
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Cross-Space Adaptive Filter: Integrating Graph Topology and
Node Attributes for Alleviating the Over-smoothing Problem

Anonymous Author(s)
∗

ABSTRACT
The vanilla Graph Convolutional Network (GCN) uses a low-pass

filter to extract low-frequency signals from graph topology, which

may lead to the over-smoothing problem when GCN goes deep. To

this end, various methods have been proposed to create an adaptive

filter by incorporating an extra filter (e.g., a high-pass filter) ex-

tracted from the graph topology. However, these methods heavily

rely on topological information and ignore the node attribute space,

which severely sacrifices the expressive power of the deep GCNs,

especially when dealing with disassortative graphs. In this paper,

we propose a cross-space adaptive filter, called CSF, to produce the

adaptive-frequency information extracted from both the topology

and attribute spaces. Specifically, we first derive a tailored attribute-

based high-pass filter that can be interpreted theoretically as a

minimizer for semi-supervised kernel ridge regression. Then, we

cast the topology-based low-pass filter as a Mercer’s kernel within

the context of GCNs. This serves as a foundation for combining it

with the attribute-based filter to capture the adaptive-frequency

information. Finally, we derive the cross-space filter via an effective

multiple-kernel learning strategy, which unifies the attribute-based

high-pass filter and the topology-based low-pass filter. This helps

to address the over-smoothing problem while maintaining effec-

tiveness. Extensive experiments demonstrate that CSF not only

successfully alleviates the over-smoothing problem but also pro-

motes the effectiveness of the node classification task.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have proven to be effective in learn-

ing representations of network-structured data and have achieved

great success in various real-world web applications, such as cita-

tion networks [21, 34] and actor co-occurrence network [38]. As

one of the mainstream research lines of GNNs, spectral-based meth-

ods have attracted much attention due to their strong mathemati-

cal foundation. Typically, these methods build upon graph signal

processing and define the convolution operation using the graph

Fourier transform. Recent studies suggest that superior perfor-

mance can be achieved when jointly characterizing graph topology

and node attributes [45, 47]. This is because node attributes contain

rich information, such as the correlation among node attributes,

which complements the information from graph topology.

As the seminal work of spectral-based GNNs, the Graph Con-

volutional Network (GCN) has been widely explored. Informally,

GCN is a multi-layer feed-forward neural network that propagates

node representations across an undirected graph. During the con-

volution operation, each node updates its representation by aggre-

gating representations from its connected neighborhood. Although

the effectiveness of GCN, it, unfortunately, suffers from the over-
smoothing problem [32, 50], where node representations become

indistinguishable and converge towards the same constant value

as the number of layers increases. This is because the convolution

operation in a GCN layer is governed by a low-pass spectral fil-

ter, which causes connected nodes in the graph to share similar

representations [1, 42]. Previous studies show that this low-pass

filter corresponds to the eigensystem of the graph Laplacian and

penalizes large eigenvalues in its eigen-expansion. This helps to re-

move un-smooth signals from the graph and ensures that connected

nodes tend to share similar representations [35]. However, as the

number of layers increases, the over-smoothing problem occurs. To

address this issue, researchers have been striving to move beyond

the low-pass filter and create an adaptive spectral filter [6]. This

is achieved by learning an additional matrix-valued function on

the eigenvalues of the graph Laplacian that produces an all-pass

[19] or high-pass filter [2, 10]. These new filters are then integrated

with the low-pass filter to yield the adaptive one. By this means, the

adaptive filter incorporates adaptive frequency information rather

than relying exclusively on low-pass frequency information.

However, existing adaptive filters only focus on the graph topol-

ogy space but largely ignore the node attribute space, which se-

verely sacrifices the expressive power of the deep GCNs, especially

when the node’s label is primarily determined by its own attributes

rather than the topology. For example, when it comes to proteins,

different types of amino acids often interact chemically with each

other. Similarly, in actor co-occurrence networks, actor collabo-

ration often occurs among different types of actors. In this case,

instead of relying solely on the graph topology to determine which

nodes should not have similar representations, considering the
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correlation between node attributes can provide valuable prior

knowledge on the dissimilarity between nodes. When ignoring the

node attributes, previous studies show that the correlations of the

learned node representations are potentially inconsistent with those

of the raw node attributes [46, 48], In this case, the original node

attributes are washed away, which leads to decreased performance

[18]. This is particularly true when dealing with disassortative

graphs [51] where neighboring nodes have dissimilar attributes or

labels. Therefore, it is important to integrate both graph topology

and node attribute spaces to alleviate the over-smoothing problem

while at the same time promoting the effectiveness of downstream

tasks. However, despite the recognition of its importance [32], fur-

ther research efforts are required to fully realize it.

To this end, we propose a novel Cross-Space Filter (CSF, for

short), an adaptive filter that integrates the adaptive-frequency

information across both topology and node attribute spaces. In ad-

dition to the conventional low-pass filter extracted from the graph

topology space, we first leverage the correlations of node attributes

to extract a high-pass filter. Unlike other high-pass filters that are

usually designed arbitrarily without model interpretation [2, 19],

our high-pass filter, arising from a Mercer’s kernel, is interpreted

as a minimizer for semi-supervised kernel ridge regression. This

brings more model transparency for humans to understand what

knowledge the GCN extracts to make the specific filter. Then, to

tackle the challenge of merging information from two separate

spaces, we resort to the graph kernel theory [36] to cast the con-

ventional low-pass filter of GCN into a kernel, unifying the two

filters in Reproducing Kernel Hilbert Space (RKHS). This allows us

to utilize the benefits of two spaces simultaneously. Subsequently,

the proposed adaptive filter CSF is obtained by applying a simple

multiple-kernel learning technique to fuse the information in both

the topology and attribute spaces. As such, we successfully take

advantage of both graph topology and node attribute spaces from

the perspective of Mercer’s kernel. Consequently, our CSF alleviates

the over-smoothing problem while at the same time promoting the

effectiveness of deep GCNs, especially on disassortative graphs.

This provides insight into revisiting the role of node attributes and

kernels in alleviating the over-smoothing problem.

To evaluate the effectiveness of CSF, we conduct comparative ex-

periments with various baselines under different numbers of convo-

lution layers. These experiments are conducted on both assortative

and disassortative graphs to verify the superiority of CSF on differ-

ent types of graphs. Compared to baselines, the results demonstrate

that CSF not only successfully alleviates the over-smoothing prob-

lem by extracting and integrating information from both spaces

but also improves the model performance on the downstream clas-

sification tasks, especially when dealing with disassortative graphs.

In particular, on average, our CSF outperforms the best baseline by

+0.62 on assortative graphs and +10.39 on disassortative graphs.

These results highlight the importance of node attributes in assist-

ing over-smoothing alleviation while at the same time promoting

the effectiveness of deep GCNs. To sum up, we claim the following

contributions.

• We call attention to the importance of node attribute space, which

helps alleviate the over-smoothing problem while at the same

time promoting the effectiveness of deep GCN, especially on

disassortative graphs.

• For the first time, we leverage the correlations of node attributes

to extract a spectral high-pass filter, arising from a Mercer’s

kernel. Such a filter could be further interpreted as a minimizer

of semi-supervised kernel ridge regression, which brings more

model transparency.

• We take the first step to derive a cross-space adaptive filter, which

integrates the adaptive-frequency information across both topol-

ogy and node attribute spaces. This provides insight into revis-

iting the role of node attributes and kernels in alleviating the

over-smoothing problem.

• Extensive experiments on various datasets indicate that our

method outperforms others in terms of its robustness to the

over-smoothing problem and effectiveness on the downstream

tasks, especially on the disassortative graphs.

2 RELATEDWORK
Graph Filters and GCN. The fitted values/representations from

GCN and its variants are reduced by a low-pass filter, corresponding

to the eigensystem of graph Laplacian [1, 42], which results in the

over-smoothing problem [50]. As a result, various adaptive filter-

based methods have been proposed to extend the low-pass filter

in GCN. Specifically, they focus on the combinations of multiple

low-pass filters [12, 43], all-pass and low-pass filters [19], low-pass

and band-pass filters [28, 51], and low-pass and high-pass filters

[2, 10, 50]. In this paper, our method also combines low-pass and

high-pass filters to eliminate the over-smoothing problem, but it

differs from existing methods. For example, PGNN [10] designs a

new propagation rule based on 𝑝-Laplacian message passing that

works as low-high-pass filters. More recently, FAGCN [2] proposes a

self-gating mechanism to achieve dynamic adaptation between low-

pass and high-pass filters. Though considered in themodel, the high-

pass filter is based on a hand-crafted function, which is designed too

arbitrarily without any interpretation. More importantly, existing

works place heavy reliance on the graph topology to derive their

adaptive filters, while the correlation information contained in the

node’s attributes is largely ignored. This may severely sacrifice the

expressive power of the deep GCNs. This is particularly true when

dealing with the disassortative graphs, where the node’s label is

primarily determined by its own attributes rather than the topology.

To this end, we take the first step to derive a cross-space adaptive

filter, which integrates information from both the topology and

attribute spaces.

Attribute-enhanced GCN. Recent work shows that, together

with the node attributes, superior performance can be achieved

by characterizing graph topology and attribute correlations simul-

taneously [45, 47], due to node attributes containing abundant

information that complements the graph topology. The correla-

tions could be built using the predict-then-propagate architecture

[13] or mutual exclusion constraints [46]. However, to the best of

our knowledge, little research has attempted to use node attributes

to address the over-smoothing problem. Although there have been

some suggestions of adding residual connections to deep GNNs

[32], such as the jumping knowledge [44], that is helpful for the

over-smoothness problem, we differ from these methods in com-

pletely different technical solutions: we leverage the correlations

of node attributes to extract a spectral high-pass filter for the first,

and we experimentally show our superiority.

