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Abstract
This paper introduces a skill-based framework001
for enhancing the emergent abilities of Large002
Language Models (LLMs) within knowledge003
management applications, leveraging Retrieval-004
Augmented Generation (RAG). LLMs exhibit005
emergent abilities that can significantly impact006
their performance in complex tasks. Our ap-007
proach explores and harnesses these abilities008
by defining skills, optimizing model perfor-009
mance through the DSPy framework, and as-010
sessing impact using a combination of discrete011
and continuous metrics. We conducted exper-012
iments on LLMs of varying scales, focusing013
on models like GPT-3.5 and Mistral 7B, across014
skill associated datasets (Emotion-based, fact-015
based persona, persona emotional state, crisp016
answers). Our results indicate that the DSPy op-017
timization enhances LLM performance, partic-018
ularly in generating contextually rich responses019
while reducing operational costs. This study020
not only sheds light on the mechanisms through021
which emergent abilities develop in LLMs but022
also illustrates how skill-based frameworks can023
systematically leverage these properties to im-024
prove efficiency and effectiveness in real-world025
applications.026

1 Introduction027

The rapid advancements in large language models028

(LLMs) have led to significant progress in natu-029

ral language processing (NLP) tasks, ranging from030

text generation to complex question answering sys-031

tems. As these LLM models grow in scale, it032

exhibit emergent abilities—abrupt unpredictable033

change. Current knowledge management applica-034

tions include LLM, Retrieval-Augmented Genera-035

tion (RAG), agentic RAG, LLM based multi-agents036

systems. Hence, understanding the mechanism of037

emergent abilities of LLMs and harnessing them038

is critical for optimizing their performance, scal-039

ability, and reducing cost in various knowledge040

management applications, including RAG tasks.041

RAG combines the strengths of retrieval-based 042

and generation-based approaches, without the need 043

to retrain models for every domain-specific appli- 044

cation. Despite their potential, optimizing RAG 045

models to leverage emergent abilities effectively 046

remains a challenge. Recent studies have shown 047

that LLMs exhibit emergent behaviors, such as im- 048

proved problem-solving and persona understand- 049

ing, as they scale up. However, the precise mecha- 050

nisms underlying these emergent abilities and their 051

implications for RAG model performance are not 052

fully understood. 053

The study by (Khattab et al., 2023) introduces 054

DSPy, a framework that compiles declarative lan- 055

guage model calls into self-improving pipelines. 056

DSPy offers a novel approach to optimizing LLM 057

based systems. Concurrently, research by (Arora 058

and Goyal, 2023) presents a theoretical model for 059

the emergence of complex skills in language mod- 060

els using bipartite graphs. Moreover, (Schaeffer 061

et al., 2023) critically examine the differentiation 062

between discrete and continuous metrics in evaluat- 063

ing LLM emergent abilities, highlighting the need 064

for robust evaluation frameworks. 065

In this study, we are defining skills and skill 066

based framework for optimizing RAG-based LLMs 067

using DSPy across LLM models at various scales, 068

and dataset types (fact-based and emotion-based 069

queries) built on top of existing work (Arora and 070

Goyal, 2023) to explore and enhance emergent 071

abilities of LLMs. This research is particularly 072

significant for developing knowledge management 073

systems that require accurate, contextually rich re- 074

sponses while reducing LLM operational cost. By 075

investigating the impact of combination of different 076

metrics (e.g., BLEU, ROUGE, similarity scores) 077

on the skills of optimized versus unoptimized RAG 078

models, we aim to uncover insights into the ef- 079

fectiveness of DSPy and the nature of emergent 080

abilities in LLMs. By building on this study de- 081

signed for RAG based LLMs, we can improve the 082
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Figure 1: Evaluation of T1 dataset for various metrics for optimized and unoptimized RAG based LLM using DSPy.

