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Abstract

Modern language models demonstrate excel-
lent performance in diverse text processing
tasks. Yet, to achieve the best quality, memory
and computationally demanding fine-tuning on
a downstream task is required. While PEFT
methods, such as LoRA enable almost no
VRAM overhead for fine-tuning, the amount
of memory and compute may be still pro-
hibitive for the regular users. To compress
and speed up LMs pruning techniques, such
as Fisher-Weighted Singular Value Decompo-
sition (FWSVD) (Hsu et al., 2022) are there-
fore additionally used. Yet, FWSVD requires a
downstream task fine-tuning to gather Fisher in-
formation. Our work tries to break this vicious
circle of dependence on large expensive GPU
showing that state-of-the-art LM compression,
such as FWSVD, can be done without storing
the full gradients. Namely, our approach com-
bines the reduced number of training parame-
ters up to 0, 01% of the initial amount of param-
eters and the VRAM utilization up to 15%, for
a pruning 20% of the fine-tuned model weights
without any noticeable loss of accuracy. We
evaluate this approach on various tasks includ-
ing NLU, NER, MMLU, and summarization
demonstrating the effectiveness of the method
as compared to strong baselines.

1 Introduction

The recent emergence of transformers and Large
language models (LLM) has revolutionized the
field of natural language processing. These models,
with their ability to solve a wide range of tasks
and generate human-like language, have demon-
strated outstanding performance in a variety of
NLP tasks. However, the growing size of these
models poses significant challenges. They require
enormous amounts of computational resources and
energy to train and run, making it difficult to fit
them on most consumer GPUs.

Therefore, there is an urgent need to reduce
the size of language models or make their fine-

tuning computationally affordable. These meth-
ods require several cycles of training the full-size
model to gather the necessary information. In the
case of large models, these cycles can be resource-
intensive, as the training loop requires doubling the
memory occupied: we store both the parameters
and their gradients.

We propose a solution to effectively reduce
model size without the need to perform full-scale
fine-tuning. We combine the Fisher-Weighted Sin-
gular Value Decomposition (Hsu et al., 2022) and
parameter-efficient fine-tuning LoRA approaches
by training only low-rank representations of the
fully connected part of the model and collecting
gradients for FWSVD only for these layers. We
achieve almost similar compression quality as in
the original FWSVD approach but with 0.001% of
the initial amount of parameters. Summarizing, the
contributions of this work are as follows:

1. We propose a novel approach for a param-
eter and memory-efficient pruning based on
Fisher Information collected from Low-Rank
representations.

2. We test our approach in two different setups:
with and without GPU memory limits, show-
ing that our compression can be done even
without direct fine-tuning on a downstream
task.

3. We perform a comprehensive experimental
study of the proposed approach comparing it
to the state-of-the-art baselines observing no
substantial performance drop across a wide
range of NLP tasks and language models.

2 Related Work

Great performance of NLP models comes along
with their enormous size. Most of the current state-
of-the-art LLMs have at least 7 billion parame-
ters (Touvron et al., 2023; Jiang et al., 2023; Chiang
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Figure 1: Workflows of the original FWSVD-based compression and the proposed approach FWSVD+LoRA which
saves peak GPU RAM during the compression by approximating full model gradients using LoRA.

et al., 2023) making it nearly impossible to fine-
tune them even on high-end consumer GPUs. To
avoid the challenges posed by the enormous size of
the current state-of-the-art LLMs, researchers have
explored various techniques for model compression
and Parameter-Efficient Fine-Tuning (PEFT).

Various methods, such as quantization (Dettmers
et al., 2022; Zhang et al., 2023) or pruning (Hu
etal., 2021; Hsu et al., 2022; Xia et al., 2023; Kurtic
et al., 2023) are being proposed by the researchers
to allow the inference and fine-tuning of modern
LLMs in a limited computational budge.

To achieve efficient compression while preserv-
ing quality, techniques that assess parameter im-
pact on task response are usually employed. Exam-
ples include Fisher information (Hsu et al., 2022;
Hua et al., 2022), Layer-Wise Relevance Propaga-
tion (Fan et al., 2021; Voita et al., 2019), or Saliency
Score (Kurtic et al., 2023; Ma et al., 2023).

Also, a variety of parameter-efficient fine-tuning
(PEFT) (Hu et al., 2022; Zaken et al., 2022; Liu
et al., 2022), that allow to train only several thou-
sand out of billions of model parameters and yet
provide good performance were proposed recently.

In this context, our proposed approach combines
the FWSVD and parameter-efficient fine-tuning
LoRA methods. By training only low-rank repre-
sentations of the fully connected part of the model
and collecting gradients for FWSVD only for these
layers, we achieve significant compression without
sacrificing performance.

3 Background

In this section, we give a comprehensive introduc-
tion to our proposed method based on low-rank
approximations from previous works.

Model Num. of Params VRAM (GiB)
roberta-base: full 355 (100%) 3.80 (100%)
LoRA, =1 1.9 (0.0054%)  2.92 (77%)
LOoRA,—s 3.7(0.0105%) 2.93 (77%)
QLORA,—1 1.9 (0.0054%)  1.14 (30%)
QLORA,—s 3.7(0.0105%)  1.15 (30%)
t5-large: full 770 (100%) 22.00 (100%)
LORA,—s 4.1 (0.0053%) 16.84 (77%)
LoRA, =32 16.0 (0.0208%) 16.95 (77%)
QLORA,.—3 4.1 (0.0053%)  3.12 (14%)
QLORA, =32 16.0 (0.0208%)  3.22 (15%)
mistral 7b: full 7270 (100%) 64.82 (100%)
LoRA, =16 28.31 (0.0039%) 53.17 (82%)
QLORA, =16 28.31 (0.00389%)  9.82 (15%)
QLORA,—64 11.32(0.0156%)  9.88 (15%)

Table 1: Fraction of trainable parameters (in millions
and %) and GPU utilization) for fine-tuning of the whole
model and with LoORA/QLoRA.

3.1 SVD: Singular Value Decomposition

Singular Value Decomposition (SVD) is one of the
simplest low-rank decomposition methods and has
been widely used to prune word embeddings (Lan
et al., 2020) and transformer models (Michel et al.,
2019; Hu et al., 2021). Considering w as the
weight matrix of the model, the SVD for this ma-
trix will be w = UXVT. We then perform trun-
cation by rank r: U, = U[:,: |, ¥, = X[: r,: 7],
V., = V[:,: r], and split w into two low-rank ma-
trices wy; = /%, VI and we = U,/Z,. Hence,
w ~ wow;. If w was of shape (m,n) and had
m X n parameters, then after SVD, it becomes
r X (m 4+ n). As the number of parameters goes
down, forward pass time for the models reduces as
well. We demonstrate it on Figure 2 for t5-1large
model. In addition, SVD compression does not re-
quire special algorithms or libraries (like pruning)
and can be used together with other methods for



evaluation speed-up. However, SVD-based com-
pression typically results in poor performance at
various ranks, except for those closest to the origi-
nal matrix rank.