2
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3 PRELIMINARY
Notation. Consider an undirected graph 𝐺 = (𝑉 , 𝐸, 𝑋 ) with ad-

jacency matrix 𝐴, edge set 𝐸, node set 𝑉 with |𝑉 | = 𝑁 . Also, the

graph 𝐺 contains a node attribute matrix 𝑋 ∈ 𝑅𝑁×𝑀
, where each

node 𝑣𝑖 ∈ 𝑉 has an attribute vector 𝑥𝑖 ∈ 𝑅𝑀 . Moreover, we denote

𝐴̃ = 𝐴 + 𝐼 to be the adjacency matrix of graph 𝐺 with additional

self-connections. 𝐷̃ and𝐷 are defined as the diagonal degree matrix

of 𝐴̃ and𝐴 respectively, with 𝐷̃𝑖𝑖 =
∑
𝑗 𝐴̃𝑖 𝑗 and 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . 𝐿 and

𝐿̃ are the normalized Laplacian matrix of𝐴 and 𝐴̃, respectively. Also,

unless stated otherwise, we denote {𝜆𝑖 , 𝜈𝑖 } and { ˜𝜆𝑖 , 𝜈𝑖 } to be the

𝑖-th eigenvalue and eigenvector of 𝐿 and 𝐿̃, respectively. Next, we

use the notation [𝐴, 𝐵] to be the concatenation operator between

matrices or vectors. Finally, we assume H is a Reproducing Kernel

Hilbert Space (RKHS) with a positive definite kernel function im-

plementing the inner product. The inner product is defined so that

it satisfies the reproducing property.

Graph Convolutional Network. A GCN is a multi-layer feed-

forward neural network that propagates and transforms node at-

tributes along with an undirected graph 𝐺 . The layer-wise propa-

gation rule in layer 𝑘 is 𝐻𝑘+1 = 𝜎 (𝐷̃− 1

2 𝐴̃𝐷̃− 1

2𝐻𝑘𝑊 𝑘 ). Here,𝑊 𝑘
is

the trainable model parameter in layer 𝑘 , 𝜎 is an activation func-

tion (e.g., ReLU), 𝐻𝑘 is the hidden representations in the 𝑘-th layer,

and 𝐻0 = 𝑋 for initialization. To stabilize the optimization, the

GCN adds self-loops to each node to make the largest eigenvalue

of normalized Laplacian smaller [42]. Research has demonstrated

that vectors containing fitted values of the GCN and its variants

can be reduced by a customized low-pass filter, corresponding to

the eigensystem of 𝐿̃. Specifically, Wu et al. [42] concludes that

the low-pass filter for the simplified GCN is parameterized by the

matrix-valued filter function 𝑔( ˜𝜆𝑖 ) = (1 − ˜𝜆𝑖 )𝑐 , where 𝑐 is the num-

ber of graph convolution layers. More accurately, the matrix-valued

filter function of the vanilla GCN can be further approximated [1]

as 𝑔( ˜𝜆𝑖 ) = 1 − 𝑝
𝑝+1

˜𝜆𝑖 , where 𝑝 is the average node degree.

Label Propagation (LP). As the most classic graph-based semi-

supervised learning method, label propagation [49] propagates

label information from labeled data to unlabeled data along the

graph. At the 𝑘-th iteration, it updates the predictive labels by

𝑌𝑘+1 = 𝛾𝐷− 1

2𝐴𝐷
1

2𝑌𝑘 + (1−𝛾)𝑌 , where 𝛾 is a hyper-parameter and

𝑌 is a one-hot label matrix with setting 𝑖-th row to be zeros if 𝑣𝑖 is

unlabeled. The fitted values of LP for all data are given in the closed

form 𝑌 𝑙𝑝 = (𝐼 + 𝛾
1−𝛾 𝐿)

−1𝑌 , which also yields a low-pass filter [25]

with 𝑖-th factor being reduced by the filter function 𝑔(𝜆𝑖 ) = 1

1+𝑎1𝜆𝑖

and 𝑎1 =
𝛾

1−𝛾 , 𝑎1 ≥ 0.

Ridge Regression. Our proposed high-pass filter is deeply

rooted in ridge regression. As a classic supervised model, ridge

regression [9] shrinks the regression coefficients of the linear re-

gression model by imposing a penalty on their size. Formally, given

training data𝑋 and corresponding labels𝑌 , the least square solution

for ridge regression, parameterized by 𝛽 , is ˆ𝛽 = (𝑋𝑇𝑋 + 𝜆𝐼 )−1𝑋𝑇𝑌 ,

where 𝜆 > 0 is a hyper-parameter. The additional insight into the

nature of
ˆ𝛽 can be revealed by performing SVD on data 𝑋 = 𝑈𝐷𝑉𝑇 .

It reveals that ridge regression shrinks the coordinates of𝑈 by the

factor

𝑑2

𝑖

(𝑑2

𝑖
+𝜆) , where 𝑑𝑖 ≥ 0 is the 𝑖-th singular value of 𝑋 . Namely,

smaller 𝑑𝑖 , corresponding to directions in the column space of 𝑋

having a smaller variance, suffer stronger shrinkage.

Kernel Ridge Regression (KRR). Following the Representer
theorem [33], a model 𝑓 could be transformed into kernel expansion

over training data, e.g., 𝑓 (𝑥) = ∑𝑁
𝑖 𝛼𝑖𝐾 (𝑥𝑖 , 𝑥). Building upon this,

the linear ridge regression mentioned above could be extended to

the kernel ridge regression: 𝛼 = arg min𝛼 ∥𝑌 −𝐾𝛼 ∥2

2
+𝜆𝛼𝑇𝐾𝛼 , from

which we derive the fitted values as𝐾𝛼 = 𝐾 (𝐾+𝜆𝐼 )−1𝑌 = Γ(𝐾, 𝜆)𝑌 .
Building upon the eigen-expansion of kernel 𝐾 = 𝑈𝑘Λ𝑈

𝑇
𝑘

with

Λ𝑖𝑖 ≥ 0 being the 𝑖-th eigenvalue of 𝐾 , kernel ridge regression also

puts fewer penalties on large eigenvalues in the eigen-expansion

(or so-called spectral decomposition) of kernel 𝐾 , with the 𝑖-th factor

being
𝜆𝑖

(𝜆𝑖+𝜆) . Note that Λ𝑖𝑖 = 𝜆𝑖 . Therefore, the fitted values of

kernel ridge regression shrink by a high-pass spectral filter with

the filter function 𝑔(𝜆𝑖 ) = 𝜆𝑖
(𝜆𝑖+𝜆) .

4 CROSS-SPACE FILTER
In this section, we elaborate on CSF. It first leverages the correla-

tions of node attributes to extract the interpretable high-pass filter

arising from aMercer’s kernel (cf. Section 4.1). Then, it casts the con-

ventional low-pass topology-based filter into another kernel, unify-

ing the two filters in RKHS (cf. Section 4.2). Finally, the cross-space

adaptive filter is obtained by applying a simple multiple-kernel

learning technique to fuse the information in both the topology

and attribute spaces (cf. Section 4.3).

4.1 High-pass Filter From Node Attribute Space
In deep GCNs, node representations in the whole graph get similar

to each other and finally converge towards the same constant value.

To this end, we aim to design a high-pass filter based on the node at-

tributes to provide prior knowledge onwhich nodes should have dis-

similar representations. To extract a filter from the attribute space,

one straightforward idea is to create an attribute-based graph
1
and

implement the GCN convolution operation. However, the challenge

lies in how to extract a high-pass filter, especially in an interpretable

way. In this paper, we resort to the KRR (cf. Section 3), which pro-

vides a rough idea for constructing a high-pass filter using node

attributes in the graph. However, the general setting of the learning

paradigm of GCNs is semi-supervised, where only partially labeled

data are provided. In this section, we solve this challenge by solving

an optimization problem of semi-supervised KRR and deriving an

interpretable high-pass filter.

Solving Semi-supervised KRR. Let Y =

[
𝑌𝐿
𝑍

]
denote the one-

hot label matrix of all nodes, where 𝑍 and 𝑌𝐿 denote the labels

of unlabeled and labeled nodes, respectively. The semi-supervised

KRR is formulated as the following optimization problem.

min

𝛼,𝑍
∥Y − 𝐾𝛼 ∥2

2
+ 𝑎3𝛼

𝑇𝐾𝛼 + 𝑎2∥𝑍 ∥2

2
, (1)

where 𝐾 is a kernel matrix over node attributes, and two regulariza-

tion parameters 𝑎3 and 𝑎2 are introduced to control the complexity

of model/hypothesis 𝑓 and the uniform prior on pseudo-labels 𝑍 ,

respectively. Although the problem is non-convex, it can still be

approximated by a closed-form solution. In particular, denoting

1
An attribute-based graph is obtained by calculating similarities of node attributes.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Deep GCNs

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡 = �𝐷𝐷
1
2𝐴̃𝐴�𝐷𝐷−

1
2

A

X
𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼 +

1
𝑎𝑎2

𝐼𝐼 − Γ 𝐾𝐾,𝑎𝑎3
−1
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Figure 1: Overview of CSF. We leverage both the graph topology and node attribute spaces to produce a cross-space adaptive
filter for alleviating the over-smoothing problem and improving the effectiveness of deep GCNs.

