
Under review as a conference paper at ICLR 2021

NUMERIC ENCODING OPTIONS WITH AUTOMUNGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Mainstream practice in machine learning with tabular data may take for granted
that any feature engineering beyond scaling for numeric sets is superfluous in con-
text of deep neural networks. This paper will offer arguments for potential benefits
of extended encodings of numeric streams in deep learning by way of a survey of
options for numeric transformations as available in the Automunge open source
python library platform for tabular data pipelines, where transformations may be
applied to distinct columns in “family tree” sets with generations and branches of
derivations. Automunge transformation options include normalization, binning,
noise injection, derivatives, and more. The aggregation of these methods into
family tree sets of transformations are demonstrated for use to present numeric
features to machine learning in multiple configurations of varying information
content, as may be applied to encode numeric sets of unknown interpretation.
Experiments demonstrate the realization of a novel generalized solution to data
augmentation by noise injection for tabular learning, as may materially benefit
model performance in applications with underserved training data.

1 INTRODUCTION

Of the various modalities of machine learning application (e.g. images, language, audio, etc.) tabular
data, aka structured data, as may comprise tables of feature set columns and collected sample rows,
in my experience does not command as much attention from the research community, for which I
speculate may be partly attributed to the general non-uniformity across manifestations precluding the
conventions of most other modalities for representative benchmarks and availability of pre-trained
architectures as could be adapted with fine-tuning to practical applications. That is not to say that
tabular data lacks points of uniformity across data sets, for at its core the various feature sets can
at a high level be grouped into just two primary types: numeric and categoric. It was the focus
of a recent paper by this author (Author, 2020) to explore methods of preparing categoric sets for
machine learning as are available in the Automunge open source python library platform for tabular
data pipelines. This paper will give similar treatment for methods to prepare numeric feature sets
for machine learning.

Of course it would be an oversimplification to characterize “numeric feature sets” as a sufficient
descriptor alone to represent the wide amount of diversity as may be found between different such
instances. Numeric could be referring to integers, floats, or combinations thereof. The set of entries
could be bounded, the potential range of entries could be bounded on the left, right, or both sides, the
distribution of values could be thin or fat tailed, single or multi-modal. The order of samples could be
independent or sequential. In some cases the values could themselves be an encoded representation
of a categoric feature.

Beyond the potential diversity found within our numeric features, another source of diversity could
be considered based on relationships between multiple feature sets. For example one feature could
be independent of the others, could contain full or partial redundancy with one or more other vari-
ables by correlation, or in the case of sequential data there could even be causal relationships be-
tween variables across time steps.

The primary focus of transformations to be discussed in this paper will not take into account vari-
able interdependencies, and will instead operate under the assumption that the training operation
of a downstream learning algorithm may be more suitable for the efficient interpretation of such
interdependencies, as the convention for Automunge is that data transformations (and in some cases

1



Under review as a conference paper at ICLR 2021

sets of transformations) are to be directed for application to a distinct feature set as input. In many
cases the basis for these transformations will be properties derived from the received feature in a
designated “train” set (as may be passed to the automunge(.) function) for subsequent application
on a consistent basis to a designated “test” set (as may be passed to the postmunge(.) function).

2 NORMALIZATIONS

A common practice for preprocessing numeric feature sets for the application of neural networks
is to apply a normalization operation in which received values are centered and scaled based on
properties of the data. By conversion to comparable scale between features, backpropagation may
have an easier time navigating the fitness landscape rather than overweighting to higher magnitude
inputs (Ng, 2011). Table 1 surveys a few normalization operations as available in Automunge.

Table 1: Normalizations
Type ID Formula Scaling

z-score ‘nmbr’ (xi � µ)/� scaled to sigma 1 and mu 0
min-max ‘mnmx’ (xi �min)/(max�min) scaled to unit interval
mean ‘mean’ (xi �mean)/(max�min) scaled and centered to mean
MAD ‘MAD3’ (xi �max)/(MAD) scaled by median absolute deviation
lognorm ‘lgnm’ ln(xi) ! (xi � µ)/� log-normal scaled to Gaussian

Upon inspection a few points of differentiation become evident. The choice of denominator can
be material to the result, for while both (max - min) and standard deviation can have the result of
shrinking or enlarging the values to fall within a more uniform range, the (max - min) variety has
more of a known returned range for the output that is independent of the feature set distribution
properties, thus allowing us to ensure all of the min-max returned values are non-negative for in-
stance, as may be a pre-requisite for some kinds of algorithms. Of course this known range of output
relies on the assumption that the range of values in subsequent test sets will correspond to the train
set properties that serve as a basis - to allow a user to prevent these type of outliers from interfering
with downstream applications, Automunge allows a user to pass parameters to the transformation
functions, such as to activate floors or caps on the returned range.

An easy to overlook outcome of the shifting and/or centering of the returned range by way of the
subtraction operation in the numerator is a loss of the original zero point, as for example with
z-score normalization the returned zero point is shifted to coincide with the original mean. It is
the opinion of this author that such re-centering of the data may not always be a trivial trade-off.
Consider the special properties of the number 0 in mathematics, including multiplicative properties
at/above/below. By shifting the original zero point we are presenting a (small) obstacle to the training
operation in order to relearn this point. Perhaps more importantly, further trade-offs include the
interpretability of the returned data.

Automunge thus offers a novel form of normalization, available in our library as ‘retn’ (standing for
“retain”), that bases the formula applied to scale data on the range of values found within the train
set, with the result of scaling the data within a similar range as some of those demonstrated above
while also retaining the zero point and thus the +/- sign of all received data.

Table 2: Retain Normalization (‘retn’)
Min Max Formula Returned Min Returned Max

 0 � 0 xi/(max�min) min/(max�min) max/(max�min)
> 0 > 0 (xi �min)/(max�min) 0 1
< 0 < 0 (xi �max)/(max�min) -1 0

2



Under review as a conference paper at ICLR 2021

3 TRANSFORMATIONS

In many cases the application of a normalization procedure may be preceded by one or more types
of data transformations applied to the received numeric set. Examples of data transformations could
include basic mathematic operators like + - * /, log transforms, raising to a power, absolute values,
etc. In some cases the transformations may also be tailored to the properties of the train set, for
example with a Box-Cox power law transformation (Box & Cox, 1964).