3.2 Fisher Information

Fisher information denoted 7%, is a measure that
quantifies the amount of information a data set D
provides about a weight matrix w in a model:

e —g | (2 (D|w) 2 1

Its computation is challenging due to the need
for taking the expectation over the entire data dis-
tribution (Murphy, 2012). Therefore, various ap-
proximation methods have been proposed in the
literature, such as the use of score function estima-
tors (Casella, 2001), or the use of natural gradient
descent which implicitly approximates the Fisher
information matrix (Amari, 1998). The latter while
not giving any theoretical guarantees (Kunstner
et al., 2019), works well in practice.

3.3 FWSVD: Fisher-Weighted SVD

Despite all advantages, SVD-based model compres-
sion typically results in poor performance at vari-
ous ranks, except for those closest to the original
matrix rank. Therefore, Hsu et al. (2022) proposed
an improved SVD-based compression approach us-
ing empirical Fisher information, which excels in
compression performance. To address this limita-
tion, Hsu et al. (2022) introduces an extension to
the conventional SVD approach, which integrates
empirical Fisher information into the SVD decom-
position. This method is named Fisher-Weighted
SVD (FWSVD) and significantly outperforms stan-
dard SVD compression.

As described in Section 3.2, the direct estimation
of Fisher information is intractable. Therefore, fol-
lowing previous work (Amari, 1998; Pascanu and
Bengio, 2014; Hsu et al., 2022), we estimate the
empirical Fisher information in this work. Let I~
be the empirical Fisher information matrix w.r.t. to
weight matrix w, we calculate:
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Given that w = SVD(w), SVD-based low-rank
approximation problem transforms into:

min ||V Ig™® % (w — )| (3)

rank w=r

Problem 3 does not have a closed-form solu-
tion (Srebro and Jaakkola, 2003). To avoid this is-
sue, Hsu et al. (2022) suggest solving the low-rank
approximation problem using row-wise weighting:

3™ = diag (I5™ - 1) 4)

As aresult, we get weighted SVD components:
FWSVD(w) ~ ULV = (IS™)7lUSV  (5)

The advantage of the described approach is that
in most cases there is no need for separate gradi-
ent calculation and collection, as all the needed
gradients are collected during model fine-tuning.

3.4 LoRA: Low Rank Adaptation

Since most current language models have a reason-
able general understanding of language, they often
require additional fine-tuning on a downstream task
to achieve the desired performance. This is where
the Low-Rank Adaptation (LoRA) approach Hu
et al. (2022). Hu et al. (2022) introduces a very
computationally efficient way to train language
models using only a few percent of the model’s
parameters. Moreover, the trained parameters are
then fed back into the model without the need to
store additional weights for inference. With the ad-
vent of large language models such as LLaMa (Tou-
vron et al., 2023), Mistral (Jiang et al., 2023), and
others, LoRA has become a standard technique for
tuning LLMs for a downstream task. The most
common pipeline is as follows: the LLM itself is
quantized to half-precision (fp16) or even more
(int-4), and the LoRA module is trained on a given
downstream task.

The authors of LoRA restrict the fine-tuning of
a weight matrix w € R™ " to the tuning of its
low-rank decomposition w + Aw = w + BA,
where A €¢ R"*" B e R andr e R:r <«
min(n,m). Only Aw is updated during the fine-
tuning. The forward pass for input x is simple:
h = wx + Awzr = wx + BAxz.

4 Our Approach: LoRA-enhanced
FWSVD Compression

We propose a novel approach that synergizes the
advantages of LoRA (low-rank adaptation) and
FWSVD while mitigating their respective draw-
backs. The key idea is that empirical Fisher infor-
mation matrices can be effectively obtained based
solely on LoRA representations, enabling FWSVD
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Figure 2: Speed-up of batch processing for the com-
pressed t5-1arge model. The last bar is the speed for
the uncompressed model.
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Figure 3: Results on the GLUE benchmark for different

compression ranks of roberta-base model. Numerical

results are in Tables 4 and 6.
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Figure 4: Results on the XSUM summarization dataset

for VRAM-limited compression setup of t5-large
model. Numerical results are in Tables 2 and 9.
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Figure 5: Average F; scores on the CoNLL-2003 dataset
for different compression ranks of roberta-base. Ad-
ditional results are in Tables 4 and 8.
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for different compression ranks of roberta-base. Ad-
ditional results are in Tables 4 and 8.
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Figure 7: Results on the XSUM summarization dataset

for VRAM-unlimited compression setup of t5-large
model. Numerical results are in Tables 3 and 11.



to perform comparably to its original implemen-
tation. This approach eliminates the need for ex-
tensive gradient computation and storage, resulting
in a more efficient and scalable pruning process.
Indeed, given a large LLM its compression with
FWSVD will require storing its gradients, which
often doubles the amount of required GPU memory,
while our method do not require this extra memory
for to perform the compression. The proposed ap-
proach achieves a performance level similar to stan-
dard FWSVD while obviating its memory-intensive
requirements and the need for multiple rounds of
fine-tuning. This advancement paves the way for
more practical and efficient model pruning in natu-
ral language processing applications.

So, instead of calculating IS for each weight
matrix w we will compress, we will calculate

femp . femp _ emp jemp ®)
w
After we fine-tune the model with LoRA, we

merge Aw back into the original weight matrix w
and compress it using Ia,:

FWSVD(w) ~ FWSVD(Aw) @)
= SVD(IP(w + Aw))  (8)
= SVD(I37w) )

In this way, we only need to train less than 0.01%
of model parameters, yet we are still able to achieve
compression performance comparable to the origi-
nal FWSVD approach.

Original FWSVD additionally proposes an al-
gorithm that performs best in the "fine-tune —
compress — fine-tune" paradigm, requiring two
rounds of fine-tuning. This algorithm will not be
used in this paper as we leave such experiments
for future work. In this work, we consider the
"fine-tune — compress" approach, which, never-
theless, demonstrates satisfactory performance on
most NLP tasks.

5 Experimental Setup

In this section, we show our experimental setup.
We begin by introducing the datasets and bench-
marks used for evaluating our proposed approach
and baselines. Next, we detail the models em-
ployed in our evaluation, along with links to their
corresponding checkpoints. We then discuss two
compression pipelines: one with unlimited VRAM
and another with limited VRAM. Additionally, we
specify the layers compressed in each model.

Model size | 2% | 79% | 85% | 92%
Method/Rank | 400 | 500 | 600 | 700
SVD 16.3t0v02 24.7i0.03 29.3i0.01 31.4i002
FWSVD 22.910.(” 27.8lUl)1 30-4\0.()1 31-8-0.(”

FWSVD+LoRA,=g [22.4x001|27.2+001 | 30.0+001 | 31.400m
FWSVD+QLORAr:8 21.5:001 | 27.0+001 | 30.0x0.01 | 31.4+00

Table 2: Average performance on XSUM for t5-large
model in the VRAM-unlimited setup. Extended results
are in Table 9. Row model size represents the fraction
of the uncompressed model size left after compression.
Full rank is 768.

