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Abstract

This paper introduces a skill-based framework
for enhancing the emergent abilities of Large
Language Models (LLMs) within knowledge
management applications, leveraging Retrieval-
Augmented Generation (RAG). LLMs exhibit
emergent abilities that can significantly impact
their performance in complex tasks. Our ap-
proach explores and harnesses these abilities
by defining skills, optimizing model perfor-
mance through the DSPy framework, and as-
sessing impact using a combination of discrete
and continuous metrics. We conducted exper-
iments on LLMs of varying scales, focusing
on models like GPT-3.5 and Mistral 7B, across
skill associated datasets (Emotion-based, fact-
based persona, persona emotional state, crisp
answers). Our results indicate that the DSPy op-
timization enhances LLM performance, partic-
ularly in generating contextually rich responses
while reducing operational costs. This study
not only sheds light on the mechanisms through
which emergent abilities develop in LLMs but
also illustrates how skill-based frameworks can
systematically leverage these properties to im-
prove efficiency and effectiveness in real-world
applications.

1 Introduction

The rapid advancements in large language models
(LLMs) have led to significant progress in natu-
ral language processing (NLP) tasks, ranging from
text generation to complex question answering Sys-
tems. As these LLM models grow in scale, it
exhibit emergent abilities—abrupt unpredictable
change. Current knowledge management applica-
tions include LLM, Retrieval-Augmented Genera-
tion (RAG), agentic RAG, LLM based multi-agents
systems. Hence, understanding the mechanism of
emergent abilities of LLMs and harnessing them
is critical for optimizing their performance, scal-
ability, and reducing cost in various knowledge
management applications, including RAG tasks.

RAG combines the strengths of retrieval-based
and generation-based approaches, without the need
to retrain models for every domain-specific appli-
cation. Despite their potential, optimizing RAG
models to leverage emergent abilities effectively
remains a challenge. Recent studies have shown
that LLMs exhibit emergent behaviors, such as im-
proved problem-solving and persona understand-
ing, as they scale up. However, the precise mecha-
nisms underlying these emergent abilities and their
implications for RAG model performance are not
fully understood.

The study by (Khattab et al., 2023) introduces
DSPy, a framework that compiles declarative lan-
guage model calls into self-improving pipelines.
DSPy offers a novel approach to optimizing LLM
based systems. Concurrently, research by (Arora
and Goyal, 2023) presents a theoretical model for
the emergence of complex skills in language mod-
els using bipartite graphs. Moreover, (Schaeffer
et al., 2023) critically examine the differentiation
between discrete and continuous metrics in evaluat-
ing LLM emergent abilities, highlighting the need
for robust evaluation frameworks.

In this study, we are defining skills and skill
based framework for optimizing RAG-based LLMs
using DSPy across LLM models at various scales,
and dataset types (fact-based and emotion-based
queries) built on top of existing work (Arora and
Goyal, 2023) to explore and enhance emergent
abilities of LLLMs. This research is particularly
significant for developing knowledge management
systems that require accurate, contextually rich re-
sponses while reducing LLM operational cost. By
investigating the impact of combination of different
metrics (e.g., BLEU, ROUGE, similarity scores)
on the skills of optimized versus unoptimized RAG
models, we aim to uncover insights into the ef-
fectiveness of DSPy and the nature of emergent
abilities in LLMs. By building on this study de-
signed for RAG based LLMs, we can improve the
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Figure 1: Evaluation of T1 dataset for various metrics for optimized and unoptimized RAG based LLM using DSPy.
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Figure 2: Question Answer comparison on T1 Dataset

performance and effectiveness of complex LLM
based systems such as agentic RAG and multi-
agent based systems. The primary objectives of
this research are to:

1. Define skills in context of knowledge manage-
ment and analyze skill oriented learning of
LLM:s.

2. Optimize RAG-based LLMs of varying scales
(7B, GPT-3.5) using DSPy.

3. Evaluate the impact of different skill-dataset
types on optimized model performance.

4. Investigate the influence of variation of dis-
crete and continuous metrics on the assess-
ment of emergent abilities of LLMs.