In the Automunge library, the order of such sets of transformations, as may be applied to a distinct
source column, and in some cases which may include generations and branches of derivations, are
specified by way of transformation category entries to a set of “family tree” primitives [Table 3]
(Author, 2020) for a root transformation category, and where a transformation category entry may
be associated with one or more transformation functions intended for application to corresponding
train and/or test set feature columns, potentially including custom transformation functions which
may be defined with minimal requirements of simple data structures. Such root categories may be
pre-defined in the Automunge library of transformations or may be custom configured by a user in
entries to a “transformdict” data structure.

Table 3: Family Tree Primitives

Primitive Upstream /
Downstream

Applied to
Generation Column Action Downstream

Offspring

parents upstream first replace yes
siblings upstream first supplement yes
auntsuncles upstream first replace no
cousins upstream first supplement no
children downstream parents offspring replace yes
niecesnephews downstream siblings offspring supplement yes
coworkers downstream auntsuncles offspring replace no
friends downstream cousins offspring supplement no

The convention for transformation functions in the Automunge library is that any kind of function
accepts any kind of data, and in cases where an invalid entry is returned, for example when dividing
by zero or taking a square root of a negative number, such entry may serve as a target for missing
data infill, with infill methods that may be applied to a column from a library of infill options -
including “ML infill” in which random forest models (Breiman, 2001) are used to predict infill
based on properties of the train set. To facilitate the application of infill, transformation categories
used as root categories are specified with a classification for the types of data that will be considered
valid input, as for example may be non-negative numeric, non-zero numeric, integer numeric, etc.
These “NArowtype” classifications are populated in the same “processdict” data structure used to
assign transformation functions to a transformation category.

4 BINS AND GRAININGS

In most cases the transformations considered in the preceding section maintained full information
retention of the received data, such that with returned sets the form of the input data can be recovered
with an inversion operation (as is available in the Automunge library). For binning transformations,
there may instead be a type of coarse graining of the feature set to aggregate buckets of entries into a
categoric representation. Automunge offers a wide range of options for numeric binning [Table 4].
Bins may be aggregated to either supplement or replace received numeric sets.

For each binning operation, transformation category options are available to return the categoric
encoding as a one-hot encoding, ordinal integer encoding, or binary encoding in which distinct
categories may be represented by multiple simultaneous activations. This is partly motivated by
different conventions of various libraries for accepting input to an entity embedding layer (Guo &
Berkhahn, 2016) as may be applied to the returned categoric encoding in a downstream training
operation.

3



Under review as a conference paper at ICLR 2021

Table 4: Binning Transformation Category Options

Transform One-Hot Ordinal Binary Parameters

Number of standard deviations from the mean ‘bins’ ‘bsor’ ‘bsbn’ ‘bincount’
Powers of ten ‘pwrs’ ‘pwor’ ‘pwbn’ -
Powers of ten (with support for negative) ‘pwr2’ ‘por2’ ‘por3’ -
Fixed width bins ‘bnwd’ ‘bnwo’ ‘bnwb’ ‘width’
Equal population bins ‘bnep’ ‘bneo’ ‘bneb’ ‘bincount’
User specified bins (first/last unconstrained) ‘bkt1’ ‘bkt3’ ‘bkb3’ ‘buckets’
User specified bins (first/last bounded) ‘bkt2’ ‘bkt4’ ‘bkb4’ ‘buckets’

5 NOISE INJECTION

For most cases in the Automunge library, transformations applied to a train set feature set are applied
to the corresponding test set feature set using the same basis, such that if the same data is received
for both train and test sets, the same form will be returned (a useful point for validations). The noise
injection options are a little different in that such injections may be intended just for the train data
but not the corresponding test data.

The rationale behind noise injections were first to support differential privacy considerations (Dwork
et al., 2006). Other potential uses of noise injections could be to perturb the model training, facil-
itating diversity between models as may be beneficial in the aggregation of ensembles (Dietterich,
2000) or as a source of training data augmentation (Perez & Wang, 2017). The experiments detailed
below will suggest a material model performance benefit from data augmentation by noise injection
in cases of underserved training data, which we believe is a novel innovation for tabular learning.

The options available for noise injection are generally derived by way of aggregations of transfor-
mation category entries to family tree primitives, as noise injection may be applied downstream to
a normalization or categoric encoding. (The convention for transformation functions is that they
receive input of a single target column, so transformations performed downstream of a categoric
encoding should be fed an ordinal input.) The library includes distinct noise injection family tree
aggregations tailored to operation of several different types of received normalizations, as may rely
on a known range or scale of input, or applied preceding different types of categoric encodings.

Table 5: Numeric Noise Injections

Root
Category Normalization Noise Type Parameters

‘DPnb’ ‘nmbr’ Gaussian w/ Bernoulli ratio ‘mu’ / ‘sigma’ / ‘flip prob’
‘DPmm’ ‘mnmx’ scaled Gaussian w/ Bernoulli ratio ‘mu’ / ‘sigma’ / ‘flip prob’
‘DPrt’ ‘retn’ scaled Gaussian w/ Bernoulli ratio ‘mu’ / ‘sigma’ / ‘flip prob’

Table 6: Categoric Noise Injections

Root
Category Encoding Noise Type Parameters

‘DPbn’ ‘bnry’ (boolean) Bernoulli flip ‘flip prob’
‘DPod’ ‘ord3’ (ordinal) Bernoulli flip to random activation ‘flip prob’
‘DPoh’ ‘onht’ (one-hot) Bernoulli flip to random activation ‘flip prob’
‘DP10’ ‘1010’ (binary) Bernoulli flip to random activation set ‘flip prob’

Numeric noise injections [Table 5, Fig 1] are derived from a Gaussian source with configurable
parameters. For noise intended to sets with a fixed range of values such as DPmm, although the

4



Under review as a conference paper at ICLR 2021

Figure 1: ‘DPmm’ and ‘DPrt’ family trees

Figure 2: ‘DP10’ family trees

noise source as implemented is Gaussian, the application is capped from extreme outliers at half of
range (e.g. +/- 0.5) and based on whether an input entry is above or below the midpoint, positive
or negative noise respectively is scaled to ensure maintained original range in returned data based
on values of input entry. Parameters are also accepted to indicate what ratio of input will receive
injection. Similar options are available for Laplace distribution noise profiles.