𝛼 = (𝑎3𝐼 + 𝐾)−1Y as a variable parameterized by 𝑎3, we plug it

back into Problem (1) and yield the following penalized quadratic

problem that only involves optimizing 𝑍 .

min

𝑍
Y𝑇 (𝐼 − Γ(𝐾, 𝑎3))Y + 𝑎2∥𝑍 ∥2

2
. (2)

Notably, the transductive solution of the above optimization prob-

lem could be easily obtained in a closed form:𝑍 = −(𝐾̂𝑢𝑢+𝑎2𝐼 )−1𝐾̂𝑢𝑙𝑌𝐿 .

We highlight that such a solution is the minimizer of the kernel

regularized functional, taking the form of the regularized harmonic

solution of label propagation [23].

Deriving High-pass Filter. Denote𝑌0 as a one-hot label matrix,

with the 𝑖-th row being zero if the 𝑖-th node in the graph is unlabeled.

The problem 2 is translated as follows.

min

Y
Y𝑇 (𝐼 − Γ(𝐾, 𝑎3))Y + 𝑎2∥𝑌0 − Y∥2

2
. (3)

Consequently, the fitted value of semi-supervised KRR is derived

as Y = 𝐾𝑎𝑡𝑡𝑟𝑌0, where 𝐾𝑎𝑡𝑡𝑟 = (𝐼 + 1

𝑎2

𝐾̂)−1
and 𝐾̂ = 𝐼 − Γ(𝐾, 𝑎3).

Proposition 1. 𝐾̂ = 𝐼 − Γ(𝐾, 𝑎3) is a valid kernel if and only if
𝑎3 > 0. Also, 𝐾𝑎𝑡𝑡𝑟 is a valid kernel if and only if 𝑎3 > 0 and 𝑎2 > 0.

Proof. Note that 𝐾̂ = 1−Γ(𝐾, 𝑎3) = 1−𝐾 (𝐾 +𝑎3𝐼 )−1
. We apply

the SVD to the kernel 𝐾 = 𝑈𝑘Λ𝑈
𝑇
𝑘
and bring it back to 𝐾̂ , and we

have the following equation holds.

𝐾̂ = 1 −𝑈𝑘 (Λ(Λ + 𝑎3𝐼 )−1)𝑈𝑇
𝑘

=
∑︁
𝑖

(1 − 𝜆𝑖

𝜆𝑖 + 𝑎3

)𝜈𝑇𝑖 𝜈𝑖 , (4)

where 𝜈𝑖 and 𝜆𝑖 correspond to the eigensystems of 𝐾 after SVD.

Note that 𝜆𝑖 > 0 holds as𝐾 is a valid kernel. Then, 𝐾̂ is a valid kernel

if 𝑎3 > 0. This is because 1 − 𝜆𝑖
𝜆𝑖+𝑎3

=
𝑎3

𝜆𝑖+𝑎3

≥ 0 holds for every

eigenvalue of kernel 𝐾 , as long as 𝑎3 > 0 holds. Similarly, together

with the SVD operation, we also conclude that 𝐾𝑎𝑡𝑡𝑟 = (𝐼 + 1

𝑎2

𝐾̂)−1

is a valid kernel if 𝑎2 > 0 and 𝑎3 > 0. □

Proposition 2. The fitted values of semi-supervised kernel ridge
regression are shrunk by a high-pass spectral filter, with the 𝑖-th
factor being 𝑔(𝜆𝑖 ) = 𝑎2 (𝜆𝑖+𝑎3 )

𝑎3+𝑎2 (𝜆𝑖+𝑎3 ) , where 𝑎2 > 0, 𝑎3 > 0, and 𝜆𝑖 is
the eigenvalue of kernel matrix 𝐾 .
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Figure 2: Illustration of filter function 𝑔(𝜆𝑖 ) of 𝐾𝑎𝑡𝑡𝑟 . This
demonstrates that 𝐾𝑎𝑡𝑡𝑟 corresponds to a high-pass filter.

Proof. The fitted values Y = 𝐾𝑎𝑡𝑡𝑟𝑌0 = (𝐼 + 1

𝑎2

𝐾̂)−1𝑌0 are

shrunk by a low-pass filter with factor
𝑎2

𝑎2+ ˆ𝜆𝑖
, where

ˆ𝜆𝑖 is the eigen-

value of 𝐾̂ . More importantly, Y is also shrunk by a high-pass spec-

tral filter with factor 𝑔(𝜆𝑖 ) = 𝑎2 (𝜆𝑖+𝑎3 )
𝑎3+𝑎2 (𝜆𝑖+𝑎3 ) , where 𝜆𝑖 is the eigen-

value of kernel matrix 𝐾 that is derived from node attributes. □

Propositions 1 and 2 show that we could extract high-pass fre-

quency information about node attributes by solving the semi-

supervised KRR. Unlike the Laplacian matrix 𝐿̃ used in GCN’s con-

volutional operation to extract low-pass topological information,

𝐾𝑎𝑡𝑡𝑟 extracts high-pass attribute-based information.

Remark 1. The kernel matrix 𝐾𝑎𝑡𝑡𝑟 adjusts the shrinkage effect
on the low-frequency signals in the attribute-based graph via two
hyper-parameters, 𝑎2 and 𝑎3.

While 𝑎2 > 0 and 𝑎3 > 0 are the hyper-parameters for the regu-

larization terms in Problem 1, they, as shown in Figure 2, control

the shrinkage effect on the low-frequency signals in the attribute-

based graph. Specifically, when 𝑎2 or 𝑎3 take very large values, our

high-pass filter would become an all-pass filter
2
, placing equal im-

portance to both low-frequency and high-frequency signals in the

2
When 𝑎2 → ∞ or 𝑎3 → 0, 𝑔 (𝜆𝑖 ) → 1. When 𝑎3 → ∞, 𝑔 (𝜆𝑖 ) → 𝑎

2

𝑎
2
+1

4
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graph. On the one hand, 𝑎2 controls the shrinkage strength, which

is used to compress the scale of node attributes/representations.

The smaller 𝑎2, the stronger the compression ability. The informa-

tion of node attributes would be lost when 𝑎2 is very small (e.g.,

𝑎2 = 0.01). This property inspired us to take different values of

𝑎2 when dealing with the assortative and disassortative graphs in

the experiments
3
, where the values of 𝑎2 on disassortative graphs

should be large. This highlights the importance of node attributes in

multi-layer convolutional operations. On the other hand, no matter

what value 𝑎3 takes, it always prefers high-pass signals. Unlike 𝑎2,

𝑎3 controls the frequency range of the low-pass signals that need to

be shrunk. The smaller 𝑎3, the narrower the frequency range. Note

that when 𝑎3 → 0 or 𝑎3 → ∞, our high-pass filter would become

an all-pass filter. Besides, 𝑎3 also controls the complexity of the

semi-supervised KRR model. Thus, 𝑎3 should not be too large or too

small. Therefore, these two parameters control the shrinkage effect

of our filter 𝐾𝑎𝑡𝑡𝑟 on low-frequency signals in the attribute-based

graph. It is worth noting that our filter remains a high-pass filter,

regardless of the values 𝑎2 and 𝑎3 take. In some extreme cases, it

acts as an all-pass filter, but it never becomes a low-pass filter. Refer

to Appendix C for experimental analysis.

To sum up, the proposed spectral filter allows us to capture

the correlations among node attributes and extract high-frequency

information from the attribute space. Moreover, the derived filter

is interpretable, as it’s the minimizer of the semi-supervised kernel

ridge regression problem.

4.2 Low-pass Filter From Graph Topology Space
The conventional low-pass filter of GCN is defined based on the

Fourier graph. However, our proposed high-pass filter is defined

based on Mercer’s kernel. Thus, it would be challenging to combine

these two filters and utilize their benefits simultaneously. To this

end, we drew inspiration from the previous literature [36], which

links the normalized Laplacian and Mercer’s kernels on the graph.

We show how to cast the low-pass filter as a Mercer’s kernel in the

context of GCNs, unifying the two filters in RKHS.

Specifically, let 𝑟 (𝑒) be a Laplacian regularization function that

monotonically increases in 𝑒 and that 𝑟 (𝑒) ≥ 0 holds for all 𝑒 ∈
[0, 2], and {(𝑒𝑖 , 𝜙𝑖 )} be the eigensystem of a normalized Laplacian

matrix, where 𝑒𝑖 and 𝜙𝑖 are the 𝑖-th eigenvalue and eigenvector.

[36] shows that a kernel can be defined as 𝐾 =
∑𝑚
𝑖=1

𝑟−1 (𝑒𝑖 )𝜙𝑖𝜙𝑇𝑖 ,
where 𝑟−1

is the spectral filter function
4
. In the context of GCNs, we

define a specified Laplacian regularization function as 𝑔−1

1
for GCN,

where 𝑔1 (𝑒) = 1 − 𝑝
𝑝+1

𝑒 is the filter function of GCN discussed in

Section 3. In this case, the filters of GCN are cast into the Mercer’s

kernel space, where the low-pass filter of GCN is the following

one-step random walk kernel 𝐾𝑔𝑐𝑛 = 𝐼 − 𝑝
𝑝+1

𝐿̃ with a spectral filter

on the eigenvalues of the graph Laplacian, 𝑟 ( ˜𝜆𝑖 ) = 𝑝+1

𝑝 (1− ˜𝜆𝑖 )+1

.

4.3 Integrating Topology-based and
Attribute-based Filters

To solve the problem of overlooking node attributes in existing

adaptive filter methods, we aim to integrate topology and attribute

3
Refer to Foster et al. [7] and Networkx package to check if a graph is disassortative.

4
Note that the pseudo-inverse and 0

−1 = 0 are applied wherever necessary.

Algorithm 1 Pseudo-code of CSF

Input: Graph 𝐺 and node attribute matrix 𝑋 . Maximum epoch

𝐸𝑃 = 150.

