 94.43 92.90 88.39

Prodigy 97.88 87.85 95.19 95.34 86.56 98.41 90.70 96.02 95.02 88.60
HyFreeDP 97.97 89.86 93.60 95.19 87.24 98.43 91.69 95.48 95.23 89.06

As the first hyperparameter-free method for differentially private optimization, we compare
HyFreeDP with the following baselines: 1) NonDP-GS: We manually perform grid search over
a predefined range of learning rates, selecting the best without accumulating privacy budget across
runs. This serves as the performance upper bound since tuning is non-DP. We also experiment with
a manually tuned learning rate scheduler, noted as NonDP-GS w/ LS. We search the learning rate
over the range [5e-5, 1e-4, 5e-4, 1e-3, 5e-3] based on previous works (Bu et al., 2023b;a) to cover
suitable η for various DP levels. 2) DP-hyper (Liu & Talwar, 2019; Wang et al., 2023; Papernot &
Steinke, 2021): We simulate with a narrow range around the optimal η, spending 85% of the privacy
budget for DP training with the searched η. 3) D-Adaptation (Defazio & Mishchenko, 2023) and
Prodigy (Mishchenko & Defazio, 2024): Both are state-of-the-art learning rate tuning algorithms
in non-DP optimization. We adopt their optimizers with recommended hyperparameters, alongside
DP-specific clipping and perturbation. 4) HyFreeDP : We initialize Rl = 1 and η = 1e − 4 by
default, allowing automatic updates in training.

5.1 IMAGE CLASSIFICATION TASKS

Experimental setups. As the main result shown in Table 2, we compare HyFreeDP to other base-
lines by experiments on CIFAR10, CIFAR100, SVHN, GTSRB and Food101 for models of Vit-
Small and Vit-Base.

Evaluation results. HyFreeDP almost outperforms all end-to-end DP baselines. While non-DP
automatic learning rate schedulers (D-adaptation and Prodigy) sometimes match grid-searched con-
stants, they perform poorly in DP training, especially with tighter privacy budgets and when the
number of trainable parameters is large, confirming our analysis in Section 2.3. Although DP-
hyper surpasses these schedulers—likely due to our intentionally narrow search range—finding
suitable ranges remains challenging as training dynamics vary by dataset and privacy budget. Even
in this optimistic setting, DP-hyper underperforms due to increased gradient noise. In contrast,
HyFreeDP achieves consistent performance across various ϵ values and datasets without manual
learning rate tuning, thanks to our gradient noise control and efficient learning rate estimation with
minimal loss value perturbation.
HyFreeDP achieves comparable or superior performance to NonDP-GS baseline without manual
learning rate tuning in BitFit experiments. NonDP-GS w/ LS and Prodigy show improved sta-
bility compared to full fine-tuning, suggesting the sensitivity to training paradigms and trainable
model size. In Figure 4, we illustrate training dynamics (Rl, η, loss, test accuracy) across meth-

8

Published as a conference paper at ICLR 2025

Steps Steps Steps Steps

Steps Steps Steps Steps

Figure 4: Automatic learning of clipping threshold, learning rate, training loss, and testing accuracy
for SVHN (top) and GTSRB (bottom). HyFreeDP schedules Rl and η during training, approaching
the manually tuned baseline with end-to-end DP guarantees, and is robust to varying intervals K.

ods. HyFreeDP automatically finds optimal learning rate schedules, with clipping thresholds peak-
ing early and decreasing gradually, enabling more accurate rate estimation as training progresses.
While updating with K = 1 yields optimal convergence, HyFreeDP remains robust to less frequent
updates (e.g., K = 5), balancing tuning cost and convergence speed.

5.2 NATURAL LANGUAGE GENERATION TASKS

Experimental setups. We conduct experiments on E2E dataset with a table to text task on GPT-
2 model, and also evaluate the language generation task with PubMed dataset by fine-tuning
LLaMa2-7B model with LoRA (Hu et al., 2021) for demonstrating the scalability and generality
of HyFreeDP . We follow the experimental setups based on previous works (Bu et al., 2024a) and
use the dataset provided by Yu et al. (2022; 2023) which contains over 75,000 abstracts of medi-
cal papers that were published after the cut-off date of LLaMa2. Based on the non-DP experience,
LoRA typically requires a magnitude greater learning rate than full fine-tuning5, thus we scale up
our default initial learning by ×10. We tune the best learning rate for LLaMa2-7B with LoRA
fine-tuning on 4,000 samples of PubMed for NonDP-GS when training on the full dataset.