To clarify how family tree primitives come into play, for the ‘DPmm’ root category in Fig 1, when
‘DPmm’ is applied as a root category to a source column with header ‘column’, the upstream primi-
tive entries are inspected, which include a parents entry of the ‘DPm2’ transformation category and a
cousins entry of the ‘NArw’ transformation category. For the ‘NArw’ upstream entry to the cousins
primitive, the ‘NArw’ transformation category is associated with a NArw transformation function
(a function aggregating boolean activations indicating presence of infill) per the processdict entry
associated with the ‘NArw’ root category, which transformation function returns the column ‘col-
umn NArw’ with the suffix appender ‘ NArw’ logging the transformation function applied. Because
cousins is a primitive without offspring no further generations are inspected in the ‘NArw’ family
tree downstream primitives. For the upstream parents primitive entry ‘DPm2’, the ‘DPm2’ process-
dict entry has a transformation function of mnmx (min-max scaling), which is applied and logged by
the ‘ mnmx’ suffix appender, and since parents is a primitive with offspring the downstream prim-
itives in the ‘DPm2’ family tree are inspected where a coworkers entry of ‘DPmm’ transformation
category is found which is associated with a DPmm transformation function (noise injection corre-
sponding to range 0-1) based on the ‘DPmm’ root category processdict entry. Because coworkers
is a replacement primitive the column configuration with header ‘column mnmx’ is not retained
for the returned set. The returned column originating from the DPmm transformation function has
header logging the two applied transformation functions as ‘column mnmx DPmm’. Please note
that column retention, as may be impacted by the application of downstream replacement primitive
entries, is signaled in these diagrams by the color coding between orange and blue, and applied
transformation functions are shaded as green. Transformation category entries of primitives that
are not inspected are left without shading. Also please note that the processdict entries here are an
abstraction for the set of corresponding transformation functions that may be directed to train and/or
test set feature sets.

5



Under review as a conference paper at ICLR 2021

The application of noise to categoric encodings [Table 6, Fig 2] is a little simpler, where a given ratio
of entries in a categoric feature set are flipped to one of the other activations, between which have a
uniform probability of replacement (including possibility of original entry retention). For the ‘DP10’
root category example shown in Fig 2, this is achieved by first applying an ordinal encoding by ord3
transformation function associated with a ‘DPo6’ transformation category entry to the parents up-
stream primitive of the ‘DP10’ root category, then a noise injection by the DPod transformation
function associated with a ‘DPo3’ transformation category to the downstream children primitive as-
sociated with the ‘DPo6’ root category (applied since parents is a primitive with offspring), followed
by a binary encoding by the 1010 transformation function associated with the ‘1010’ transforma-
tion category entry to the downstream coworkers primitive associated with the ‘DPo3’ root category
(applied since children is a primitive with offspring). Here the intermediate stages of derivations
associated with columns ‘column ord3’ and ‘column ord3 DPod’ are not retained in the returned
set since children and coworkers are replacement primitives.

6 SEQUENTIAL DATA

For numeric features in which the order of samples carry some significance, e.g. for time series
data, some additional options are available to extract structure from relationships between time
steps (these methods may benefit from a convention that time deltas between measurements are
at or nearly constant). The theory is that for sequential machine learning applications, as may make
use of recurrence, convolution, or attention mechanisms, there may be benefit to supplementing
feature streams with properties carried forward from prior time steps, where this type of operation
may be particularly beneficial when there is some known cyclic property inherent in the application,
e.g. for scheduled trading hours or quarterly reports.

Included in the Automunge library are sequential transforms to supplement sequential streams with
proxies for derivatives by returning deltas between an entry and some desired time step prior by way
of the ‘dxdt’ family of transforms [Fig 3]. Such application may be applied once as a proxy for
velocity, and may also be run multiple times upon that output as proxies for higher order derivatives.
A variant on this operation may, instead of taking point-wise deltas, return deltas between averages
of sets of points, which has the effect of smoothing or de-noising the data. The outputs of these
operations may each be normalized such as with the ‘retn’ normalization for sign retention.

Figure 3: ‘dxdt’ family trees

7 INTEGER SETS

Integer feature sets of unknown origin may present a particular challenge for automated encodings,
as these may be associated with a diverse set of interpretations, and may originate from continu-
ous variables, counters, discrete relational variables (e.g. small/medium/large), or possibly even an
ordinal categoric encoding (Stevens et al., 2020). The Automunge philosophy for these kind of am-
biguities is to simply redundantly encode in a manner suitable for each [Table 7, Fig 4], defering to
a training operation for determining relevancy.

6



Under review as a conference paper at ICLR 2021

Table 7: Integer Encoding Options

Transform Type Useful For

‘retn’ Retain normalization Continuous variables
‘pwr2’ Order of magnitude bins Continuous variables
‘ordl’ Ordinal Ordered categoric
‘1010’ Binary Discrete categoric
‘dxdt’ Sequential Cumulative sequential

‘ord3 mnmx’ Frequency sorted ordinal
followed by min-max Scaled metric for ranking entry frequency

Figure 4: ‘ntgr’ family trees

8 EXPERIMENTS

Some experiments were run to evaluate impact of various normalizations and transformations. The
Higgs data set (Baldi et al., 2014) was selected based on scale and predominantly numeric fea-
ture types. The Higgs application is tabular data for binary classification sourced from high energy
physics domain to evaluate subatomic particle interactions to distinguish between background noise
and traces of Higgs boson interactions. The origin paper noted some details of architectures (5
layers with 300 nodes in each) that served as basis for the experiments, and we used a 0.6M size
validation set out of the 8.8M samples. A departure was made from the origin paper in use of a
phased learning rate with the fastai (Howard & Gugger, 2020) “fit one cycle” learner for tabular
data, partly for convenience along with time and resource constraints. Since the interest was primar-
ily to evaluate relative performance between different preprocessing methods, no significant attempt
was made to train models to maximum performance or to venture beyond double descent, instead the
primary tuning aspect was selecting an epoch depth beyond which additional did not have improved
validation metrics. The experiments were repeated with different size subsets of the training data,
including full data set, 5% samples, and 0.25% samples to represent scenarios with underserved
training data. Learning rates deferred to the fastai default finder, and the evaluation metric was se-
lected as area under the receiver operating characteristic curve (ROC AUC) to be consistent with the
origin demonstration.