Default Parameters: Top-k = 20 for KNN graph. 𝑎3 = 1, 𝑎2 = 1.

Refer to [4, 5], 𝛾 is selected by cross-validation.

1: %%% Obtain high-pass filter from attribute space. %%%
2: Construct a Gaussian kernel 𝐾 via KNN graph on 𝑋 .

3: Γ(𝐾, 𝑎3) = 𝐾 (𝐾 + 𝑎3𝐼 )−1

4: 𝐾𝑎𝑡𝑡𝑟 = (𝐼 + 1

𝑎2

(𝐼 − Γ(𝐾, 𝑎3)))−1
.

5: %%% Obtain low-pass filter from topology space via GCN. %%%
6: 𝐾𝑡𝑜𝑝 = 𝐼 − 𝐿̃ = 𝐷̃− 1

2 𝐴̃𝐷̃− 1

2

7: %%% Obtain cross-space adaptive filter by MKL [4, 5]. %%%
8: K = (𝐾𝑎𝑡𝑡𝑟 + 𝐾𝑡𝑜𝑝 )/2 + 𝛾 (𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝 ) (𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝 ).
9: %%% Perform propagation %%%

10: Initialize 𝑒𝑝𝑜 = 0, 𝑘 = 0.

11: Set 𝐻𝑘 = 𝑋 , and diagonal matrix 𝐷̂ , with 𝐷̂𝑖𝑖 =
∑
𝑗 K𝑖 𝑗 .

12: while 𝐸𝑃 > 𝑒𝑝𝑜 do
13: 𝐻𝑘+1 = 𝜎 (𝐷̂− 1

2 K𝐷̂− 1

2𝐻𝑘𝑊 𝑘 ) ⊕ 𝑋
14: 𝑒𝑝𝑜+ = 1

15: end while
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Figure 3: Illustration of magnitude spectrum and frequency
response. This demonstrates that K corresponds to an adap-
tive filter that combines both low-pass and high-pass filters.

information from the perspective of Mercer’s kernel. As shown in

Figure 1, our adaptive filter CSF is obtained by applying a simple yet

effective multiple-kernel learning technique to fuse the information.

We elaborate on our CSF below.

Obtain Attribute-based Filter. Given training data with lim-

ited labels, we first construct a kernel based on the node attribute𝑋

via the k-nearest-neighbor (KNN) graph
5
, whose edges areweighted

by the Gaussian distance. This forms a valid Gaussian kernel 𝐾 . To

enhance the optimization stability, we also exploit the re-normalization

and self-loop tricks on the kernel 𝐾 , which are used in vanilla GCN.

Next, we calculate 𝐾𝑎𝑡𝑡𝑟 to build the high-pass spectral filter and

capture the information of the node attributes.

Obtain Topology-based Filter. The one-step random walk

kernel from vanilla GCN is utilized, which we found to be highly

5
Refer to Appendix B for the robustness analysis on the KNN graph.

5
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effective. In our experiments, we resort to the raw propagation form

of GCN and set 𝐾𝑡𝑜𝑝 = 𝐼 − 𝐿̃ = 𝐷̃− 1

2 𝐴̃𝐷̃− 1

2 . We call attention to the

importance of node attributes to the over-smoothing problem of

GCN, and we will defer the research question of proposing a new

topology-based filter to our future work.

Obtain Cross-Space Filter. To fuse the information across

both graph topology and node attribute spaces, a multiple kernel

learning (MKL) algorithm is adopted. Inspired by previous work, a

squared matrix-based MKL [4, 5, 14] is used to integrate topology

and attribute information from the perspective of Mercer’s kernel.

K =
𝐾𝑎𝑡𝑡𝑟 + 𝐾𝑡𝑜𝑝

2

+ 𝛾 (𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝 ) (𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝 ). (5)

Referring to [4, 5], the second term in K represents the difference

of information between 𝐾𝑎𝑡𝑡𝑟 and 𝐾𝑡𝑜𝑝 , and 𝛾 is a positive constant

selected by cross-validation used to control the relative importance

of this difference. Other advancedMKLmethods may also work, but

that is not the research focus of this paper. In this paper, we highlight

that this squared matrix-based algorithm is effective and simple

without trainable parameters. It not only avoids the computational

overhead of parameter learning and improves time efficiency, but

also shows the capability of leveraging the advantages of two spaces

(cf. Section 5). Importantly, the following corollary shows that Eq.5

produces a valid kernel matrix K, which is the foundation of being

a valid filter on the graph according to Smola and Kondor [36].

Corollary 1. K is a positive definite kernel matrix.

Proof. Apparently, the sumof two kernels yields a kernel. There-

fore, the first term

𝐾𝑎𝑡𝑡𝑟+𝐾𝑡𝑜𝑝

2
is a kernel. Let 𝐾𝑎𝑡 = 𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝 .

𝐾𝑎𝑡 is symmetric since both 𝐾𝑎𝑡𝑡𝑟 and 𝐾𝑡𝑜𝑝 are symmetric. Then,

there exists an orthogonal matrix 𝑄𝑎𝑡 such that 𝐾𝑎𝑡 = 𝑄
𝑇
𝑎𝑡Λ𝑎𝑡𝑄𝑎𝑡 ,

where Λ𝑎𝑡 is a diagonal matrix whose elements are the eigenvalues

of 𝐾𝑎𝑡 . Now 𝐾2

𝑎𝑡 = 𝑄
𝑇
𝑎𝑡Λ

2

𝑎𝑡𝑄𝑎𝑡 , that is, 𝐾
2

𝑎𝑡 is positive semidefinite.

Taking the first and second terms together, Eq.5 provides a matrix

K arising from a Mercer’s kernel. Then K could play the role of a

valid filter on the graph, according to Smola and Kondor [36]. □

Remark 2. K corresponds to an adaptive filter that combines both
low-pass and high-pass filters.

To illustrate the adaptive filter, we plot the magnitude spectrum

and frequency response of K on the Texas dataset in Figure 3. We

selected three representative signals based on the magnitude spec-

trum results. The frequency response of these signals indicates that

K successfully integrates the low-pass (cf. the main diagonal and

horizontal lines) and high-pass filters
6
(cf. the anti-diagonal line).

Propagation rule of CSF. Let 𝐷̂𝑖𝑖 =
∑
𝑗 K𝑖 𝑗 and 𝐻0 = 𝑋 . The

layer-wise propagation rule of our CSF method is concluded as

𝐻𝑘+1 = 𝜎 (𝐷̂− 1

2 K𝐷̂− 1

2𝐻𝑘𝑊 𝑘 ) ⊕ 𝑋 . Taking inspiration from the

propagation rule of the label propagation algorithm, which attaches

the response variable 𝑌 to the propagation to ensure consistency

between predicted labels and 𝑌 , we also attach raw attributes 𝑋

to the propagation process to enhance consistency with the raw

feature 𝑋 . Here, ⊕ means the concatenation operator.

6
This high-pass filter is less similar to an all-pass filter as the frequency response in

the middle part is still lower than the other parts on the line.

We conclude the pseudo-code of CSF in Algorithm 1. Unlike GAT

and GCN-BC, which suffer frommemory overflow due to their high

space complexity, our method requires a time complexity of𝑂 (𝑁 3)
to obtain the cross-space filter due to kernel inversion. Fortunately,

1) we only calculate the kernel once (see Algorithm 1), 2) classic

methods, such as the Nystrom method [27, 41] can help ease the

calculation. In Appendix D, we reduce the complexity of the kernel

inversion to 𝑂 (𝑚𝑁 2), where𝑚 ≪ 𝑁 , which is comparable to the

filter construction of vanilla GCN (i.e., 𝑂 (𝑁 2)).

5 EMPIRICAL EVALUATION
To assess CSF’s ability to mitigate the over-smoothing issue and

promote the effectiveness power of deep GCN, we conduct compar-

ative experiments with various baselines under different numbers

of convolution layers (see Section 5.2). Moreover, we reveal more

characteristics of CSF by conducting ablation studies on graph

topology and node attributes (see Section 5.3).

5.1 Experiment Setup
Datasets. Following previous studies on adaptive filters [2, 19],

nine commonly used node classification datasets are utilized. This

includes three assortative graphs (i.e., Cora, Citeseer, and Pubmed)

and six disassortative graphs (i.e., Actor, Cornell, Texas, Wisconsin,

Chameleon, and Squirrel). In an assortative graph, nodes tend to

connect with other nodes bearing more similarities, while ones in

the disassortative graph are on the contrary. All datasets are avail-

able online. Refer to Bo et al. [2] for more details on the datasets.

Comparative Methods. Focusing on the over-smoothing prob-

lem, we rely on adaptive filter methods as our primary baselines.

In particular, we consider FAGCN [2] and PGNN [10] which inte-

grate low-pass and high-pass filters, AKGNN [19] which integrates

all-pass and low-pass filters, and AdaGNN [6] which has a train-

able filter function. Additionally, we take representative GNNs into

comparison, including GCN [22], SGC [42], GAT [39], GraphSage

[15]. To evaluate the effectiveness of node attributes, we compare

with attribute enhanced GNNs, including APPNP [13], JKNet [44]

and GCN-BC [46]. Finally, MLP is used as our supervised baseline,

which is trained using the node attributes.

ImplementationDetails. The codes for most baselinemethods are

publicly available online. However, since there is no code available

for GCN-BC, we implemented this method based on the propaga-

tion rules mentioned in their paper. Regarding the MLP, each layer

is implemented by a fully connected network with ReLu activation

and dropout. In the case of our proposed CSF, we utilized node

attributes to construct a KNN graph with the top-20 neighbors
7
.