Table 3: Performance comparison on GPT-2 for E2E dataset with different privacy budgets. Best
end-to-end DP results are bolded, and results surpassing the manually tuned baseline are underlined.

Full Fine-Tune ϵ = 3 ϵ = 8

Model Method BLEU CIDEr METEOR NIST ROUGE L BLEU CIDEr METEOR NIST ROUGE L

GPT-2

NonDP-GS 0.583 1.566 0.367 5.656 0.653 0.612 1.764 0.385 6.772 0.664
D-Adaptation 0.000 0.000 0.003 0.082 0.016 0.000 0.000 0.000 0.000 0.000
Prodigy 0.082 0.000 0.157 1.307 0.239 0.012 0.000 0.003 0.000 0.003
HyFreeDP 0.585 1.564 0.365 5.736 0.636 0.612 1.768 0.378 6.702 0.655

Steps Steps

Figure 5: Training dynamics of Llama2-7B on PubMed

Evaluation results. As shown in Ta-
ble 3, we observe that even when the
privacy budget is not small (e.g., ϵ =
8), non-DP automatic learning rate sched-
uler does not perform well. We find that
HyFreeDP consistently obtains a compa-
rable performance as the NonDP-GS base-
line without extra tuning. In Figure 5,
we observe that HyFreeDP automatically
discovers a learning rate schedule that
achieves better generalization performance compared to the early-stopped NonDP-GS. The au-
tomatically determined learning rate (η) reveals a consistent pattern across model scales: an

5See this reference as an example. Note that LoRA may use a similar learning rate if it is set proportional
to rank (Biderman et al., 2024).

9

https://docs.anyscale.com/llms/finetuning/guides/lora_vs_full_param/

Published as a conference paper at ICLR 2025

“increase-then-decrease” trajectory that holds true from smaller models (Vit-Small) to larger models
(LLaMa2-7B).

Table 4: Comparison of model performance in minutes with and without HyFreeDP across various
datasets. The coefficients represent the ratio relative to the w/o auto configuration.

Models Dataset K=1 K=5 K=10 w/o HyFreeDP

Llama2-7B (LoRA-FT) PubMed (4k) 409.750 (× 2.040) 244.333 (× 1.217) 222.583 (× 1.108) 200.833 (× 1.000)
GPT2 E2E 163.333 (× 1.888) 97.167 (× 1.123) 94.983 (× 1.098) 86.500 (× 1.000)
Vit-base CIFAR100 152.617 (× 1.370) 118.483 (× 1.063) 113.317 (× 1.017) 111.433 (× 1.000)
Vit-base (BitFit-FT) CIFAR100 113.450 (× 1.654) 74.733 (× 1.089) 73.817 (× 1.076) 68.600 (× 1.000)
Vit-small SVHN 102.000 (× 1.255) 84.500 (× 1.040) 82.800 (× 1.019) 81.250 (× 1.000)

5.3 EFFICIENCY COMPARISON

Based on Section 4.4, we compare the training efficiency of HyFreeDP with a single run of DP
training using the same non-DP and data-independent hyperparameters, as shown in Table 4.
For LLaMa2-7B, we sample 4,000 records from PubMed and train for 3 epochs on a single
A100 (80GB). For smaller datasets and models, we use previous setups on Titan RTX (24GB).
HyFreeDP introduces less than ×2 overhead compared to a single run of DP training, even with
frequent updates at K = 1. Smaller models or those using LoRA or BitFit have lower additional
costs, especially with K = 1, and the gap narrows as K increases, approaching a cost factor of 1×.

6 DISCUSSION AND CONCLUSION

In conclusion, we tackle the challenge of hyperparameter tuning in differential privacy (DP) by
introducing a hyperparameter-free DP training method that privately and automatically updates the
learning rate. Combined with automatic clipping, our approach reduces tuning efforts and ensures
end-to-end DP during training. This bridges the gap between hyperparameter-free methods in non-
DP settings and DP optimization, opening promising avenues for future research.