The experiments applied Automunge to preprocess the feature sets, in each case applying uniform
transformation types between features although with basis fit to properties of each respective col-
umn, and with missing data infill by way of the Automunge adjacent cell infill option. The types of
transformations were selected to demonstrate impact of a few representative variants noted in this
writeup, and included a base scenario with no feature scaling applied (just raw numeric data), along
with a scenario for z-score normalization, retain normalization, retain normalization supplemented
by standard deviation bins, two scenarios of retain normalization with noise injection (with noise
injected to all entries or to 3% of entries in each feature), and finally a data augmentation with re-
tain normalized data supplemented by doubling the number of samples to include retain with partial

7



Under review as a conference paper at ICLR 2021

Table 8: Higgs Data Normalization Scenarios (AUC metric // compared to raw data)

Raw Data Z-Score Retain Retain
with Bins

Retain w/
Noise
full

Retain w/
Noise
partial

Retain w/
Augment

full data
42 epochs

0.8670
-

0.8668
(0.0002)

0.8667
(0.0003)

0.8660
(0.0010)

0.8268
(0.0402)

0.8624
(0.0046)

0.8667
(0.0003)

5% data
14 epochs

0.8436
-

0.8432
(0.0004)

0.8431
(0.0005)

0.8433
(0.0003)

0.7679
(0.0757)

0.8388
(0.0048)

0.8453
0.0017

0.25% data
3 epochs

0.7715
-

0.7716
0.0001

0.7716
0.0001

0.7718
0.0003

0.7052
(0.0663)

0.7668
(0.0047)

0.7821
0.0106

noise injection. Both of the noise injections applied Gaussian noise with standard deviation of 0.03
and with scaling to maintain the fixed range of the received data.

The findings of the experiments are summarized in Table 8 by way of reporting the final validation
set metrics and performance delta from the raw data scenario. The AUC metric shown compares to
the origin paper’s reported 88%, which was based on a reported 200-1,000 epochs compared to this
experiment’s 3-42 so there is some dissimilarity in results, which can also partly be attributed to the
phased learning rate schedule applied by fastai. The AUC metrics shown are averages of repetition
counts detailed in Appendix G.

The scenarios for raw data, z-score, and retain normalization achieved similar results. Part of the
impact of supplementing the normalized data with standard deviation bins was a small increase
of training time. As expected the noise injection had a dampening effect on the model accuracy,
although the partial injection had only a small penalty in comparison to the retain normalization
without injection. Data augmentation improved the results, sufficiently to draw the conclusion of
material benefit for scenarios with underserved training data. We believe the realization of a novel
generalized solution to data augmentation by noise injection for tabular learning is a significant
finding.

The experiment with the full data set was repeated to demonstrate impact to a linear model:

Table 9: Higgs Data Normalization Scenarios (Support Vector Classifier with Linear kernel)

Raw Data Z-Score Retain Retain
with Bins

Retain w/
Noise
full

Retain w/
Noise
partial

Retain w/
Augment

partial

Accuracy 0.6410
-

0.6410
-

0.6410
-

0.6821
0.0411

0.6201
(0.0209)

0.6393
(0.0018)

0.6402
(0.0008)

9 DISCUSSION

I would offer first that any consideration around benefits of feature engineering should distinguish
first by scale of data available for training. When approaching big data scale input with infinite
computational resources there may be less of a case to be made for much beyond basic normalized
input. The nuance comes into play when we are targeting applications with real world constraints.
Although deep over-parameterized models may still be applied to target applications with under-
represented data (Olson et al., 2018), such methods carry overheads. It is one of the premises of

8



Under review as a conference paper at ICLR 2021

the Automunge library that supplementing our data streams with redundant features in multiple
configurations may lower the bar to efficient extraction of inter-variable relationships.

My experience is that the machine learning community has by large become somewhat dismissive
of any kind of feature engineering, I expect partly owed to such works as Deep Learning (Goodfel-
low et al., 2016) which offers that deep learning has supplanted the need for such effort. I would
offer in retort that there are different kinds of feature engineering to consider. Those methods as
may apply explorations and optimizations between inter-variable relationships I agree are largely
redundant of what may be efficiently derived through backpropagation and this is part of the reason
why Automunge hasn’t ventured into this territory. But the types of data manipulations as may be
used to supplement numeric features with multiple configurations are computationally efficient, and
need not require sophisticated optimizations to apply. The primary cost of such supplements are the
memory overheads as the data set size is expanded.

Further, variations on feature composition, such as by variations in information content and varia-
tions on injected noise, may serve as a useful source of model perturbations in ensemble assemblies.
Noise injection may be of benefit for anonymizing sensitive data for purposes of differential pri-
vacy, and may also serve as a source of training data augmentation, similar to how for convolutional
networks training data images may be duplicated with artificial variations (Perez & Wang, 2017).

I’ll close by noting an interesting paper I saw at NeurIPS last year, “SGD on Neural Networks Learn
Functions of Increasing Complexity” by Nakkiran et al. (2019), in which the authors found that SGD
behaves as a linear model in early epochs, and importantly that characteristics of such linear models
are retained even in the later stages of training. Put differently, any steps that may be made to ensure
that our models may efficiently extract properties even in early stages, before deep learning can do
its magic, are not immaterial to the final performance.

