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ABSTRACT

Recently, domain-specific languages (DSLs) for molecular generation have shown
advantages in data-efficiency and interpretability. However, constructing such
a DSL traditionally requires human expertise, whereas algorithmic construction
techniques have yet to demonstrate a comparable level of quality. MMFMs have
also demonstrated zero-shot capabilities across vision and text domains, but they
have yet to transfer these capabilities to the graph modality. We harness their ca-
pabilities for molecular DSL induction through an unconventional solution. We
render the molecule as an image, prompt MMFM to describe it as text, then use
prompt learning techniques to encourage the MMFM to be consistent across both
modalities. We ease the MMFM’s task considerably by casting the DSL con-
struction into an equivalent problem of constructing a tree decomposition for the
molecular graph. The MMFM only needs to do a series of choice selections,
replacing traditional heuristics within the tree decomposition algorithm. This en-
ables the smooth integration of its prior knowledge without overstepping the limits
of the soundness of the algorithm. For each run, we collect the MMFM’s reason-
ing for each selection into an overall story, then have agents serve as the judge
for its correctness and persuasiveness. Our method, Foundation Molecular Gram-
mar (FMG), demonstrates significant advantages in synthesizability, diversity, and
data-efficiency on challenging molecule generation benchmarks. Moreover, its
compelling chemical interpretability offers built-in transparency over the molecu-
lar discovery workflow, paving the way for additional oversight and feedback.

1 INTRODUCTION

Domain-specific languages are the foundation to design across many scientific and engineering do-
mains. Across many applications, DSLs are meticulously crafted by human experts who have to
consider a multitude of factors, from domain-specific abstractions, practical constraints, to user con-
siderations. Being able to construct a new, high-quality DSL on-demand for specific domains like
polymers or materials science, where resources are scarce, could significantly accelerate design it-
eration and discovery processes. The design of new functional drugs and materials is poised to have
a significant impact on our future and has gained a lot of attention within the machine learning com-
munity. However, some class-specific domains have as few as 10-20 examples, and realistically it’s
hard to expect domain experts to collect more than a few hundred examples at a time. There has been
a large number of molecular generative models proposed in recent years. While they can achieve
impressive performance when given sufficient resources, the core assumption of these approaches
is access to a large amount of training data needed to first reproduce the training distribution be-
fore learning to generate new ones. This assumption is not realistic for class-specific domains, and
they struggle in data-efficient settings requiring domain expertise. Domain experts also have an
easier time trusting models which are interpretable, and may be more inclined to experimentally
validate the outputs if they can explain the generation procedure. Traditionally, DSLs check these
boxes by consolidating chemical knowledge into a form which can be scrutinized and edited while
also serving as a generative model. However, writing these DSLs requires a lot of time and do-
main expertise. As a result, they have been given up in favor of data-driven approaches with the
rise of larger labeled molecular datasets. Nonetheless, the appeal of having a compact, composable
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and interpretable DSL over a black-box generative model remains the same. In a surprising turn
of events, modern FMs have demonstrated impressive generalist reasoning capabilities in zero-shot
settings, particularly with chain-of-thought and related techniques (Brown, 2020; Wei et al., 2021;
2022; Wang et al., 2022). FMs have also been studied for their potential to assist in the traditional
design workflow (Makatura et al., 2023). This paradigm shift is open-ended and seeks to exploit the
inherent knowledge and common sense reasoning abilities for a variety of tasks, including translat-
ing text to design specifications, creating design variations, and searching for designs predicated on
performance. However, the aforementioned applications assume access to an existing DSL, while
the task of crafting a high-quality DSL is rarely explored at all. Our work serves as the missing link.
We explore the potential of FMs to craft this DSL without human intervention. We believe crafting
a DSL can be itself a beneficiary of the vast compilation of knowledge used to train FMs, and we
integrate MMFMs as a module within a sound framework for molecule DSL induction.