To calculate edge similarity among nodes, we used a Gaussian ker-

nel with the kernel bandwidth set to the squared average distance

among nodes, without further tuning. We set 𝑎2 = 0.1 for the assor-

tative graphs, 𝑎2 = 100 for the disassortative graphs, and 𝑎3 = 1 for

all graphs (cf. Appendix C for the analysis on 𝑎2 and 𝑎3). To simulate

the deep GNNs, we tune the number of convolution layers of each

method (i.e., {2, 5, 10, 20}). Moreover, unlike FAGCN[2], we do not

tune the hidden size on each dataset. Instead, we followed previous

work [20, 26, 40] and set the hidden size to 16 for all methods. We

7
Refer to Appendix B for the robustness analysis on the KNN graph.
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Figure 4: Over-smoothing problem evaluation of adaptive filter-based methods. We tune the number of layers of each method
(i.e., the X-axis). The Y-axis represents the classification accuracy (%). This indicates that CSF outperforms others in terms of its
robustness to over-smoothing problem and its effectiveness on downstream tasks.

Table 1: Performance of all methods for node classification averaged over different numbers of convolution layers (i.e.,
{2, 5, 10, 20}). The "*" symbol indicates that we ignored the memory overflow situation of the corresponding model. The best
results are marked in bold and the second best are underlined. For more detailed results, please refer to Table 6 in the Appendix.
The results indicate CSF improves the expressiveness of deep GCN, especially when dealing with disassortative graphs.

Model Assortative Graphs (%) Disassortative Graphs (%)
Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

MLP 37.46±0.62 30.54±1.20 50.71±0.90 34.54±0.36 67.96±0.90 68.16±0.15 62.75±0.37 36.50±2.01 29.41±2.73
GCN 48.85±2.25 40.15±1.66 55.77±1.43 27.63±0.16 59.60±0.32 61.45±0.01 51.72±1.63 34.51±4.81 23.90±0.63
SGC 65.56±1.45 52.76±1.29 71.11±1.44 28.51±0.25 61.19±0.69 63.03±0.74 55.15±0.73 45.85±0.51 28.10±0.72
GAT 64.01±0.42 58.88±2.66 74.84±2.01* 30.58±0.16 63.42±1.04 66.65±1.07 60.15±0.48 60.89±0.23 37.68±0.20
GraphSAGE 45.26±0.48 41.97±0.39 60.34±0.61 30.19±0.09 59.41±0.19 61.78±1.31 56.91±1.08 55.14±0.24 32.48±0.36
APPNP 78.37±0.24 68.16±0.35 75.40±0.11 27.04±0.19 59.34±0.21 60.39±0.26 53.19±0.88 39.11±0.23 21.01±0.32
JKNET 76.44±0.30 65.47±0.30 74.80±0.11 26.75±0.55 59.34±0.33 60.99±0.41 56.76±0.96 43.94±0.71 30.31±0.33
GCN-BC 23.39±2.38 19.21±2.05 73.36±2.88* 15.20±0.18 66.05±0.58 67.50±0.57 72.21±0.85 33.14±0.55 27.94±0.25
FAGCN 80.88±0.25 66.35±0.67 75.51±0.44 39.66±0.14 73.82±0.68 78.62±0.11 78.78±0.45 64.91±0.44 43.41±0.45
PGNN 60.22±1.83 42.98±1.26 61.30±2.35 29.76±0.06 59.74±0.93 62.43±0.73 55.10±0.59 41.72±1.20 34.27±0.38
AdaGNN 44.53±0.58 34.80±0.89 53.45±1.22 34.15±0.24 64.93±0.94 70.59±2.08 66.37±1.55 52.34±0.58 38.97±0.74
AKGNN 77.81±1.35 65.84±0.69 74.10±1.22 35.19±0.14 59.21±0.35 61.84±0.79 58.92±0.64 61.28±0.20 37.31±0.52
CSF 81.09±0.12 68.54±0.31 76.79±0.30 48.68±0.18 84.74±1.32 88.22±0.43 87.35±0.66 72.74±0.29 59.82±0.14
Improvement 0.21 ↑ 0.38 ↑ 1.28 ↑ 9.02 ↑ 10.92 ↑ 9.6 ↑ 8.57 ↑ 7.83 ↑ 16.41 ↑

also note that the learning rate in previous studies is either too large

(e.g., [24] directly uses {0.5}) or too small (e.g., [2] tunes the learning

rate in {0.01, 0.005}). Therefore, we tune the learning rate to fully

evaluate the performance of all methods when the learning rate

is large or small, namely {0.03, 0.02, 0.01, 0.005, 0.1, 0.2, 0.3, 0.4, 0.5}.
Finally, all experiments were conducted on a machine with an In-

tel(R) Core(TM) i5-12400F, 16GB memory, and GeForce RTX 3060.

We implemented all methods in Pytorch and optimized them using

the Adam optimizer with a dropout rate of 0.5. Finally, we ran 150

epochs and selected the model with the highest validation accuracy

for testing. We report the mean and variance of the results over ten

runs, where all experiments were conducted under the same fixed

random seed to ensure that different methods were performed with

the same labeled data in each run.

5.2 Main results
Previous works show vanilla GCN suffers from the over-smoothing

problem once the network goes deep. In this section, we design

experiments to evaluate the performances of all methods on various

datasets, where the number of layers ranges from {2, 5, 10, 20}. Due
to space limitations, we report detailed results in the Appendix (cf.

Table. 6). Our experimental results, as shown in Fig. 4 and Table 1,

indicate that our alleviates the over-smoothing problem while
7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

at the same time promoting the effectiveness of deep GCNs
especially when dealing with disassortative graphs.

Specifically, Fig. 4 illustrates the performance of CSF and existing

adaptive filter methods in terms of alleviating the over-smoothing

problem. The results indicate that CSF remains effective even with

increasing model layers and shows a trend of increasing effective-

ness on some datasets (such as Cham., Squi., Pumb.). In contrast,

we observe that AdaGNN and PGNN may not fully address the

over-smoothing issue as their effectiveness tends to decrease with

the increase of model layers. Compared to the remaining two base-

lines (i.e., FAGNN and AKGNN), although CSF only achieves com-

parative performance on Cora data, it outperforms FAGNN and

AKGNN in most cases, especially when dealing with the disassorta-

tive graphs. These results highlight the importance of alleviating

the over-smoothing problem while at the same time promoting the

effectiveness of deep GCNs. For more quantified results, we summa-

rize the experimental results of all models in Table 1, averaged over

the number of layers. The results indicate that CSF significantly

outperforms other comparative methods on all datasets, especially

on disassortative graphs. This aligns with previous research that

suggests GCN and its variants perform poorly on the disassortative

graphs [18] because their nodes tend to connect to others with

dissimilar properties, making topology information unreliable for

downstream tasks. Therefore, combining information from both

topology and attribute is necessary. Although current works at-

tempt to integrate both factors, such as JKNet’s jumping knowledge,

or APPNP’s and GCN-BC’s hidden representation to improve rep-

resentation capabilities, they still underperform CSF. This implies

that extracting information from node attributes in the form of

a high-pass filter is a better solution. It not only enhances model

performance but also alleviates the over-smoothing problem.

5.3 Ablation studies
We further conduct an in-depth analysis to reveal the characteristics

of node attributes, as illustrated in Fig. 5.

For assortative graphs, topology information is more im-
portant, whereas, for disassortative graphs, node attribute
information is more valuable. CSF effectively balances the
two. To evaluate the impact of different spaces, we eliminate the

attribute filter (i.e., CSF -w/o attribute) and topology filter (i.e., CSF
-w/o topology) from K individually. The results in Fig. 5(a) show that

topology information dominates attribute information on assor-

tative graphs, while the opposite is true for disassortative graphs.

This leads to two observations: firstly, our proposed high-pass fil-

ter successfully extracts attribute information, leading to better

performance on disassortative graphs than topology-based filters.

Secondly, the MKL method used in CSF integrates the advantages

of both spaces and achieves better overall performance.

High-frequency information in attribute space is more
valuable than low-frequency information. We first introduce

a baseline CSF -w low-pass attribute that involves replacing the

high-pass filter 𝐾𝑎𝑡𝑡𝑟 with the vanilla GCN filter performed on the

attribute-based graph. In this case, two low-pass filters from differ-

ent spaces are used to build K. For comparison, we then introduce

a baseline CSF -w only low-pass attribute that uses the same low-

pass attribute-based filter alone as K. As demonstrated in Figure

5(b), it leads to two observations. 1) Comparing CSF -w low-pass

(a) Ablation on topology and attribute spaces

(b) Ablation on filters from attribute space

15
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Figure 5: Ablation studies on node attribute space. We report
the averaged performance across various number of layers
(i.e., Y-axis). Fig.(a) shows CSF effectively balances the advan-
tages of two spaces, while Fig.(b) highlights the importance
of high-frequency information in attribute space.

attribute with CSF -w only low-pass attribute and CSF -w/o attribute,
fusing filters from two spaces still has an effective gain even if they

are all low-pass filters. 2) Comparing CSF with CSF -w low-pass
attribute, it highlights the high-frequency information in attribute

space, securing the superiority of our CSF.

We also analyze the parameter sensitivity and robustness of

𝐾𝑎𝑡𝑡𝑟 in the Appendix C and Appendix B, respectively.

6 CONCLUSION
Alleviating the over-smoothing problem while at the same time

promoting the effectiveness power is known to be important for

applying deep GCNs to downstream tasks. Existing methods fail on

this challenge due to heavily relying on graph topology and over-

looking the correlation information in node attributes. To torch this

challenge, we take the first step to propose a high-pass attribute-

based filter, which is interpreted as a minimizer of semi-supervised

kernel ridge regression. More importantly, for the first time, we

propose a cross-space adaptive filter arising from a Mercer’s ker-

nel. Such a filter integrates information across both the topology

and attribute spaces, resulting in superior robustness to the over-

smoothing problem and promoting the effectiveness of deep GCN

on downstream tasks, as demonstrated in our experiments.

