
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Cross-Space Adaptive Filter: Integrating Graph Topology and
Node Attributes for Alleviating the Over-smoothing Problem

Anonymous Author(s)
∗

ABSTRACT
The vanilla Graph Convolutional Network (GCN) uses a low-pass

filter to extract low-frequency signals from graph topology, which

may lead to the over-smoothing problem when GCN goes deep. To

this end, various methods have been proposed to create an adaptive

filter by incorporating an extra filter (e.g., a high-pass filter) ex-

tracted from the graph topology. However, these methods heavily

rely on topological information and ignore the node attribute space,

which severely sacrifices the expressive power of the deep GCNs,

especially when dealing with disassortative graphs. In this paper,

we propose a cross-space adaptive filter, called CSF, to produce the

adaptive-frequency information extracted from both the topology

and attribute spaces. Specifically, we first derive a tailored attribute-

based high-pass filter that can be interpreted theoretically as a

minimizer for semi-supervised kernel ridge regression. Then, we

cast the topology-based low-pass filter as a Mercer’s kernel within

the context of GCNs. This serves as a foundation for combining it

with the attribute-based filter to capture the adaptive-frequency

information. Finally, we derive the cross-space filter via an effective

multiple-kernel learning strategy, which unifies the attribute-based

high-pass filter and the topology-based low-pass filter. This helps

to address the over-smoothing problem while maintaining effec-

tiveness. Extensive experiments demonstrate that CSF not only

successfully alleviates the over-smoothing problem but also pro-

motes the effectiveness of the node classification task.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Graph convolutional network, over-smoothing, node attribute

ACM Reference Format:
Anonymous Author(s). 2018. Cross-Space Adaptive Filter: Integrating Graph

Topology and Node Attributes for Alleviating the Over-smoothing Problem.

In Proceedings of Make sure to enter the correct conference title from your
rights confirmation emai (Conference acronym ’XX). ACM, New York, NY,

USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

Relevance to The Web Conference. This work studies the issue

of over-smoothing in GNNs. As a result, it meets the requirements

of Graph Algorithms and Modeling for the Web Track and is closely

related to the topic of "Graph embeddings and GNNs for the Web".
Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph Neural Networks (GNNs) have proven to be effective in learn-

ing representations of network-structured data and have achieved

great success in various real-world web applications, such as cita-

tion networks [21, 34] and actor co-occurrence network [38]. As

one of the mainstream research lines of GNNs, spectral-based meth-

ods have attracted much attention due to their strong mathemati-

cal foundation. Typically, these methods build upon graph signal

processing and define the convolution operation using the graph

Fourier transform. Recent studies suggest that superior perfor-

mance can be achieved when jointly characterizing graph topology

and node attributes [45, 47]. This is because node attributes contain

rich information, such as the correlation among node attributes,

which complements the information from graph topology.

As the seminal work of spectral-based GNNs, the Graph Con-

volutional Network (GCN) has been widely explored. Informally,

GCN is a multi-layer feed-forward neural network that propagates

node representations across an undirected graph. During the con-

volution operation, each node updates its representation by aggre-

gating representations from its connected neighborhood. Although

the effectiveness of GCN, it, unfortunately, suffers from the over-
smoothing problem [32, 50], where node representations become

indistinguishable and converge towards the same constant value

as the number of layers increases. This is because the convolution

operation in a GCN layer is governed by a low-pass spectral fil-

ter, which causes connected nodes in the graph to share similar

representations [1, 42]. Previous studies show that this low-pass

filter corresponds to the eigensystem of the graph Laplacian and

penalizes large eigenvalues in its eigen-expansion. This helps to re-

move un-smooth signals from the graph and ensures that connected

nodes tend to share similar representations [35]. However, as the

number of layers increases, the over-smoothing problem occurs. To

address this issue, researchers have been striving to move beyond

the low-pass filter and create an adaptive spectral filter [6]. This

is achieved by learning an additional matrix-valued function on

the eigenvalues of the graph Laplacian that produces an all-pass

[19] or high-pass filter [2, 10]. These new filters are then integrated

with the low-pass filter to yield the adaptive one. By this means, the

adaptive filter incorporates adaptive frequency information rather

than relying exclusively on low-pass frequency information.

However, existing adaptive filters only focus on the graph topol-

ogy space but largely ignore the node attribute space, which se-

verely sacrifices the expressive power of the deep GCNs, especially

when the node’s label is primarily determined by its own attributes

rather than the topology. For example, when it comes to proteins,

different types of amino acids often interact chemically with each

other. Similarly, in actor co-occurrence networks, actor collabo-

ration often occurs among different types of actors. In this case,

instead of relying solely on the graph topology to determine which

nodes should not have similar representations, considering the

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

correlation between node attributes can provide valuable prior

knowledge on the dissimilarity between nodes. When ignoring the

node attributes, previous studies show that the correlations of the

learned node representations are potentially inconsistent with those

of the raw node attributes [46, 48], In this case, the original node

attributes are washed away, which leads to decreased performance

[18]. This is particularly true when dealing with disassortative

graphs [51] where neighboring nodes have dissimilar attributes or

labels. Therefore, it is important to integrate both graph topology

and node attribute spaces to alleviate the over-smoothing problem

while at the same time promoting the effectiveness of downstream

tasks. However, despite the recognition of its importance [32], fur-

ther research efforts are required to fully realize it.

To this end, we propose a novel Cross-Space Filter (CSF, for

short), an adaptive filter that integrates the adaptive-frequency

information across both topology and node attribute spaces. In ad-

dition to the conventional low-pass filter extracted from the graph

topology space, we first leverage the correlations of node attributes

to extract a high-pass filter. Unlike other high-pass filters that are

usually designed arbitrarily without model interpretation [2, 19],

our high-pass filter, arising from a Mercer’s kernel, is interpreted

as a minimizer for semi-supervised kernel ridge regression. This

brings more model transparency for humans to understand what

knowledge the GCN extracts to make the specific filter. Then, to

tackle the challenge of merging information from two separate

spaces, we resort to the graph kernel theory [36] to cast the con-

ventional low-pass filter of GCN into a kernel, unifying the two

filters in Reproducing Kernel Hilbert Space (RKHS). This allows us

to utilize the benefits of two spaces simultaneously. Subsequently,

the proposed adaptive filter CSF is obtained by applying a simple

multiple-kernel learning technique to fuse the information in both

the topology and attribute spaces. As such, we successfully take

advantage of both graph topology and node attribute spaces from

the perspective of Mercer’s kernel. Consequently, our CSF alleviates

the over-smoothing problem while at the same time promoting the

effectiveness of deep GCNs, especially on disassortative graphs.

This provides insight into revisiting the role of node attributes and

kernels in alleviating the over-smoothing problem.

To evaluate the effectiveness of CSF, we conduct comparative ex-

periments with various baselines under different numbers of convo-

lution layers. These experiments are conducted on both assortative

and disassortative graphs to verify the superiority of CSF on differ-

ent types of graphs. Compared to baselines, the results demonstrate

that CSF not only successfully alleviates the over-smoothing prob-

lem by extracting and integrating information from both spaces

but also improves the model performance on the downstream clas-

sification tasks, especially when dealing with disassortative graphs.

In particular, on average, our CSF outperforms the best baseline by

+0.62 on assortative graphs and +10.39 on disassortative graphs.

These results highlight the importance of node attributes in assist-

ing over-smoothing alleviation while at the same time promoting

the effectiveness of deep GCNs. To sum up, we claim the following

contributions.

• We call attention to the importance of node attribute space, which

helps alleviate the over-smoothing problem while at the same

time promoting the effectiveness of deep GCN, especially on

disassortative graphs.

• For the first time, we leverage the correlations of node attributes

to extract a spectral high-pass filter, arising from a Mercer’s

kernel. Such a filter could be further interpreted as a minimizer

of semi-supervised kernel ridge regression, which brings more

model transparency.

• We take the first step to derive a cross-space adaptive filter, which

integrates the adaptive-frequency information across both topol-

ogy and node attribute spaces. This provides insight into revis-

iting the role of node attributes and kernels in alleviating the

over-smoothing problem.

• Extensive experiments on various datasets indicate that our

method outperforms others in terms of its robustness to the

over-smoothing problem and effectiveness on the downstream

tasks, especially on the disassortative graphs.

2 RELATEDWORK
Graph Filters and GCN. The fitted values/representations from

GCN and its variants are reduced by a low-pass filter, corresponding

to the eigensystem of graph Laplacian [1, 42], which results in the

over-smoothing problem [50]. As a result, various adaptive filter-

based methods have been proposed to extend the low-pass filter

in GCN. Specifically, they focus on the combinations of multiple

low-pass filters [12, 43], all-pass and low-pass filters [19], low-pass

and band-pass filters [28, 51], and low-pass and high-pass filters

[2, 10, 50]. In this paper, our method also combines low-pass and

high-pass filters to eliminate the over-smoothing problem, but it

differs from existing methods. For example, PGNN [10] designs a

new propagation rule based on 𝑝-Laplacian message passing that

works as low-high-pass filters. More recently, FAGCN [2] proposes a

self-gating mechanism to achieve dynamic adaptation between low-

pass and high-pass filters. Though considered in themodel, the high-

pass filter is based on a hand-crafted function, which is designed too

arbitrarily without any interpretation. More importantly, existing

works place heavy reliance on the graph topology to derive their

adaptive filters, while the correlation information contained in the

node’s attributes is largely ignored. This may severely sacrifice the

expressive power of the deep GCNs. This is particularly true when

dealing with the disassortative graphs, where the node’s label is

primarily determined by its own attributes rather than the topology.

To this end, we take the first step to derive a cross-space adaptive

filter, which integrates information from both the topology and

attribute spaces.

Attribute-enhanced GCN. Recent work shows that, together

with the node attributes, superior performance can be achieved

by characterizing graph topology and attribute correlations simul-

taneously [45, 47], due to node attributes containing abundant

information that complements the graph topology. The correla-

tions could be built using the predict-then-propagate architecture

[13] or mutual exclusion constraints [46]. However, to the best of

our knowledge, little research has attempted to use node attributes

to address the over-smoothing problem. Although there have been

some suggestions of adding residual connections to deep GNNs

[32], such as the jumping knowledge [44], that is helpful for the

over-smoothness problem, we differ from these methods in com-

pletely different technical solutions: we leverage the correlations

of node attributes to extract a spectral high-pass filter for the first,

and we experimentally show our superiority.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Cross-Space Filter Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3 PRELIMINARY
Notation. Consider an undirected graph 𝐺 = (𝑉 , 𝐸, 𝑋) with ad-

jacency matrix 𝐴, edge set 𝐸, node set 𝑉 with |𝑉 | = 𝑁 . Also, the

graph 𝐺 contains a node attribute matrix 𝑋 ∈ 𝑅𝑁×𝑀
, where each

node 𝑣𝑖 ∈ 𝑉 has an attribute vector 𝑥𝑖 ∈ 𝑅𝑀 . Moreover, we denote

𝐴̃ = 𝐴 + 𝐼 to be the adjacency matrix of graph 𝐺 with additional

self-connections. 𝐷̃ and𝐷 are defined as the diagonal degree matrix

of 𝐴̃ and𝐴 respectively, with 𝐷̃𝑖𝑖 =
∑
𝑗 𝐴̃𝑖 𝑗 and 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . 𝐿 and

𝐿̃ are the normalized Laplacian matrix of𝐴 and 𝐴̃, respectively. Also,

unless stated otherwise, we denote {𝜆𝑖 , 𝜈𝑖 } and { ˜𝜆𝑖 , 𝜈𝑖 } to be the

𝑖-th eigenvalue and eigenvector of 𝐿 and 𝐿̃, respectively. Next, we

use the notation [𝐴, 𝐵] to be the concatenation operator between

matrices or vectors. Finally, we assume H is a Reproducing Kernel

Hilbert Space (RKHS) with a positive definite kernel function im-

plementing the inner product. The inner product is defined so that

it satisfies the reproducing property.