2 RELATED WORKS

2.1 LEARNING MOLECULAR GRAMMARS

Since the adoption of digital representations like SMILES, a number of grammar-based generative
models have been created (Dai et al., 2018; Nigam et al., 2021; Krenn et al., 2020; Kajino, 2019;
Guo et al., 2022a). In all cases, the grammar is nearly always written manually or created algorith-
mically, without considering the chemical validity and interpretability. (Guo et al., 2022b) tries to
optimize the graph DSL construction process indirectly by parameterizing the hyperedge potential
function, which controls which edges are sampled for contraction, thereby indirectly affecting the
construction of the DSL. At each iteration, the agent is optimized to reinforce metrics like diversity
and synthesizability evaluated on a batch of generated samples. However, this approach defeats the
point of DSL crafting, which should also focus on the DSL’s intrinsic qualities rather than only fitting
to task-specific metrics, not to mention reinforcing evaluation metrics is essentially “validating on
the test set”. Another concern is that the sampling agent’s predictions are also not explainable, and
the chemical interpretability of the method remains unclear. (Sun et al., 2024) instead prioritizes
quality and interpretability by advocating to integrate expert annotations within a graph grammar
learning pipeline, but its quality is contingent on experts, limiting its generalizability. Our approach,
by contrast, requires no human involvement and optimizes for the intrinsic quality of the DSL as
judged by non-expert LLM agents. We use an innovative technique of saving the chain-of-thought
reasoning steps for creating “design narratives”, which are both interpretable artifacts of the DSL
induction and surrogates for the quality of the DSL.

2.2 LARGE LANGUAGE MODELS AND DSLS

The interplay between LLMs and DSLs is a closely related research topic. Most problems in this
area assume a given DSL and aim to translate a specification (natural language, example, etc.) into
a program of the DSL. (Wang et al., 2024) finds that prompting the LLM to perform chain-of-
thought by generating a specialized DSL as an intermediate step is helpful for in-context learning.
However, the specialized DSL is still a subset of a given DSL, and the intermediate steps within the
examples are derived by first parsing example demonstrations according to the given DSL. We adopt
an existing technique which observes crafting a specialized graph DSL reduces to the problem of
decomposing the graph. Although our goal is to output a DSL, we don’t directly decode a DSL, since
the DSL of the DSL itself can be highly constrained. We bypass the issue of decoding and instead
leverage the zero-shot knowledge of MMFMs to assist in a fundamentally sound DSL construction
procedure, where the MMFM only has to select amongst a set of operations at each step.

2.3 FOUNDATION MODELS FOR MOLECULAR GENERATION

Foundation Models have been trained across various domains, including language, speech, and vi-
sion. Active research is exploring their potential for molecular design (Liu et al., 2023b; Guo et al.,
2023; M. Bran et al., 2024). Molecules, represented as graph data, pose challenges for existing
foundation models trained on text and images. To address this, significant efforts focus on con-
verting graph data into tokens understandable by these models (Liu et al., 2023b; Guo et al., 2023;
M. Bran et al., 2024), often using notations like SMILES (Weininger, 1988). However, string-based
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notations like SMILES or SELFIES are mainly for representation purposes and can lead to issues
in the context of generation, such as one molecule having multiple SMILES representations. This
may hinder LLMs’ understanding as they lack sufficient pre-training on these notations compared
to SMILES, as shown in the recent study (Guo et al., 2023). Another research avenue focuses
on developing domain-specific foundation models for molecular generation (Liu et al., 2023a; Su
et al., 2022; Liu et al., 2023c). These models use graph neural networks (GNNs) for molecules and
million-parameter language models for text, which are less powerful than LLMs. Besides, aligning
these LMs and GNNs requires extensive training resources. Aware of these challenges, our work
explores an alternative route, by rendering molecules as images alongside self-generated textual de-
scriptions, implicitly aligning the two modalities at inference time. This comes at a ripe opportunity
when cheminformatics APIs like RDKit are becoming prevalent enough that MMFMs are likely
to have seen sufficient examples of the API during pretraining. Our Appendix case studies show
MMFMs like GPT-4o can identify and reason about substructures present in rendered images of a
molecule with near perfect accuracy, as judged by a real expert.

3 METHOD

Triangulate
Clique Graph

Merge Clique
Nodes

Spanning Tree
Edge Selection

Root Motif
Selection

Analyze an acrylate's substructures....
Pick the most important motif...

Explain your reasoning.