We would like to emphasize that our proposed method provides

a new perspective for the GCN community. It provides insight

into revisiting the role of node attributes and kernels in alleviating

the over-smoothing problem. Additionally, its potential value lies

in offering a more convenient and interpretable way to design

customized spectral filters and integrate them together, regardless

of their space sources.

8
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Table 2: Ablation on the impact of different spaces.

Method/Graphs # Layers
2 5 10 20

Cora
CSF 81.45±1.61 80.88±1.85 80.8±1.89 81.21±1.75
CSF -w/o topology 33.60±1.39 34.09±1.15 33.88±1.01 33.5±1.27
CSF -w/o attribute 80.03±2.02 52.78±5.52 31.3±0.76 31.3±0.76

Cite.
CSF 68.94±0.84 68.61±1.31 68.33±0.85 68.26±1.08
CSF -w/o topology 27.22±1.67 26.52±2.24 27.51±1.74 27.16±2.06
CSF -w/o attribute 67.79±1.22 50.43±4.50 21.53±2.02 20.83±0.78

Pubm.
CSF 76.41±1.70 76.98±1.54 76.72±1.41 77.06±1.35
CSF -w/o topology 55.39±2.91 55.14±4.24 55.9±2.36 55.47±3.3
CSF -w/o attribute 75.01±1.88 67.68±3.74 40.49±1.92 39.88±0.25

Actor
CSF 47.26±1.85 49.27±1.46 49.34±1.48 48.86±1.66
CSF -w/o topology 46.89±0.8 49.54±0.57 49.38±0.66 49.49±0.85
CSF -w/o attribute 33.99±1.03 25.7±1.24 25.41±1.37 25.41±1.37

Corn.
CSF 86.58±5.03 83.68±6.77 85.26±5.98 83.42±8.14
CSF -w/o topology 86.84±7.13 86.58±6.96 86.58±6.26 86.58±6.73
CSF -w/o attribute 62.37±8.78 58.68±8.14 58.68±8.14 58.68±8.14

Texas
CSF 89.47±6.2 88.16±7.15 87.63±6.57 87.63±7.02
CSF -w/o topology 86.58±6.26 86.58±6.50 86.84±6.56 86.32±6.88
CSF -w/o attribute 69.74±8.16 58.68±8.14 58.68±8.14 58.68±8.14

Wisc.
CSF 89.22±6.08 87.25±6.93 86.47±7.65 86.47±7.19
CSF -w/o topology 88.63±6.39 87.25±6.75 87.84±6.46 87.06±6.61
CSF -w/o attribute 65.88±8.63 48.04±4.74 46.47±6.06 46.47±6.06

Cham.
CSF 71.27±2.95 73.33±2.65 73.05±2.54 73.31±2.26
CSF -w/o topology 62.94±2.30 63.51±1.85 63.29±2.08 63.38±1.73
CSF -w/o attribute 62.46±2.32 32.61±10.88 21.45±0.89 21.51±0.84

Squi.
CSF 57.03±1.04 60.64±1.38 61.04±1.17 60.58±1.17
CSF -w/o topology 51.05±1.75 54.49±1.27 54.06±1.52 54.15±1.30
CSF -w/o attribute 34.97±2.32 20.12±1.10 20.17±1.04 20.32±1.03

A APPENDIX FOR RELATEDWORK
Connection to Shrinkage Estimator. In statistics, a shrinkage

estimator is an estimator that incorporates the effects of shrinkage

according to the extra information [8], such as the kernel matrix

[29]. Classic examples include the Lasso estimator for Lasso re-

gression, the ridge estimator for ridge regression, and the spectral

kernel mean shrinkage estimator [29, 30] for kernel mean estima-

tion. Here, our high-pass spectral filter is also a shrinkage estimator

for semi-supervised kernel ridge regression, wherein the shrinkage

strength is small in the coordinates with large eigenvalues.

Graph Structure Learning. It targets to simultaneously train

an optimized graph topology and corresponding node embeddings

for downstream tasks [52]. However, our CSF approach differs

from graph structure learning in that we do not explicitly learn

the structure of the graph. Instead, we focus on multiple kernel

learning to integrate kernels from different spaces.

Table 3: Ablation on the impact of different filters from note
attribute space.

Method/Graphs # Layers
2 5 10 20

Cora

CSF 81.45±1.61 80.88±1.85 80.8±1.89 81.21±1.75
CSF -w low-pass attribute 81.43±1.63 80.76±1.64 80.61±1.95 80.68±1.82
CSF -w only low-pass attribute 31.33±0.79 31.37±0.82 31.27±0.82 31.27±0.82

Cite.

CSF 68.94±0.84 68.61±1.31 68.33±0.85 68.26±1.08
CSF -w low-pass attribute 68.84±0.81 68.28±1.00 68.32±1.07 68.07±1.31
CSF -w only low-pass attribute 21.41±1.08 21.43±1.24 21.12±0.89 21.15±0.67

Pubm.

CSF 76.41±1.70 76.98±1.54 76.72±1.41 77.06±1.35
CSF -w low-pass attribute 77.4±1.86 77.64±1.21 77.41±1.07 77.52±2.07
CSF -w only low-pass attribute 50.18±0.83 49.88±0.77 51.1±0.89 51.56±0.57

Actor

CSF 47.26±1.85 49.27±1.46 49.34±1.48 48.86±1.66
CSF -w low-pass attribute 33.61±0.65 34.23±0.82 34.32±0.92 34.17±0.75
CSF -w only low-pass attribute 28.25±0.77 28.28±0.75 28.18±0.78 28.19±0.64

Corn.

CSF 86.58±5.03 83.68±6.77 85.26±5.98 83.42±8.14
CSF -w low-pass attribute 63.95±8.42 62.37±8.78 63.16±8.5 63.95±7.85
CSF -w only low-pass attribute 60.53±9.12 60.53±9.45 59.21±8.62 60.26±8.36

Texas

CSF 89.47±6.20 88.16±7.15 87.63±6.57 87.63±7.02
CSF -w low-pass attribute 70.00±7.67 68.68±8.18 70.79±8.55 68.68±8.81
CSF -w only low-pass attribute 60.53±8.95 58.95±7.96 59.47±9.3 60.53±8.86

Wisc.

CSF 89.22±6.08 87.25±6.93 86.47±7.65 86.47±7.19
CSF -w low-pass attribute 64.71±8.42 63.73±8.93 63.73±8.88 63.73±7.96
CSF -w only low-pass attribute 57.84±8.78 57.65±10.83 62.75±9.96 67.84±7.96

Cham.

CSF 71.27±2.95 73.33±2.65 73.05±2.54 73.31±2.26
CSF -w low-pass attribute 58.82±1.75 56.78±1.84 57.87±2.47 57.57±2.42
CSF -w only low-pass attribute 28.31±3.07 29.34±2.29 29.93±2.5 29.98±2.52

Squi.

CSF 57.03±1.04 60.64±1.38 61.04±1.17 60.58±1.17
CSF -w low-pass attribute 36.12±1.07 34.74±0.97 34.84±1.19 34.76±1.5
CSF -w only low-pass attribute 20.46±2.31 22.83±1.48 21.07±2.53 23.44±1.76

B ANALYSIS ON INITIALIZATION OF 𝐾𝑎𝑡𝑡𝑟
Constructing a KNN-based graph is the most popular initialization

method for the information propagation model [11], CSF also uses

it as the initialization of the attribute-based filter 𝐾𝑎𝑡𝑡𝑟 (i.e., the

Gaussian kernel 𝐾). In this section, we evaluate the sensitivity of

CSF concerning the sparsity of the KNN-based graph. We vary

the number of neighbors of KNN in {5, 10, 20, 50} and extract the

high-pass filter as usual. The results, presented in Table 4, indicate

that CSF is generally robust to the sparsity of KNN-based kernel

initialization. However, we recommend using the top 20 neighbors

to construct the KNN kernel in practice, as it leads to better overall

performance than other options.

C HYPER-PARAMETER ANALYSIS
As discussed in Remark 1 in Section 4.1, two hyper-parameters,

The kernel matrix 𝐾𝑎𝑡𝑡𝑟 adjusts the shrinkage effect on the low-

frequency signals in the attribute-based graph via 𝑎2 and 𝑎3. In

particular, 𝑎2 controls the shrinkage strength, which is used to

compress the scale of node attributes/representations, while 𝑎3
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Table 4: Robustness evaluation on KNN-based initialization. For simplicity, the experiments are conducted with ten layers.

#Neighbors Assortative Disassortative
Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

Top 5 80.93±1.91 67.85±1.06 76.85±1.77 50.02±1.74 85.22±4.87 87.65±6.68 87.11±7.23 72.86±2.08 60.56±1.33
Top 10 80.67±1.09 68.03±0.89 76.61±1.84 49.14±1.57 82.19±7.03 87.62±6.98 86.49±7.14 73.46±2.22 61.23±1.08
Top 20 80.80±1.89 68.33±0.85 76.72±1.41 49.34±1.48 85.26±5.98 87.63±6.57 86.47±7.65 73.05±2.54 61.04±1.17
Top 50 79.77±1.45 68.63±0.80 76.71±1.38 49.55±1.44 82.23±6.88 87.67±6.55 87.18±7.12 72.77±2.51 60.15±0.95
Full connect 74.76±2.49 69.23±0.65 76.84±1.33 49.13±1.40 80.16±7.77 87.60±6.53 87.47±8.08 73.95±2.14 60.04±1.04

Pumb. Actor Corn.