Graph Convolutional Network. A GCN is a multi-layer feed-

forward neural network that propagates and transforms node at-

tributes along with an undirected graph 𝐺 . The layer-wise propa-

gation rule in layer 𝑘 is 𝐻𝑘+1 = 𝜎 (𝐷̃− 1

2 𝐴̃𝐷̃− 1

2𝐻𝑘𝑊 𝑘). Here,𝑊 𝑘
is

the trainable model parameter in layer 𝑘 , 𝜎 is an activation func-

tion (e.g., ReLU), 𝐻𝑘 is the hidden representations in the 𝑘-th layer,

and 𝐻0 = 𝑋 for initialization. To stabilize the optimization, the

GCN adds self-loops to each node to make the largest eigenvalue

of normalized Laplacian smaller [42]. Research has demonstrated

that vectors containing fitted values of the GCN and its variants

can be reduced by a customized low-pass filter, corresponding to

the eigensystem of 𝐿̃. Specifically, Wu et al. [42] concludes that

the low-pass filter for the simplified GCN is parameterized by the

matrix-valued filter function 𝑔(˜𝜆𝑖) = (1 − ˜𝜆𝑖)𝑐 , where 𝑐 is the num-

ber of graph convolution layers. More accurately, the matrix-valued

filter function of the vanilla GCN can be further approximated [1]

as 𝑔(˜𝜆𝑖) = 1 − 𝑝
𝑝+1

˜𝜆𝑖 , where 𝑝 is the average node degree.

Label Propagation (LP). As the most classic graph-based semi-

supervised learning method, label propagation [49] propagates

label information from labeled data to unlabeled data along the

graph. At the 𝑘-th iteration, it updates the predictive labels by

𝑌𝑘+1 = 𝛾𝐷− 1

2𝐴𝐷
1

2𝑌𝑘 + (1−𝛾)𝑌 , where 𝛾 is a hyper-parameter and

𝑌 is a one-hot label matrix with setting 𝑖-th row to be zeros if 𝑣𝑖 is

unlabeled. The fitted values of LP for all data are given in the closed

form 𝑌 𝑙𝑝 = (𝐼 + 𝛾
1−𝛾 𝐿)

−1𝑌 , which also yields a low-pass filter [25]

with 𝑖-th factor being reduced by the filter function 𝑔(𝜆𝑖) = 1

1+𝑎1𝜆𝑖

and 𝑎1 =
𝛾

1−𝛾 , 𝑎1 ≥ 0.

Ridge Regression. Our proposed high-pass filter is deeply

rooted in ridge regression. As a classic supervised model, ridge

regression [9] shrinks the regression coefficients of the linear re-

gression model by imposing a penalty on their size. Formally, given

training data𝑋 and corresponding labels𝑌 , the least square solution

for ridge regression, parameterized by 𝛽 , is ˆ𝛽 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌 ,

where 𝜆 > 0 is a hyper-parameter. The additional insight into the

nature of
ˆ𝛽 can be revealed by performing SVD on data 𝑋 = 𝑈𝐷𝑉𝑇 .

It reveals that ridge regression shrinks the coordinates of𝑈 by the

factor

𝑑2

𝑖

(𝑑2

𝑖
+𝜆) , where 𝑑𝑖 ≥ 0 is the 𝑖-th singular value of 𝑋 . Namely,

smaller 𝑑𝑖 , corresponding to directions in the column space of 𝑋

having a smaller variance, suffer stronger shrinkage.

Kernel Ridge Regression (KRR). Following the Representer
theorem [33], a model 𝑓 could be transformed into kernel expansion

over training data, e.g., 𝑓 (𝑥) = ∑𝑁
𝑖 𝛼𝑖𝐾 (𝑥𝑖 , 𝑥). Building upon this,

the linear ridge regression mentioned above could be extended to

the kernel ridge regression: 𝛼 = arg min𝛼 ∥𝑌 −𝐾𝛼 ∥2

2
+𝜆𝛼𝑇𝐾𝛼 , from

which we derive the fitted values as𝐾𝛼 = 𝐾 (𝐾+𝜆𝐼)−1𝑌 = Γ(𝐾, 𝜆)𝑌 .
Building upon the eigen-expansion of kernel 𝐾 = 𝑈𝑘Λ𝑈

𝑇
𝑘

with

Λ𝑖𝑖 ≥ 0 being the 𝑖-th eigenvalue of 𝐾 , kernel ridge regression also

puts fewer penalties on large eigenvalues in the eigen-expansion

(or so-called spectral decomposition) of kernel 𝐾 , with the 𝑖-th factor

being
𝜆𝑖

(𝜆𝑖+𝜆) . Note that Λ𝑖𝑖 = 𝜆𝑖 . Therefore, the fitted values of

kernel ridge regression shrink by a high-pass spectral filter with

the filter function 𝑔(𝜆𝑖) = 𝜆𝑖
(𝜆𝑖+𝜆) .

4 CROSS-SPACE FILTER
In this section, we elaborate on CSF. It first leverages the correla-

tions of node attributes to extract the interpretable high-pass filter

arising from aMercer’s kernel (cf. Section 4.1). Then, it casts the con-

ventional low-pass topology-based filter into another kernel, unify-

ing the two filters in RKHS (cf. Section 4.2). Finally, the cross-space

adaptive filter is obtained by applying a simple multiple-kernel

learning technique to fuse the information in both the topology

and attribute spaces (cf. Section 4.3).

4.1 High-pass Filter From Node Attribute Space
In deep GCNs, node representations in the whole graph get similar

to each other and finally converge towards the same constant value.

To this end, we aim to design a high-pass filter based on the node at-

tributes to provide prior knowledge onwhich nodes should have dis-

similar representations. To extract a filter from the attribute space,

one straightforward idea is to create an attribute-based graph
1
and

implement the GCN convolution operation. However, the challenge

lies in how to extract a high-pass filter, especially in an interpretable

way. In this paper, we resort to the KRR (cf. Section 3), which pro-

vides a rough idea for constructing a high-pass filter using node

attributes in the graph. However, the general setting of the learning

paradigm of GCNs is semi-supervised, where only partially labeled

data are provided. In this section, we solve this challenge by solving

an optimization problem of semi-supervised KRR and deriving an

interpretable high-pass filter.

Solving Semi-supervised KRR. Let Y =

[
𝑌𝐿
𝑍

]
denote the one-

hot label matrix of all nodes, where 𝑍 and 𝑌𝐿 denote the labels

of unlabeled and labeled nodes, respectively. The semi-supervised

KRR is formulated as the following optimization problem.

min

𝛼,𝑍
∥Y − 𝐾𝛼 ∥2

2
+ 𝑎3𝛼

𝑇𝐾𝛼 + 𝑎2∥𝑍 ∥2

2
, (1)

where 𝐾 is a kernel matrix over node attributes, and two regulariza-

tion parameters 𝑎3 and 𝑎2 are introduced to control the complexity

of model/hypothesis 𝑓 and the uniform prior on pseudo-labels 𝑍 ,

respectively. Although the problem is non-convex, it can still be

approximated by a closed-form solution. In particular, denoting

1
An attribute-based graph is obtained by calculating similarities of node attributes.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Deep GCNs

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡 = �𝐷𝐷
1
2𝐴̃𝐴�𝐷𝐷−

1
2

A

X
𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐼𝐼 +

1
𝑎𝑎2

𝐼𝐼 − Γ 𝐾𝐾,𝑎𝑎3
−1

Low-pass filter

High-pass filter

M
ultiple K

ernel Learning

Graph Topology Space

Node Attribute Space

Integrating Two Spaces

𝕂𝕂 =
𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡

2
+ 𝛾𝛾 𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡

2

Cross-space adaptive filter

Magnitude
Spectrum

𝕂𝕂 Convolution Layer 𝑘𝑘

Convolution Layer 𝑘𝑘 + 1

Convolution Layer 𝑛𝑛

……

Hk+1=
Propagate Hk,𝕂𝕂

……

v1

v3

v2

v1

v3

v2

𝐻𝐻𝑘𝑘+1=
Propagate(𝐻𝐻𝑘𝑘, �𝐷𝐷

1
2𝐴̃𝐴�𝐷𝐷−

1
2)

Indistinguishable
node representation

Distinguishable
node representation

Over
Smooth

𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is minimizer of
semi-supervised KRR

CSF GCN

Figure 1: Overview of CSF. We leverage both the graph topology and node attribute spaces to produce a cross-space adaptive
filter for alleviating the over-smoothing problem and improving the effectiveness of deep GCNs.

𝛼 = (𝑎3𝐼 + 𝐾)−1Y as a variable parameterized by 𝑎3, we plug it

back into Problem (1) and yield the following penalized quadratic

problem that only involves optimizing 𝑍 .

min

𝑍
Y𝑇 (𝐼 − Γ(𝐾, 𝑎3))Y + 𝑎2∥𝑍 ∥2

2
. (2)

Notably, the transductive solution of the above optimization prob-

lem could be easily obtained in a closed form:𝑍 = −(𝐾̂𝑢𝑢+𝑎2𝐼)−1𝐾̂𝑢𝑙𝑌𝐿 .

We highlight that such a solution is the minimizer of the kernel

regularized functional, taking the form of the regularized harmonic

solution of label propagation [23].

Deriving High-pass Filter. Denote𝑌0 as a one-hot label matrix,

with the 𝑖-th row being zero if the 𝑖-th node in the graph is unlabeled.

The problem 2 is translated as follows.

min

Y
Y𝑇 (𝐼 − Γ(𝐾, 𝑎3))Y + 𝑎2∥𝑌0 − Y∥2

2
. (3)

Consequently, the fitted value of semi-supervised KRR is derived

as Y = 𝐾𝑎𝑡𝑡𝑟𝑌0, where 𝐾𝑎𝑡𝑡𝑟 = (𝐼 + 1

𝑎2

𝐾̂)−1
and 𝐾̂ = 𝐼 − Γ(𝐾, 𝑎3).

Proposition 1. 𝐾̂ = 𝐼 − Γ(𝐾, 𝑎3) is a valid kernel if and only if
𝑎3 > 0. Also, 𝐾𝑎𝑡𝑡𝑟 is a valid kernel if and only if 𝑎3 > 0 and 𝑎2 > 0.

Proof. Note that 𝐾̂ = 1−Γ(𝐾, 𝑎3) = 1−𝐾 (𝐾 +𝑎3𝐼)−1
. We apply

the SVD to the kernel 𝐾 = 𝑈𝑘Λ𝑈
𝑇
𝑘
and bring it back to 𝐾̂ , and we

have the following equation holds.

𝐾̂ = 1 −𝑈𝑘 (Λ(Λ + 𝑎3𝐼)−1)𝑈𝑇
𝑘

=
∑︁
𝑖

(1 − 𝜆𝑖

𝜆𝑖 + 𝑎3

)𝜈𝑇𝑖 𝜈𝑖 , (4)

where 𝜈𝑖 and 𝜆𝑖 correspond to the eigensystems of 𝐾 after SVD.