The pair that should be combined
is 0 and 1. Combining these two

motifs will form the acrylate group,
incorporating the essential double

bond and ester features.

     Motif 0 highlights the ester
functional group [-C(=O)O-], which

directly fits into the essential functional
groups of an acrylate. The ester group
contributes significantly to the reactivity

and polymerization behavior of
acrylates.... Therefore, Motif 0 is the

most pivotal....

 Interaction 2 involves the interaction
between two branched alkyl chains with
central carbons attached to three other

carbon atoms. Branched alkyl chains exhibit
minor electronic effects.... Therefore,

Interaction 2 is deemed least important.

Chain of Thought Narrative

Extract Base
Cliques

I will highlight for you some of the distinctive
fragments of an acrylate.... Your task is to construct

the primary functional groups of the molecule.
Output a single pair of numbers if you think those
two fragments should be combined, and a brief

explanation why.

Analyze pairwise motif interactions
within an acrylate.... Tell me which
interaction is MOST important and

which is LEAST important.... Explain
your reasoning.

Fig. 3

Figure 1: Main modules of FMG algorithm (left) we initialize base cliques using bonds and minimal
rings, (left-middle) we triangulate the clique graph to guarantee existence of a clique tree, (middle)
we prompt MMFM to meaningfully merge pairs of motifs, (middle-right) we eliminate cycles in the
clique graph by prompting MMFM to identify the least important interactions, (right) we prompt
MMFM to select the root motif, completing the tree.

FMG combines the sound framework of the clique tree decomposition algorithm with the adaptabil-
ity of MMFM decision-making modules. FMG formulates DSL induction as constructing a clique
tree, and serializes the construction into intuitive selection steps for the MMFM module to follow.
In Fig. 1, we see a concrete example for an Acrylates. The algorithm first initializes most basic units
– the base cliques – then proceeds to hand over control to the MMFM’s selection modules. The
MMFM can merge the base cliques to form chemically meaningful substructures (3.3.1 and 3.3.2),
remove connections between cliques in the process of spanning tree construction (3.3.3), and finally
selecting a root motif to anchor the parse tree (3.3.4).
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...

Domain

Task Prompts
Select the most important motif...
Choose a pair of motifs...
Pick a motif-motif interaction...

Description Prompts
Describe these motifs...
Describe this motif-motif interaction...

Utility Prompts
Narrativize this chain of events...
Extract the answer from this response...
Summarize this reasoning...

0

I chose Motif 0 because 
  of its reactivity and poly-
merization in acrylates.

Motif Descr.
0: an ester
functional group
...

Motif 0 highlights the ester
functional group [-C(=O)O-],

which directly fits into the
essential functional groups of an

acrylate. The ester group
contributes significantly to the
reactivity and polymerization

behavior of acrylates...

 Algorithm 

 Prompt 

 Design Story 1
To design this acrylates molecule, we
first choose Motif 0 because ...
Next we combined Motif 0 with Motif 1
because ...

.....
RHS

1 O 1 CC
N

LHS

N

1

.....

Production Rules

 Design Story 2
To design this acrylates molecule, we
first choose Motif 1 because ...
Next we combined Motif 1 with Motif 2
because ...

Which story is better?

Parse Tree

DSL

...

Generated Samples

Figure 2: Our workflow takes as input a class-specific dataset and a collection of prompts (left);
executes the tree decomposition algorithm with MMFM as a decision-making module (left middle)
; converts the parse tree into production rule set (left-right), resolving discrepancy across runs with
a non-expert LLM judge; infers a DSL which can generate new class-specific samples (right).

3.1 PRELIMINARIES

Molecular Clique Graph. A base molecular hypergraph is a pair H = (VH , EH),
where VH (nodes) is a set of bonds, and EH (hyperedges) is a set of non-empty sub-
sets of VH . We follow prior work Kajino (2019); Guo et al. (2022b) and define EH :=
{{u, v} if u, v share an atom }

⋃
{{ui, 1 ≤ i ≤ k}|{ui} is a minimal ring }. Given H , we obtain

GH , the graph of H , where two nodes u, v sharing a common hyperedge in EH are connected. If
we can construct a GC = (VC , EC) by extracting the maximal cliques (VC) from GH , and setting
EC to be the clique pairs sharing a common node, we call GC the molecular clique graph and denote
this operation as CLIQUE(GH) = GC . GC forms the building blocks for further operation. For
each c ∈ VC , we use Vc to denote the clique nodes of GH within the clique c.