ACKNOWLEDGMENTS

R.L. is partially supported by National Institutes of Health grant (R01LM013712), National Science
Foundation grants (CNS-2124104 and CNS-2125530). We sincerely thank Prof. Li Xiong for her
invaluable support and guidance throughout this work. We also appreciate the insightful comments
and constructive feedback from the reviewers and the area chair.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
learning with adaptive clipping. Advances in Neural Information Processing Systems, 34:17455–
17466, 2021.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
forgets less. Transactions on Machine Learning Research, 2024.

Sourav Biswas, Yihe Dong, Gautam Kamath, and JU COINPRESS. Practical private mean and
covariance estimation. Preprint. Available at, 2020.

Zhiqi Bu and Shiyun Xu. Gradient descent with generalized newton’s method. In The Thirteenth
International Conference on Learning Representations, 2024.

Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with gaussian differential privacy.
Harvard data science review, 2020(23), 2020.

10

Published as a conference paper at ICLR 2025

Zhiqi Bu, Ruixuan Liu, Yu-Xiang Wang, Sheng Zha, and George Karypis. On the accuracy
and efficiency of group-wise clipping in differentially private optimization. arXiv preprint
arXiv:2310.19215, 2023a.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially pri-
vate deep learning made easier and stronger. Advances in Neural Information Processing Systems,
36, 2023b.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private bias-term fine-
tuning of foundation models. In Forty-first International Conference on Machine Learning,
2024a. URL https://openreview.net/forum?id=fqeANcjBMT.

Zhiqi Bu, Xinwei Zhang, Sheng Zha, Mingyi Hong, and George Karypis. Pre-training differentially
private models with limited public data. Advances in Neural Information Processing Systems, 37:
94652–94683, 2024b.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449–7479. PMLR, 2023.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 84(1):3–37, 2022.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465–14499. PMLR,
2023.

Gautam Kamath, Vikrant Singhal, and Jonathan Ullman. Private mean estimation of heavy-tailed
distributions. In Conference on Learning Theory, pp. 2204–2235. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. Dowg unleashed: An efficient universal
parameter-free gradient descent method. Advances in Neural Information Processing Systems,
36:6748–6769, 2023.

Antti Koskela and Tejas D Kulkarni. Practical differentially private hyperparameter tuning with
subsampling. Advances in Neural Information Processing Systems, 36:28201–28225, 2023.

Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
optimization. In The Thirty Seventh Annual Conference on Learning Theory, pp. 3257–3324.
PMLR, 2024.

Alexey Kurakin, Shuang Song, Steve Chien, Roxana Geambasu, Andreas Terzis, and Abhradeep
Thakurta. Toward training at imagenet scale with differential privacy. arXiv preprint
arXiv:2201.12328, 2022.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2021.

Jingcheng Liu and Kunal Talwar. Private selection from private candidates. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 298–309, 2019.

Zhihao Liu, Jian Lou, Wenjie Bao, Zhan Qin, and Kui Ren. Differentially private zeroth-order
methods for scalable large language model finetuning. arXiv preprint arXiv:2402.07818, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

11

https://openreview.net/forum?id=fqeANcjBMT

Published as a conference paper at ICLR 2025

Konstantin Mishchenko and Aaron Defazio. Prodigy: an expeditiously adaptive parameter-free
learner. In Proceedings of the 41st International Conference on Machine Learning, pp. 35779–
35804, 2024.

Shubhankar Mohapatra, Sajin Sasy, Xi He, Gautam Kamath, and Om Thakkar. The role of adaptive
optimizers for honest private hyperparameter selection. In Proceedings of the aaai conference on
artificial intelligence, volume 36, pp. 7806–7813, 2022.

Ashwinee Panda, Xinyu Tang, Saeed Mahloujifar, Vikash Sehwag, and Prateek Mittal. A new linear
scaling rule for private adaptive hyperparameter optimization. In International Conference on
Machine Learning, pp. 39364–39399. PMLR, 2024.

Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential privacy. In
International Conference on Learning Representations, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Private fine-
tuning of large language models with zeroth-order optimization. In ICML 2024 Workshop on
Foundation Models in the Wild, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hua Wang, Sheng Gao, Huanyu Zhang, Weijie J Su, and Milan Shen. Dp-hypo: an adaptive private
hyperparameter optimization framework. In Proceedings of the 37th International Conference on
Neural Information Processing Systems, pp. 41868–41891, 2023.