Model size | 2% | 19% | 85% | 92%
Method/Rank | 400 | 500 | 600 | 700
SVD 17.5\0.30 25.010.10 29.2IU|3 31.2“][]7
FWSVD 23.6-015/28.1+01730.5=0.08| 31.9=0.02

FWSVD+LoRA, =g |22.2:021|26.5:0.09| 28.7x00s | 29.9:0.06
FWSVD+QLoRA,—g| 22.4+061 | 26.3x0.10 | 28.5+014|29.84 1013

Table 3: Average performance on XSUM for t5-1arge
model in the VRAM-limited setup. Extended results are
in Table 11. Row model size represents the fraction
of the uncompressed model size left after compression.
Full rank is 768.

5.1 Datasets

We evaluate the performance of our proposed
method compared to standard SVD, FWSVD, and
standard LoRA approaches. For the experiments,
we use the RoOBERTa model (Liu et al., 2019) and
test its performance on GLUE benchmark (Wang
et al., 2019) (we exclude the WNLI dataset from
the evaluation and discuss the reasons in the Ap-
pendix A.2), CoNLL-2003 (Sang and Meulder,
2003) and SQuAD v2.0 (Rajpurkar et al., 2016)
datasets. We also conduct experiments on the sum-
marization dataset XSUM (Narayan et al., 2018)
with the TS5 language model (Raffel et al., 2020)
and evaluate the 7B version of Mistral v2 (Jiang
et al., 2023) on the MMLU benchmark (Hendrycks
et al., 2021) using 5-shot evaluation.

5.2 Models

In our classification experiments, we use
roberta-base model! from the HuggingFace
model hub. We set the batch size to 32 and 128
during training and evaluation. In each task, we
fine-tune the model for 3 epochs using AdamW
optimizer (Loshchilov and Hutter, 2019) with a
learning rate equal to 3 - 107°. For LoRA we
set rank 7 to 1 and 8, and scale s to 2 and 16

"huggingface.co/roberta-base


https://huggingface.co/roberta-base

Benchmark | GLUE Average scores | CoNLL-2003 F; scores | SQuAD v2 F; scores
Model Size ‘ 80% 90% 95% ‘ 80% 90% 95% ‘ 80% 90% 95%
Method/Rank ‘ 340 480 540 ‘ 340 480 540 ‘ 340 480 540
SVD 0.3440.04 0.34+0.03 0.3540.02 |0.00+0.00 0.0340.02 0.02+0.02|0.3040.00 0.46+0.01 0.4740.02
FWSVD 0.67+0.02 0.76+0.03 0.8040.04| 0.10£0.08 0.814:0.03 0.914-0.00|0.48+0.03 0.57+0.02 0.6440.01

FWSVD+LoRA,—g |0.59+0.03 0.71+0.03 0.76+0.03 |0.83+0.01 0.92+0.00 0.93+0.00| 0.53+0.01 0.59+0.01 0.64+0.01
FWSVD+QLoRA,—g|0.63+£0.02 0.75+0.01 0.79+0.01|0.81 £0.01 0.90£0.00 0.92+0.00|0.55+0.00 0.64+0.03 0.70+0.03

Table 4: Average GLUE, CoNLL-2003 and SQuAD v2 results for several compression ranks. The best results for
each rank are in bold. Extended results are in Tables 6, 8 and 7 in Appendix A.2 for GLUE, CoNLL-2003 and

SQuAD v2, respectively.

respectively, other parameters we leave as default.

In summarization experiments, we use
t5-1arge model?, for LoORA we set r to 8, 32 and
5 to 16, 64, respectively.

For MMLU evaluation we use
neural-chat-7b-v3-1, a checkpoint® of
Mistral-7B-v@.1 language model that was
fine-tuned on SlimOrca dataset (Mukherjee et al.,
2023).

5.3 Compression setups

In this work, we consider two different compres-
sion setups depending on the availability of the
VRAM in each case. We describe both setups in
detail below.

5.3.1 VRAM-unlimited setup

In the first setup, which we refer to as VRAM-
unlimited, we assume that there is no limitation
in terms of the GPU memory and we can train
the whole model and collect the gradients for the
FWSVD compression. However, we can save
some GPU memory by using our FWSVD+LoRA
approach without compromising the compression
quality after all. We depict this approach in Fig-
ure 1. In VRAM-unlimited setup, the proposed
approach will look as follows:

1. Model is being fine-tuned on the task - it might
be the whole model or fine-tuning with LoRA
or QLoRA.

2. During fine-tuning, gradients are collected
from all fully connected layers for the
standard FWVSD approach or low-rank
LoRA matrices A and B for our proposed
FWSVD+LoRA approach.

3. After fine-tuning, the model is compressed
with collected gradients.

huggingface.co/t5-large
*huggingface.co/neural-chat-7b-v3-1

In this setup, we do experiments with
roberta-base model on GLUE, CoNLL-2003 and
SQUAD 2.0 benchmarks as this model fits almost
any current GPU for full precision training.

5.3.2 VRAM-limited setup

In the second setup, which we refer to as VRAM-
limited, we cannot collect gradients from the full-
sized model because the requirements for a full-
sized backward model are beyond our computa-
tional capacity. So instead of training LoRA and
merging it to our models with compressing, we use
pre-trained models on specific tasks and use LoRA
training only to collect gradients from the layers for
compression. In this case, the experimental design
can be described as the following (also shown in
Figure 8):

1. We pick an already fine-tuned model for the
task.

2. We train LoRA on the same task only to col-
lect gradients, without merging LoRA matri-
ces A, and B back into the model.

3. After training, the fine-tuned model is com-
pressed using collected gradients

With this experiment, we want to confirm
whether it is possible to compress a model without
re-training it on a concrete task.

5.4 Layers for compression

Since for the majority of the Transformer-based
models, the heaviest parts of the model are al-
ways the fully-connected layers (Pletenev et al.,
2023), we apply LoRA and compress only these
parts of the model. For roberta-base, we choose
the same fully-connected layers: intermediate
and output. For the t5-large we compress wi
and wo. Finally, for the mistral-7b model we use
gate_proj, up_proj and down_proj.
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Figure 8: The illustration of the proposed pipeline when
the computation of the I, is not possible due to VRAM
constraints (denoted with arrows with red crosses), but
the computation of Inw is possible.

6 Results

In this section, we discuss the performance of our
proposed approach compared to simple baseline
- SVD and strong baseline - FWSVD on various
NLP tasks. Note that we provide the fraction of
trainable parameters and peak VRAM utilization
for ROBERTa, T5 and Mistral models in Table 1.