Clique Tree Decomposition. The clique tree, also known as junction tree, of GH is a tree T , each
of whose nodes η is labeled with a Vη ⊆ V and Eη ⊆ E, such that the following properties hold: 1)
For each v in GH , there is at least a vertex η ∈ T such that v ∈ Vη . 2) For each hyperedge ei ∈ E,
there is exactly one node η ∈ T such that e ∈ Eη and u ∈ ei → u ∈ Vη . 3) For each v ∈ GH ,
the set {η ∈ |T | v ∈ Vη} is connected. The last property is the running intersection property
and is relevant during the clique tree construction phase, as it needs to be checked after each step.
The Junction Tree Algorithm achieves this by finding a subset E′

C ⊆ EC , such that (VC , E
′
C) is

a spanning tree of GC . There is a theoretical guarantee that if GH is triangulated, there is always
a valid tree decomposition. Choosing the best spanning edges E′

C is somewhat of an art. There is
the “optimal” clique tree, the one with minimal width := max(|Vη − 1|), but finding it is NP-hard.
Instead, common heuristics like the maximum cardinality heuristic are used to find one close to
minimal width.

Hyperedge Replacement Grammar. A hypergraph is a pair H = (VH , EH) where VH is a set of
nodes, and EH is a set of non-empty subsets of VH , called hyperedges. A Hyperedge Replacement
Grammar (HRG) is a tuple (N,T, S, P ) where: N are a set of non-terminal hyperedge labels in N
T is a set of terminal hyperedge labels S ∈ N is the starting non-terminal hyperedge with label 0
P is a set of production rules, each consisting of A ∈ N (LHS) and R, a hypergraph with labeled
hyperedges and —A— external nodes (RHS).

We adopt an automatic way to convert a clique tree into a HRG by interpreting the clique tree as a
parse tree Aguinaga et al. (2018), where each intermediate node Vη becomes the RHS of a production
rule and its immediate parent and/or children are used to compute its non-terminal hyperedges and
external nodes, as depicted in Fig. 3.
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Figure 3: Conversion from clique tree to HRG production rules, an example rule application is
shown for reconstructing the molecule parse tree

3.2 MMFM MODULES

For inducing a desirable DSL for molecular discovery, the gold standard is expert judgment. The
essence of our approach is to modularize these exercises of judgment so an MMFM only needs
to select amongst a finite set of choices in each module. These choices are captured by only two
fundamental selections, which we now describe.

3.2.1 FUNDAMENTAL SELECTIONS

Single Selection. Given a set S ⊆ V
(t)
C , the MMFM is asked to select s ∈ S or refrain from

selection.

Pair Selection. Given a subset of pairs, P ⊆ V
(t)
C × V

(t)
C , the MMFM is asked to select p ∈ P or

refrain from selection.

When the context is clear, we denote the raw responses F1(S
(t)) and F2(P

(t)). We use answer
extraction utility prompts to obtain the answers. These selections map to triangulation, merging,
cycle removal and root selection operations on G

(t)
C . We can execute the full tree decomposition of a

molecular clique graph, G(0)
C ⇒ G

(T )
C , using only these operations, driven by MMFM’s selections.

We will describe each operation G
(t)
C → G

(t+1)
C , in detail, in the context of constructing the clique

tree in Section 3.3.

3.2.2 PROMPTING SETUP

For each selection, we prompt the MMFM with rdkit rendered images and dynamical textual de-
scriptions related to the current state of the decomposition (GC), in addition to the static prompt,
which includes some background on the domain and detailed task instructions.