Table 10: Summary of Use Cases

Desciption Examples Use Cases

Z-Score Normalization nmbr general use, when distribution is unknown

Min-Max Scaling mnmx when a fixed range is desired, e.g. nonnegative

Retain Normalization retn when interpretability is desired, sign retention

Bins and Grainings
bins,
pwrs,
bnep

to aggregate sets into buckets, such as to sup-
plement normalized data, helpful with linear
models

Noise Injection

DPnb,
DPmm,
DPrt,
DPod,
DP10

useful for data set augmentation, especially
with underserved training data, also for differ-
ential privacy

Sequential dxdt, d2dt,
d3dt

useful for time-series data, supplements nor-
malized sets with proxies for derivatives

Integer Sets ntgr, ntg2,
ntg3

to redundantly encode integer sets of unknown
interpretation

9



Under review as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

A thank you is owed to Alice Zheng and Amanda Casari whose 2018 book “Feature Engineering
for Machine Learning” served as a helpful reference as I began to explore the practice of feature en-
gineering. Thanks to Stack Overflow, Python, PyPI, GitHub, Colaboratory, Anaconda, and Jupyter.
Special thanks to Scikit-Learn, Numpy, Scipy Stats, and Pandas.

REFERENCES

Author. String theory: Parsed categoric encodings with automunge, 2020.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-
energy physics with deep learning. Nature Communications, 5(1):4308, 2014. doi: 10.1038/
ncomms5308. URL https://doi.org/10.1038/ncomms5308.

George E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statis-
tical Society: Series B (Methodological), 26(2):211–243, 1964. doi: https://doi.org/10.1111/j.
2517-6161.1964.tb00553.x.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi: 10.1023/A:
1010933404324. URL https://doi.org/10.1023/A:1010933404324.

Thomas G. Dietterich. Ensemble methods in machine learning. Multiple Classifier Systems.
MCS 2000. Lecture Notes in Computer Science, 1857, 2000. doi: https://doi.org/10.1007/
3-540-45014-9 1.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. TCC’06: Proceedings of the Third conference on Theory of Cryptography,
17:265–284, 2006. doi: https://doi.org/10.1007/11681878 14.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep Learning. MIT Press,
2016.

Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables. ArXiv preprint
1604.06737, 2016.

Jeremy Howard and Sylvian Gugger. Deep Learning for Coders with fastai and PyTorch. O’Reilly
Media, 2020.

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L. Edelman, Fred
Zhang, and Boaz Barak. Sgd on neural networks learns functions of increasing complexity. In
NeurIPS, 2019.

Andrew Ng. Machine Learning, 2011. URL https://www.coursera.org/learn/
machine-learning.

Matthew Olson, Abraham J. Wyner, and Richard Berk. Modern neural networks generalize on small
data sets. In NeurIPS, 2018.

Luis Perez and Jason Wang. The Effectiveness of Data Augmentation in Image Classification using
Deep Learning. arXiv e-prints, art. arXiv:1712.04621, December 2017.

Eli Stevens, Luca Antiga, and Thomas Viehmann. Deep Learning with PyTorch. Manning, 2020.

10



Under review as a conference paper at ICLR 2021

APPENDIX

A FUNCTION CALL DEMONSTRATIONS

Automunge is available for pip install:

pip install Automunge

Or to upgrade (we currently roll out upgrades fairly frequently):

pip install Automunge --upgrade

Once installed, run this in local session to initialize:

from Automunge import Automunger
am = Automunger.AutoMunge()

Then, assuming we want to prepare a train set df train for ML, can apply default parameters as:

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels, \
labelsencoding_dict, finalcolumns_train, finalcolumns_test, \
featureimportance, postprocess_dict = \
am.automunge(df_train)

Note that if our df train set included a labels column, we should designate the column header with
the labels column parameter. Or likewise we can designate any ID columns with the trainID column
parameter.

The returned postprocess dict should be saved such as with pickle.

We can then consistently prepare subsequent test data df test in postmunge(.):

test, testID, testlabels, \
labelsencoding_dict, postreports_dict \
= am.postmunge(postprocess_dict, df_test)

I find it helps to just copy and paste the full range of parameters for reference:

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels, \
labelsencoding_dict, finalcolumns_train, finalcolumns_test, \
featureimportance, postprocess_dict = \
am.automunge(df_train, df_test=False, labels_column=False,
trainID_column=False, testID_column=False, valpercent1=.0,
valpercent2=.0, floatprecision=32, shuffletrain=True,
TrainLabelFreqLevel=False, powertransform=False,
binstransform=False, MLinfill=False, infilliterate=1,
randomseed=42, eval_ratio=.5, LabelSmoothing_train=False,
LabelSmoothing_test=False, LabelSmoothing_val=False, LSfit=False,
numbercategoryheuristic=63, pandasoutput=False,
NArw_marker=False, featureselection=False, featurepct=1.0,
featuremetric=0.0, featuremethod='default', Binary=False,
PCAn_components=False, PCAexcl=[], excl_suffix=False,
ML_cmnd = {'MLinfill_type':'default',