Xiaodong Yang, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Normalized/clipped sgd with per-
turbation for differentially private non-convex optimization. arXiv preprint arXiv:2206.13033,
2022.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. In International Conference on Learning Representations (ICLR), 2022.

Da Yu, Arturs Backurs, Sivakanth Gopi, Huseyin Inan, Janardhan Kulkarni, Zinan Lin, Chulin Xie,
Huishuai Zhang, and Wanrong Zhang. Training private and efficient language models with syn-
thetic data from llms. In Socially Responsible Language Modelling Research, 2023.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
558–567, 2021.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero: Dimension-
independent and differentially private zeroth-order optimization. In International Workshop on
Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023.

12

Published as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

Image classification. In full fine-tuning, we tried to integrate a constant linear scheduler as a com-
mon practice, but the result does not steadily outperform the tuned NonDP-GS, so we omit the
results in Appendix Table 5. We do not apply the linear scheduler to Prodigy and D-adaptation for
keeping the originally recommended configuration. The results with ϵ = 8 are shown in Table 7
with the consistent conclusions across different datasets.

Vit-Small Vit-Base

Privacy Budget CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ = 1 88.02 3.46 29.00 10.16 9.80 96.62 58.74 89.13 64.39 60.74
ϵ = 3 92.48 8.00 35.54 17.68 20.40 97.11 75.73 91.79 82.31 69.09
ϵ = 8 93.79 15.04 43.73 24.15 31.05 97.41 81.31 93.05 88.79 73.65
NonDP 98.00 89.11 96.55 96.94 84.55 98.88 92.51 97.27 98.29 89.10

Table 5: Full fine-tuning results by adding a linear scheduler to NonDP-GS across different datasets
with privacy budgets for Vit-Small and Vit-Base models. Results show that directly integrating a
constant learning rate scheduler in NonDP does not hurt performance but the DP training perfor-
mance is sensitive to the learning rate scheduler.

In Table 2, we report the test accuracy averaged over 3 checkpoints. For demonstrating the stability
of different methods, we present the mean accuracy with standard deviation in Table 6 for low
privacy budget regime and NonDP.

2 4 6 8 10 12 14
Update interval K

101

2 × 100

3 × 100

4 × 100

6 × 100

No
ise

 sc
al

e
fo

r g
ra

di
en

t a
nd

 lo
ss

RDP Composition (Gauss and Lap)
g with =1.05
l with =1.05
g = l

g with =1.01
l with =1.01

2 4 6 8 10 12 14
Update interval K

101

No
ise

 sc
al

e
fo

r g
ra

di
en

t a
nd

 lo
ss

GDP Composition (Gauss and Gauss)
g with =1.05
l with =1.05
g = l

g with =1.01
l with =1.01

Figure 6: Privacy composition for gradient and loss values privatization, with privacy accountants
of RDP and GDP, and loss perturbation of Gaussian and Laplacian mechanisms. Gray dashed line
indicates the naive and even budget splitting for every access to private gradient and loss, which
results in larger noise magnitude on gradient especially when the adjustment is frequent. The privacy
accounting strategy proposed in HyFreeDP effectively restrains the privacy budget consumption on
hyper-parameter tuning and spending it wisely by only perturbing a single-dimensional loss value.

Clipping bias. Additionally, we demonstrate the loss clipping bias in Figure 7.

Figure 7: ϕ(α)− α(1− Φ(α)) which is minimized at α = ∞.

13

Published as a conference paper at ICLR 2025

Table 6: Averaged test accuracy with standard deviation of HyFreeDP with other baselines
Fully Fine-Tune Vit-Small Vit-Base

Privacy budget Method CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ =1 NonDP-GS 96.49±0.02 79.7±0.13 89.86±0.21 67.00±0.44 70.38±0.23 95.2±0.02 67.18±0.52 89.1±0.08 81.11±0.27 58.8±0.32

D-adaptation 23.74±0.19 0.8±0.01 15.27±0.08 1.86±0 1.17±0.01 19.15±0.41 0.83±0.31 18.56±0.74 4.72±0.02 1.48±0.10

Prodigy 27.54±0.61 0.80±0.01 15.27±0.08 1.86±0.00 1.19±0.00 19.15±0.41 0.83±0.00 18.56±0.04 4.72±0.02 1.43±0.00