Rendering Images. For single selection (root motif selection), we use the Python package rdkit for
rendering the molecule and highlighting the bonds (Vc) of a single substructure (c ∈ S(t) ⊆ V

(t)
C )

into a cell. We use matplotlib.pyplot to enact a grid cell layout so all choices are shown together.
For double selection where the number of choices are small (edge selection), we highlight each pair
(c1, c2 ∈ P (t) ⊆ V

(t)
C × V

(t)
C ) using different colors in the same cell. For double selection where

the number of choices are large (merging cliques), we render each clique in a separate cell, just like
with single selection, but the task instruction is to select a pair of cliques.
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Dynamic Textual Descriptions. Motivated by the success of prompt-based learning techniques, we
assist GPT’s reasoning during selection tasks by plugging in isolated descriptions of each element of
S or P into the task prompt, enabling multi-modal alignment. These are obtained by rendering each
substructure (or pair of substructures) in isolation and asking GPT to describe those. An example
of an isolated description is “Motif 5. Benzene - A six-membered aromatic ring entirely consisting
of carbon atoms”, whereas an in-context description is “Motif 5. A six-membered ring, similar to
benzene, but includes distinct locations for double bonds from Motif 1.”

Rephrasing Prompts. We then use format conversion prompts to convert GPT’s sometimes elabo-
rative answers into simple phrases that can be grammatically inserted into subsequent task prompts
(example: “Motif 9. This motif is another carbocyclic structure, specifically a bicyclic system with
carbon double bonds. . . ”→ “a bicyclic carbocyclic structure with carbon double bonds”).

Task Prompts. These are the primary prompts for the workflow which instructs GPT to do the selec-
tion. We substitute rephrased dynamic descriptions of individual cliques (motifs) where appropriate
into these templates and specifically instruct GPT to explain its reasoning. Example walkthroughs
featuring all the task prompts are given in the Appendix.

Answer Extraction Prompts. We use low-level utility prompts for post-processing an answer
prompt into a fixed format for regex extraction (example: “After extensive deliberation, the in-
teraction between Motif 5 and Motif 7 seems weakest of the ones shown”→ “5,7”)

Thought Collection Prompts. We collect GPT’s responses into summarized reasons for a particular
selection, as they will be composed into a narrative (more in Section 3.4). For a particular selection
at time t, let COT (Fj(t)) be the prompt chaining composition to return a summarized reasoning
over the selection. We denote the output as COT (t).

3.3 MMFM GUIDED TREE DECOMPOSITION CONSTRUCTION OF CLIQUE GRAPH

We initialize G(0)
H to the graph of the base molecular hypergraph. We extract the maximal cliques of

G
(0)
H , thereby constructing G

(0)
C ← CLIQUE(G

(0)
H ).

3.3.1 TRIANGULATE CLIQUE GRAPH

We now triangulate G(0)
H to ensure the soundness of the junction tree algorithm. We adopt a chordal-

ity testing algorithm (Tarjan & Yannakakis, 1984) which iteratively detects pairs (u, v) ∈ VH × VH

that would form chordless cycles of length > 3 if left unaddressed. At each iteration t that the
algorithm returns a pair (u, v) which must be connected via a chord, we set P (t) → {(c1, c2) |
c1 ∈ Vu ∩ c2 ∈ Vv}. Let c∗1, c∗2 ← F2(P

(t)). We then merge c∗1, c
∗
2 by adding all edges,

E
(t+1)
H ← E

(t)
H ∪Vc∗1 ×Vc∗2 . We update G(t+1)

C ← CLIQUE(G(t+1)
H ). Let G(T1)

C denote the clique
graph once GH is triangulated. We proceed to the next phase.

3.3.2 MERGE CLIQUE NODES

We now would like to give the MMFM the option to further merge cliques that form more cohesive
motifs, e.g. functional groups, in the context of the base molecule. Starting with t = T1, we set
P (t) ← E

(t)
C . If F2(P

(t)) does not return, we terminate and proceed to the next phase. Otherwise,
at each iteration, we let c∗1, c∗2 ← F2(P

(t)). We merge c∗1, c∗2 following the same operation steps
as Step 2. Let G(T2)

C denote the clique graph upon termination of this phase.