(a) Optimized (Mistral, rouge-
bleu)

(b) Unoptimized (Mistral,
rouge-bleu)

(c) Optimized (GPT-3.5, rouge-
bleu)

(d) Unoptimized (GPT-3.5,
rouge-bleu)

Figure 2: Question Answer comparison on T1 Dataset

performance and effectiveness of complex LLM083

based systems such as agentic RAG and multi-084

agent based systems. The primary objectives of085

this research are to:086

1. Define skills in context of knowledge manage-087

ment and analyze skill oriented learning of088

LLMs.089

2. Optimize RAG-based LLMs of varying scales090

(7B, GPT-3.5) using DSPy.091

3. Evaluate the impact of different skill-dataset092

types on optimized model performance.093

4. Investigate the influence of variation of dis-094

crete and continuous metrics on the assess-095

ment of emergent abilities of LLMs.096

We hypothesize that:097

• By devising skill based datasets, we can ex-098

plore and harness emergent properties of both099

smaller and larger LLMs.100

• DSPy optimization could enhance the per-101

formance of RAG-based LLMs, with larger102

models exhibiting more pronounced improve- 103

ments. 104

• The type of skills associated with dataset will 105

differentially impact the performance of opti- 106

mized versus unoptimized models. 107

• Discrete metrics will reveal sharper transitions 108

in model performance, indicative of emergent 109

abilities irrespective of scale, vis-à-vis varia- 110

tions in continuous metric. 111

Our research study demonstrates that our skill 112

based learning approach combined with DSPy opti- 113

mization achieves significant performance improve- 114

ment for both small LLM and large LLM model 115

for different datasets in comparison to unoptimized 116

LLMs. It also uncovers the need of nuanced op- 117

timization strategies related to choice of metric 118

specially for small LLMs. Our code will be open- 119

sourced. 120

2 Related work 121

The exploration of emergent abilities in LLMs has 122

garnered significant attention in recent years, with 123
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a particular focus on understanding how these mod-124