'MLinfill_cmnd':{'RandomForestClassifier':{},

11



Under review as a conference paper at ICLR 2021

'RandomForestRegressor':{}},
'PCA_type':'default', 'PCA_cmnd':{}},

assigncat = {
'nmbr':[], 'retn':[], 'mnmx':[], 'mean':[], 'MAD3':[], 'lgnm':[],
'bins':[], 'bsor':[], 'pwrs':[], 'pwr2':[], 'por2':[], 'bxcx':[],
'addd':[], 'sbtr':[], 'mltp':[], 'divd':[],
'log0':[], 'log1':[], 'logn':[], 'sqrt':[], 'rais':[], 'absl':[],
'bnwd':[], 'bnwK':[], 'bnwM':[], 'bnwo':[], 'bnKo':[], 'bnMo':[],
'bnep':[], 'bne7':[], 'bne9':[], 'bneo':[], 'bn7o':[], 'bn9o':[],
'bkt1':[], 'bkt2':[], 'bkt3':[], 'bkt4':[],
'nbr2':[], 'nbr3':[], 'MADn':[], 'MAD2':[], 'tlbn':[],
'mnm2':[], 'mnm3':[], 'mnm4':[], 'mnm5':[], 'mnm6':[],
'ntgr':[], 'ntg2':[], 'ntg3':[], 'mea2':[], 'mea3':[], 'bxc2':[],
'dxdt':[], 'd2dt':[], 'd3dt':[], 'dxd2':[], 'd2d2':[], 'd3d2':[],
'nmdx':[], 'nmd2':[], 'nmd3':[], 'mmdx':[], 'mmd2':[], 'mmd3':[],
'shft':[], 'shf2':[], 'shf3':[], 'shf4':[], 'shf7':[], 'shf8':[],
'bnry':[], 'onht':[], 'text':[], 'txt2':[], '1010':[], 'or10':[],
'ordl':[], 'ord2':[], 'ord3':[], 'ord4':[], 'om10':[], 'mmor':[],
'Unht':[], 'Utxt':[], 'Utx2':[], 'Uor3':[], 'Uor6':[], 'U101':[],
'splt':[], 'spl2':[], 'spl5':[], 'sp15':[], 'sp19':[], 'sbst':[],
'spl8':[], 'spl9':[], 'sp10':[], 'sp16':[], 'sp20':[], 'sbs2':[],
'srch':[], 'src2':[], 'src4':[], 'strn':[], 'lngt':[], 'aggt':[],
'nmrc':[], 'nmr2':[], 'nmcm':[], 'nmc2':[], 'nmEU':[], 'nmE2':[],
'nmr7':[], 'nmr8':[], 'nmc7':[], 'nmc8':[], 'nmE7':[], 'nmE8':[],
'ors2':[], 'ors5':[], 'ors6':[], 'ors7':[], 'ucct':[], 'Ucct':[],
'or15':[], 'or17':[], 'or19':[], 'or20':[], 'or21':[], 'or22':[],
'date':[], 'dat2':[], 'dat6':[], 'wkdy':[], 'bshr':[], 'hldy':[],
'wkds':[], 'wkdo':[], 'mnts':[], 'mnto':[],
'yea2':[], 'mnt2':[], 'mnt6':[], 'day2':[], 'day5':[],
'hrs2':[], 'hrs4':[], 'min2':[], 'min4':[], 'scn2':[], 'DPrt':[],
'DPnb':[], 'DPmm':[], 'DPbn':[], 'DPod':[], 'DP10':[], 'DPoh':[],
'excl':[], 'exc2':[], 'exc3':[], 'exc4':[], 'exc5':[], 'exc6':[],
'null':[], 'copy':[], 'shfl':[], 'eval':[], 'ptfm':[]},
assignparam = {'default_assignparam' :

{'(category)' : {'(parameter)' : 42}},
'(category)' : {'(column)' : {'(parameter)' : 42}}},

assigninfill = {'stdrdinfill':[], 'MLinfill':[],
'zeroinfill':[], 'oneinfill':[],
'adjinfill':[], 'meaninfill':[], 'medianinfill':[],
'modeinfill':[], 'lcinfill':[], 'naninfill':[]},

assignnan = {'categories':{}, 'columns':{}, 'global':[]},
transformdict={}, processdict={}, evalcat=False,
privacy_encode = False, printstatus=True)

Or for postmunge(.) with full range of parameters:

test, testID, testlabels, \
labelsencoding_dict, postreports_dict = \
am.postmunge(postprocess_dict, df_test,
testID_column = False, labelscolumn = False,
pandasoutput = False, printstatus = True,
TrainLabelFreqLevel = False, featureeval = False,
driftreport = False,
LabelSmoothing = False, LSfit = False, inversion = False,
traindata = False,
returnedsets = True, shuffletrain = False)

12



Under review as a conference paper at ICLR 2021

B ASSIGNING TRANSFORMS AND INFILL

Assigning root categories is conducted in assigncat parameter and assigning infill in assigninfill - e.g.
for a train set df train with column headers ‘col1’ and ‘col2’ we could assign retain normalization
(retn) and an integer encoding set (ntgr) with infill types zero infill and ML infill.

Note any columns we don’t explicitly assign will defer to automation or we could turn off auto-
mated defaults for pass-through of other columns by passing automunge parameter powertransform
= ‘excl’.

assigncat = {'retn':['col1'], 'ntgr':['col2']}
assigninfill = {'zeroinfill':['col1'], 'MLinfill':['col2']}

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels,\
labelsencoding_dict, finalcolumns_train, finalcolumns_test,\
featureimportance, postprocess_dict \
= am.automunge(df_train,
assigncat = assigncat,
assigninfill = assigninfill,
pandasoutput = True)

13



Under review as a conference paper at ICLR 2021

C CUSTOM FAMILY TREES

Custom defined family trees of transformations can be passed to a function call by way of the
transformdict and processdict parameters. The transformdict parameter is used to populate a family
tree, and the processdict parameter is to populate a supporting data structure for a new transformation
categories.

Let’s demonstrate a scenario to assemble a transformation set in which a normalization is supple-
mented by two types of bin aggregation. We’ll create a new root category ‘newt’ and populate with
transformations pre-defined in the library. Here we’ll apply an upstream retain normalization and
power of ten bins, and a standard deviation bins downstream of the retain normalization. We’ll also
include a NArw transformation which designates markers for entries that were subject to infill based
on values of the source column.

transformdict = {'newt' : {'parents' : ['newt'],
'siblings' : [],
'auntsuncles' : ['pwr2'],
'cousins' : ['NArw'],
'children' : [],
'niecesnephews' : [],
'coworkers' : [],
'friends' : ['bins']}}

The corresponding processdict will make use of transformation functions defined in the library for
the ‘retn’ (retain) normalization. Here NArowtype designates the types of entries from the source
column that will be targets for infill, MLinfilltype designates the types of predictive models to be
trained for ML infill, and labelctgy is a support entry for feature importance for cases where a label
in returned in multiple configurations.

processdict = {'newt' : {'functionpointer' : 'retn',
'NArowtype' : 'numeric',
'MLinfilltype' : 'numeric',
'labelctgy' : 'newt'}}

We can then pass these populated structures to a function call and assign a column with header
‘col1’ to the newly defined root category ‘newt’. If we want we can also apply ML infill even on
this custom defined transformation set.