Wisc.Texas Cham. Squi.
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Figure 6: Parameter analysis on 𝑎2 on various number of layers ({2, 5, 10, 20}). Here 𝑎2 is tuned in {0.1, 1, 10, 100}, and 𝑎3 is fixed as
1. We report the average performance (and its standard deviation) of CSF across different numbers of layers, where the black
line represents the standard variance.

controls the frequency range of the low-pass signals that need to be

shrunk. In this section, we experimentally analyze the sensitivity of

CSF to these two hyperparameters. Fig. 6 shows the experimental

results of parameter tuning on 𝑎2, while Fig. 7 shows the results of

tuning 𝑎3. The detailed observations are as follows.

Analysis on 𝑎2. According to Fig. 6, assortative graphs favor

small 𝑎2, while disassortative graphs favor large 𝑎2. This finding

is consistent with our analysis. 𝑎2 controls the shrinkage strength,

which is used to compress the scale of node attributes/representations.

The smaller 𝑎2, the stronger the compression ability. The informa-

tion about node attributes would be lost when 𝑎2 is very small. In

this case, 𝑎2 controls the importance of node attributes in down-

stream tasks. As for disassortative graphs, taking a larger value of

𝑎2 helps to leverage the information of node attributes. Arbitrarily

setting 𝑎2 = 1 is a safe choice, but we suggest using the NetworkX

package ( and partially labeled data) to check if a given graph is

disassortative.

Analysis on 𝑎3. According to Fig. 7, CSF is more robust to the

value of 𝑎3 compared to 𝑎2, as 𝑎3 only controls the frequency range

of the low-pass signals that need to be shrunk. However, 𝑎3 also

controls the complexity of the semi-supervised KRR model. Thus,

𝑎3 should not be too large or too small. This may explain why the

performance of CSF decreases on the Actor dataset. In this paper,

we suggest setting 𝑎3 = 1.

D IMPROVING THE COMPUTATION
EFFICIENCY OF KERNEL INVERSION

Our proposed approach effectively addresses the over-smoothing

problem of GCN and performs well compared to various baselines

on different datasets. Here, we discuss the potential limitations of

computational complexity. Unlike GAT and GCN-BC, which suffer

from memory overflow due to their high space complexity, our

method requires high time complexity to obtain the cross-space

filter. Normally, it requires 𝑂 (𝑁 3) due to kernel multiplication

and inversion. Fortunately, 1) we only calculate the kernel once

(see Algorithm 1), 2) and classic methods, such as the low-rank

approximation [16], random Fourier feature [3, 31] and Nystrom

method [27, 41] can help ease the calculation on large graphs.

To demonstrate this, we tentatively provide a proof-of-concept

experiment on Nystrom-based CSF. This reduces the complexity

to 𝑂 (𝑚𝑁 2), where𝑚 ≪ 𝑁 , which is comparable to vanilla GCN’s

complexity of 𝑂 (𝑁 2). Specifically, we use the Nystrom method
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Figure 7: Parameter analysis on 𝑎3 on various number of layers ({2, 5, 10, 20}). Here 𝑎3 is tuned in {0.1, 1, 10, 100}, and 𝑎2 is fixed as
1. We report the average performance (and its standard deviation) of CSF across different numbers of layers, where the black
line represents the standard variance.

[27, 41] to approximate the inverse of the kernel and calculate the

proposed high-pass spectral filter 𝐾𝑎𝑡𝑡𝑟 . Note that other kernel

inverse approximation methods could also be applied. Given a

kernel 𝐾 ∈ 𝑅𝑁×𝑁
, the Nystrom method first randomly samples

𝑚 ≪ 𝑁 columns to form a matrix 𝐶 ∈ 𝑅𝑁×𝑚
. Then, it builds a

much smaller kernel matrix 𝑄 ∈ 𝑅𝑚×𝑚
based on the matrix 𝐶 . As

a result, the original kernel 𝐾 could be approximated by

𝐾 ≈ 𝐶𝑄−1

𝑘
𝐶𝑇 , (6)

where 𝑄𝑘 is the best rank-k approximation of 𝑄 , and 𝑄−1
is the

(pseudo) inverse of 𝑄 . In our case, we approximate the inverse of

𝐾 by

𝐾−1 ≈ 𝐶𝑇
1
𝑄𝑘𝐶1, (7)

where𝐶1 is the pseudo inverse of𝐶 . The computational complexity

for 𝐾−1
is reduced from 𝑂 (𝑁 3) to 𝑂 (𝑚𝑁 2), where𝑚 ≪ 𝑁 .

We test our method on the two largest assortative and dis-

assortative graphs in our experiments (i.e., Pubmed and Actor).

To push the limit of the Nystrom method for kernel inverse ap-

proximation, we set the sample size𝑚 and rank-k to be 0.1% of the

original data for simplicity. As shown in Table 5, we also report the

computation time for calculating the cross-space filter, in addition

to the model accuracy. The results show that the Nystrom-based

CSF substantially increases calculation efficiency while maintaining

some level of model effectiveness.

Lastly, we would like to emphasize that the kernel and inverse

kernel have good characteristics and are widely used in various

applications such as deblurring images [37] and interpreting deep

neural networks [17]. By using the kernel method, we can inter-

pret our high-pass filter and improve the effectiveness of GCN in

addressing the over-smoothing problem.

Table 5: CSF with Nystrom approximation. ’-’ means vanilla
CSF. 𝑚 = M ∗ #Nodes. For simplicity, the experiments are
conducted with ten layers.

M
(%)

Pubm. (#Nodes=19717) Actor (#Node=7600)
Acc. Time (s) Acc. Time (s)

0.1 76.53±1.46 2.25 48.84±1.32 1.76

– 76.72±1.41 5.16 49.34±1.48 1.99

E APPENDIX FOR OVER-SMOOTHING
PROBLEM EVALUATION

As discussed in Section 5, we design experiments to evaluate the

performances of all methods on various data sets, together with

the number of layers ranging from {2, 5, 10, 20}. The overall results
are provided in Table 6 and the average version is provided in

Table 1. Note that we omit the results of GAT and GCN-BC if they

overflow the run-time memory. Basically, most methods suffer from

decreased performance, while our method and some adaptive filter-

based methods are more robust to the over-smoothing problem.

As the number of model layers increases, the performance of the

FAGCN and AKGNN methods is more stable than that of PGNN

and AdaGNN. However, due to the lack of node attribute support,

the overall performance of FAGCN and AKGNN is still not as good

as CSF.
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Table 6: Over-smoothing problem evaluation of all methods. ’OOM’ means ’out-of-memory’.