els develop complex skills and capabilities for zero-125

shot and few-shots learning. These abilities have126

laid foundation of complex knowledge manage-127

ment systems powered by LLMs such as RAG,128

agent based systems, and multi-agent systems. Cen-129

tral to this trajectory of LLM based research and130

development is the notion of scaling laws.131

Early work in this area was (Rosenfeld et al.,132

2019) inspired by supervised learning concepts.133

Work showcased in (Kaplan et al., 2020; Brown134

et al., 2020; Xia et al., 2023; Gadre et al., 2024;135

Chowdhery et al., 2022), and (Saunshi et al., 2020)136

theoretically and experimentally attributed zero-137

shot and few-shot learning capabilities to large138

scale of models. The work by (Ganguli et al., 2022;139

Hoffmann et al., 2022) highlighted the paradox as-140

sociated with large scale models for real-world ap-141

plications. (Wei et al., 2022) defined the observed142

abilities as emergent abilities that even cannot be143

extrapolated from small model performances and144

are only present in large scale models. This tra-145

jectory of research based on large scale emergent146

abilities of LLMs merged with extensive research147

on prompt engineering (Luo et al., 2023; Yao et al.,148

2023; Shi et al., 2023; Diao et al., 2024; Zhou et al.,149

2024) and led to the development of multi-task150

learning (Ahuja et al., 2022), RAG based systems151

(Lewis et al., 2021), agents, and even multi-agent152

based systems (Guo et al., 2024). In contrast, (Scha-153

effer et al., 2023) challenged the notion that emer-154

gent abilities are purely a function of model size,155

suggesting instead that they may result from the dis-156

crete vs continuous metrics used to evaluate these157

models. Their work demonstrated that when dif-158

ferent, more linear metrics are applied, many sup-159

posed emergent abilities dissipate, indicating that160

these abilities might be artifacts of the chosen eval-161

uation frameworks. This work along with (McKen-162

zie et al., 2024; al., 2023) has led to a deeper inves-163

tigation into the nature of emergent properties and164

the influence of training data and objectives. Fur-165

ther contributions w.r.t. training data distribution166

was made by (Sap et al., 2022; Hu et al., 2023; Hu167

and Collier, 2024), underscoring the need for better168

data curation and more robust training objectives.169

Another significant area of research is the incorpo-170

ration of contextual elements such as personas and171

emotions. Studies like (Bisbee et al., 2024) have172

explored how synthetic persona-based data can in-173

troduce biases not present in real-world data. These174

findings align with our investigation into the impact175

of emotional and persona contexts on LLM perfor- 176

mance, especially within RAG based systems. The 177

theoretical underpinnings of these phenomena have 178

also been explored through mathematical models. 179

Works like (Arora and Goyal, 2023; Liao et al., 180

2024) provide foundational insights that can be 181

utilized for optimization of LLMs. This perspec- 182

tive is further supported by recent advancements in 183

prompt engineering and optimization techniques, 184

such as DSPy, which leverages metric, task, data, 185

and model-based modularity to fine-tune LLM per- 186

formance. Our research builds upon these theoret- 187

ical and experimental foundations by modifying 188

mathematical models and account for contribution 189

of facts, personas, and emotions. This approach 190

aims to optimize LLM systems’ responses, thereby 191

enhancing their emergent abilities in a more con- 192

trolled and predictable manner. By exploring these 193

dimensions, we contribute to a more granular un- 194

derstanding of how various factors influence the 195

performance and scalability of LLMs. 196

3 Methodology 197

3.1 Theoretical aspects 198

We propose a modified framework that integrates 199

the complexity of queries, persona understanding, 200

and emotion-based skills into the analysis of emer- 201

gent abilities in LLMs. This approach seeks to ex- 202

tend the bipartite graph model and excess entropy 203

concepts to better reflect the intricacies involved in 204

persona and emotion-based tasks. We can modify 205

the equations for cross-entropy and excess entropy 206

from (Arora and Goyal, 2023), by introducing fac- 207

tors. Modified equation for cross-entropy: 208

l(M,Pe, Em, Qc) = 209

− Σilog(PrM (wi+1|w1..wi, Pe, Em, Qc) (1) 210

Where, 211

• Pe: Persona factor 212

• Em: Emotion factor 213

• Qc: Query complexity factor 214

Modified Excess Entropy: 215

Excess Entropy = KL(Ptrue||P(predicted))+ 216

f(Pe, Em, Qc) (2) 217

Where the last term captures the additional entropy 218

introduced by the complexity of the query and the 219

3



Figure 3: Evaluation of T2 dataset for various metrics for optimized and unoptimized RAG based LLM using DSPy.

influence of persona and emotion. We also modify220

the emergence analysis from equation 8 of (Arora221

and Goyal, 2023) to include the factors associated222

with persona, emotions, and query complexity:223

H(θ, Pe, Em, Qc) + kθ[H(αβ)224

− αβlog(
1

α
)− (1− αβ)log(

1

1− α
)]225

+ g(Pe, Em, Qc) < 0 (3)226

Models and architecture: Mistral-7B and GPT-227

3.5 for a range of scales are denoted by Mk in RAG228

architecture.229

Optimization: We use DSPy to optimize RAG230

based LLM models. The optimization applied by231

DSPy is denoted by ODSPy. We chose DSPy be-232

cause it is open source, coupled with extensive233

documentation and community support, makes it234

accessible for widespread adoption and collabora-235

tion. DSPy is modular in nature and unlike tra-236

ditional methods that rely on hard-coded prompt237

templates discovered through trial and error, DSPy238

uses a programming model.239

3.2 Skills240

Skills are represented by Ψi. For the purpose of this241

study, we focus on skills such as emotional state242

understanding, fact-requiring personas, emotions-243

based queries, and facts-based queries.244

Nature of skills:245

• Emotional state understanding of personas:246

This involves recognizing and interpreting the247

emotional context within the text. Skills here248

are about identifying emotions like happiness, 249

sadness, anger, frustration and generating an 250

empathetic response. 251

• Fact-requiring personas: These skills requires 252

the ability to access and convey precise data 253

points or information. 254

• Emotions-based queries: This involves gen- 255

erating responses that not only recognize the 256

emotional state but also appropriately respond 257

to it with empathy. 258

• Facts-based queries: This involves retrieving 259

accurate and crisp information and presenting 260

without emotional context. 261

Differentiation with generic skills: 262

Sentiment analysis: Generic sentiment analy- 263

sis: Involves classifying text into categories like 264

positive, negative, or neutral. 265

Emotional state understanding: Goes deeper by 266

identifying specific emotions and the context in 267

which they occur, thus helps in capturing nuances 268

and generating response accordingly. 269

Arithmetic reasoning: Generic arithmetic rea- 270

soning: Involves solving mathematical problems 271

or reasoning about numbers. 272

Fact-requiring personas: This is a super-set of 273

arithmetic reasoning and requires retrieval and pre- 274

sentation of factual information. 275

Comprehension: Generic comprehension: In- 276

volves reading and understanding meaning of text. 277

Emotions-based and facts-based queries: This 278

is a super-set of comprehension and also includes 279
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Figure 4: Evaluation of T3 dataset for various metrics for optimized and unoptimized RAG based LLM using DSPy.