6.1 Natural Language Understanding: GLUE

We provide results of our experiments on the GLUE
benchmark in Table 4 and Figure 3, extended re-
sults are in Appendix A.2 in Table 6. At high
compression ranks, neither Fisher Weighted SVD
(FWSVD) nor our proposed methods approach the
performance of fully fine-tuned models. The dif-
ference between FWSVD and our FWSVD+LoRA
(QLoRA) approach is minimal, with a mere 4%
difference in performance between FWSVD and
FWSVD+LoRA,—g at a compression rank of 540.
As compression rank decreases, the performance
gap between FWSVD and FWSVD+LoRA be-
comes negligible. However, non-weighted SVD
yields significantly inferior performance, compara-
ble to random evaluation. The reported metric rep-
resents the average performance across all GLUE
tasks. Examination of non-weighted SVD perfor-
mance reveals that only two subtasks, SST2 and
QQP, exhibit quality a little better than random
answer, and only under conditions of minimal com-
pression rank 540, compared to FWSVD which
shows a superior quality to random answer for most
of the subtasks at ranks above 220.

6.2 Named Entity Recognition: CoNLL-2003

We present experimental results on the CoNLL-
2003 NER benchmark in Table 4 and Figure 5,
extended results are in Table 8 in Appendix A.2.

Model Size | 60% 69% 79% 90%
Method/Rank | 1550 1950 2350 2800
SVD 0.26-005 0.27006 0.24=001 0.24 2004

FWSVD+QL0oRA;=16]0.26:0.05 0.34 005 0.46:0.11 0.54 0.2
FWSVD+QLORAT:64 0.26:005 0.34:007 0.46:011 0.54 013

Table 5: Average accuracy scores for MMLU bench-
mark after 5-shot evaluation. The best results for each
rank are in bold, extended results are in Table 10.

For the case of CoNLL-2003, we observe a
significant difference in compression quality be-
tween the standard FWSVD and our proposed
FWSVD+LoRA,_g and FWSVD+QLoRA,_g on
almost any rank with both FWSVD+LoRA,_g
and FWSVD+QLoRA, g drastically outperform-
ing both FWSVD and SVD by a large margin.

We also note the surprising performance drop
for both SVD and FWSVD and analyze it. We
suppose that the substantial drop in performance
for these approaches between neighbouring ranks
(e.g., from 0.8 F; at rank 480 to 0.10 F; at rank 340
for FWSVD) suggests that the model either ceases
functionality due to accumulated error or loses its
training knowledge on the Conll-2003 dataset.

6.3 Sequence Tagging: SQuAD 2.0

Similar to GLUE and CoNLL-2003, we experiment
with roberta-base on the SQuAD v2.0 dataset in
a VRAM-unlimited setup. We present experimen-
tal results in Table 4 and Figure 6, extended results
are in Appendix A.2 in Table 7.

In contrast with GLUE and CoNLL-2003 bench-
marks, for SQuAD v2 we observe that for most of
the ranks both our proposed FWSVD+LoRA,_g
and FWSVD+QLoRA,_g demonstrate superior
performance to both FWSVD and SVD across an
overwhelming majority of the ranks (see Figure 6).

We suppose that such variability in model per-
formance is because sequence tagging tasks very
easily go over-fitting. But in the case of the limita-
tion introduced by LoRA it is more difficult for the
model to over-fit and therefore the quality drops
less when compressing.

6.4 Text Summarization: XSUM

We experiment with both limited and unlimited
VRAM pipelines on XSUM with t5-large and
discuss the results below.

Experimental results for the unlimited VRAM
compression pipeline are presented in Table 2 and
Figure 4, extended results are presented in Ta-



ble 9 in Appendix A.2. The summarization quality
of the full-sized fine-tuned model is not signifi-
cantly higher than for those that were fine-tuned
with LoRA or QLoRA. Gradually, the quality of
all models approximates, but the full-size models
remain slightly better. However, as we show in
Figure 4, the difference in ROUGE-L is marginal:
from 0.2 to 0.5 across all compression ranks, but
we save a lot of VRAM by using our proposed
FWSVD+LoRA approach 1. Moreover, as we
show in Table 9, r = 8 is sufficient for both LoRA
and QLoRA to demonstrate comparable with the
full model fine-tuning performance across all ranks.

We also conduct experiments on XSUM in a
VRAM-limited pipeline and present results in Ta-
ble 3 and Figure 7, extended results are in Ap-
pendix A.2 in Table 11. For this compression
pipeline, we observe a mostly similar trend that was
in the VRAM-unlimited pipeline with the standard
FWSVD being the most effective approach while
our FWSVD+LoRA,—g and FWSVD+QLoRA,—g
having lower quality - from 2.0 to 0.8 lower
ROUGE-L score across all ranks. While the over-
all performance is comparable to that observed in
the VRAM-unlimited setup, we note increased vari-
ability across different seeds, indicating less stable
predictions. The similarity between ranks 8 and
32 for LoRA and QLoRA that was previously ob-
served in the VRAM-unlimited pipeline persists in
this VRAM-limited setting (see Table 11).

6.5 Few-shot Language Understanding:
MMLU

In this section, we showcase our approach on the
huge LLM Mistral-7B. Namely, we provide results
of the experiments on the MMLU benchmark with
5-shot evaluation on Figure 9 and Table 5. Ex-
tended results are presented in Appendix A.2 in
Table 10. We have no information about VRAM us-
age from the creators of neutral-chat-7b-v3-1
and, thus, leave the memory consumption for full
model fine-tuning in Figure 9 blank.

In this experiment, we were unable to obtain
Fisher weights for the standard FWSVD approach
at all. We exceeded NVIDIA A100 GPU memory
of 80 GBs and, thus, we do not present results for
this approach at all. However, with this experiment,
we show that using our proposed VRAM-limited
pipeline and QLoRA, it is possible to compress the
model with FWSVD+QLoRA.

Despite being worse than the baseline quality of

Average MMLU Scores
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Figure 9: Results for Mistral-7B LLM on MMLU bench-
mark with 5-shot evaluation. Numerical results are in
Tables 5 and 10.

the uncompressed model, both with ranks 16 and
64 our proposed FWSVD+QLoRA provides almost
identical performance. For our proposed approach
we need only 9.8 GBs of the VRAM compared
to 64.82 Gbs of VRAM for SVD: we save 85%
of the VRAM. Compression with SVD, however,
completely lowers the performance of the model
even with the compression to from rank 4096 to
2800.

7 Conclusion

In this work, we propose a novel approach
combining the state-of-the-art FWSVD language
model compression approach and the LoORA PEFT
method. We show that to effectively prune the
model with FWSVD, one does not require to col-
lect gradients over the whole model. Instead, it is
sufficient to collect Fisher information based on
layers that we train with LoRA (or QLoRA).