We hypothesize that:

* By devising skill based datasets, we can ex-
plore and harness emergent properties of both
smaller and larger LLMs.

* DSPy optimization could enhance the per-
formance of RAG-based LLMs, with larger

models exhibiting more pronounced improve-
ments.

* The type of skills associated with dataset will
differentially impact the performance of opti-
mized versus unoptimized models.

* Discrete metrics will reveal sharper transitions
in model performance, indicative of emergent
abilities irrespective of scale, vis-a-vis varia-
tions in continuous metric.

Our research study demonstrates that our skill
based learning approach combined with DSPy opti-
mization achieves significant performance improve-
ment for both small LLM and large LLM model
for different datasets in comparison to unoptimized
LLMs. It also uncovers the need of nuanced op-
timization strategies related to choice of metric
specially for small LLMs. Our code will be open-
sourced.

2 Related work

The exploration of emergent abilities in LLMs has
garnered significant attention in recent years, with



a particular focus on understanding how these mod-
els develop complex skills and capabilities for zero-
shot and few-shots learning. These abilities have
laid foundation of complex knowledge manage-
ment systems powered by LLMs such as RAG,
agent based systems, and multi-agent systems. Cen-
tral to this trajectory of LLM based research and
development is the notion of scaling laws.

Early work in this area was (Rosenfeld et al.,
2019) inspired by supervised learning concepts.
Work showcased in (Kaplan et al., 2020; Brown
et al., 2020; Xia et al., 2023; Gadre et al., 2024,
Chowdhery et al., 2022), and (Saunshi et al., 2020)
theoretically and experimentally attributed zero-
shot and few-shot learning capabilities to large
scale of models. The work by (Ganguli et al., 2022;
Hoffmann et al., 2022) highlighted the paradox as-
sociated with large scale models for real-world ap-
plications. (Wei et al., 2022) defined the observed
abilities as emergent abilities that even cannot be
extrapolated from small model performances and
are only present in large scale models. This tra-
jectory of research based on large scale emergent
abilities of LLMs merged with extensive research
on prompt engineering (Luo et al., 2023; Yao et al.,
2023; Shi et al., 2023; Diao et al., 2024; Zhou et al.,
2024) and led to the development of multi-task
learning (Ahuja et al., 2022), RAG based systems
(Lewis et al., 2021), agents, and even multi-agent
based systems (Guo et al., 2024). In contrast, (Scha-
effer et al., 2023) challenged the notion that emer-
gent abilities are purely a function of model size,
suggesting instead that they may result from the dis-
crete vs continuous metrics used to evaluate these
models. Their work demonstrated that when dif-
ferent, more linear metrics are applied, many sup-
posed emergent abilities dissipate, indicating that
these abilities might be artifacts of the chosen eval-
uation frameworks. This work along with (McKen-
zie et al., 2024; al., 2023) has led to a deeper inves-
tigation into the nature of emergent properties and
the influence of training data and objectives. Fur-
ther contributions w.r.t. training data distribution
was made by (Sap et al., 2022; Hu et al., 2023; Hu
and Collier, 2024), underscoring the need for better
data curation and more robust training objectives.
Another significant area of research is the incorpo-
ration of contextual elements such as personas and
emotions. Studies like (Bisbee et al., 2024) have
explored how synthetic persona-based data can in-
troduce biases not present in real-world data. These
findings align with our investigation into the impact

of emotional and persona contexts on LLLM perfor-
mance, especially within RAG based systems. The
theoretical underpinnings of these phenomena have
also been explored through mathematical models.
Works like (Arora and Goyal, 2023; Liao et al.,
2024) provide foundational insights that can be
utilized for optimization of LLMs. This perspec-
tive is further supported by recent advancements in
prompt engineering and optimization techniques,
such as DSPy, which leverages metric, task, data,
and model-based modularity to fine-tune LLM per-
formance. Our research builds upon these theoret-
ical and experimental foundations by modifying
mathematical models and account for contribution
of facts, personas, and emotions. This approach
aims to optimize LLM systems’ responses, thereby
enhancing their emergent abilities in a more con-
trolled and predictable manner. By exploring these
dimensions, we contribute to a more granular un-
derstanding of how various factors influence the
performance and scalability of LLMs.