Note that 𝜆𝑖 > 0 holds as𝐾 is a valid kernel. Then, 𝐾̂ is a valid kernel

if 𝑎3 > 0. This is because 1 − 𝜆𝑖
𝜆𝑖+𝑎3

=
𝑎3

𝜆𝑖+𝑎3

≥ 0 holds for every

eigenvalue of kernel 𝐾 , as long as 𝑎3 > 0 holds. Similarly, together

with the SVD operation, we also conclude that 𝐾𝑎𝑡𝑡𝑟 = (𝐼 + 1

𝑎2

𝐾̂)−1

is a valid kernel if 𝑎2 > 0 and 𝑎3 > 0. □

Proposition 2. The fitted values of semi-supervised kernel ridge
regression are shrunk by a high-pass spectral filter, with the 𝑖-th
factor being 𝑔(𝜆𝑖) = 𝑎2 (𝜆𝑖+𝑎3)

𝑎3+𝑎2 (𝜆𝑖+𝑎3) , where 𝑎2 > 0, 𝑎3 > 0, and 𝜆𝑖 is
the eigenvalue of kernel matrix 𝐾 .

20
30
40
50
60
70
80
90

100

Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

Assortative(%) Disassortative(%)

CDF-GCN (low-pass + high-pass)
 -w/o attribute (low-pass)
 -w/o topology (high-pass)

A
cc

ur
ac

y
(%

)

20
30
40
50
60
70
80
90

100

Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

Assortative(%) Disassortative(%)

CDF-GCN (low-pass + high-pass)
 -w low-pass attribute
Attribute-based GCN

A
cc

ur
ac

y
(%

)

(a) Ablation on topology and attribute

(b) Ablation on filters from topology space

𝑎𝑎2 𝜆𝜆 + 𝑎𝑎3
𝑎𝑎3 + 𝑎𝑎2 𝜆𝜆 + 𝑎𝑎3

0

0.2

0.6

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.0

𝑎𝑎2 = 1,𝑎𝑎3 = 1
𝑎𝑎2 = 1,𝑎𝑎3 = 2
𝑎𝑎2 = 1,𝑎𝑎3 = 3
𝑎𝑎2 = 1,𝑎𝑎3 = 0.1
𝑎𝑎2 = 1,𝑎𝑎3 = 0.01
Low-pass Filter of GCN

λi
(b) Analysis on 𝑎𝑎3

0

0.2

0.6

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.0

𝑎𝑎2 = 1,𝑎𝑎3 = 1
𝑎𝑎2 = 2,𝑎𝑎3 = 1
𝑎𝑎2 = 3,𝑎𝑎3 = 1
𝑎𝑎2 = 0.1,𝑎𝑎3 = 1
𝑎𝑎2 = 0.01, 𝑎𝑎3 = 1
Low-pass Filter of GCN

λi
(a) Analysis on 𝑎𝑎2

Figure 2: Illustration of filter function 𝑔(𝜆𝑖) of 𝐾𝑎𝑡𝑡𝑟 . This
demonstrates that 𝐾𝑎𝑡𝑡𝑟 corresponds to a high-pass filter.

Proof. The fitted values Y = 𝐾𝑎𝑡𝑡𝑟𝑌0 = (𝐼 + 1

𝑎2

𝐾̂)−1𝑌0 are

shrunk by a low-pass filter with factor
𝑎2

𝑎2+ ˆ𝜆𝑖
, where

ˆ𝜆𝑖 is the eigen-

value of 𝐾̂ . More importantly, Y is also shrunk by a high-pass spec-

tral filter with factor 𝑔(𝜆𝑖) = 𝑎2 (𝜆𝑖+𝑎3)
𝑎3+𝑎2 (𝜆𝑖+𝑎3) , where 𝜆𝑖 is the eigen-

value of kernel matrix 𝐾 that is derived from node attributes. □

Propositions 1 and 2 show that we could extract high-pass fre-

quency information about node attributes by solving the semi-

supervised KRR. Unlike the Laplacian matrix 𝐿̃ used in GCN’s con-

volutional operation to extract low-pass topological information,

𝐾𝑎𝑡𝑡𝑟 extracts high-pass attribute-based information.

Remark 1. The kernel matrix 𝐾𝑎𝑡𝑡𝑟 adjusts the shrinkage effect
on the low-frequency signals in the attribute-based graph via two
hyper-parameters, 𝑎2 and 𝑎3.

While 𝑎2 > 0 and 𝑎3 > 0 are the hyper-parameters for the regu-

larization terms in Problem 1, they, as shown in Figure 2, control

the shrinkage effect on the low-frequency signals in the attribute-

based graph. Specifically, when 𝑎2 or 𝑎3 take very large values, our

high-pass filter would become an all-pass filter
2
, placing equal im-

portance to both low-frequency and high-frequency signals in the

2
When 𝑎2 → ∞ or 𝑎3 → 0, 𝑔 (𝜆𝑖) → 1. When 𝑎3 → ∞, 𝑔 (𝜆𝑖) → 𝑎

2

𝑎
2
+1

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Cross-Space Filter Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

graph. On the one hand, 𝑎2 controls the shrinkage strength, which

is used to compress the scale of node attributes/representations.

The smaller 𝑎2, the stronger the compression ability. The informa-

tion of node attributes would be lost when 𝑎2 is very small (e.g.,

𝑎2 = 0.01). This property inspired us to take different values of

𝑎2 when dealing with the assortative and disassortative graphs in

the experiments
3
, where the values of 𝑎2 on disassortative graphs

should be large. This highlights the importance of node attributes in

multi-layer convolutional operations. On the other hand, no matter

what value 𝑎3 takes, it always prefers high-pass signals. Unlike 𝑎2,

𝑎3 controls the frequency range of the low-pass signals that need to

be shrunk. The smaller 𝑎3, the narrower the frequency range. Note

that when 𝑎3 → 0 or 𝑎3 → ∞, our high-pass filter would become

an all-pass filter. Besides, 𝑎3 also controls the complexity of the

semi-supervised KRR model. Thus, 𝑎3 should not be too large or too

small. Therefore, these two parameters control the shrinkage effect

of our filter 𝐾𝑎𝑡𝑡𝑟 on low-frequency signals in the attribute-based

graph. It is worth noting that our filter remains a high-pass filter,

regardless of the values 𝑎2 and 𝑎3 take. In some extreme cases, it

acts as an all-pass filter, but it never becomes a low-pass filter. Refer

to Appendix C for experimental analysis.

To sum up, the proposed spectral filter allows us to capture

the correlations among node attributes and extract high-frequency

information from the attribute space. Moreover, the derived filter

is interpretable, as it’s the minimizer of the semi-supervised kernel

ridge regression problem.

4.2 Low-pass Filter From Graph Topology Space
The conventional low-pass filter of GCN is defined based on the

Fourier graph. However, our proposed high-pass filter is defined

based on Mercer’s kernel. Thus, it would be challenging to combine

these two filters and utilize their benefits simultaneously. To this

end, we drew inspiration from the previous literature [36], which

links the normalized Laplacian and Mercer’s kernels on the graph.

We show how to cast the low-pass filter as a Mercer’s kernel in the

context of GCNs, unifying the two filters in RKHS.

Specifically, let 𝑟 (𝑒) be a Laplacian regularization function that

monotonically increases in 𝑒 and that 𝑟 (𝑒) ≥ 0 holds for all 𝑒 ∈
[0, 2], and {(𝑒𝑖 , 𝜙𝑖)} be the eigensystem of a normalized Laplacian

matrix, where 𝑒𝑖 and 𝜙𝑖 are the 𝑖-th eigenvalue and eigenvector.

[36] shows that a kernel can be defined as 𝐾 =
∑𝑚
𝑖=1

𝑟−1 (𝑒𝑖)𝜙𝑖𝜙𝑇𝑖 ,
where 𝑟−1

is the spectral filter function
4
. In the context of GCNs, we

define a specified Laplacian regularization function as 𝑔−1

1
for GCN,

where 𝑔1 (𝑒) = 1 − 𝑝
𝑝+1

𝑒 is the filter function of GCN discussed in

Section 3. In this case, the filters of GCN are cast into the Mercer’s

kernel space, where the low-pass filter of GCN is the following

one-step random walk kernel 𝐾𝑔𝑐𝑛 = 𝐼 − 𝑝
𝑝+1

𝐿̃ with a spectral filter

on the eigenvalues of the graph Laplacian, 𝑟 (˜𝜆𝑖) = 𝑝+1

𝑝 (1− ˜𝜆𝑖)+1

.

4.3 Integrating Topology-based and
Attribute-based Filters

To solve the problem of overlooking node attributes in existing

adaptive filter methods, we aim to integrate topology and attribute

3
Refer to Foster et al. [7] and Networkx package to check if a graph is disassortative.

4
Note that the pseudo-inverse and 0

−1 = 0 are applied wherever necessary.

Algorithm 1 Pseudo-code of CSF

Input: Graph 𝐺 and node attribute matrix 𝑋 . Maximum epoch

𝐸𝑃 = 150.

Default Parameters: Top-k = 20 for KNN graph. 𝑎3 = 1, 𝑎2 = 1.

Refer to [4, 5], 𝛾 is selected by cross-validation.

1: %%% Obtain high-pass filter from attribute space. %%%
2: Construct a Gaussian kernel 𝐾 via KNN graph on 𝑋 .

3: Γ(𝐾, 𝑎3) = 𝐾 (𝐾 + 𝑎3𝐼)−1

4: 𝐾𝑎𝑡𝑡𝑟 = (𝐼 + 1

𝑎2

(𝐼 − Γ(𝐾, 𝑎3)))−1
.

5: %%% Obtain low-pass filter from topology space via GCN. %%%
6: 𝐾𝑡𝑜𝑝 = 𝐼 − 𝐿̃ = 𝐷̃− 1

2 𝐴̃𝐷̃− 1

2

7: %%% Obtain cross-space adaptive filter by MKL [4, 5]. %%%
8: K = (𝐾𝑎𝑡𝑡𝑟 + 𝐾𝑡𝑜𝑝)/2 + 𝛾 (𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝) (𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝).
9: %%% Perform propagation %%%

10: Initialize 𝑒𝑝𝑜 = 0, 𝑘 = 0.

11: Set 𝐻𝑘 = 𝑋 , and diagonal matrix 𝐷̂ , with 𝐷̂𝑖𝑖 =
∑
𝑗 K𝑖 𝑗 .

12: while 𝐸𝑃 > 𝑒𝑝𝑜 do
13: 𝐻𝑘+1 = 𝜎 (𝐷̂− 1

2 K𝐷̂− 1

2𝐻𝑘𝑊 𝑘) ⊕ 𝑋
14: 𝑒𝑝𝑜+ = 1

15: end while

Fr
eq

ue
nc

y
R

es
po

ns
e

10
0

20
0

30
0

0

Signal of “Main Diagonal Line”

Magnitude Spectrum of 𝕂𝕂 Signal of “Anti-Diagonal Line”

Fr
eq

ue
nc

y
R

es
po

ns
e

30
0

35
0

40
0

Color
Maps

Figure 3: Illustration of magnitude spectrum and frequency
response. This demonstrates that K corresponds to an adap-
tive filter that combines both low-pass and high-pass filters.

information from the perspective of Mercer’s kernel. As shown in

Figure 1, our adaptive filter CSF is obtained by applying a simple yet

effective multiple-kernel learning technique to fuse the information.

We elaborate on our CSF below.