Moreover, we show the effectiveness of our
method even in the extremely VRAM-limited setup,
where even LoRA-based fine-tuning is not feasible.
This is a common used-case when an already pre-
trained model, e.g. from Huggingface, is available
and its compression it without a huge performance
loss is required on a low-end GPU. Using the pro-
posed method, one is able to compress different
language models up to 20% without a substantial
loss of performance on the downstream tasks, while
almost not spending additional VRAM for storing
gradients. Our extensive experiments on a five NLP
tasks and different types of language models prove
the effectiveness of the proposed approach.



8 Limitations

This work has several limitations, which we dis-
cuss in this section. This research only specifies
fine-tuned tasks such as GLUE, sequence tagging,
etc. Maybe this algorithm will not scale to gen-
eral text prediction tasks. In the case of Mistral
7B, we train only on a small SlimOrca dataset and
perhaps the quality of the model will increase if we
take a larger dataset. In addition, to compute the
Fisher information, we do not completely abandon
gradient calculations, although we heavily reduce
the requirements, which may also be the subject of
future research.

9 Ethics Statement

We propose an approach for computationally effi-
cient fine-tuning and pruning of large neural lan-
guage models. Both effective fine-tuning and prun-
ing methods reduce the potential carbon footprint
and thus the environmental impact.

In the implementation and evaluation of our pro-
posed approach, we use only publicly available
code and data to avoid any ethical concerns.
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A Appendix

A.1 On WNLI exclusion

We intentionally excluded the WNLI task from the
GLUE evaluation in this paper for several reasons,
and we will describe our motivation below.

First, WNLI is a small dataset compared to oth-
ers in GLUE. The unreasonably small amount of
data may affect the statistical significance of the
model performance. In addition, small datasets
may not effectively capture the complexity and di-
versity of language comprehension tasks.

Second, according to the GLUE benchmark de-
scription (Wang et al., 2019), there are some “ad-
versarial” examples, “when two examples contain
the same sentence, this usually means that they’ll
have opposite labels”.

Since neither uncompressed nor compressed
models do not demonstrate an acceptable perfor-
mance level on WNLI, we exclude this dataset from
our GLUE evaluation.

A.2 Extended Results
We provide extended results of our experiments for
different LoORA and QLoRA ranks as well as all

the compression ranks and standard deviations in
Tables 6, 8,7, 9, 11 and 10.
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FWSVD+LoRA,—; 80 0.03 £0.05 0.53+0.03 0.61+0.07 0.00=+0.05 0.32 4 0.00 0.34 4+ 0.02 0.51+0.00 0.49 4+ 0.02
FWSVD+QLoRA,—; 0.01 £+ 0.05 0.52 £+ 0.03 0.55 +0.34 0.02£0.07 0.32 4 0.00 0.33+0.01 0.51 4 0.00 0.47 £+ 0.00
FWSVD+LoRA,_g 0.00 £ 0.00 0.57 £ 0.07 0.31£0.15 0.07+0.14 0.33 +0.02 0.34 4 0.00 0.51 4 0.00 0.47 £ 0.00
FWSVD+QLoRA,_g 0.02 £+ 0.04 0.55 £+ 0.03 0.45+0.29 0.03 £0.04 0.37 +0.09 0.37 +0.02 0.51 4 0.00 0.47 £+ 0.00
SVD —0.04+£0.01  0.544+0.02 0.45+0.25 0.02£0.03 0.45 4+ 0.05 0.344+0.01 0.51 4 0.00 0.48 +0.01
FWSVD 0.04 £0.03 0.76 £0.01 0.22+0.08 0.38+0.07 0.51+0.12 0.48£0.01 0.65+0.06 0.49+0.03
FWSVD+LoRA,—; 290 0.01 £+ 0.04 0.56 +0.02 0.58 £0.18 0.13+0.14 0.45 4+ 0.09 0.42 4+ 0.02 0.59+0.02 0.53 +0.01
FWSVD+QLoRA,—; 0.03 +0.05 0.69 £+ 0.04 0.37+0.33 0.34 £0.05 0.50 +£0.11 0.45 4+ 0.04 0.64 4+ 0.01 0.47 £+ 0.00
FWSVD+LoRA,_g 0.02+0.01 0.67 £+ 0.05 0.53+0.30 0.38 +0.17 0.57+0.09 0.44 4+ 0.02 0.58 +0.07 0.47 £+ 0.00
FWSVD+QLoRA,_g 0.02+0.03 0.71 £+ 0.04 0.46 +£0.17 0.36+0.09 0.63 +0.04 0.47+0.03 0.58 +0.03 0.46 £ 0.01
SVD 0.01 £0.04 0.54£0.03 0.27+0.17 0.05+0.03 0.51 £ 0.08 0.34 4+ 0.00 0.51 £ 0.00 0.48 £0.01
FWSVD 0.16 £0.01 0.86+0.00 0.77 +0.02 0.73 +0.02 0.78+0.00 0.65+0.01 0.82+0.01 0.57 % 0.05
FWSVD+LoRA,—; 340 0.11£0.03 0.67+0.11 0.73 £0.02 0.34 £0.10 0.64 + 0.05 0.47 +0.02 0.74 4+ 0.01 0.55 4+ 0.02
FWSVD+QLoRA,—; 0.194+0.03 0.84 +£0.01 0.65+0.15 0.65 £ 0.05 0.67 +0.01 0.53 + 0.05 0.69 & 0.04 0.46 + 0.01
FWSVD+LoRA,_g 0.12 4+ 0.00 0.74+0.03 0.75 £+ 0.00 0.60 £0.12 0.71 4+ 0.00 0.55 4+ 0.01 0.75 4+ 0.01 0.49 4+ 0.03
FWSVD+QLoRA,—g 0.23 4+ 0.00 0.83 +0.01 0.75 £+ 0.01 0.70 £ 0.04 0.67 +0.04 0.57 +0.03 0.78 +0.02 0.54 4+ 0.04
SVD 0.02 £ 0.04 0.64 £0.02 0.16 £0.00 —0.02£0.09 0.58 £ 0.09 0.35 4+ 0.01 0.514+0.01 0.47£0.01
FWSVD 0.37+0.02 0.91+0.02 0.82+0.07 0.82+0.02 0.86+0.01 0.82+0.02 0.89+0.01 0.59=+0.10
FWSVD+LoRA,—; 480 0.29 £0.01 0.79 +0.10 0.76 +0.03 0.59 £0.11 0.77 £0.01 0.65 4 0.03 0.79£0.01 0.56 £ 0.01
FWSVD+QLoRA,—; 0.41 £+ 0.02 0.91+0.00 0.83+0.03 0.82+0.01 0.74=+0.01 0.714+0.04 0.76 + 0.02 0.60 £0.03
FWSVD+LoRA,_g 0.32£0.03 0.87+0.01 0.81+0.04 0.78 £0.03 0.82 £0.02 0.77+0.03 0.84 4+ 0.01 0.52 £0.03
FWSVD+QLoRA,_g 0.46 £0.00 0.91+0.00 0.83+0.03 0.82+0.01 0.79+0.01 0.77 +0.01 0.82+0.02 0.63 &+ 0.02
SVD 0.02 £ 0.02 0.69 £ 0.04 0.16 £0.00 —0.12+£0.01  0.65 £ 0.08 0.37£0.02 0.52 4+ 0.02 0.47 £ 0.00
FWSVD 0.43+0.19 0.93+0.01 0.86 +0.07 0.86+0.02 0.87+0.00 0.85+0.01 0.90+ 0.01 0.68 £ 0.04
FWSVD+LoRA,—; 540 0.36 £ 0.03 0.84 £0.08 0.79 +0.03 0.69 £0.05 0.81+0.01 0.724+0.03 0.83 £ 0.00 0.60 £ 0.02
FWSVD+QLoRA, - 0.51 £0.02 0.92£0.01 0.85£0.01 0.85 £ 0.00 0.80 £ 0.02 0.79+0.03 0.82 4+ 0.01 0.63 £ 0.04
FWSVD+LoRA,—g 0.42 4+ 0.04 0.91£0.01 0.83 £0.03 0.82£0.03 0.83 +£0.01 0.79 4+ 0.00 0.87£0.01 0.58 +0.08
FWSVD+QLoRA,—g 0.54 £0.01 0.92+0.00 0.86+0.02 0.86+0.01 0.84+0.01 0.81+0.01 0.86 &+ 0.01 0.65 £ 0.01