3 Methodology

3.1 Theoretical aspects

We propose a modified framework that integrates
the complexity of queries, persona understanding,
and emotion-based skills into the analysis of emer-
gent abilities in LLLMs. This approach seeks to ex-
tend the bipartite graph model and excess entropy
concepts to better reflect the intricacies involved in
persona and emotion-based tasks. We can modify
the equations for cross-entropy and excess entropy
from (Arora and Goyal, 2023), by introducing fac-
tors. Modified equation for cross-entropy:

UM, Pe, Em, Qc) =
— Yilog(Prar(wisi|wl.w;, Pe, By, Qc) (1)
Where,
e P.: Persona factor
e E,,: Emotion factor
* Qc: Query complexity factor
Modified Excess Entropy:
Excess Entropy = K L(Pyue|| Ppredicted))+
f(Pe; Em, Qc) (2)

Where the last term captures the additional entropy
introduced by the complexity of the query and the
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Figure 3: Evaluation of T2 dataset for various metrics for optimized and unoptimized RAG based LLM using DSPy.

influence of persona and emotion. We also modify
the emergence analysis from equation 8 of (Arora
and Goyal, 2023) to include the factors associated
with persona, emotions, and query complexity:

H(0, Pe, Ey, Qc) + kO[H (a3)

~ aflog( 1) (1~ af)log(——)
+ 9(Pe; Em, Qc) <0 (3)

Models and architecture: Mistral-7B and GPT-
3.5 for a range of scales are denoted by M}, in RAG
architecture.

Optimization: We use DSPy to optimize RAG
based LLM models. The optimization applied by
DSPy is denoted by Opgp,. We chose DSPy be-
cause it is open source, coupled with extensive
documentation and community support, makes it
accessible for widespread adoption and collabora-
tion. DSPy is modular in nature and unlike tra-
ditional methods that rely on hard-coded prompt
templates discovered through trial and error, DSPy
uses a programming model.

3.2 Skills

Skills are represented by W;. For the purpose of this
study, we focus on skills such as emotional state
understanding, fact-requiring personas, emotions-
based queries, and facts-based queries.

Nature of skills:

* Emotional state understanding of personas:
This involves recognizing and interpreting the
emotional context within the text. Skills here

are about identifying emotions like happiness,
sadness, anger, frustration and generating an
empathetic response.

* Fact-requiring personas: These skills requires
the ability to access and convey precise data
points or information.

* Emotions-based queries: This involves gen-
erating responses that not only recognize the
emotional state but also appropriately respond
to it with empathy.

* Facts-based queries: This involves retrieving
accurate and crisp information and presenting
without emotional context.

Differentiation with generic skills:

Sentiment analysis: Generic sentiment analy-
sis: Involves classifying text into categories like
positive, negative, or neutral.

Emotional state understanding: Goes deeper by
identifying specific emotions and the context in
which they occur, thus helps in capturing nuances
and generating response accordingly.

Arithmetic reasoning: Generic arithmetic rea-
soning: Involves solving mathematical problems
or reasoning about numbers.

Fact-requiring personas: This is a super-set of
arithmetic reasoning and requires retrieval and pre-
sentation of factual information.

Comprehension: Generic comprehension: In-
volves reading and understanding meaning of text.

Emotions-based and facts-based queries: This
is a super-set of comprehension and also includes
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Figure 4: Evaluation of T3 dataset for various metrics for optimized and unoptimized RAG based LLM using DSPy.

responding appropriately to emotional contexts or
retrieving and presenting factual information.