responding appropriately to emotional contexts or280

retrieving and presenting factual information.281

3.3 Datasets and associated skills282

Existing work (Arora and Goyal, 2023) states that283

higher number k of skills in a text-piece results in284

better emergence of skills. However, in order to285

explore avenues of emergent abilities of smaller286

LLMs, we instead focus on letting models learn287

knowledge management specific skills. Based on288

the modified framework to model skills with the ef-289

fects of query complexity, personas, and emotions290

and to investigate the impact of these factors on291

model performance, we design datasets that vary292

each of these factors separately.293

Dataset T1: HotpotQA (Yang et al., 2018) As-294

sociated skill Ψ0:Crispness/facts in answers. The295

dataset’s status as a public resource and its recog-296

nition as a well-known benchmark significantly297

enhance its suitability for evaluating our hypoth-298

esis and framework. There is a possibility that299

GPT-3.5 and Mistral-7B may have utilized it for300

training. We use 150 datapoints from HotpotQA301

and split the data randomly in 100:50 for training302

and validation.303

Dataset T2: Associated skill Ψ1 : Fact-based304

persona understanding. We use robotics research305

paper (Oliveira et al., 2021) available on the inter-306

net. For training and validation set 150 question-307

answers were generated using GPT-4.0 using this308

document. This dataset may contain bias or short-309

comings from GPT-4.0. To mitigate stereotypes310

and hallucinations, we used prompt and generated311

questions in batches of 20 question-answer pairs to 312

manually inspect the quality. The data is randomly 313

split in 100:50 for training and validation. 314

Dataset T3: Associated skill Ψ2: Response to 315

Emotion-based queries. We use robotics research 316

paper (Oliveira et al., 2021) available on the inter- 317

net. For training and validation set 145 question- 318

answers were generated using GPT-4.0 using this 319

document. The data is randomly split in 100:45 for 320

training and validation. 321

Dataset T4: Associated skill Ψ3: Emotion-based 322

persona understanding. We use robotics research 323

paper (Oliveira et al., 2021) available on the inter- 324

net. For training and validation set 150 question- 325

answers were generated using GPT-4.0 using this 326

document. The data is randomly split in 100:50 for 327

training and validation. 328

The datasets may contain bias or shortcomings 329

from GPT-4.0. To mitigate stereotypes and halluci- 330

nations, we used prompt and generated questions 331

in batches of 20 question-answer pairs to manually 332

inspect the quality. 333

3.4 Metrics and evaluation 334

Performance metric is evaluated using BLEU, 335

ROUGE, BLEU-ROUGE, BLEU-similarity scores. 336

BLEU score: The BLEU score is a widely used 337

metric (Post, 2018) for evaluating the quality of 338

text generated by machine translation systems. t is 339

a discrete metric (Schaeffer et al., 2023) and may 340

lead to artifacts during optimization process. 341

ROUGE score: The ROUGE score (Lin, 2004) 342

is primarily used for evaluating automatic summa- 343
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Figure 5: Evaluation of T4 dataset for various metrics for optimized and unoptimized RAG based LLM using DSPy.

rization and machine translation. It is a discrete344

metric (Schaeffer et al., 2023) and may lead to345

artifacts during optimization process.346

Similarity: We obtained similarity from Token347

Edit Distance (TED)(Schaeffer et al., 2023). It348

is a continuous metric and may result in smooth349

optimization process.350

SIMILARITY = 1− TED
max[len(reference),len(candidate)]

(4)351

The metric combinations for optimization purpose352

in this study is defined as:353

Γr = λBLEU + κROUGE + µSIMILARITY
(5)354

Here, λ, κ, µ vary between 0 to 1.0. Also, λ+ κ+355

µ = 1.0. Our hypothesis regarding skills-metric356

pairing is in Table 1.357

3.4.1 Performance evaluation358

We selected combination of discrete and continu-359

ous metrics to evaluate the models’ performance.360

Based on our hypothesis, following metric from361

Table 1 may work better based on the associated362

skills of the datasets.363

The performance function with and without364

DSPy optimization can be defined as:365

P (Mk, Tj , ODSPy,Γr, e(G)) (6)366

Here, e(G) denotes contribution of emergent abil-367

ities e that can be modeled as a function of the368

skills-text bipartite graph model denoted as G. Skill369

Dataset-skill Better
metric

Metric strength

T1-crisp/facts ROUGE Precision and
brevity

T2-Fact-based
persona

BLEU-
ROUGE

Precision and re-
call

T3-Emotion-
based queries

BLEU-
ROUGE

Precision and re-
call

T4-Emotion-
based persona
queries

ROUGE Recall

Table 1: Hypothesis: Choice of metric that may work
better for the skills required for datasets.