Table 6: Extended results on the GLUE benchmark in the VRAM-unlimited pipeline. The best results for each rank
are in bold, and the best results overall are underlined bold.
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Method Rank F1 EM

Full FT 0.82 4+ 0.00 0.79£0.00
LoRA, - 0.80 £ 0.00 0.76 £ 0.00
QLoRA,—: 768 0.80 £ 0.00 0.76 £ 0.00
LoRA,—g 0.82+£0.00 0.79 £ 0.00
QLoRA,—g 0.82 £ 0.00 0.78 £0.00
SVD 0.17+£0.02 0.15+£0.02
FWSVD 0.03 £0.03 0.03 £0.03
FWSVD+LoRA, -1 10 0.02+0.01 0.01 £0.02
FWSVD+QLoRA,— 0.02 +£0.01 0.01 £0.00
FWSVD+LoRA,—g 0.04 £0.05 0.04 £0.05
FWSVD+QLoRA,_g 0.02 +£0.01 0.01 £0.00
SVD 0.18£0.10 0.16 £0.11
FWSVD 0.49 £0.01 0.49 £0.01
FWSVD+LoRA,.—1 80 0.44 £ 0.08 0.44 £0.08
FWSVD+QLoRA,—; 0.43 £0.17 0.43 £0.20
FWSVD+LoRA,—g 0.40£0.15 0.40£0.15
FWSVD+QLoRA,_g 0.36 £ 0.17 0.35+£0.18
SVD 0.28 £0.04 0.27 £0.05
FWSVD 0.48 £0.02 0.47£0.02
FWSVD+LoRA,—; 220 0.50 £ 0.00 0.50 £ 0.00
FWSVD+QLoRA,— 0.49+£0.10 0.49 +£0.10
FWSVD+LoRA,—_g 0.47 +0.04 0.47£0.04
FWSVD+QLoRA,—3 0.50 & 0.00 0.50 £ 0.00
SVD 0.30 £ 0.00 0.29£0.01
FWSVD 0.48 £0.03 0.45+£0.05
FWSVD+LoRA,—; 340 0.50 £ 0.00 0.50 £ 0.00
FWSVD+QLoRA,—; 0.50 £ 0.04 0.50 £ 0.04
FWSVD+LoRA,_g 0.53 £0.01 0.51 £0.01
FWSVD+QLoRA,—3 0.55 +0.00 0.53 £ 0.00
SVD 0.46 £0.01 0.45+0.01
FWSVD 0.57 £0.02 0.52 £ 0.02
FWSVD+LoRA,—; 480 0.54 £0.01 0.52 £ 0.01
FWSVD+QLoRA, - 0.54 £0.01 0.53 £0.01
FWSVD+LoRA,—_g 0.59 £0.01 0.55 £ 0.01
FWSVD+QLoRA,—5 0.64 + 0.03 0.61 £ 0.03
SVD 0.47£0.02 0.47£0.02
FWSVD 0.64 +£0.01 0.59 £0.01
FWSVD+LoRA, -1 540 0.57 £0.02 0.54 £ 0.02
FWSVD+QLoRA,— 0.60 £ 0.01 0.58 £0.01
FWSVD+LoRA,—g 0.64 £0.01 0.61 £0.01
FWSVD+QLoRA,_g 0.70 4 0.03 0.67 £ 0.03

Table 7: Results on SQuADv?2 dataset in the VRAM-unlimited pipeline. The best results for each rank are in bold,
and overall best results are bold underlined.
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Method Rank F1 Precision Recall Accuracy
Full FT 0.95 0.95 0.96 0.99
LoRA,—g 763 0.95 0.94 0.95 0.99
QLoRA,—g 0.94 0.93 0.94 0.99
SVD 0.03 +£0.02 0.01 +£0.01 0.124+0.11 0.31 +£0.45
FWSVD 10 0.01+£0.00 0.054+0.05 0.00+0.00 0.81%0.01
FWSVD+LoRA,—g 0.07 +0.02 0.05+0.01 0.154+0.08 0.39£0.17
FWSVD+QLoRA,—3 0.04 £0.02 0.03 £0.01 0.07 +£0.04 0.11 +£0.06
SVD 0.02 +0.02 0.01+0.01 0.094+0.15 0.30£0.46
FWSVD 80 0.00 £+ 0.00 0.06 £ 0.08 0.00 £ 0.00 0.83 +£0.00
FWSVD+LoRA,—g 0.03 £0.00 0.32+0.02 0.02+0.00 0.84 & 0.00
FWSVD+QLoRA,—3 0.02 £0.02 0.21+£0.14 0.01 £0.01 0.83 +£0.00
SVD 0.01 +£0.02 0.01 +£0.01 0.05+0.08 0.62 £ 0.27
FWSVD 220 0.00 £ 0.00 0.12+£0.17 0.00 £ 0.00 0.83 +£0.00
FWSVD+LoRA,—g 0.47 - 0.04 0.61+£0.03 0.38+0.04 0.90 £ 0.01
FWSVD+QLoRA,—3 0.39£0.04 0.61£0.05 0.29 +£0.03 0.89 +£0.01
SVD 0.00 £ 0.00 0.01 +£0.02 0.00 £ 0.00 0.83 +£0.00
FWSVD 340 0.10 £0.08 0.45+0.10 0.06 £+ 0.05 0.85 4+ 0.01
FWSVD+LoRA,—g 0.83 +0.01 0.86 £0.01 0.80%+ 0.02 0.97 4 0.00
FWSVD+QLoRA, g 0.81 £0.01 0.85+0.01 0.78 £0.02 0.96 £+ 0.00
SVD 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.83 +£0.00
FWSVD 480 0.81 4+ 0.00 0.87 £ 0.00 0.76 +0.05 0.96 £ 0.00
FWSVD+LoRA,—3 0.92 4+ 0.00 0.92+0.00 0.9240.01 0.99 £ 0.00
FWSVD+QLoRA,—3 0.90 £ 0.00 0.90 £ 0.00 0.90 £ 0.00 0.98 +0.00
SVD 0.01 +£0.01 0.85 +0.07 0.00 £ 0.00 0.83 £ 0.00
FWSVD 540 0.91 £ 0.00 0.92+0.01 0.90 £ 0.00 0.98 +£0.00
FWSVD+LoRA,—g 0.93 +0.00 0.93 +£0.00 0.944+0.00 0.99 4 0.00
FWSVD+QLoRA,—3 0.92 £ 0.00 0.91+0.00 0.92+0.00 0.99 £ 0.00