Obtain Attribute-based Filter. Given training data with lim-

ited labels, we first construct a kernel based on the node attribute𝑋

via the k-nearest-neighbor (KNN) graph
5
, whose edges areweighted

by the Gaussian distance. This forms a valid Gaussian kernel 𝐾 . To

enhance the optimization stability, we also exploit the re-normalization

and self-loop tricks on the kernel 𝐾 , which are used in vanilla GCN.

Next, we calculate 𝐾𝑎𝑡𝑡𝑟 to build the high-pass spectral filter and

capture the information of the node attributes.

Obtain Topology-based Filter. The one-step random walk

kernel from vanilla GCN is utilized, which we found to be highly

5
Refer to Appendix B for the robustness analysis on the KNN graph.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

effective. In our experiments, we resort to the raw propagation form

of GCN and set 𝐾𝑡𝑜𝑝 = 𝐼 − 𝐿̃ = 𝐷̃− 1

2 𝐴̃𝐷̃− 1

2 . We call attention to the

importance of node attributes to the over-smoothing problem of

GCN, and we will defer the research question of proposing a new

topology-based filter to our future work.

Obtain Cross-Space Filter. To fuse the information across

both graph topology and node attribute spaces, a multiple kernel

learning (MKL) algorithm is adopted. Inspired by previous work, a

squared matrix-based MKL [4, 5, 14] is used to integrate topology

and attribute information from the perspective of Mercer’s kernel.

K =
𝐾𝑎𝑡𝑡𝑟 + 𝐾𝑡𝑜𝑝

2

+ 𝛾 (𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝) (𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝). (5)

Referring to [4, 5], the second term in K represents the difference

of information between 𝐾𝑎𝑡𝑡𝑟 and 𝐾𝑡𝑜𝑝 , and 𝛾 is a positive constant

selected by cross-validation used to control the relative importance

of this difference. Other advancedMKLmethods may also work, but

that is not the research focus of this paper. In this paper, we highlight

that this squared matrix-based algorithm is effective and simple

without trainable parameters. It not only avoids the computational

overhead of parameter learning and improves time efficiency, but

also shows the capability of leveraging the advantages of two spaces

(cf. Section 5). Importantly, the following corollary shows that Eq.5

produces a valid kernel matrix K, which is the foundation of being

a valid filter on the graph according to Smola and Kondor [36].

Corollary 1. K is a positive definite kernel matrix.

Proof. Apparently, the sumof two kernels yields a kernel. There-

fore, the first term

𝐾𝑎𝑡𝑡𝑟+𝐾𝑡𝑜𝑝

2
is a kernel. Let 𝐾𝑎𝑡 = 𝐾𝑎𝑡𝑡𝑟 − 𝐾𝑡𝑜𝑝 .

𝐾𝑎𝑡 is symmetric since both 𝐾𝑎𝑡𝑡𝑟 and 𝐾𝑡𝑜𝑝 are symmetric. Then,

there exists an orthogonal matrix 𝑄𝑎𝑡 such that 𝐾𝑎𝑡 = 𝑄
𝑇
𝑎𝑡Λ𝑎𝑡𝑄𝑎𝑡 ,

where Λ𝑎𝑡 is a diagonal matrix whose elements are the eigenvalues

of 𝐾𝑎𝑡 . Now 𝐾2

𝑎𝑡 = 𝑄
𝑇
𝑎𝑡Λ

2

𝑎𝑡𝑄𝑎𝑡 , that is, 𝐾
2

𝑎𝑡 is positive semidefinite.

Taking the first and second terms together, Eq.5 provides a matrix

K arising from a Mercer’s kernel. Then K could play the role of a

valid filter on the graph, according to Smola and Kondor [36]. □

Remark 2. K corresponds to an adaptive filter that combines both
low-pass and high-pass filters.

To illustrate the adaptive filter, we plot the magnitude spectrum

and frequency response of K on the Texas dataset in Figure 3. We

selected three representative signals based on the magnitude spec-

trum results. The frequency response of these signals indicates that

K successfully integrates the low-pass (cf. the main diagonal and

horizontal lines) and high-pass filters
6
(cf. the anti-diagonal line).

Propagation rule of CSF. Let 𝐷̂𝑖𝑖 =
∑
𝑗 K𝑖 𝑗 and 𝐻0 = 𝑋 . The

layer-wise propagation rule of our CSF method is concluded as

𝐻𝑘+1 = 𝜎 (𝐷̂− 1

2 K𝐷̂− 1

2𝐻𝑘𝑊 𝑘) ⊕ 𝑋 . Taking inspiration from the

propagation rule of the label propagation algorithm, which attaches

the response variable 𝑌 to the propagation to ensure consistency

between predicted labels and 𝑌 , we also attach raw attributes 𝑋

to the propagation process to enhance consistency with the raw

feature 𝑋 . Here, ⊕ means the concatenation operator.

6
This high-pass filter is less similar to an all-pass filter as the frequency response in

the middle part is still lower than the other parts on the line.

We conclude the pseudo-code of CSF in Algorithm 1. Unlike GAT

and GCN-BC, which suffer frommemory overflow due to their high

space complexity, our method requires a time complexity of𝑂 (𝑁 3)
to obtain the cross-space filter due to kernel inversion. Fortunately,

1) we only calculate the kernel once (see Algorithm 1), 2) classic

methods, such as the Nystrom method [27, 41] can help ease the

calculation. In Appendix D, we reduce the complexity of the kernel

inversion to 𝑂 (𝑚𝑁 2), where𝑚 ≪ 𝑁 , which is comparable to the

filter construction of vanilla GCN (i.e., 𝑂 (𝑁 2)).

5 EMPIRICAL EVALUATION
To assess CSF’s ability to mitigate the over-smoothing issue and

promote the effectiveness power of deep GCN, we conduct compar-

ative experiments with various baselines under different numbers

of convolution layers (see Section 5.2). Moreover, we reveal more

characteristics of CSF by conducting ablation studies on graph

topology and node attributes (see Section 5.3).

5.1 Experiment Setup
Datasets. Following previous studies on adaptive filters [2, 19],

nine commonly used node classification datasets are utilized. This

includes three assortative graphs (i.e., Cora, Citeseer, and Pubmed)

and six disassortative graphs (i.e., Actor, Cornell, Texas, Wisconsin,

Chameleon, and Squirrel). In an assortative graph, nodes tend to

connect with other nodes bearing more similarities, while ones in

the disassortative graph are on the contrary. All datasets are avail-

able online. Refer to Bo et al. [2] for more details on the datasets.

Comparative Methods. Focusing on the over-smoothing prob-

lem, we rely on adaptive filter methods as our primary baselines.

In particular, we consider FAGCN [2] and PGNN [10] which inte-

grate low-pass and high-pass filters, AKGNN [19] which integrates

all-pass and low-pass filters, and AdaGNN [6] which has a train-

able filter function. Additionally, we take representative GNNs into

comparison, including GCN [22], SGC [42], GAT [39], GraphSage

[15]. To evaluate the effectiveness of node attributes, we compare

with attribute enhanced GNNs, including APPNP [13], JKNet [44]

and GCN-BC [46]. Finally, MLP is used as our supervised baseline,

which is trained using the node attributes.

ImplementationDetails. The codes for most baselinemethods are

publicly available online. However, since there is no code available

for GCN-BC, we implemented this method based on the propaga-

tion rules mentioned in their paper. Regarding the MLP, each layer

is implemented by a fully connected network with ReLu activation

and dropout. In the case of our proposed CSF, we utilized node

attributes to construct a KNN graph with the top-20 neighbors
7
.

To calculate edge similarity among nodes, we used a Gaussian ker-

nel with the kernel bandwidth set to the squared average distance

among nodes, without further tuning. We set 𝑎2 = 0.1 for the assor-

tative graphs, 𝑎2 = 100 for the disassortative graphs, and 𝑎3 = 1 for

all graphs (cf. Appendix C for the analysis on 𝑎2 and 𝑎3). To simulate

the deep GNNs, we tune the number of convolution layers of each

method (i.e., {2, 5, 10, 20}). Moreover, unlike FAGCN[2], we do not

tune the hidden size on each dataset. Instead, we followed previous

work [20, 26, 40] and set the hidden size to 16 for all methods. We

7
Refer to Appendix B for the robustness analysis on the KNN graph.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Cross-Space Filter Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Pubm.

25
30
35
40
45
50
55

2 5 10 20
Actor

50
60
70
80
90

100

2 5 10 20
Corn.

Wisc.

50
60
70
80
90

100

2 5 10 20
50
60
70
80
90

100

2 5 10 20
Texas

25
35
45
55
65
75
85

2 5 10 20
Cham.

20
30
40
50
60
70

2 5 10 20
Squi.

65
70
75
80
85
90

2 5 10 20

AdaGNN AKGNN
FAGCN PGNN
CSF

Cora

30

40

50

60

70

2 5 10 20
Cite.

30
40
50
60
70
80

2 5 10 20

Figure 4: Over-smoothing problem evaluation of adaptive filter-based methods. We tune the number of layers of each method
(i.e., the X-axis). The Y-axis represents the classification accuracy (%). This indicates that CSF outperforms others in terms of its
robustness to over-smoothing problem and its effectiveness on downstream tasks.

Table 1: Performance of all methods for node classification averaged over different numbers of convolution layers (i.e.,
{2, 5, 10, 20}). The "*" symbol indicates that we ignored the memory overflow situation of the corresponding model. The best
results are marked in bold and the second best are underlined. For more detailed results, please refer to Table 6 in the Appendix.
The results indicate CSF improves the expressiveness of deep GCN, especially when dealing with disassortative graphs.

Model Assortative Graphs (%) Disassortative Graphs (%)
Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

MLP 37.46±0.62 30.54±1.20 50.71±0.90 34.54±0.36 67.96±0.90 68.16±0.15 62.75±0.37 36.50±2.01 29.41±2.73
GCN 48.85±2.25 40.15±1.66 55.77±1.43 27.63±0.16 59.60±0.32 61.45±0.01 51.72±1.63 34.51±4.81 23.90±0.63
SGC 65.56±1.45 52.76±1.29 71.11±1.44 28.51±0.25 61.19±0.69 63.03±0.74 55.15±0.73 45.85±0.51 28.10±0.72
GAT 64.01±0.42 58.88±2.66 74.84±2.01* 30.58±0.16 63.42±1.04 66.65±1.07 60.15±0.48 60.89±0.23 37.68±0.20
GraphSAGE 45.26±0.48 41.97±0.39 60.34±0.61 30.19±0.09 59.41±0.19 61.78±1.31 56.91±1.08 55.14±0.24 32.48±0.36
APPNP 78.37±0.24 68.16±0.35 75.40±0.11 27.04±0.19 59.34±0.21 60.39±0.26 53.19±0.88 39.11±0.23 21.01±0.32
JKNET 76.44±0.30 65.47±0.30 74.80±0.11 26.75±0.55 59.34±0.33 60.99±0.41 56.76±0.96 43.94±0.71 30.31±0.33
GCN-BC 23.39±2.38 19.21±2.05 73.36±2.88* 15.20±0.18 66.05±0.58 67.50±0.57 72.21±0.85 33.14±0.55 27.94±0.25
FAGCN 80.88±0.25 66.35±0.67 75.51±0.44 39.66±0.14 73.82±0.68 78.62±0.11 78.78±0.45 64.91±0.44 43.41±0.45
PGNN 60.22±1.83 42.98±1.26 61.30±2.35 29.76±0.06 59.74±0.93 62.43±0.73 55.10±0.59 41.72±1.20 34.27±0.38
AdaGNN 44.53±0.58 34.80±0.89 53.45±1.22 34.15±0.24 64.93±0.94 70.59±2.08 66.37±1.55 52.34±0.58 38.97±0.74
AKGNN 77.81±1.35 65.84±0.69 74.10±1.22 35.19±0.14 59.21±0.35 61.84±0.79 58.92±0.64 61.28±0.20 37.31±0.52
CSF 81.09±0.12 68.54±0.31 76.79±0.30 48.68±0.18 84.74±1.32 88.22±0.43 87.35±0.66 72.74±0.29 59.82±0.14
Improvement 0.21 ↑ 0.38 ↑ 1.28 ↑ 9.02 ↑ 10.92 ↑ 9.6 ↑ 8.57 ↑ 7.83 ↑ 16.41 ↑

also note that the learning rate in previous studies is either too large

(e.g., [24] directly uses {0.5}) or too small (e.g., [2] tunes the learning

rate in {0.01, 0.005}). Therefore, we tune the learning rate to fully

evaluate the performance of all methods when the learning rate

is large or small, namely {0.03, 0.02, 0.01, 0.005, 0.1, 0.2, 0.3, 0.4, 0.5}.
Finally, all experiments were conducted on a machine with an In-

tel(R) Core(TM) i5-12400F, 16GB memory, and GeForce RTX 3060.