DP-hyper 92.98±0.14 74.63±0.09 34.58±0.58 28.23±0.91 19.06±0.59 94.86±0.10 6.59±0.00 79.94±0.04 77.85±0.16 57.02±0.00

HyFreeDP 96.36±0.03 78.17±0.12 91.15±0.06 74.68±0.54 67.98±0.09 95.76±0.03 67.17±0.11 88.24±0.14 79.00±0.51 58.16±0.07

ϵ =3 NonDP-GS 96.86±0.03 83.69±0.12 91.6±0.11 83.08±0.69 74.58±0.23 95.84±0.07 79.03±0.18 91.74±0.04 91.03±0.11 66.87±0.06

D-adaptation 40.99±0.92 0.94±0.01 17.22±0.09 2.65±0.03 1.37±0.01 30.29±0.51 1.07±0.01 19.77±0.04 5.68±0.00 1.68±0.01

Prodigy 77.18±1.85 0.95±0.01 18.11±0.16 2.68±0.05 1.47±0.02 30.29±0.51 1.07±0.01 19.77±0.04 5.68±0.00 1.65±0.02

DP-hyper 95.10±0.04 78.82±0.14 48.82±1.15 42.02±0.47 36.21±0.8 95.75±0.09 19.92±0.73 87.82±0.19 90.25±0.42 66.09±0.05

HyFreeDP 96.89±0.06 81.62±0.06 92.21±0.12 89.92±0.57 75.24±0.06 97.29±0.02 80.34±0.05 91.71±0.18 91.76±0.48 73.46±0.06

NonDP NonDP-GS 98.33±0.01 89.41±0.18 95.58±0.14 98.66±0.02 85.19±0.12 98.88±0.01 92.4±0.04 96.87±0.11 98.41±0.02 89.61±0.08

D-adaptation 54.29±0.53 86.35±0.06 97.09±0.08 97.38±0.31 74.75±1.00 63.37±1.10 88.41±0.05 97.02±0.09 98.65±0.01 78.35±1.17

Prodigy 97.85±0.03 89.21±0.07 96.87±0.07 98.31±0.14 87.49±0.08 98.59±0.06 91.01±0.10 97.14±0.06 98.77±0.14 89.47±0.06

HyFreeDP 98.32±0.03 90.84±0.02 96.86±0.02 99.00±0.02 86.38±0.03 98.83±0.01 92.58±0.02 96.75±0.05 97.37±0.05 88.73±0.02

Table 7: Performance comparison of HyFreeDP to other baselines. We use consine learning rate
decay for NonDP-GS w/ LS baseline in the BitFit fine-tuning setting.

Full Fine-Tune Vit-Small Vit-Base

Privacy budget Method CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ =8 NonDP-GS 96.28 84.99 92.53 89.97 77.08 96.14 82.52 92.38 94.91 71.05
D-adaptation 78.31 1.07 19.10 3.67 1.76 40.90 1.25 20.86 6.84 1.94

Prodigy 95.74 1.29 20.75 4.86 2.92 45.89 1.25 20.86 6.84 1.90
DP-hyper 95.70 80.58 64.72 50.10 49.18 96.28 36.46 90.27 94.62 70.63
HyFreeDP 97.04 86.00 95.15 88.06 80.61 97.79 87.57 95.00 94.07 81.91

BitFit Fine-Tune Vit-Small Vit-Base

Privacy budget Method CIFAR10 CIFAR100 SVHN GTSRB Food101 CIFAR10 CIFAR100 SVHN GTSRB Food101

ϵ =8 NonDP-GS 97.23 86.56 92.23 93.34 82.12 97.81 88.05 93.38 93.04 81.88
NonDP-GS w/ LS 97.63 86.21 83.17 67.35 79.85 98.08 87.17 88.25 75.61 81.18

HyFreeDP 97.31 88.43 89.17 93.54 74.61 97.90 90.34 92.36 93.14 87.14

B PROOFS

Proof of Theorem 1. It’s not hard to see

E(L̃)−
∑

i Li

B
=

1

B

∑
i

min(
Rl

Li
, 1)Li −

1

B

∑
i

Li

=
1

B

∑
i

(Rl − Li)I(Li > Rl) = − 1

B

∑
i

ReLU(Li −Rl)

in which the non-negative ReLU(x) = x · I(x > 0). Taking the absolute value, we have∣∣∣∣E(L̃)− ∑
i Li

B

∣∣∣∣ = 1

B

∑
i

ReLU(Li −Rl) =

∣∣∣∣∣ 1B ∑
i

(Li −Rl)I(Li > Rl)

∣∣∣∣∣
which is decreasing in Rl because ReLU is increasing in its input (Li − Rl), and this input is
decreasing in Rl.