Model #Layer Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

MLP 2 53.01±1.70 51.98±2.48 66.71±1.70 45.76±0.76 83.42±6.45 84.21±7.94 85.29±6.62 61.21±2.09 49.74±1.66
GCN 2 80.03±2.02 67.79±1.22 75.01±1.88 33.99±1.03 62.37±8.78 69.74±8.16 65.88±8.63 62.46±2.32 34.97±2.32
SGC 2 79.59±1.63 67.95±0.86 75.06±2.06 34.47±0.83 65.00±9.20 70.26±9.77 67.06±8.31 63.93±2.09 37.66±2.01
GAT 2 63.68±1.61 58.65±2.37 74.84±2.01 30.91±0.98 63.68±8.49 67.37±7.15 60.20±8.57 60.86±2.01 37.66±1.77
GraphSAGE 2 45.51±3.91 42.34±6.30 60.12±5.02 30.18±0.83 59.21±8.44 61.58±10.47 57.84±9.88 54.96±2.97 33.10±2.89
APPNP 2 80.62±1.97 68.82±0.69 75.61±2.35 29.93±0.87 61.05±7.83 65.26±8.58 59.61±7.80 53.00±2.56 21.65±0.49
JKNET 2 77.43±1.69 65.84±1.73 74.92±1.94 28.18±2.16 60.79±7.59 63.95±8.33 61.57±7.46 56.58±2.72 33.32±1.37
GCN-BC 2 42.54±2.73 38.71±2.97 73.36±2.88 28.09±1.11 65.00±8.78 67.63±8.78 70.20±7.83 67.08±1.68 48.13±1.54
FAGCN 2 78.19±1.81 65.15±2.72 74.53±1.91 39.51±1.12 72.37±7.77 78.68±8.45 78.04±8.46 68.51±2.27 44.79±2.27
PGNN 2 72.15±2.96 47.55±2.36 64.56±2.28 39.74±0.90 61.05±6.42 65.26±7.73 57.06±6.37 60.81±1.58 44.08±1.99
AdaGNN 2 73.23±1.97 63.43±2.39 69.77±4.46 48.38±1.73 80.26±6.93 84.21±5.68 84.12±5.43 73.51±2.52 57.68±1.33
AKGNN 2 72.35±4.19 64.48±2.36 71.05±4.66 34.98±1.09 59.47±7.67 60.79±7.28 61.76±7.23 61.75±1.95 36.60±1.45
CSF 2 81.45±1.61 68.94±0.84 76.41±1.70 47.26±1.85 86.58±5.03 89.47±6.20 89.22±6.08 71.27±2.95 57.03±1.04
CSF -w/o topology 2 33.60±1.39 27.22±1.67 55.39±2.91 46.89±0.80 86.84±7.13 86.58±6.26 88.63±6.39 62.94±2.30 51.05±1.75
CSF -w low-pass attribute 2 81.43±1.63 68.84±0.81 77.40±1.86 33.61±0.65 63.95±8.42 70.00±7.67 64.71±8.42 58.82±1.75 36.12±1.07
CSF -w only low-pass attribute 2 31.33±0.79 21.41±1.08 50.18±0.83 28.25±0.77 60.53±9.12 60.53±8.95 57.84±8.78 28.31±3.07 20.46±2.31
MLP 5 34.22±1.93 28.45±3.10 56.37±1.91 41.00±1.65 71.05±8.41 71.05±7.85 72.75±5.73 41.78±5.11 27.29±6.68
GCN 5 52.78±5.52 50.43±4.50 67.68±3.74 25.70±1.24 58.68±8.14 58.68±8.14 48.04±4.74 32.61±10.88 20.12±1.10
SGC 5 78.44±1.65 62.70±2.44 74.62±1.76 28.18±1.26 60.53±8.59 62.63±8.30 54.71±7.13 52.70±2.65 30.02±2.51
GAT 5 64.11±1.91 58.83±3.99 OOM 30.67±1.14 62.63±9.18 66.58±7.95 61.37±8.72 60.83±2.38 37.40±1.91
GraphSAGE 5 45.04±2.84 41.49±6.62 61.07±3.90 30.17±0.64 59.21±8.34 61.84±7.67 56.67±8.64 55.29±2.98 32.13±2.75
APPNP 5 80.62±1.97 68.34±1.11 76.33±2.14 26.32±0.78 58.95±8.34 58.95±8.61 53.14±8.03 37.32±2.65 21.03±0.99
JKNET 5 78.00±2.36 65.98±1.53 74.93±1.95 26.34±1.12 58.95±8.25 60.26±7.99 57.45±5.39 46.73±4.00 30.67±2.02
GCN-BC 5 29.70±5.62 20.83±1.18 OOM 10.90±0.75 67.37±10.02 67.37±8.15 73.14±5.99 23.07±2.76 22.89±1.56
FAGCN 5 80.70±2.01 66.10±1.56 75.52±2.93 39.82±1.27 73.95±7.69 78.95±8.32 78.82±9.00 63.97±2.53 42.83±2.45
PGNN 5 71.05±3.10 48.80±2.21 67.89±2.31 26.45±0.98 60.00±8.02 64.21±7.67 56.86±6.67 43.05±2.92 32.71±1.59
AdaGNN 5 41.06±1.86 31.99±0.90 51.50±2.35 34.36±1.56 60.53±8.68 75.26±10.17 68.43±7.98 65.90±2.83 50.45±1.41
AKGNN 5 77.93±1.93 66.08±3.07 74.87±1.87 35.28±0.80 59.74±8.51 62.11±9.05 60.20±8.27 61.45±2.39 37.74±2.07
CSF 5 80.88±1.85 68.61±1.31 76.98±1.54 49.27±1.46 83.68±6.77 88.16±7.15 87.25±6.93 73.33±2.65 60.64±1.38
CSF -w/o topology 5 34.09±1.15 26.52±2.24 55.14±4.24 49.54±0.57 86.58±6.96 86.58±6.50 87.25±6.75 63.51±1.85 54.49±1.27
CSF -w low-pass attribute 5 80.76±1.64 68.28±1.00 77.64±1.21 34.23±0.82 62.37±8.78 68.68±8.18 63.73±8.93 56.78±1.84 34.74±0.97
CSF -w only low-pass attribute 5 31.37±0.82 21.43±1.24 49.88±0.77 28.28±0.75 60.53±9.45 58.95±7.96 57.65±10.83 29.34±2.29 22.83±1.48
MLP 10 31.30±0.76 20.83±0.78 39.88±0.25 25.70±1.24 58.68±8.14 58.68±8.14 46.47±6.06 21.51±0.84 20.35±1.05
GCN 10 31.30±0.76 21.53±2.02 40.49±1.92 25.41±1.37 58.68±8.14 58.68±8.14 46.47±6.06 21.45±0.89 20.17±1.04
SGC 10 65.42±4.71 48.22±4.01 72.76±2.50 25.92±1.37 59.47±8.25 60.53±8.59 51.18±6.57 35.11±3.33 22.91±1.15
GAT 10 64.07±1.86 58.62±2.99 OOM 30.32±0.79 63.95±10.23 66.84±9.70 59.61±7.63 60.99±1.96 37.97±2.16
GraphSAGE 10 44.89±2.99 41.09±6.57 59.96±4.32 30.14±0.66 59.74±8.04 62.37±8.04 57.06±7.98 55.24±2.47 32.49±2.07
APPNP 10 78.21±1.46 68.02±1.12 76.24±2.37 25.89±1.17 58.68±8.14 58.68±8.14 53.53±7.16 33.53±2.92 20.74±1.08
JKNET 10 76.49±2.23 65.44±1.77 75.04±2.18 26.22±1.25 58.95±7.67 60.00±8.93 57.25±5.61 37.19±2.35 29.07±1.38
GCN-BC 10 10.65±0.59 9.86±5.07 OOM 10.90±0.75 66.58±9.85 67.89±8.93 72.55±7.34 21.21±1.66 20.37±1.11
FAGCN 10 82.23±1.99 66.90±1.84 76.11±2.10 39.81±1.45 76.32±9.03 78.16±8.60 78.63±8.29 63.11±1.51 43.26±1.46
PGNN 10 59.86±4.75 45.79±2.81 67.27±3.15 26.41±0.90 58.95±8.61 60.00±8.40 54.31±5.85 34.52±4.49 30.31±1.73
AdaGNN 10 32.35±1.31 22.66±2.27 49.79±4.85 26.74±1.32 60.26±6.73 64.21±9.94 63.53±7.91 39.89±3.67 24.92±2.72
AKGNN 10 80.22±0.98 66.70±2.09 75.07±2.64 35.22±0.88 58.95±7.96 61.58±8.25 56.08±8.02 61.58±2.02 37.51±2.35
CSF 10 80.80±1.89 68.33±0.85 76.72±1.41 49.34±1.48 85.26±5.98 87.63±6.57 86.47±7.65 73.05±2.54 61.04±1.17
CSF -w/o topology 10 33.88±1.01 27.51±1.74 55.90±2.36 49.38±0.66 86.58±6.26 86.84±6.56 87.84±6.46 63.29±2.08 54.06±1.52
CSF -w low-pass attribute 10 80.61±1.95 68.32±1.07 77.41±1.07 34.32±0.92 63.16±8.50 70.79±8.55 63.73±8.88 57.87±2.47 34.84±1.19
CSF -w only low-pass attribute 10 31.27±0.82 21.12±0.89 51.10±0.89 28.18±0.78 59.21±8.62 59.47±9.30 62.75±9.96 29.93±2.50 21.07±2.53
MLP 20 31.30±0.76 20.89±0.73 39.88±0.25 25.70±1.24 58.68±8.14 58.68±8.14 46.47±6.06 21.51±0.84 20.26±1.04
GCN 20 31.30±0.76 20.83±0.78 39.88±0.25 25.41±1.37 58.68±8.14 58.68±8.14 46.47±6.06 21.51±0.84 20.32±1.03
SGC 20 38.77±2.77 32.18±2.60 61.98±4.92 25.46±1.34 59.74±7.55 58.68±8.14 47.65±7.28 31.67±2.72 21.82±0.99
GAT 20 64.16±2.60 59.41±8.27 OOM 30.41±1.12 63.42±7.79 65.79±8.23 59.41±8.27 OOM OOM

GraphSAGE 20 45.59±3.05 42.96±5.76 60.21±5.22 30.26±0.77 59.47±8.43 61.32±9.53 56.08±7.35 55.07±2.85 32.19±2.64
APPNP 20 74.02±1.82 67.46±1.55 73.43±2.35 26.01±1.11 58.68±8.14 58.68±8.14 46.47±6.06 32.57±2.37 20.61±1.24
JKNET 20 73.84±2.25 64.63±2.23 74.30±2.07 26.24±0.93 58.68±8.14 59.74±8.69 50.78±6.63 35.24±2.95 28.19±1.35
GCN-BC 20 10.65±0.59 7.44±0.50 OOM 10.90±0.75 65.26±9.18 67.11±9.55 72.94±6.39 21.21±1.66 20.37±1.11
FAGCN 20 82.41±1.48 67.25±1.14 75.88±2.23 39.49±1.23 72.63±7.57 78.68±8.45 79.61±9.25 64.06±2.30 42.77±1.77
PGNN 20 37.80±6.88 29.77±4.92 45.48±7.22 26.45±1.01 58.95±7.67 60.26±9.24 52.16±5.33 28.49±2.70 29.98±1.09
AdaGNN 20 31.47±0.70 21.12±0.71 42.73±2.84 27.12±1.19 58.68±8.14 58.68±8.14 49.41±9.09 30.04±2.38 22.82±1.05
AKGNN 20 80.74±2.28 66.08±1.40 75.41±2.42 35.26±0.78 58.68±8.14 62.89±8.81 57.65±6.93 60.35±2.18 37.38±1.23
CSF 20 81.21±1.75 68.26±1.08 77.06±1.35 48.86±1.66 83.42±8.14 87.63±7.02 86.47±7.19 73.31±2.26 60.58±1.17
CSF -w/o topology 20 33.50±1.27 27.16±2.06 55.47±3.30 49.49±0.85 86.58±6.73 86.32±6.88 87.06±6.61 63.38±1.73 54.15±1.30
CSF -w low-pass attribute 20 80.68±1.82 68.07±1.31 77.52±2.07 34.17±0.75 63.95±7.85 68.68±8.81 63.73±7.96 57.57±2.42 34.76±1.50
CSF -w only low-pass attribute 20 31.27±0.82 21.15±0.67 51.56±0.57 28.19±0.64 60.26±8.36 60.53±8.86 67.84±7.96 29.98±2.52 23.44±1.76
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