We implemented all methods in Pytorch and optimized them using

the Adam optimizer with a dropout rate of 0.5. Finally, we ran 150

epochs and selected the model with the highest validation accuracy

for testing. We report the mean and variance of the results over ten

runs, where all experiments were conducted under the same fixed

random seed to ensure that different methods were performed with

the same labeled data in each run.

5.2 Main results
Previous works show vanilla GCN suffers from the over-smoothing

problem once the network goes deep. In this section, we design

experiments to evaluate the performances of all methods on various

datasets, where the number of layers ranges from {2, 5, 10, 20}. Due
to space limitations, we report detailed results in the Appendix (cf.

Table. 6). Our experimental results, as shown in Fig. 4 and Table 1,

indicate that our alleviates the over-smoothing problem while
7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

at the same time promoting the effectiveness of deep GCNs
especially when dealing with disassortative graphs.

Specifically, Fig. 4 illustrates the performance of CSF and existing

adaptive filter methods in terms of alleviating the over-smoothing

problem. The results indicate that CSF remains effective even with

increasing model layers and shows a trend of increasing effective-

ness on some datasets (such as Cham., Squi., Pumb.). In contrast,

we observe that AdaGNN and PGNN may not fully address the

over-smoothing issue as their effectiveness tends to decrease with

the increase of model layers. Compared to the remaining two base-

lines (i.e., FAGNN and AKGNN), although CSF only achieves com-

parative performance on Cora data, it outperforms FAGNN and

AKGNN in most cases, especially when dealing with the disassorta-

tive graphs. These results highlight the importance of alleviating

the over-smoothing problem while at the same time promoting the

effectiveness of deep GCNs. For more quantified results, we summa-

rize the experimental results of all models in Table 1, averaged over

the number of layers. The results indicate that CSF significantly

outperforms other comparative methods on all datasets, especially

on disassortative graphs. This aligns with previous research that

suggests GCN and its variants perform poorly on the disassortative

graphs [18] because their nodes tend to connect to others with

dissimilar properties, making topology information unreliable for

downstream tasks. Therefore, combining information from both

topology and attribute is necessary. Although current works at-

tempt to integrate both factors, such as JKNet’s jumping knowledge,

or APPNP’s and GCN-BC’s hidden representation to improve rep-

resentation capabilities, they still underperform CSF. This implies

that extracting information from node attributes in the form of

a high-pass filter is a better solution. It not only enhances model

performance but also alleviates the over-smoothing problem.

5.3 Ablation studies
We further conduct an in-depth analysis to reveal the characteristics

of node attributes, as illustrated in Fig. 5.

For assortative graphs, topology information is more im-
portant, whereas, for disassortative graphs, node attribute
information is more valuable. CSF effectively balances the
two. To evaluate the impact of different spaces, we eliminate the

attribute filter (i.e., CSF -w/o attribute) and topology filter (i.e., CSF
-w/o topology) from K individually. The results in Fig. 5(a) show that

topology information dominates attribute information on assor-

tative graphs, while the opposite is true for disassortative graphs.

This leads to two observations: firstly, our proposed high-pass fil-

ter successfully extracts attribute information, leading to better

performance on disassortative graphs than topology-based filters.

Secondly, the MKL method used in CSF integrates the advantages

of both spaces and achieves better overall performance.

High-frequency information in attribute space is more
valuable than low-frequency information. We first introduce

a baseline CSF -w low-pass attribute that involves replacing the

high-pass filter 𝐾𝑎𝑡𝑡𝑟 with the vanilla GCN filter performed on the

attribute-based graph. In this case, two low-pass filters from differ-

ent spaces are used to build K. For comparison, we then introduce

a baseline CSF -w only low-pass attribute that uses the same low-

pass attribute-based filter alone as K. As demonstrated in Figure

5(b), it leads to two observations. 1) Comparing CSF -w low-pass

(a) Ablation on topology and attribute spaces

(b) Ablation on filters from attribute space

15
25
35
45
55
65
75
85
95

Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

CSF
CSF -w low-pass attribute
CSF -w only low-pass attribute

20
30
40
50
60
70
80
90

100

Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

CSF
CSF -w/o topolopy
CSF -w/o attribute

Figure 5: Ablation studies on node attribute space. We report
the averaged performance across various number of layers
(i.e., Y-axis). Fig.(a) shows CSF effectively balances the advan-
tages of two spaces, while Fig.(b) highlights the importance
of high-frequency information in attribute space.

attribute with CSF -w only low-pass attribute and CSF -w/o attribute,
fusing filters from two spaces still has an effective gain even if they

are all low-pass filters. 2) Comparing CSF with CSF -w low-pass
attribute, it highlights the high-frequency information in attribute

space, securing the superiority of our CSF.

We also analyze the parameter sensitivity and robustness of

𝐾𝑎𝑡𝑡𝑟 in the Appendix C and Appendix B, respectively.

6 CONCLUSION
Alleviating the over-smoothing problem while at the same time

promoting the effectiveness power is known to be important for

applying deep GCNs to downstream tasks. Existing methods fail on

this challenge due to heavily relying on graph topology and over-

looking the correlation information in node attributes. To torch this

challenge, we take the first step to propose a high-pass attribute-

based filter, which is interpreted as a minimizer of semi-supervised

kernel ridge regression. More importantly, for the first time, we

propose a cross-space adaptive filter arising from a Mercer’s ker-

nel. Such a filter integrates information across both the topology

and attribute spaces, resulting in superior robustness to the over-

smoothing problem and promoting the effectiveness of deep GCN

on downstream tasks, as demonstrated in our experiments.

We would like to emphasize that our proposed method provides

a new perspective for the GCN community. It provides insight

into revisiting the role of node attributes and kernels in alleviating

the over-smoothing problem. Additionally, its potential value lies

in offering a more convenient and interpretable way to design

customized spectral filters and integrate them together, regardless

of their space sources.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Cross-Space Filter Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien

Adam, and Paul Honeine. 2021. Analyzing the Expressive Power of Graph Neural

Networks in a Spectral Perspective. In ICLR.
[2] Deyu Bo, XiaoWang, Chuan Shi, and Huawei Shen. 2021. Beyond Low-frequency

Information in Graph Convolutional Networks. In AAAI, Vol. 35. 3950–3957.
[3] Kurt Cutajar, Edwin V Bonilla, Pietro Michiardi, and Maurizio Filippone. 2017.

Random feature expansions for deep Gaussian processes. In International Con-
ference on Machine Learning. PMLR, 884–893.

[4] Isaac Martín de Diego, Alberto Munoz, and Javier MMoguerza. 2010. Methods for

the combination of kernel matrices within a support vector framework. Machine
learning 78, 1 (2010), 137–174.

[5] Isaac Martin de Diego, Javier M Moguerza, and Alberto Munoz. 2004. Combining

kernel information for support vector classification. In International Workshop
on Multiple Classifier Systems. Springer, 102–111.

[6] Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. 2021.

AdaGNN: Graph Neural Networks with Adaptive Frequency Response Filter. In

Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 392–401.

[7] Jacob G Foster, David V Foster, Peter Grassberger, and Maya Paczuski. 2010. Edge

direction and the structure of networks. Proceedings of the National Academy of
Sciences 107, 24 (2010), 10815–10820.

[8] Dominique Fourdrinier, William E Strawderman, and Martin T Wells. 2018.

Shrinkage estimation. Springer.
[9] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. 2001. The elements of

statistical learning. Vol. 1. Springer series in statistics New York.

[10] Guoji Fu, Peilin Zhao, and Yatao Bian. 2022. 𝑝-Laplacian Based Graph Neural

Networks. In Proceedings of the 39th International Conference on Machine Learn-
ing (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri,

Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.).

PMLR, 6878–6917. https://proceedings.mlr.press/v162/fu22e.html

[11] Yasuhiro Fujiwara and Go Irie. 2014. Efficient Label Propagation. In ICML
(Proceedings of Machine Learning Research, Vol. 32). PMLR, Bejing, China, 784–

792.

[12] Xing Gao, Wenrui Dai, Chenglin Li, Junni Zou, Hongkai Xiong, and Pascal

Frossard. 2021. Message Passing in Graph Convolution Networks via Adaptive

Filter Banks. arXiv preprint arXiv:2106.09910 (2021).
[13] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2018.

Predict then Propagate: Graph Neural Networks meet Personalized PageRank.

In ICLR.
[14] Mehmet Gönen and Ethem Alpaydın. 2011. Multiple kernel learning algorithms.

The Journal of Machine Learning Research 12 (2011), 2211–2268.

[15] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In NIPS.
[16] Li He and Hong Zhang. 2018. Kernel K-means sampling for Nyström approxima-

tion. IEEE Transactions on Image Processing 27, 5 (2018), 2108–2120.

[17] Kaixuan Huang, Yuqing Wang, Molei Tao, and Tuo Zhao. 2020. Why Do Deep

Residual Networks Generalize Better than Deep Feedforward Networks?—A

Neural Tangent Kernel Perspective. Advances in neural information processing
systems 33 (2020), 2698–2709.

[18] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. 2021. Node

similarity preserving graph convolutional networks. InWSDM. 148–156.

[19] Mingxuan Ju, Shifu Hou, Yujie Fan, Jianan Zhao, Liang Zhao, and Yanfang Ye.

2022. Adaptive Kernel Graph Neural Network. AAAI (2022).
[20] Jian Kang, Qinghai Zhou, and Hanghang Tong. 2022. JuryGCN: Quantifying

Jackknife Uncertainty on Graph Convolutional Networks. In KDD. 742–752.
[21] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[22] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[23] Branislav Kveton, Michal Valko, Ali Rahimi, and Ling Huang. 2010. Semi-

supervised learning with max-margin graph cuts. In AISTATS. JMLR Workshop

and Conference Proceedings, 421–428.

[24] Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, and Zhouchen Lin. 2022.

G2CN: Graph Gaussian Convolution Networks with Concentrated Graph Filters.

In ICML. PMLR, 12782–12796.

[25] Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. 2019.

Label efficient semi-supervised learning via graph filtering. In CVPR. 9582–9591.
[26] Hongrui Liu, Binbin Hu, Xiao Wang, Chuan Shi, Zhiqiang Zhang, and Jun Zhou.