As B → ∞, the clipping bias tends to

E(ReLU(Li −Rl)) = E(ReLU(Li −Rl)|Li > Rl) · P(Li > Rl)

=E((Li −Rl)|Li > Rl) · P(Li > Rl) = [E(Li|Li > Rl)−Rl] · P(Li > Rl)

where we have used ReLU(x) = x when x > 0.

Proof of Corollary 1. The key part in (8) is E(Li|Li > Rl), which is the expectation of the truncated
normal distribution by one-side truncation. It is known that for α = Rl−µ

ξ ,

E(Li|Li > Rl) = µ+ ξ
ϕ(α)

1− Φ(α)
, P(Li > Rl) = 1− Φ(α)

The proof is complete by inserting these quantities.

Proof of Theorem 2. All privacy budget of Algorithm 1 goes into two components: privatizing the
gradient (with noise level σg) and privatizing the loss (with noise level σl).

14

Published as a conference paper at ICLR 2025

Under the same (B, T,N, σg), we have T mechanisms of gradient privatization, each of (ϵg, δg)-DP
and 3T/K mechanisms of loss privatization, each of (ϵl, δl)-DP. Hence it is clear that ϵours > ϵvanilla.

To be more specific, we demonstrate with µ-GDP. The vanilla DP-SGD is µ-GDP with

µvanilla =
B

N

√
T (e1/σ

2
g − 1)

which is the same as the gradient privatization component of our DP-SGD. We additionally spend

µl =
B

N

√
3T

K
(e1/σ

2
l − 1)

leading to a total budget of

µours =
√
µ2

vanilla + µ2
l

by Corollary 3.3 in Dong et al. (2022). It is clear µours > µvanilla.

C END-TO-END PRIVACY ACCOUNTING AND INVERSE

We demonstrate how to determine (σg, σl) given (ϵ, δ)-DP budget. In vanilla DP optimization, we
can leverage privacy accountants such as RDP, GDP, PRV, etc. Each accountant is a function whose
input is hyperparameters (B, T,N, δ, σ) and the output is ϵ (see an example in (9)). In this section,
we denote any accountant as f , so that

f(σ;B,N, δ) = ϵ′ (11)

fT (σ;B,N, δ) = ϵ (12)

f−T (ϵ;B,N, δ) = σ (13)

in which ϵ′ is the single-iteration budget, fT means a composition of T iterations, and f−T is the
inverse function known as GetSigma in Figure 1.

In this work, we develop an end-to-end privacy accountant to compose both the gradient privatization
and the loss privatization. Our accountant takes the input (B, T,N, δ, σl, γ,K), where γ = 1.01 by
default and can take smaller value for larger models or smaller (ϵ, δ) budget. Therefore, σg = γσ.

Firstly, we call fT (γσ;B,N, δ) = ϵ̂ to get the reference budget ϵ̂ which is strictly smaller than
ϵ because f is monotonically decreasing in its input. Then we guess the loss noise and call
f3T/K(σl;B,N, δ) = ϵl since there are 3T/K rounds of loss privatization. We continue our guess
until

f3T/K(σl;B,N, δ) + fT (γσ;B,N, δ) = ϵl + ϵ̂ = ϵ
Notice the left hand side is monotonically decreasing in σl. Hence we use bisection method to find
the unique solution σl, at an exponentially fast speed.