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels, \
labelsencoding_dict, finalcolumns_train, finalcolumns_test, \
featureimportance, postprocess_dict \
= am.automunge(df_train,
assigncat = {'newt':['col1']},
assigninfill = {'MLinfill':['col1']},
transformdict = transformdict, processdict = processdict,
pandasoutput=True)

When it comes time to process additional data, all of these customizations will be saved in the
returned postprocess dict, which we can then pass to the postmunge(.) function for consistent pro-
cessing of a test data set.

test, testID, testlabels, \
labelsencoding_dict, postreports_dict = \
am.postmunge(postprocess_dict, df_test, pandasoutput=True)

14



Under review as a conference paper at ICLR 2021

D DATA AUGMENTATION

The recommended workflow for applying training data augmentation is to assign any desired target
columns to DP transforms in assigncat in an automunge(.) call, passing any parameters to assign-
param to deviate on default noise distributions if desired, and then process the same set again in
postmunge(.) without noise injection, concatenating the two results.

For the example of a received train set df train with column headers of numeric sets ‘number1’,
‘number2’ and column headers of categoric sets ‘categoric1’, ‘categoric2’, we can elect to apply
noise injections to these columns by assigning DP transforms in assigncat.

assigncat = \
{'DPrt':['number1', 'number2'],
'DP10':['categoric1', 'categoric2']}

The noise injection transforms have default entries noted in READ ME for noise ratios and dis-
tribution parameters. If we want to overwrite for the transformation category globally can apply
assignparam with a default assignparam entry.

assignparam = \
{'default_assignparam' :

{'DPrt' : {'sigma' : 0.05, 'flip_prob' : 0.5},
'DP10' : {'flip_prob' : 0.5}
}

}

Or we can overwrite for a specific column, here we demonstrate applying scaled Laplace distributed
noise instead of Gaussian to the ‘DPrt’ transform application to column ‘number2’.

assignparam.update(
{'DPrt' : {'number2' : {'noisedistribution' : 'laplace'}}}

)

We can then process our train set in automunge(.) with noise injection. Here passing the parameter
labels column = True signals that the final column is to be returned in the labels set.

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels, \
labelsencoding_dict, finalcolumns_train, finalcolumns_test, \
featureimportance, postprocess_dict \
= am.automunge(df_train,

labels_column = True,
assigncat = assigncat,
assignparam = assignparam,
pandasoutput = True,
printstatus = False)

The convention for noise injection transforms in the DP family is that noise is injected to train sets
by default and not to test sets unless signaled by the traindata parameter in postmunge(.). Test sets
passed to automunge(.) do not receive injections.

Once the training data set has been processed with noise, the same data set can be processed again
in the postmunge(.) function and concatenated, using the postprocess dict dictionary returned from
the corresponding automunge(.) call. The postmunge accepts a parameter traindata which signals
to the DP whether to inject noise in postmunge(.). traindata is a Boolean defaulting to False for no
noise injection. When set as True postmunge(.) will inject noise. Note that each application will
inject a unique randomization of noise that is independent of the randomseed parameter although
consistent with any distribution parameters.

15



Under review as a conference paper at ICLR 2021

test, testID, testlabels, \
labelsencoding_dict, postreports_dict = \
am.postmunge(postprocess_dict, df_train,

pandasoutput = True,
traindata = False,
printstatus = False)

We can then concatenate the results for the train data, ID sets, and label sets to double the number
of samples to include a set with and without noise.

train = pd.concat([train, test], axis=0, ignore_index=True)
trainID = pd.concat([trainID, testID], axis=0, ignore_index=True)
labels = pd.concat([labels,testlabels], axis=0, ignore_index=True)

Although in regular use the automunge(.) function is intended as a resource to apply a train test
split based on the valpercent1 and valpercent2 parameters, with data augmentation we recommend
extracting validation entries prior to passing a df train so that the same df train can be redundantly
encoded with or without noise in adjacent calls. The extracted validation set can be processed
separately in postmunge(.) or can be passed as a df test to automunge(.).

Note that while our experiments only doubled the number of samples to include a set with and with-
out noise injection, further multiples of noise injected samples may also be applied by processing
in postmunge(.) with traindata=True. The noise distribution properties will be consistent with any
parameters passed in the corresponding automunge(.) call. In our experiments we found that too
much redundancy had potential to interfere with training convergence.

In an alternate workflow, when only a doubling of the number of samples is desired, the processing
can all be performed in a single automunge(.) call by passing the same df train set as both the train
and test sets as follows:

train, trainID, labels, \
validation1, validationID1, validationlabels1, \
validation2, validationID2, validationlabels2, \
test, testID, testlabels, \
labelsencoding_dict, finalcolumns_train, finalcolumns_test, \
featureimportance, postprocess_dict \
= am.automunge(df_train,

df_test = df_train,
labels_column = True,
assigncat = assigncat,
assignparam = assignparam,
pandasoutput = True,
printstatus = False)

train = pd.concat([train, test], axis=0, ignore_index=True)
trainID = pd.concat([trainID, testID], axis=0, ignore_index=True)
labels = pd.concat([labels,testlabels], axis=0, ignore_index=True)

16



Under review as a conference paper at ICLR 2021

E COLUMN TYPES OF RETURNED DATA

The data returned from an automunge(.) call is intended to be suitable for direct application of
machine learning in the framework of a user’s choice. In some cases, downstream machine learning
libraries may accept as input designations for the types of data found in a column, such as for
instance if a column contains a numeric or categoric set. These type of designations may be used
for determination of whether to apply an entity embedding layer for instance.

The automunge(.) function thus returns a report of data types for returned columns, available in the
returned dictionary as postprocess dict[‘columntype report’].

The report lists column headers of the retuned columns, aggregated by different types of column
contents. Specifically, it lists column headers for column content types:

• continuous
• boolean
• ordinal
• onehot
• onehot sets
• binary
• binary sets
• passthrough

Here the onehot aggregation contains all one-hot encoded columns, while the onehot sets sub-
aggregates those same columns for those that originated from the same transformation, and similarly
with the binary and binary sets aggregations.

17



Under review as a conference paper at ICLR 2021

F INVERSION

The Automunge library includes an inversion option to recover the form of data as prior to trans-
formations. This type of operation might be useful for instance in converting ML predictions back
to the original form of labels, or otherwise for recovering data to invert transformations. The in-
version operation is performed in the postmunge(.) function by activating the inversion parameter.
The method relies on data properties stored in the postprocess dict which was returned from the
corresponding automunge(.) call. For cases where a source column is included in multiple configu-
rations, the inversion operation relies on a heuristic of selecting the shortest path of transformations
with full information retention.