2022. Confidence May Cheat: Self-Training on Graph Neural Networks under

Distribution Shift. In WWW. 1248–1258.

[27] Jing Lu, Steven CH Hoi, Jialei Wang, Peilin Zhao, and Zhi-Yong Liu. 2016. Large

scale online kernel learning. Journal of Machine Learning Research 17, 47 (2016),

1.

[28] Yimeng Min, FrederikWenkel, and GuyWolf. 2020. Scattering GCN: Overcoming

Oversmoothness in Graph Convolutional Networks. NeurIPS 33 (2020).

[29] Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Arthur Gretton,

and Bernhard Schölkopf. 2014. Kernel mean estimation and Stein effect. In ICML.
PMLR, 10–18.

[30] Krikamol Muandet, Bharath Sriperumbudur, and Bernhard Schölkopf. 2014. Ker-

nel mean estimation via spectral filtering. NeurIPS 27 (2014).
[31] Ali Rahimi and Benjamin Recht. 2007. Random features for large-scale kernel

machines. Advances in neural information processing systems 20 (2007).
[32] T Konstantin Rusch, Michael M Bronstein, and SiddharthaMishra. 2023. A survey

on oversmoothing in graph neural networks. arXiv preprint arXiv:2303.10993
(2023).

[33] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. 2001. A generalized

representer theorem. In COLT. Springer, 416–426.
[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[35] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. 2013. The emerging field of signal processing on graphs: Extend-

ing high-dimensional data analysis to networks and other irregular domains.

IEEE signal processing magazine 30, 3 (2013), 83–98.
[36] Alexander J Smola and Risi Kondor. 2003. Kernels and regularization on graphs.

In Learning theory and kernel machines. Springer, 144–158.
[37] Hyeongseok Son, Junyong Lee, Sunghyun Cho, and Seungyong Lee. 2021. Single

image defocus deblurring using kernel-sharing parallel atrous convolutions. In

ICCV. 2642–2650.
[38] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social influence analysis

in large-scale networks. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. 807–816.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[40] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. 2021. Be confident!

towards trustworthy graph neural networks via confidence calibration. NeurIPS
34 (2021), 23768–23779.

[41] Christopher Williams and Matthias Seeger. 2000. Using the Nyström method to

speed up kernel machines. Advances in neural information processing systems 13
(2000).

[42] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In ICML. PMLR,

6861–6871.

[43] Gongce Wu, Shukuan Lin, Xiaoxue Shao, Peng Zhang, and Jianzhong Qiao. 2022.

QPGCN: Graph Convolutional Network with a Quadratic Polynomial Filter for

Overcoming over-Smoothing. Applied Intelligence 53, 6 (jul 2022), 7216–7231.
https://doi.org/10.1007/s10489-022-03836-2

[44] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. In ICML. 5453–5462.
[45] Carl Yang, Jieyu Zhang, Haonan Wang, Sha Li, Myungwan Kim, Matt Walker,

Yiou Xiao, and Jiawei Han. 2020. Relation learning on social networks with

multi-modal graph edge variational autoencoders. InWSDM. 699–707.

[46] Liang Yang, Wenmiao Zhou, Weihang Peng, Bingxin Niu, Junhua Gu, Chuan

Wang, Xiaochun Cao, and Dongxiao He. 2022. Graph Neural Networks Beyond

Compromise Between Attribute and Topology. InWWW (Virtual Event, Lyon,

France). Association for Computing Machinery, New York, NY, USA, 1127–1135.

https://doi.org/10.1145/3485447.3512069

[47] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design space for graph neural

networks. NeurIPS 33 (2020), 17009–17021.
[48] Lingxiao Zhao and Leman Akoglu. 2019. PairNorm: Tackling Oversmoothing in

GNNs. In International Conference on Learning Representations.
[49] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard

Schölkopf. 2003. Learning with local and global consistency. NeurIPS 16 (2003).
[50] Hao Zhu and Piotr Koniusz. 2020. Simple spectral graph convolution. In ICLR.
[51] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. Beyond homophily in graph neural networks: Current limitations

and effective designs. NeurIPS (2020).
[52] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu,

Carl Yang, and Shu Wu. 2021. A Survey on Graph Structure Learning: Progress

and Opportunities. arXiv e-prints (2021), arXiv–2103.

9

https://proceedings.mlr.press/v162/fu22e.html
https://doi.org/10.1007/s10489-022-03836-2
https://doi.org/10.1145/3485447.3512069

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 2: Ablation on the impact of different spaces.

Method/Graphs # Layers
2 5 10 20

Cora
CSF 81.45±1.61 80.88±1.85 80.8±1.89 81.21±1.75
CSF -w/o topology 33.60±1.39 34.09±1.15 33.88±1.01 33.5±1.27
CSF -w/o attribute 80.03±2.02 52.78±5.52 31.3±0.76 31.3±0.76

Cite.
CSF 68.94±0.84 68.61±1.31 68.33±0.85 68.26±1.08
CSF -w/o topology 27.22±1.67 26.52±2.24 27.51±1.74 27.16±2.06
CSF -w/o attribute 67.79±1.22 50.43±4.50 21.53±2.02 20.83±0.78

Pubm.
CSF 76.41±1.70 76.98±1.54 76.72±1.41 77.06±1.35
CSF -w/o topology 55.39±2.91 55.14±4.24 55.9±2.36 55.47±3.3
CSF -w/o attribute 75.01±1.88 67.68±3.74 40.49±1.92 39.88±0.25

Actor
CSF 47.26±1.85 49.27±1.46 49.34±1.48 48.86±1.66
CSF -w/o topology 46.89±0.8 49.54±0.57 49.38±0.66 49.49±0.85
CSF -w/o attribute 33.99±1.03 25.7±1.24 25.41±1.37 25.41±1.37

Corn.
CSF 86.58±5.03 83.68±6.77 85.26±5.98 83.42±8.14
CSF -w/o topology 86.84±7.13 86.58±6.96 86.58±6.26 86.58±6.73
CSF -w/o attribute 62.37±8.78 58.68±8.14 58.68±8.14 58.68±8.14

Texas
CSF 89.47±6.2 88.16±7.15 87.63±6.57 87.63±7.02
CSF -w/o topology 86.58±6.26 86.58±6.50 86.84±6.56 86.32±6.88
CSF -w/o attribute 69.74±8.16 58.68±8.14 58.68±8.14 58.68±8.14

Wisc.
CSF 89.22±6.08 87.25±6.93 86.47±7.65 86.47±7.19
CSF -w/o topology 88.63±6.39 87.25±6.75 87.84±6.46 87.06±6.61
CSF -w/o attribute 65.88±8.63 48.04±4.74 46.47±6.06 46.47±6.06

Cham.
CSF 71.27±2.95 73.33±2.65 73.05±2.54 73.31±2.26
CSF -w/o topology 62.94±2.30 63.51±1.85 63.29±2.08 63.38±1.73
CSF -w/o attribute 62.46±2.32 32.61±10.88 21.45±0.89 21.51±0.84

Squi.
CSF 57.03±1.04 60.64±1.38 61.04±1.17 60.58±1.17
CSF -w/o topology 51.05±1.75 54.49±1.27 54.06±1.52 54.15±1.30
CSF -w/o attribute 34.97±2.32 20.12±1.10 20.17±1.04 20.32±1.03

A APPENDIX FOR RELATEDWORK
Connection to Shrinkage Estimator. In statistics, a shrinkage

estimator is an estimator that incorporates the effects of shrinkage

according to the extra information [8], such as the kernel matrix

[29]. Classic examples include the Lasso estimator for Lasso re-

gression, the ridge estimator for ridge regression, and the spectral

kernel mean shrinkage estimator [29, 30] for kernel mean estima-

tion. Here, our high-pass spectral filter is also a shrinkage estimator

for semi-supervised kernel ridge regression, wherein the shrinkage

strength is small in the coordinates with large eigenvalues.

Graph Structure Learning. It targets to simultaneously train

an optimized graph topology and corresponding node embeddings

for downstream tasks [52]. However, our CSF approach differs

from graph structure learning in that we do not explicitly learn

the structure of the graph. Instead, we focus on multiple kernel

learning to integrate kernels from different spaces.

Table 3: Ablation on the impact of different filters from note
attribute space.

Method/Graphs # Layers
2 5 10 20

Cora

CSF 81.45±1.61 80.88±1.85 80.8±1.89 81.21±1.75
CSF -w low-pass attribute 81.43±1.63 80.76±1.64 80.61±1.95 80.68±1.82
CSF -w only low-pass attribute 31.33±0.79 31.37±0.82 31.27±0.82 31.27±0.82

Cite.

CSF 68.94±0.84 68.61±1.31 68.33±0.85 68.26±1.08
CSF -w low-pass attribute 68.84±0.81 68.28±1.00 68.32±1.07 68.07±1.31
CSF -w only low-pass attribute 21.41±1.08 21.43±1.24 21.12±0.89 21.15±0.67

Pubm.

CSF 76.41±1.70 76.98±1.54 76.72±1.41 77.06±1.35
CSF -w low-pass attribute 77.4±1.86 77.64±1.21 77.41±1.07 77.52±2.07
CSF -w only low-pass attribute 50.18±0.83 49.88±0.77 51.1±0.89 51.56±0.57

Actor

CSF 47.26±1.85 49.27±1.46 49.34±1.48 48.86±1.66
CSF -w low-pass attribute 33.61±0.65 34.23±0.82 34.32±0.92 34.17±0.75
CSF -w only low-pass attribute 28.25±0.77 28.28±0.75 28.18±0.78 28.19±0.64

Corn.

CSF 86.58±5.03 83.68±6.77 85.26±5.98 83.42±8.14
CSF -w low-pass attribute 63.95±8.42 62.37±8.78 63.16±8.5 63.95±7.85
CSF -w only low-pass attribute 60.53±9.12 60.53±9.45 59.21±8.62 60.26±8.36

Texas

CSF 89.47±6.20 88.16±7.15 87.63±6.57 87.63±7.02
CSF -w low-pass attribute 70.00±7.67 68.68±8.18 70.79±8.55 68.68±8.81
CSF -w only low-pass attribute 60.53±8.95 58.95±7.96 59.47±9.3 60.53±8.86

Wisc.

CSF 89.22±6.08 87.25±6.93 86.47±7.65 86.47±7.19
CSF -w low-pass attribute 64.71±8.42 63.73±8.93 63.73±8.88 63.73±7.96
CSF -w only low-pass attribute 57.84±8.78 57.65±10.83 62.75±9.96 67.84±7.96

Cham.

CSF 71.27±2.95 73.33±2.65 73.05±2.54 73.31±2.26
CSF -w low-pass attribute 58.82±1.75 56.78±1.84 57.87±2.47 57.57±2.42
CSF -w only low-pass attribute 28.31±3.07 29.34±2.29 29.93±2.5 29.98±2.52

Squi.

CSF 57.03±1.04 60.64±1.38 61.04±1.17 60.58±1.17
CSF -w low-pass attribute 36.12±1.07 34.74±0.97 34.84±1.19 34.76±1.5
CSF -w only low-pass attribute 20.46±2.31 22.83±1.48 21.07±2.53 23.44±1.76

B ANALYSIS ON INITIALIZATION OF 𝐾𝑎𝑡𝑡𝑟
Constructing a KNN-based graph is the most popular initialization

method for the information propagation model [11], CSF also uses

it as the initialization of the attribute-based filter 𝐾𝑎𝑡𝑡𝑟 (i.e., the

Gaussian kernel 𝐾). In this section, we evaluate the sensitivity of

CSF concerning the sparsity of the KNN-based graph. We vary

the number of neighbors of KNN in {5, 10, 20, 50} and extract the

high-pass filter as usual. The results, presented in Table 4, indicate

that CSF is generally robust to the sparsity of KNN-based kernel

initialization. However, we recommend using the top 20 neighbors

to construct the KNN kernel in practice, as it leads to better overall

performance than other options.