Proficiency Score (SPS) for validation dataset as- 370

sociated with skill Ψi, here l is the lth datapoint of 371

validation set: 372

SPS(i)opt(Mk, Tj ,Γr, e(G)) = 373

median(P (Mk, Tjl, ODSPy = 1,Γr, e(G)) (7) 374

375

SPS(i)unopt(Mk, Tj ,Γr) = 376

median(P (Mk, Tjl, ODSPy = 0,Γr) (8) 377

As the model is optimized or scales, proficiency 378

in both individual skills and skill-tuples improves. 379

This improvement can be analyzed using random 380

graph theory. We measure this evolution and obtain 381

the difference of optimal values of optimized LLM 382

and unoptimized LLM. The relative improvement 383
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is shown by:384

∆Pi(Mk, Tj ,Γr) =385

max(SPSopt(Mk, Tj ,Γr, e(G)))

max(SPSunopt(Mk, Tj ,Γr))
− 1 (9)386

4 Experiments387

We use Azure cloud platform and NVIDIA T4 GPU388

for conducting experiments. It takes 2-9 mins to389

execute optimization using DSPy for each dataset390

and metric setting. We use Qdrant for vectorDB391

creation in RAG architecture. We used DSPy’s392

“Chain of Thought” module and “BootstrapFew-393

Shot” teleprompter. Two LLM models are used for394

evaluation: Mistral-7B is used through Ollama with395

following settings (max_token = 350, temperature396

= 0.1, frequency_penalty = 1.17, and top_k = 40),397

We used GPT-3.5 through Azure Openai SDK. We398

used median scores for all metrics on validation set399

in results. Following are details of results obtained400

for skill based datasets. Summary of results using401

Equation 9 is shown in Table 2.402

4.1 Dataset T1 and results403

Dataset T1 is a public dataset HotpotQA and results404

are shown in Figure 1. We observe that crispness405

is a difficult skill to learn for Mistral-7B model406

using Similarity and BLEU scores. GPT-3.5 sees407

a large performance improvement after optimiza-408

tion for the same metric. In this case, scaling409

law takes precedence. For ROUGE and BLEU410

score combinations, we clearly observe sharp vari-411

ations for different metric for Mistral-7B and GPT-412

3.5. Mistral-7B shows significant improvement413

post-optimization (∆P = 2.01), confirming that414

skill-based datasets can enhance skill proficiency415

in smaller models. GPT-3.5 shows even greater416

improvement (∆P = 5.67), validating our hypoth-417

esis for both smaller and larger model.418

4.2 Dataset T2 and results419

GPT-3.5 optimization is smooth w.r.t. metric varia-420

tions for discrete and continuous metrics as shown421

in Figure 3. ROUGE metric leads to better perfor-422

mance in GPT-3.5 for T2. Mistral-7B optimized423

system performs better with BLEU-ROUGE metric424

with sharp variations. Both models improve, but425

Mistral-7B’s improvement (∆P = 0.419) is more426

pronounced compared to GPT-3.5 (∆P = 0.236).427

4.3 Dataset T3 and results 428

GPT-3.5 optimization is smooth w.r.t. metric vari- 429

ations for discrete and continuous metrics. Figure 430

4 shows that ROUGE metric leads to better perfor- 431

mance in GPT-3.5 for T3. Mistral-7B optimized 432

system performs narrowly better with ROUGE 433

metric. We observe smooth variations in perfor- 434

mance with ROUGE-BLEU metric variations un- 435

like that for Similarity-BLEU. GPT-3.5 shows a 436

more significant improvement post-optimization 437

(∆P = 0.481) than Mistral-7B (∆P = 0.029), 438

indicating that larger models are more proficient in 439

emotion-based tasks post-optimization. 440

4.4 Dataset T4 and results 441

Optimized GPT-3.5 behaves extremely well irre- 442

spective of metric variations as shown in Figure 443

5. Mistral-7B is performing better with ROUGE 444

and there is smooth variation with metric variations. 445

GPT-3.5 shows substantial improvement (∆P = 446

0.582) compared to Mistral-7B (∆P = 0.126), 447

supporting the hypothesis that larger models benefit 448

more from optimization in complex tasks involving 449

emotions and persona. 450

Dataset Model max(SPSunopt) max(SPSopt) ∆P

T1

Mistral 7B 0.199 0.60 2.01

GPT 3.5 0.15 1.0 5.67

T2

Mistral 7B 0.422 0.599 0.419

GPT 3.5 0.541 0.669 0.236

T3

Mistral 7B 0.440 0.453 0.029

GPT 3.5 0.424 0.628 0.481

T4

Mistral 7B 0.507 0.571 0.126

GPT 3.5 0.632 1.0 0.582

Table 2: Summary of results for all datasets-skills,
metrics, models used in this study.

5 Discussions 451

Skill competence and emergence: The results in- 452

dicate that the type of skill associated with each 453