Table 8: Results on CoNLL-2003 dataset in the VRAM-unlimited pipeline. The best results for each rank are in

bold, and overall best results are underlined bold.
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Method Rank ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-sum
Full FT 41.19 17.74 33.21 33.22
LoRA,—5 768 38.30 14.87 30.50 30.50
LoRA;=32 38.68 15.32 30.95 30.95
SVD 3.56 £0.02 0.021 +0.02 3.02 &+ 0.20 3.15 £+ 0.20
FWSVD 0.78 £ 0.03 0.00 £0.01 0.72£0.01 0.723 £0.01
FWSVD+LoRA,_g 10 1.57£0.01 0.00 £ 0.00 1.41£0.01 1.44+£0.01
FWSVD+QLoRA,—3 0.84 £0.08 0.00 £ 0.0 0.78 £0.08 0.80 £ 0.08
FWSVD+LoRA,_32 1.35£0.01 0.00 £ 0.00 1.24 £0.01 1.26 £0.01
FWSVD+QLoRA,—32 0.94+£0.10 0.00 £ 0.00 0.86 £ 0.09 0.88 £0.09
SVD 2.90 +£0.02 0.04 +£0.02 2.51£0.03 2.59+0.03
FWSVD 2.31£0.03 0.03£0.01 2.00 £ 0.02 2.03 £0.02
FWSVD+LoRA,_g 100 3.3+0.01 0.03 £ 0.00 2.87 + 0.01 2.91 + 0.01
FWSVD+QLoRA,—g 2.34 £0.09 0.03 £0.00 2.03 £0.08 2.06 £0.08
FWSVD+LoRA,—_32 2.83+£0.01 0.03 £ 0.00 2.45+0.01 2.49+0.01
FWSVD+QLoRA =32 2.22+£0.33 0.03£0.01 1.95 £ 0.26 1.97 £0.27
SVD 2.20£0.02 0.04 £0.01 2.01+£0.02 2.03 £0.04
FWSVD 4.25 £ 0.02 0.12 +0.07 3.92£0.08 3.93 £0.02
FWSVD+LoRA,—g 200 4.49 4+ 0.01 0.12 4+ 0.01 4.15 4+ 0.02 4.15 + 0.02
FWSVD+QLoRA,—g 3.90 £ 0.24 0.08 £0.01 3.63 +0.24 3.64 +0.24
FWSVD+LoRA, —32 4.32£0.01 0.12+£0.00 4.00 £0.01 4.00 £0.01
FWSVD+QLoRA =32 4.33 £0.32 0.11 +0.02 4.02 +0.29 4.03 £0.29
SVD 5.72£0.02 0.38 £0.02 5.05 £ 0.02 5.05 £ 0.02
FWSVD 14.27 +£0.04 2.374+0.02 11.424+0.01 11.59 +0.01
FWSVD+LoRA,—g 300 13.31 £0.02 2.06 £ 0.02 10.86 £ 0.02 10.9 £0.02
FWSVD+QLoRA,—_g 10.93 £ 1.27 1.48+£0.3 9.06 £0.91 9.06 £ 0.95
FWSVD+LoRA,—32 13.1+£0.01 2.13+£0.03 10.62 £ 0.01 10.71 £ 0.01
FWSVD+QLoRA,—32 12.07 £ 1.04 1.92+£0.25 9.80 £0.72 9.87 £0.76
SVD 20.84 £0.02 4.69 £ 0.02 16.29 + 0.02 16.53 £ 0.02
FWSVD 29.68 £0.01 8.294 +0.01 22.56 £0.01 22.99 + 0.01
FWSVD+LoRA,—_g 400 29.09 £0.01 7.85+0.02 22.23£0.01 22.38 £0.01
FWSVD+QLoRA,—3 28.20 £1.20 7.35+0.69 21.47£0.94 21.59+£0.94
FWSVD+LoRA,—32 29.57 £0.01 8.22 £ 0.02 22.51£0.01 22.81+£0.01
FWSVD+QLoRA,—32 28.61 £0.15 7.81+0.11 21.63 £0.10 22.21£0.15
SVD 31.94 £0.02 10.08 £ 0.02 24.64 £0.02 24.83 £0.02
FWSVD 35.37 +£0.01 12.44 +£0.01 27.744+0.01 27.84 4+0.01
FWSVD+LoRA,_g 500 34.69 £ 0.00 11.84 £ 0.00 27.12£0.00 27.17 £ 0.00
FWSVD+QLoRA,—3 34.56 £0.51 11.77 £ 0.42 26.96 £ 0.49 27.00 £0.49
FWSVD+LoRA,_32 34.83 £0.00 11.95 + 0.00 27.14 £0.00 27.24 £0.00
FWSVD+QLoRA,—32 35.04 £0.18 12.16 £ 0.08 27.38 £0.13 27.53£0.13
SVD 36.81 £ 0.02 13.87 £ 0.02 29.23 £0.02 29.25 +0.02
FWSVD 38.24 4+ 0.00 15.00 +£0.00 30.41 +0.00 30.43 4 0.00
FWSVD+LoRA,_g 600 37.75 £0.00 14.54 +0.00 29.98 £ 0.00 29.99 £+ 0.00
FWSVD+QLoRA,—g 37.76 £0.25 14.57 £0.22 29.99 £0.22 29.98 £0.21
FWSVD+LoRA,—_32 37.75 £0.00 14.54 +0.00 29.87 £ 0.00 29.79 +£0.00
FWSVD+QLoRA =32 38.04 £0.12 14.78 £ 0.06 30.24 £0.10 30.26 £0.11
SVD 39.04 £0.02 15.88 £0.02 31.38 £ 0.02 31.37+£0.02
FWSVD 39.75+0.00 16.46 +0.00 31.81+0.00 31.80 % 0.00
FWSVD+LoRA,—g 700 39.32 £ 0.00 15.99 £ 0.00 31.38 £ 0.00 31.38 £ 0.00
FWSVD+QLoRA,—g 39.37 £0.11 16.04 +0.14 31.43+£0.14 31.42+£0.14
FWSVD+LoRA,—32 39.36 £ 0.00 16.06 £ 0.00 31.424+0.00 31.42 +£0.00
FWSVD+QLoRA, —32 39.52£0.14 16.22 £0.08 31.68 £0.14 31.68 £0.14

Table 9: Extended results on XSUM dataset for the VRAM-unlimited pipeline. The best results for each rank are in
bold, and overall best results are underlined bold.