3.3 Datasets and associated skills

Existing work (Arora and Goyal, 2023) states that
higher number k of skills in a text-piece results in
better emergence of skills. However, in order to
explore avenues of emergent abilities of smaller
LLMs, we instead focus on letting models learn
knowledge management specific skills. Based on
the modified framework to model skills with the ef-
fects of query complexity, personas, and emotions
and to investigate the impact of these factors on
model performance, we design datasets that vary
each of these factors separately.

Dataset T1: HotpotQA (Yang et al., 2018) As-
sociated skill q:Crispness/facts in answers. The
dataset’s status as a public resource and its recog-
nition as a well-known benchmark significantly
enhance its suitability for evaluating our hypoth-
esis and framework. There is a possibility that
GPT-3.5 and Mistral-7B may have utilized it for
training. We use 150 datapoints from HotpotQA
and split the data randomly in 100:50 for training
and validation.

Dataset T,: Associated skill ¥; : Fact-based
persona understanding. We use robotics research
paper (Oliveira et al., 2021) available on the inter-
net. For training and validation set 150 question-
answers were generated using GPT-4.0 using this
document. This dataset may contain bias or short-
comings from GPT-4.0. To mitigate stereotypes
and hallucinations, we used prompt and generated

questions in batches of 20 question-answer pairs to
manually inspect the quality. The data is randomly
split in 100:50 for training and validation.

Dataset T3: Associated skill ¥,: Response to
Emotion-based queries. We use robotics research
paper (Oliveira et al., 2021) available on the inter-
net. For training and validation set 145 question-
answers were generated using GPT-4.0 using this
document. The data is randomly split in 100:45 for
training and validation.

Dataset T4: Associated skill ¥3: Emotion-based
persona understanding. We use robotics research
paper (Oliveira et al., 2021) available on the inter-
net. For training and validation set 150 question-
answers were generated using GPT-4.0 using this
document. The data is randomly split in 100:50 for
training and validation.

The datasets may contain bias or shortcomings
from GPT-4.0. To mitigate stereotypes and halluci-
nations, we used prompt and generated questions
in batches of 20 question-answer pairs to manually
inspect the quality.

3.4 Maetrics and evaluation

Performance metric is evaluated using BLEU,
ROUGE, BLEU-ROUGE, BLEU-similarity scores.
BLEU score: The BLEU score is a widely used
metric (Post, 2018) for evaluating the quality of
text generated by machine translation systems. t is
a discrete metric (Schaeffer et al., 2023) and may
lead to artifacts during optimization process.
ROUGE score: The ROUGE score (Lin, 2004)
is primarily used for evaluating automatic summa-
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Figure 5: Evaluation of T4 dataset for various metrics for optimized and unoptimized RAG based LLM using DSPy.

rization and machine translation. It is a discrete
metric (Schaeffer et al., 2023) and may lead to
artifacts during optimization process.

Similarity: We obtained similarity from Token
Edit Distance (TED)(Schaeffer et al., 2023). It
is a continuous metric and may result in smooth
optimization process.

SIMILARITY =1 —

maz(len(reference),len(candidate)]

The metric combinations for optimization purpose
in this study is defined as:

I, = ABLEU + sROUGE + uSIMILARITY
®)

Here, A, x, pt vary between O to 1.0. Also, A + k +
@ = 1.0. Our hypothesis regarding skills-metric
pairing is in Table 1.

3.4.1 Performance evaluation

We selected combination of discrete and continu-
ous metrics to evaluate the models’ performance.
Based on our hypothesis, following metric from
Table 1 may work better based on the associated
skills of the datasets.

The performance function with and without
DSPy optimization can be defined as:

P(Mk71}70DSPyJFT7e(G)) (6)

Here, e¢(G) denotes contribution of emergent abil-
ities e that can be modeled as a function of the
skills-text bipartite graph model denoted as G. Skill

Dataset-skill Better | Metric strength
metric

Ty -crisp/facts ROUGE | Precision and
brevity

T,-Fact-based BLEU- | Precision and re-

persona ROUGE | call

Ts3-Emotion- BLEU- | Precision and re-

based queries ROUGE | call

T4-Emotion- ROUGE | Recall

based persona

queries

Table 1: Hypothesis: Choice of metric that may work
better for the skills required for datasets.