C HYPER-PARAMETER ANALYSIS
As discussed in Remark 1 in Section 4.1, two hyper-parameters,

The kernel matrix 𝐾𝑎𝑡𝑡𝑟 adjusts the shrinkage effect on the low-

frequency signals in the attribute-based graph via 𝑎2 and 𝑎3. In

particular, 𝑎2 controls the shrinkage strength, which is used to

compress the scale of node attributes/representations, while 𝑎3

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Cross-Space Filter Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 4: Robustness evaluation on KNN-based initialization. For simplicity, the experiments are conducted with ten layers.

#Neighbors Assortative Disassortative
Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

Top 5 80.93±1.91 67.85±1.06 76.85±1.77 50.02±1.74 85.22±4.87 87.65±6.68 87.11±7.23 72.86±2.08 60.56±1.33
Top 10 80.67±1.09 68.03±0.89 76.61±1.84 49.14±1.57 82.19±7.03 87.62±6.98 86.49±7.14 73.46±2.22 61.23±1.08
Top 20 80.80±1.89 68.33±0.85 76.72±1.41 49.34±1.48 85.26±5.98 87.63±6.57 86.47±7.65 73.05±2.54 61.04±1.17
Top 50 79.77±1.45 68.63±0.80 76.71±1.38 49.55±1.44 82.23±6.88 87.67±6.55 87.18±7.12 72.77±2.51 60.15±0.95
Full connect 74.76±2.49 69.23±0.65 76.84±1.33 49.13±1.40 80.16±7.77 87.60±6.53 87.47±8.08 73.95±2.14 60.04±1.04

Pumb. Actor Corn.

Wisc.Texas Cham. Squi.

Cora Cite.

0%

10%

20%

30%

40%

50%

60%

0.1 1 10 100
60%

62%

64%

66%

68%

70%

72%

0.1 1 10 100
60%

65%

70%

75%

80%

85%

0.1 1 10 100

2 5
10 20

20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 1 10 100

20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 1 10 100
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 1 10 100
20%

30%

40%

50%

60%

70%

80%

0.1 1 10 100
20%

30%

40%

50%

60%

70%

0.1 1 10 100

60%

65%

70%

75%

80%

0.1 1 10 100

a2

Figure 6: Parameter analysis on 𝑎2 on various number of layers ({2, 5, 10, 20}). Here 𝑎2 is tuned in {0.1, 1, 10, 100}, and 𝑎3 is fixed as
1. We report the average performance (and its standard deviation) of CSF across different numbers of layers, where the black
line represents the standard variance.

controls the frequency range of the low-pass signals that need to be

shrunk. In this section, we experimentally analyze the sensitivity of

CSF to these two hyperparameters. Fig. 6 shows the experimental

results of parameter tuning on 𝑎2, while Fig. 7 shows the results of

tuning 𝑎3. The detailed observations are as follows.

Analysis on 𝑎2. According to Fig. 6, assortative graphs favor

small 𝑎2, while disassortative graphs favor large 𝑎2. This finding

is consistent with our analysis. 𝑎2 controls the shrinkage strength,

which is used to compress the scale of node attributes/representations.

The smaller 𝑎2, the stronger the compression ability. The informa-

tion about node attributes would be lost when 𝑎2 is very small. In

this case, 𝑎2 controls the importance of node attributes in down-

stream tasks. As for disassortative graphs, taking a larger value of

𝑎2 helps to leverage the information of node attributes. Arbitrarily

setting 𝑎2 = 1 is a safe choice, but we suggest using the NetworkX

package (and partially labeled data) to check if a given graph is

disassortative.

Analysis on 𝑎3. According to Fig. 7, CSF is more robust to the

value of 𝑎3 compared to 𝑎2, as 𝑎3 only controls the frequency range

of the low-pass signals that need to be shrunk. However, 𝑎3 also

controls the complexity of the semi-supervised KRR model. Thus,

𝑎3 should not be too large or too small. This may explain why the

performance of CSF decreases on the Actor dataset. In this paper,

we suggest setting 𝑎3 = 1.

D IMPROVING THE COMPUTATION
EFFICIENCY OF KERNEL INVERSION

Our proposed approach effectively addresses the over-smoothing

problem of GCN and performs well compared to various baselines

on different datasets. Here, we discuss the potential limitations of

computational complexity. Unlike GAT and GCN-BC, which suffer

from memory overflow due to their high space complexity, our

method requires high time complexity to obtain the cross-space

filter. Normally, it requires 𝑂 (𝑁 3) due to kernel multiplication

and inversion. Fortunately, 1) we only calculate the kernel once

(see Algorithm 1), 2) and classic methods, such as the low-rank

approximation [16], random Fourier feature [3, 31] and Nystrom

method [27, 41] can help ease the calculation on large graphs.

To demonstrate this, we tentatively provide a proof-of-concept

experiment on Nystrom-based CSF. This reduces the complexity

to 𝑂 (𝑚𝑁 2), where𝑚 ≪ 𝑁 , which is comparable to vanilla GCN’s

complexity of 𝑂 (𝑁 2). Specifically, we use the Nystrom method

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Pumb. Actor Corn.

Wisc.Texas Cham. Squi.

Cora Cite.

a3

0%

10%

20%

30%

40%

50%

60%

0.1 1 10 100

20%

30%

40%

50%

60%

70%

80%

0.1 1 10 100
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 1 10 100

65%

66%

67%

68%

69%

70%

71%

0.1 1 10 100
60%

65%

70%

75%

80%

85%

0.1 1 10 100

2 5 10 20

20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 1 10 100

20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 1 10 100
20%
25%
30%
35%
40%
45%
50%
55%

0.1 1 10 100

60%

65%

70%

75%

80%

0.1 1 10 100

Figure 7: Parameter analysis on 𝑎3 on various number of layers ({2, 5, 10, 20}). Here 𝑎3 is tuned in {0.1, 1, 10, 100}, and 𝑎2 is fixed as
1. We report the average performance (and its standard deviation) of CSF across different numbers of layers, where the black
line represents the standard variance.

[27, 41] to approximate the inverse of the kernel and calculate the

proposed high-pass spectral filter 𝐾𝑎𝑡𝑡𝑟 . Note that other kernel

inverse approximation methods could also be applied. Given a

kernel 𝐾 ∈ 𝑅𝑁×𝑁
, the Nystrom method first randomly samples

𝑚 ≪ 𝑁 columns to form a matrix 𝐶 ∈ 𝑅𝑁×𝑚
. Then, it builds a

much smaller kernel matrix 𝑄 ∈ 𝑅𝑚×𝑚
based on the matrix 𝐶 . As

a result, the original kernel 𝐾 could be approximated by

𝐾 ≈ 𝐶𝑄−1

𝑘
𝐶𝑇 , (6)

where 𝑄𝑘 is the best rank-k approximation of 𝑄 , and 𝑄−1
is the

(pseudo) inverse of 𝑄 . In our case, we approximate the inverse of

𝐾 by

𝐾−1 ≈ 𝐶𝑇
1
𝑄𝑘𝐶1, (7)

where𝐶1 is the pseudo inverse of𝐶 . The computational complexity

for 𝐾−1
is reduced from 𝑂 (𝑁 3) to 𝑂 (𝑚𝑁 2), where𝑚 ≪ 𝑁 .

We test our method on the two largest assortative and dis-

assortative graphs in our experiments (i.e., Pubmed and Actor).

To push the limit of the Nystrom method for kernel inverse ap-

proximation, we set the sample size𝑚 and rank-k to be 0.1% of the

original data for simplicity. As shown in Table 5, we also report the

computation time for calculating the cross-space filter, in addition

to the model accuracy. The results show that the Nystrom-based

CSF substantially increases calculation efficiency while maintaining

some level of model effectiveness.

Lastly, we would like to emphasize that the kernel and inverse

kernel have good characteristics and are widely used in various

applications such as deblurring images [37] and interpreting deep

neural networks [17]. By using the kernel method, we can inter-

pret our high-pass filter and improve the effectiveness of GCN in

addressing the over-smoothing problem.

Table 5: CSF with Nystrom approximation. ’-’ means vanilla
CSF. 𝑚 = M ∗ #Nodes. For simplicity, the experiments are
conducted with ten layers.

M
(%)

Pubm. (#Nodes=19717) Actor (#Node=7600)
Acc. Time (s) Acc. Time (s)

0.1 76.53±1.46 2.25 48.84±1.32 1.76

– 76.72±1.41 5.16 49.34±1.48 1.99

E APPENDIX FOR OVER-SMOOTHING
PROBLEM EVALUATION

As discussed in Section 5, we design experiments to evaluate the

performances of all methods on various data sets, together with

the number of layers ranging from {2, 5, 10, 20}. The overall results
are provided in Table 6 and the average version is provided in

Table 1. Note that we omit the results of GAT and GCN-BC if they

overflow the run-time memory. Basically, most methods suffer from

decreased performance, while our method and some adaptive filter-

based methods are more robust to the over-smoothing problem.

As the number of model layers increases, the performance of the

FAGCN and AKGNN methods is more stable than that of PGNN

and AdaGNN. However, due to the lack of node attribute support,

the overall performance of FAGCN and AKGNN is still not as good

as CSF.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Cross-Space Filter Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 6: Over-smoothing problem evaluation of all methods. ’OOM’ means ’out-of-memory’.

Model #Layer Cora Cite. Pubm. Actor Corn. Texas Wisc. Cham. Squi.