As an example of an inversion operation, if we want to recover the form of labels after a ML predic-
tion process, we can pass those predictions as a dataframe or array as:

df_invert, recovered_list, inversion_info_dict = \
am.postmunge(postprocess_dict, predictions, inversion='labels',

LabelSmoothing=False, pandasoutput=True, printstatus=True)

Similarly, if we want to recover the form of a training or test dataset for transformation inversions,
we can pass as:

df_invert, recovered_list, inversion_info_dict = \
am.postmunge(postprocess_dict, train, inversion='test',

pandasoutput=True, printstatus=True)

18



Under review as a conference paper at ICLR 2021

G EXPERIMENT DETAILS

Further details on the experiments are provided to demonstrate statistical significance. The Tables 8
and 9 reported averages of performance metrics with comparison to the raw data scenario. Here ad-
ditional detail is provided including standard deviation of the metrics and sampled repetition count
serving as the basis. We suspect a large contributor to the variance originates from the stochastic
sampling of data set partitions in the experiments, as would explain the increasing standard devia-
tions with smaller training set size.

Table 11: Higgs Experiment Details (AUC Average // Standard Deviation // Repetitions)

Raw Data Z-Score Retain Retain
with Bins

Retain w/
Noise
full

Retain w/
Noise
partial

Retain w/
Augment

full data
St Dev

Repetitions

0.8670
0.0002

6

0.8668
0.0004

6

0.8667
0.0005

6

0.8660
0.0013

6

0.8268
0.0007

5

0.8624
0.0007

5

0.8667
0.0015

6

5% data
St Dev

Repetitions

0.8436
0.0011

30

0.8432
0.0011

30

0.8431
0.0016

30

0.8433
0.0014

30

0.7679
0.0016

30

0.8388
0.0011

30

0.8453
0.0006

30

0.25% data
St Dev

Repetitions

0.7715
0.0024

100

0.7716
0.0025

100

0.7716
0.0026

100

0.7718
0.0029

100

0.7052
0.0034

100

0.7668
0.0025

100

0.7821
0.0020

100

Table 12: Higgs SVC Experiment Details (Accuracy Average // Standard Deviation // Repetitions)

Raw Data Z-Score Retain Retain
with Bins

Retain w/
Noise
full

Retain w/
Noise
partial

Retain w/
Augment

partial

Accuracy
St Dev

Repetitions

0.6410
0.0003

6

0.6410
0.0003

6

0.6410
0.0003

6

0.6821
0.0005

6

0.6201
0.0006

6

0.6393
0.0003

6

0.6402
0.0003

6

19



Under review as a conference paper at ICLR 2021

H A FEW HELPFUL HINTS

A few highlights that might make things easier for first-timers:

1) automunge(.) returns sets as numpy arrays by default (for universal compatibility with ML plat-
forms). A user can instead receive the returned sets as pandas dataframes by passing the parameter
pandasoutput = True

2) Even if the sets are returned as numpy arrays, you can still inspect the returned column headers
with the returned list we demonstrate as finalcolumns train

3) Printouts are turned on by default, they can be turned off with printstatus=False

4) Note for data sets with just a few rows, such as those demonstrated here, there is a PCA heuristic
to apply dimensionality reduction when the number of features is more than 50% of the number of
observations in the train set (this is a somewhat arbitrary heuristic). This can be turned off with
ML cmnd = {‘PCA type’:‘off’}.

5) Speaking of PCA, if you do want to apply PCA, a useful option allows you to exclude
from dimensionality reduction boolean or ordinal encoded columns, available with ML cmnd =
{‘PCA cmnd’:{‘bool ordl PCAexcl’:True}}.

6) Note that data shuffling is on by default for the train set and off by default for the test sets returned
from automunge(.) and postmunge(.). If you want to shuffle the test data in automunge too you can
pass shuffletrain = ‘traintest’. Or to shuffle the test data returned from postmunge you can pass the
postmunge parameter shuffletrain = True.

7) The automated feature importance evaluation is easy to use, you just need to be sure to designate
a label column with labels column = ‘column header’. Then just pass featureselection = True and
printouts will return results as well as the returned report featureimportance

8) To ensure that you can later prepare additional data for inference, please be sure to save the
returned postprocess dict such as with pickle library.

9) Importantly, when you pass a train set to automunge(.) please designate any included labels
column with labels column = (label column header string), which may be an integer index for numpy
arrays. When you go to process additional data in postmunge, the columns must have consistent
headers as those originally passed to automunge. Or if you originally passed numpy arrays, just
be sure that the columns are in the right order. If you’re passing postmunge(.) data that includes a
column originally designated as a label to automunge, just apply labelscolumn = True.

10) Speaking of numpy arrays, if you pass numpy arrays instead of pandas dataframes to the func-
tion, all of the column assignments will accept integers for the column number.

11) When applying ML infill, which is based on Scikit-Learn Random Forest implementations,
a useful ML cmnd if you don’t mind a little more training time is to increase the number of es-
timators as e.g. ML cmnd = {‘MLinfill cmnd’:{‘RandomForestClassifier’:{‘n estimators’:1000},
‘RandomForestRegressor’:{‘n estimators’:1000}}}
12) Note that any columns you want to exclude from processing, you can either assign them to root
category ‘excl’ in assigncat if you don’t mind their retention (noting that they will still be included in
ML infill so will need numerical encoding), or you can carve them out from the set to be returned in
ID sets consistently shuffled and partitioned such as between training and validation data, just pass a
list of column headers to trainID column and/or testID column. You can also turn off the automated
transforms and only perform those designated in assigncat by passing powertransform=‘excl’

I INTELLECTUAL PROPERTY DISCLAIMER

Automunge is released under GNU General Public License v3.0. Full license details available on
(anonymized). Contact available via (anonymized). Copyright (C) 2020 - All Rights Reserved.
Patent Pending, applications (anonymized)

20