15



Method Rank Overall Humanities Other Soc. Sciences STEM
Full FT 4096 0.61+0.13 0.57+0.13 0.68+0.11 0.72+0.09 0.51+0.13
SVD 0.26 + 0.05 0.25 4+ 0.03 0.23 +0.05 0.31 £+ 0.05 0.27 £ 0.06
FWSVD+QLoRA,-16 1550 0.26 + 0.05 0.24 £0.03 0.27 4+ 0.06 0.25 £ 0.05 0.28 + 0.06
FWSVD+QL0RA, =64 0.26 £ 0.05 0.24 +0.03 0.27 £+ 0.06 0.26 4+ 0.05 0.28 + 0.06
SVD 0.27 + 0.06 0.24 +0.03 0.26 4 0.07 0.30 £ 0.06 0.28 = 0.06
FWSVD+QLoRA,—1s 1950 0.34 +0.06 0.30+0.05 0.37+0.07 0.40+0.05 0.32+ 0.06
FWSVD+QLoRA ,—¢4 0.34 +0.07 0.30 £0.05 0.37+0.07 0.40+ 0.06 0.32+0.07
SVD 0.24 £0.04 0.25 £ 0.03 0.26 £ 0.05 0.22 £0.03 0.24 £0.05
FWSVD+QLoRA,—-16 2350 0.46 +£0.11 0.40 4+ 0.10 0.53 +0.11 0.54 + 0.09 0.39 £ 0.08
FWSVD+QLORA —64 0.46 £ 0.11 0.39 £0.11 0.53 £ 0.10 0.54 +0.09 0.40 & 0.08
SVD 0.24 +£0.04 0.23 £0.03 0.22 +£0.04 0.24 +0.03 0.26 £+ 0.06
FWSVD+QLoRA,—16 2800 0.54 +0.12 0.49+0.13 0.60+0.11 0.64 + 0.09 0.45+0.11
FWSVD+QLoRA, =64 0.54 +0.13 0.49+0.13 0.61+0.11 0.64+0.10 0.46 £+ 0.10

Table 10: Average accuracy scores for MMLU benchmark after 5-shot evaluation in VRAM-limited pipeline. The

best results for each rank are in bold, and the best overall results are bold underlined.

Method Rank ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-sum
Full FT 768 41.19 17.74 33.21 33.22
SVD 3.43 +£0.11 0.02 4 0.00 2.92 4+ 0.10 3.05 £ 0.09
FWSVD 10 0.88 £0.20 0.00 £ 0.00 0.80 £0.17 0.81 £0.17
FWSVD+LoRA, -3 1.29 +£0.29 0.00 £ 0.00 1.18 £ 0.25 1.19 £ 0.26
FWSVD+QLoRA,—3 1.41£0.35 0.00 £ 0.0 1.27+£0.31 1.29 £ 0.32
SVD 2.26 +£0.14 0.04 4 0.01 1.98£0.12 2.03+£0.13
FWSVD 100 2.33+0.34 0.03 £0.00 2.06 £ 0.26 2.08 £0.27
FWSVD+LoRA,—g 3.76 4 0.27 0.03 £0.00 3.51 4+ 0.29 3.52 + 0.29
FWSVD+QLoRA,—g 3.75£0.12 0.03 £0.01 3.46 £ 0.06 3.48 £0.06
SVD 2.32+£0.22 0.04 +£0.01 2.134+0.20 2.15+0.20
FWSVD 200 4.33£0.24 0.16 4 0.01 3.96 £0.22 3.97+£0.22
FWSVD+LoRA,_g 5.10 &+ 0.52 0.12+0.01 4.80 £ 0.39 4.79 £+ 0.40
FWSVD+QLoRA,—5 4.79£0.26 0.15£0.03 4.49£0.21 4.47+£0.21
SVD 6.2£0.25 0.42+£0.05 5.47+£0.24 5.48 +0.24
FWSVD 300 15.43 +0.64 2.87+0.19 12.10+0.51 12.44 +0.51
FWSVD+LoRA,—g 13.48 £0.84 2.124+0.18 10.73 £ 0.56 10.69 + 0.60
FWSVD+QLoRA,—g 13.78 £ 2.23 2.36 £ 0.61 11.09 £ 1.61 10.95 £ 1.64
SVD 22.23£0.49 5.14+0.14 17.35 £ 0.42 17.53 £0.39
FWSVD 400 30.26 £ 0.19 8.81 +0.15 23.09+0.18 23.63+0.15
FWSVD+LoRA,—3 28.92 £0.24 7.72+£0.20 22.12 £0.22 22.22£0.24
FWSVD+QLoRA,—g 29.08 £0.8 7.83+0.43 22.27+£0.64 22.37+£0.61
SVD 32.14£0.10 10.26 + 0.04 24.91 £0.12 25.03 +£0.1
FWSVD 500 35.61 +0.15 12.67+0.12 27.914+0.16 28.07 +0.17
FWSVD+LoRA, -3 34.04£0.17 11.12 £ 0.05 26.48 = 0.09 26.48 £0.09
FWSVD+QLoRA, g 33.72£0.40 10.94 £ 0.32 26.25 £ 0.39 26.25 £ 0.40
SVD 36.82 £0.10 13.79 £ 0.09 29.18 £0.13 29.19£0.13
FWSVD 600 38.29 +0.08 15.05+ 0.03 30.52+0.08 30.54 4 0.08
FWSVD+LoRA,—g 36.45 £ 0.08 13.16 £ 0.07 28.73 £0.08 28.73 £0.08
FWSVD+QLoRA, g 36.22 £0.16 12.98 £0.15 28.51 £0.13 28.5+0.14
SVD 38.84 £ 0.07 15.74 £ 0.03 31.18 £ 0.06 31.17 £ 0.07
FWSVD 700 39.69+0.01 16.39+0.04 31.86+0.01 31.86 4+ 0.02
FWSVD+LoRA,_g 37.76 £ 0.06 14.31 £ 0.03 29.96 £+ 0.06 29.95 £ 0.06
FWSVD+QLoRA,—5 37.65£0.10 14.28 +0.09 29.85£0.13 29.84 £0.13

Table 11: Extended results on XSUM dataset for the VRAM-limited pipeline. The best results for each rank are in

bold, and overall best results are underlined bold.
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