MLP 2 53.01±1.70 51.98±2.48 66.71±1.70 45.76±0.76 83.42±6.45 84.21±7.94 85.29±6.62 61.21±2.09 49.74±1.66
GCN 2 80.03±2.02 67.79±1.22 75.01±1.88 33.99±1.03 62.37±8.78 69.74±8.16 65.88±8.63 62.46±2.32 34.97±2.32
SGC 2 79.59±1.63 67.95±0.86 75.06±2.06 34.47±0.83 65.00±9.20 70.26±9.77 67.06±8.31 63.93±2.09 37.66±2.01
GAT 2 63.68±1.61 58.65±2.37 74.84±2.01 30.91±0.98 63.68±8.49 67.37±7.15 60.20±8.57 60.86±2.01 37.66±1.77
GraphSAGE 2 45.51±3.91 42.34±6.30 60.12±5.02 30.18±0.83 59.21±8.44 61.58±10.47 57.84±9.88 54.96±2.97 33.10±2.89
APPNP 2 80.62±1.97 68.82±0.69 75.61±2.35 29.93±0.87 61.05±7.83 65.26±8.58 59.61±7.80 53.00±2.56 21.65±0.49
JKNET 2 77.43±1.69 65.84±1.73 74.92±1.94 28.18±2.16 60.79±7.59 63.95±8.33 61.57±7.46 56.58±2.72 33.32±1.37
GCN-BC 2 42.54±2.73 38.71±2.97 73.36±2.88 28.09±1.11 65.00±8.78 67.63±8.78 70.20±7.83 67.08±1.68 48.13±1.54
FAGCN 2 78.19±1.81 65.15±2.72 74.53±1.91 39.51±1.12 72.37±7.77 78.68±8.45 78.04±8.46 68.51±2.27 44.79±2.27
PGNN 2 72.15±2.96 47.55±2.36 64.56±2.28 39.74±0.90 61.05±6.42 65.26±7.73 57.06±6.37 60.81±1.58 44.08±1.99
AdaGNN 2 73.23±1.97 63.43±2.39 69.77±4.46 48.38±1.73 80.26±6.93 84.21±5.68 84.12±5.43 73.51±2.52 57.68±1.33
AKGNN 2 72.35±4.19 64.48±2.36 71.05±4.66 34.98±1.09 59.47±7.67 60.79±7.28 61.76±7.23 61.75±1.95 36.60±1.45
CSF 2 81.45±1.61 68.94±0.84 76.41±1.70 47.26±1.85 86.58±5.03 89.47±6.20 89.22±6.08 71.27±2.95 57.03±1.04
CSF -w/o topology 2 33.60±1.39 27.22±1.67 55.39±2.91 46.89±0.80 86.84±7.13 86.58±6.26 88.63±6.39 62.94±2.30 51.05±1.75
CSF -w low-pass attribute 2 81.43±1.63 68.84±0.81 77.40±1.86 33.61±0.65 63.95±8.42 70.00±7.67 64.71±8.42 58.82±1.75 36.12±1.07
CSF -w only low-pass attribute 2 31.33±0.79 21.41±1.08 50.18±0.83 28.25±0.77 60.53±9.12 60.53±8.95 57.84±8.78 28.31±3.07 20.46±2.31
MLP 5 34.22±1.93 28.45±3.10 56.37±1.91 41.00±1.65 71.05±8.41 71.05±7.85 72.75±5.73 41.78±5.11 27.29±6.68
GCN 5 52.78±5.52 50.43±4.50 67.68±3.74 25.70±1.24 58.68±8.14 58.68±8.14 48.04±4.74 32.61±10.88 20.12±1.10
SGC 5 78.44±1.65 62.70±2.44 74.62±1.76 28.18±1.26 60.53±8.59 62.63±8.30 54.71±7.13 52.70±2.65 30.02±2.51
GAT 5 64.11±1.91 58.83±3.99 OOM 30.67±1.14 62.63±9.18 66.58±7.95 61.37±8.72 60.83±2.38 37.40±1.91
GraphSAGE 5 45.04±2.84 41.49±6.62 61.07±3.90 30.17±0.64 59.21±8.34 61.84±7.67 56.67±8.64 55.29±2.98 32.13±2.75
APPNP 5 80.62±1.97 68.34±1.11 76.33±2.14 26.32±0.78 58.95±8.34 58.95±8.61 53.14±8.03 37.32±2.65 21.03±0.99
JKNET 5 78.00±2.36 65.98±1.53 74.93±1.95 26.34±1.12 58.95±8.25 60.26±7.99 57.45±5.39 46.73±4.00 30.67±2.02
GCN-BC 5 29.70±5.62 20.83±1.18 OOM 10.90±0.75 67.37±10.02 67.37±8.15 73.14±5.99 23.07±2.76 22.89±1.56
FAGCN 5 80.70±2.01 66.10±1.56 75.52±2.93 39.82±1.27 73.95±7.69 78.95±8.32 78.82±9.00 63.97±2.53 42.83±2.45
PGNN 5 71.05±3.10 48.80±2.21 67.89±2.31 26.45±0.98 60.00±8.02 64.21±7.67 56.86±6.67 43.05±2.92 32.71±1.59
AdaGNN 5 41.06±1.86 31.99±0.90 51.50±2.35 34.36±1.56 60.53±8.68 75.26±10.17 68.43±7.98 65.90±2.83 50.45±1.41
AKGNN 5 77.93±1.93 66.08±3.07 74.87±1.87 35.28±0.80 59.74±8.51 62.11±9.05 60.20±8.27 61.45±2.39 37.74±2.07
CSF 5 80.88±1.85 68.61±1.31 76.98±1.54 49.27±1.46 83.68±6.77 88.16±7.15 87.25±6.93 73.33±2.65 60.64±1.38
CSF -w/o topology 5 34.09±1.15 26.52±2.24 55.14±4.24 49.54±0.57 86.58±6.96 86.58±6.50 87.25±6.75 63.51±1.85 54.49±1.27
CSF -w low-pass attribute 5 80.76±1.64 68.28±1.00 77.64±1.21 34.23±0.82 62.37±8.78 68.68±8.18 63.73±8.93 56.78±1.84 34.74±0.97
CSF -w only low-pass attribute 5 31.37±0.82 21.43±1.24 49.88±0.77 28.28±0.75 60.53±9.45 58.95±7.96 57.65±10.83 29.34±2.29 22.83±1.48
MLP 10 31.30±0.76 20.83±0.78 39.88±0.25 25.70±1.24 58.68±8.14 58.68±8.14 46.47±6.06 21.51±0.84 20.35±1.05
GCN 10 31.30±0.76 21.53±2.02 40.49±1.92 25.41±1.37 58.68±8.14 58.68±8.14 46.47±6.06 21.45±0.89 20.17±1.04
SGC 10 65.42±4.71 48.22±4.01 72.76±2.50 25.92±1.37 59.47±8.25 60.53±8.59 51.18±6.57 35.11±3.33 22.91±1.15
GAT 10 64.07±1.86 58.62±2.99 OOM 30.32±0.79 63.95±10.23 66.84±9.70 59.61±7.63 60.99±1.96 37.97±2.16
GraphSAGE 10 44.89±2.99 41.09±6.57 59.96±4.32 30.14±0.66 59.74±8.04 62.37±8.04 57.06±7.98 55.24±2.47 32.49±2.07
APPNP 10 78.21±1.46 68.02±1.12 76.24±2.37 25.89±1.17 58.68±8.14 58.68±8.14 53.53±7.16 33.53±2.92 20.74±1.08
JKNET 10 76.49±2.23 65.44±1.77 75.04±2.18 26.22±1.25 58.95±7.67 60.00±8.93 57.25±5.61 37.19±2.35 29.07±1.38
GCN-BC 10 10.65±0.59 9.86±5.07 OOM 10.90±0.75 66.58±9.85 67.89±8.93 72.55±7.34 21.21±1.66 20.37±1.11
FAGCN 10 82.23±1.99 66.90±1.84 76.11±2.10 39.81±1.45 76.32±9.03 78.16±8.60 78.63±8.29 63.11±1.51 43.26±1.46
PGNN 10 59.86±4.75 45.79±2.81 67.27±3.15 26.41±0.90 58.95±8.61 60.00±8.40 54.31±5.85 34.52±4.49 30.31±1.73
AdaGNN 10 32.35±1.31 22.66±2.27 49.79±4.85 26.74±1.32 60.26±6.73 64.21±9.94 63.53±7.91 39.89±3.67 24.92±2.72
AKGNN 10 80.22±0.98 66.70±2.09 75.07±2.64 35.22±0.88 58.95±7.96 61.58±8.25 56.08±8.02 61.58±2.02 37.51±2.35
CSF 10 80.80±1.89 68.33±0.85 76.72±1.41 49.34±1.48 85.26±5.98 87.63±6.57 86.47±7.65 73.05±2.54 61.04±1.17
CSF -w/o topology 10 33.88±1.01 27.51±1.74 55.90±2.36 49.38±0.66 86.58±6.26 86.84±6.56 87.84±6.46 63.29±2.08 54.06±1.52
CSF -w low-pass attribute 10 80.61±1.95 68.32±1.07 77.41±1.07 34.32±0.92 63.16±8.50 70.79±8.55 63.73±8.88 57.87±2.47 34.84±1.19
CSF -w only low-pass attribute 10 31.27±0.82 21.12±0.89 51.10±0.89 28.18±0.78 59.21±8.62 59.47±9.30 62.75±9.96 29.93±2.50 21.07±2.53
MLP 20 31.30±0.76 20.89±0.73 39.88±0.25 25.70±1.24 58.68±8.14 58.68±8.14 46.47±6.06 21.51±0.84 20.26±1.04
GCN 20 31.30±0.76 20.83±0.78 39.88±0.25 25.41±1.37 58.68±8.14 58.68±8.14 46.47±6.06 21.51±0.84 20.32±1.03
SGC 20 38.77±2.77 32.18±2.60 61.98±4.92 25.46±1.34 59.74±7.55 58.68±8.14 47.65±7.28 31.67±2.72 21.82±0.99
GAT 20 64.16±2.60 59.41±8.27 OOM 30.41±1.12 63.42±7.79 65.79±8.23 59.41±8.27 OOM OOM

GraphSAGE 20 45.59±3.05 42.96±5.76 60.21±5.22 30.26±0.77 59.47±8.43 61.32±9.53 56.08±7.35 55.07±2.85 32.19±2.64
APPNP 20 74.02±1.82 67.46±1.55 73.43±2.35 26.01±1.11 58.68±8.14 58.68±8.14 46.47±6.06 32.57±2.37 20.61±1.24
JKNET 20 73.84±2.25 64.63±2.23 74.30±2.07 26.24±0.93 58.68±8.14 59.74±8.69 50.78±6.63 35.24±2.95 28.19±1.35
GCN-BC 20 10.65±0.59 7.44±0.50 OOM 10.90±0.75 65.26±9.18 67.11±9.55 72.94±6.39 21.21±1.66 20.37±1.11
FAGCN 20 82.41±1.48 67.25±1.14 75.88±2.23 39.49±1.23 72.63±7.57 78.68±8.45 79.61±9.25 64.06±2.30 42.77±1.77
PGNN 20 37.80±6.88 29.77±4.92 45.48±7.22 26.45±1.01 58.95±7.67 60.26±9.24 52.16±5.33 28.49±2.70 29.98±1.09
AdaGNN 20 31.47±0.70 21.12±0.71 42.73±2.84 27.12±1.19 58.68±8.14 58.68±8.14 49.41±9.09 30.04±2.38 22.82±1.05
AKGNN 20 80.74±2.28 66.08±1.40 75.41±2.42 35.26±0.78 58.68±8.14 62.89±8.81 57.65±6.93 60.35±2.18 37.38±1.23
CSF 20 81.21±1.75 68.26±1.08 77.06±1.35 48.86±1.66 83.42±8.14 87.63±7.02 86.47±7.19 73.31±2.26 60.58±1.17
CSF -w/o topology 20 33.50±1.27 27.16±2.06 55.47±3.30 49.49±0.85 86.58±6.73 86.32±6.88 87.06±6.61 63.38±1.73 54.15±1.30
CSF -w low-pass attribute 20 80.68±1.82 68.07±1.31 77.52±2.07 34.17±0.75 63.95±7.85 68.68±8.81 63.73±7.96 57.57±2.42 34.76±1.50
CSF -w only low-pass attribute 20 31.27±0.82 21.15±0.67 51.56±0.57 28.19±0.64 60.26±8.36 60.53±8.86 67.84±7.96 29.98±2.52 23.44±1.76

13

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Cross-Space Filter
	4.1 High-pass Filter From Node Attribute Space
	4.2 Low-pass Filter From Graph Topology Space
	4.3 Integrating Topology-based and Attribute-based Filters

	5 Empirical Evaluation
	5.1 Experiment Setup
	5.2 Main results
	5.3 Ablation studies

	6 Conclusion
	References
	A Appendix for Related work
	B Analysis on initialization of Kattr
	C Hyper-parameter Analysis
	D Improving the computation efficiency of kernel inversion
	E Appendix for over-smoothing problem evaluation