Proficiency Score (SPS) for validation dataset as-
sociated with skill U;, here [ is the I*" datapoint of
validation set:

SPS(i)OPt<Mk71—}?FT76(G)) =
median(P(My, Tj, Opspy = 1,I'r,e(G))  (7)

SPS(Z)unopt(Mk" j—jj’ F’f‘) =
median(P(My,Tj1,Opspy = 0,I,) (8)

As the model is optimized or scales, proficiency
in both individual skills and skill-tuples improves.
This improvement can be analyzed using random
graph theory. We measure this evolution and obtain
the difference of optimal values of optimized LLM
and unoptimized LLM. The relative improvement



is shown by:

AP;(My, T, 1) =
ma$(SPSopt(Mk7T‘jvrhe(G)))
max(SPSunopt(Mka Tja FW))

-1 0O

4 Experiments

We use Azure cloud platform and NVIDIA T4 GPU
for conducting experiments. It takes 2-9 mins to
execute optimization using DSPy for each dataset
and metric setting. We use Qdrant for vectorDB
creation in RAG architecture. We used DSPy’s
“Chain of Thought” module and “BootstrapFew-
Shot” teleprompter. Two LLM models are used for
evaluation: Mistral-7B is used through Ollama with
following settings (max_token = 350, temperature
= (0.1, frequency_penalty = 1.17, and top_k = 40),
We used GPT-3.5 through Azure Openai SDK. We
used median scores for all metrics on validation set
in results. Following are details of results obtained
for skill based datasets. Summary of results using
Equation 9 is shown in Table 2.

4.1 Dataset T1 and results

Dataset T1 is a public dataset HotpotQA and results
are shown in Figure 1. We observe that crispness
is a difficult skill to learn for Mistral-7B model
using Similarity and BLEU scores. GPT-3.5 sees
a large performance improvement after optimiza-
tion for the same metric. In this case, scaling
law takes precedence. For ROUGE and BLEU
score combinations, we clearly observe sharp vari-
ations for different metric for Mistral-7B and GPT-
3.5. Mistral-7B shows significant improvement
post-optimization (AP = 2.01), confirming that
skill-based datasets can enhance skill proficiency
in smaller models. GPT-3.5 shows even greater
improvement (AP = 5.67), validating our hypoth-
esis for both smaller and larger model.

4.2 Dataset T2 and results

GPT-3.5 optimization is smooth w.r.t. metric varia-
tions for discrete and continuous metrics as shown
in Figure 3. ROUGE metric leads to better perfor-
mance in GPT-3.5 for T2. Mistral-7B optimized
system performs better with BLEU-ROUGE metric
with sharp variations. Both models improve, but
Mistral-7B’s improvement (AP = 0.419) is more
pronounced compared to GPT-3.5 (AP = 0.236).

4.3 Dataset T3 and results

GPT-3.5 optimization is smooth w.r.t. metric vari-
ations for discrete and continuous metrics. Figure
4 shows that ROUGE metric leads to better perfor-
mance in GPT-3.5 for T3. Mistral-7B optimized
system performs narrowly better with ROUGE
metric. We observe smooth variations in perfor-
mance with ROUGE-BLEU metric variations un-
like that for Similarity-BLEU. GPT-3.5 shows a
more significant improvement post-optimization
(AP = 0.481) than Mistral-7B (AP = 0.029),
indicating that larger models are more proficient in
emotion-based tasks post-optimization.

4.4 Dataset T4 and results

Optimized GPT-3.5 behaves extremely well irre-
spective of metric variations as shown in Figure
5. Mistral-7B is performing better with ROUGE
and there is smooth variation with metric variations.
GPT-3.5 shows substantial improvement (AP =
0.582) compared to Mistral-7B (AP = 0.126),
supporting the hypothesis that larger models benefit
more from optimization in complex tasks involving
emotions and persona.