dataset does indeed impact performance differently 454

for optimized versus unoptimized models. The re- 455

sults indicate that large-scale models like GPT-3.5 456

benefit significantly from scaling laws, showing 457

smooth and continuous improvements with opti- 458

mization across various metrics. However, results 459

from smaller models were more variable, suggest- 460

ing that different optimization strategies might be 461

required. 462
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Metric sensitivity and sharp variations: The463

sharp variations in performance metrics like BLEU-464

ROUGE for both models underscore the impor-465

tance of choosing appropriate evaluation metrics466

for dataset like T1 associated with crisp answer-467

ing skills. Emergent abilities can be influenced by468

the choice of nonlinear or discontinuous metrics,469

leading to apparent sharp transitions specially for470

smaller LLM models. The study suggests that emer-471

gent abilities may be a product of metric choice472

rather than solely due to fundamental changes in473

model behavior based on type of skill learning.474

Optimization strategies: DSPy optimization475

generally enhances performance across datasets,476

particularly in larger models like GPT-3.5, which477

shows greater ∆P values. This supports the hy-478

pothesis that DSPy optimization benefits larger479

models more significantly. This highlights the480

role of such optimization techniques in harnessing481

emergent abilities of LLMs effectively. For smaller482

models, combining different metrics (e.g., ROUGE-483

BLEU) can provide performance improvements,484

suggesting a more nuanced approach to optimiza-485

tion.486

Emergent abilities and knowledge manage-487

ment: Emergent abilities of LLMs can be useful for488

knowledge management systems, particularly in489

tasks requiring complex skills like emotion-based490

or fact-based persona queries. A skill-based frame-491

work that systematically optimizes and evaluates492

these abilities can help in designing more robust,493

adaptable, and low-cost LLM powered systems. By494

focusing on specific skills, metrics, and models, we495

can harness the full potential of emergent abilities496

in LLMs.497

6 Conclusion498

The skill-based framework and our findings on met-499

ric sensitivity provide valuable insights into the500

emergent abilities of LLMs. By adopting a struc-501

tured approach to define skills and metrics, we aim502

to achieve a deeper understanding and more ef-503

fective utilization of these powerful models. This504

research contributes to the ongoing discussions of505

LLM emergent capabilities, offering practical im-506

plications of skill based framework. The impli-507

cations of this research extend to designing more508

robust and adaptable LLM-driven systems, particu-509

larly for complex knowledge management tasks.510

Limitations 511

This research, while pioneering in its approach to 512

harnessing the emergent abilities of LLMs using a 513

skill-based framework, has certain limitations that 514

warrant consideration for future studies. Firstly, 515

the models tested, including GPT-3.5 and Mistral 516

7B, are primarily optimized for English, the gen- 517

eralizability of the framework to different LLM 518

models, application domains, and multilingual con- 519

texts needs to be further explored and evaluated. 520

Additionally, while our framework aims to reduce 521

operational costs by improving model efficiency, 522

the actual cost implications in practical, real-world 523

deployments have not been quantified. Future work 524

should aim to provide a more detailed cost-benefit 525

analysis to better understand the economic impact 526

of implementing such a framework in commercial 527

or large-scale applications. These limitations high- 528

light the need for ongoing research to refine and ex- 529

pand the applicability of our skill-based framework 530

for optimizing LLMs across various dimensions. 531

Ethics Statement 532

The primary objective of this study is to explore 533

and harness emergent abilities of LLMs for low- 534

cost, scalable LLM powered systems for knowl- 535

edge management. In our process of synthetic data 536

generation from GPT-4, we use prompts to avoid 537

stereotypes. 538
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