Algorithm 2 End-to-End Privacy Accounting
1: INPUT: The end-to-end DP budget (ϵ, δ), GetSigma(·), Compose(·), Solve(·)
2: OUTPUT: Noise magnitude for gradient and loss privatization σg and σl

3: ▷ Compute the gradient noise scale σ by assuming there is only a single training run
4: σ = GetSigma(ϵ, δ, B, T,N)
5: ▷ Compute the σg in Algorithm 1 with a controlled noise increase
6: σg = γ · σ with the constant γ slightly greater than 1 (e.g, γ = 1.01)
7: ▷ Define the composition function with input variable as the loss noise scale c

8: ϵours(c|σg, δ, B,N, T,K) = Compose(fT
g (σg;B,N, δ), f

3T/K
l (c;B,N, δ))

9: ▷ Solve the minimization of the scalar function respect to c
10: σl = Solve(c, ϵ) = argminc |ϵours(c)− ϵ|

In the above, we have used the functions GetSigma(·)6, Compose(·)7, and any root-finding
method Solve(·) such as the bi-section in scipy library. We highlight that Algorithm 1 and

6https://github.com/yuxiangw/autodp/blob/master/example/example_
calibrator.py

7https://github.com/yuxiangw/autodp/blob/master/example/example_
composition.py

15

https://github.com/yuxiangw/autodp/blob/master/example/example_calibrator.py
https://github.com/yuxiangw/autodp/blob/master/example/example_calibrator.py
https://github.com/yuxiangw/autodp/blob/master/example/example_composition.py
https://github.com/yuxiangw/autodp/blob/master/example/example_composition.py

Published as a conference paper at ICLR 2025

Algorithm 2 are sufficiently flexible to work with the general DP notions, including GDP, Renyi DP,
tCDP, per-instance DP, per-user DP, etc.

D MISC

Hyper-parameter matters for DP optimization. Previous works De et al. (2022); Li et al. (2021)
reveal that the performance of DP optimization is sensitive to the hyper-parameter choices, as we
cited in Figure 8.

0.1
0.1 * 22

0.1 * 24
0.1 * 26

0.1 * 28

Clipping norm

10 3

10 3/22

10 3/24

10 3/26

10 3/28

Le
ar

ni
ng

 ra
te

60.26 59.58 60.01 57.87 35.44

50.48 50.31 50.48 49.25 34.47

33.17 33.18 33.13 32.96 29.50

29.74 29.55 29.61 29.62 27.07

9.69 9.69 9.68 9.65 5.79 10

20

30

40

50

60

10 1 100 101 102 103

Clipping norm

8 * 101

8 * 100

8 * 10 1

8 * 10 2

8 * 10 3

Le
ar

ni
ng

 ra
te

43.0 2.0 0.1 0.1 0.1

22.0 45.0 0.1 0.1 0.1

2.1 22.0 45.0 11.0 0.09

0.29 2.2 22.0 24.0 0.11

0.1 0.25 2.1 13.0 0.44 5

10

15

20

25

30

35

40

45

Figure 8: Hyperparameter tuning of (Rg, η) cited from Figure 1 of Bu et al. (2023b). Here Rg is the
clipping norm and η is the learning rate. Left: BLEU score of GPT2 on E2E dataset Li et al. (2021).
Right: Test accuracy of ResNet18 on ImageNet Kurakin et al. (2022).

End-to-end DP guarantee for optimization and tuning. As shown in Table 8, we compare our
work with representative works that try to ensure end-to-end DP for both optimization and tuning.

Table 8: Comparison of hyperparameter search strategies. Budget splitting percentages for Adaptive
Clipping and DP-hyper are estimated values, as the actual percentages depend on specific datasets.

Method Searching η Searching Rg % Budget on Hyperparam

Vanilla Abadi et al. (2016) ✓ ✓ 0%
Automatic Clipping Bu et al. (2023b) ✓ × 0%
Adaptive Clipping Andrew et al. (2021) ✓ × ≈20%
DP-hyper Papernot & Steinke (2021) ✓ × ≈20%
Ours (this work) × × <1%

Taylor approximation of next-iteration loss This analysis of next-iteration loss via the Taylor
approximation is also presented in Section 2 of (Bu et al., 2024b), which focuses on the explanation
of the DP training dynamics, instead of on the learning rate.

16

	Introduction
	Preliminaries and Related works
	Differentially Private Optimization
	End-to-end DP guarantee for optimization and tuning
	Automatic learning rate schedule

	Loss value privatization with minimal clipping bias
	Privatized quadratic function
	Bias-variance trade-off in loss privatization

	Algorithm
	Hyperparameter-free DP optimization
	Privacy guarantee
	End-to-end noise determination
	Efficiency of algorithm

	Experiments
	Image Classification Tasks
	Natural Language Generation Tasks
	Efficiency Comparison

	Discussion and conclusion
	Experimental Details
	Proofs
	End-to-end privacy accounting and inverse
	Misc