Dataset Model maxz(SPSunopt) maxz(SPSopt) AP
Mistral 7B 0.199 0.60 2.01

Ty
GPT 3.5 0.15 1.0 5.67
Mistral 7B 0.422 0.599 0419

T3
GPT 3.5 0.541 0.669 0.236
Mistral 7B 0.440 0.453 0.029

T3
GPT 3.5 0.424 0.628 0.481
Mistral 7B 0.507 0.571 0.126

Ty
GPT 3.5 0.632 1.0 0.582

Table 2: Summary of results for all datasets-skills,
metrics, models used in this study.

5 Discussions

Skill competence and emergence: The results in-
dicate that the type of skill associated with each
dataset does indeed impact performance differently
for optimized versus unoptimized models. The re-
sults indicate that large-scale models like GPT-3.5
benefit significantly from scaling laws, showing
smooth and continuous improvements with opti-
mization across various metrics. However, results
from smaller models were more variable, suggest-
ing that different optimization strategies might be
required.



Metric sensitivity and sharp variations: The
sharp variations in performance metrics like BLEU-
ROUGE for both models underscore the impor-
tance of choosing appropriate evaluation metrics
for dataset like T1 associated with crisp answer-
ing skills. Emergent abilities can be influenced by
the choice of nonlinear or discontinuous metrics,
leading to apparent sharp transitions specially for
smaller LLM models. The study suggests that emer-
gent abilities may be a product of metric choice
rather than solely due to fundamental changes in
model behavior based on type of skill learning.

Optimization strategies: DSPy optimization
generally enhances performance across datasets,
particularly in larger models like GPT-3.5, which
shows greater AP values. This supports the hy-
pothesis that DSPy optimization benefits larger
models more significantly. This highlights the
role of such optimization techniques in harnessing
emergent abilities of LLMs effectively. For smaller
models, combining different metrics (e.g., ROUGE-
BLEU) can provide performance improvements,
suggesting a more nuanced approach to optimiza-
tion.

Emergent abilities and knowledge manage-
ment: Emergent abilities of LLMs can be useful for
knowledge management systems, particularly in
tasks requiring complex skills like emotion-based
or fact-based persona queries. A skill-based frame-
work that systematically optimizes and evaluates
these abilities can help in designing more robust,
adaptable, and low-cost LLM powered systems. By
focusing on specific skills, metrics, and models, we
can harness the full potential of emergent abilities
in LLMs.

6 Conclusion

The skill-based framework and our findings on met-
ric sensitivity provide valuable insights into the
emergent abilities of LLMs. By adopting a struc-
tured approach to define skills and metrics, we aim
to achieve a deeper understanding and more ef-
fective utilization of these powerful models. This
research contributes to the ongoing discussions of
LLM emergent capabilities, offering practical im-
plications of skill based framework. The impli-
cations of this research extend to designing more
robust and adaptable LLM-driven systems, particu-
larly for complex knowledge management tasks.

Limitations

This research, while pioneering in its approach to
harnessing the emergent abilities of LLMs using a
skill-based framework, has certain limitations that
warrant consideration for future studies. Firstly,
the models tested, including GPT-3.5 and Mistral
7B, are primarily optimized for English, the gen-
eralizability of the framework to different LLM
models, application domains, and multilingual con-
texts needs to be further explored and evaluated.
Additionally, while our framework aims to reduce
operational costs by improving model efficiency,
the actual cost implications in practical, real-world
deployments have not been quantified. Future work
should aim to provide a more detailed cost-benefit
analysis to better understand the economic impact
of implementing such a framework in commercial
or large-scale applications. These limitations high-
light the need for ongoing research to refine and ex-
pand the applicability of our skill-based framework
for optimizing LL.Ms across various dimensions.

Ethics Statement

The primary objective of this study is to explore
and harness emergent abilities of LLMs for low-
cost, scalable LLM powered systems for knowl-
edge management. In our process of synthetic data
generation from GPT-4, we use prompts to avoid
stereotypes.
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