3.3.3 SPANNING TREE EDGE ELIMINATION

We now extract a spanning tree over E
(T2)
C using a top-down approach of detecting and elimi-

nating cycles of G
(T2)
C . We terminate and proceed to the next phase once there are no more

cycles. Otherwise at each step t, let c1, c2, . . . , ck, c1 be one such cycle. We set P (t) ←
{(ci, c(i+1)%k) | removing ci, ci+1 will not violate running intersection , i = 1, 2, . . . , k}. We then
update E

(t+1)
C ← E

(t)
C \ {F2(P

(t))}. Let G(T3)
C denote the clique tree once all cycles have been

removed.
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3.3.4 ROOT MOTIF SELECTION

Lastly, we root G(T3)
C at F1(V

(T3)
C ). The final clique tree is G

(T )
C (T = T3 + 1). We obtain the

multi-set of production rules using this decomposition, P(G(T )
C ).

3.4 MMFM DRIVEN FMG LEARNING

Our MMFM-guided algorithm is inherently stochastic, as repeated runs may produce different de-
compositions. In the absence of human experts, it’s difficult to judge how “good” the rules produced
by each decomposition are. (Guo et al., 2022b) opts for learning the agent parameters via reinforcing
distribution metrics of generated samples from the DSL (e.g. diversity, retrosynthesis score), but this
way of overfitting to a task neglects the intrinsic qualities of the DSL. The key challenge is that given
only the DSL, it’s difficult to come up with the right metrics for its qualities. Our approach’s built-in
interpretability offers a new avenue to addressing this challenge. We repurpose the natural language
artifacts (e.g. chain of thought, explanations) logged during our algorithm’s execution as a proxy for
the DSL’s quality. With this point in mind, we adopt a simple yet effective learning procedure to opti-
mize the FMG. We first perform K passes (i.e. independent runs of the algorithm) over the molecule
H , producing decompositions [GCk

, k = 0, . . . ,K−1]. Denoting [COT
(t)
k , t = 0, . . . , T−1] as the

chain of thoughts for the k’th pass over molecule H, we combine it with knowledge of the timestep
delimiters T1, T2, T3 to compose a step-by-step story of how the molecule was decomposed. The
resulting story becomes a proxy certification for the algorithm’s correctness, and is further pitted
against stories of discrepant decompositions for comparison by a non-expert LLM. Recent work
(Khan et al., 2024) shows weaker LLMs can enhance stronger models via judging for persuasive-
ness while improving strong LLM’s persuasiveness can even help weaker LLMs better identify the
truth. Our FMG learning is optimizing for design stories that are persuasive to the non-expert, which
can synergistically improve the judging quality. To optimize for persuasive design stories, we opt
for a debate tournament. We pit discrepant runs (A and B) against each other in a debate, and ask the
vanilla LLM to decide which story wins (A or B) on the basis of validity, soundness, and perceived
depth of understanding. We adopt a Swiss tournament format, and use the logits of the first token
in the response to assign outcomes of the matchup, similar to how (Khan et al., 2024) designed the
preference model. We consolidate all outcomes using the Bradley-Terry Model (Bradley & Terry,
1952), a statistical model used for paired comparisons, where each debater’s ability is inferred from
the pairwise outcomes. We rank and order the participants [0, 1, . . . ,K − 1]

permute→ [r1, r2, . . . , rK ]
according to the outcomes of the tournament and define the “Top k” FMG as the HRG inferred by
the production rule multi-set

⋃
r∈{r1,...,rk} P (GCr

), where
⋃

is the multiset union.

3.5 FMG INFERENCE AND STOCHASTIC SAMPLING FOR MOLECULAR GENERATION

So far, we have only considered the contribution to the HRG by decomposing a single molecule,
H. In the domain-specific setting, we are given a small dataset of class-specific molecules (N ¡500),
which we convert into our base molecular hypergraphs: D := {H(i) | 1 ≤ i ≤ N}. The DSL
learning algorithm should adapt toD as a distribution, exposing parameters for inference. Similar to
Aguinaga et al. (2018), we maintain a count for the number of times each rule is applied, aggregated
across the top k runs for each H(i). During generation, the algorithm finds all applicable rules, and
chooses one with probability proportional to its count. The derivation procedure for HRGs follows
its common definition (Drewes et al., 1997). We adopt (Kajino, 2019)’s technique to ensure valid
conversion from hypergraph to molecule.

4 RESULTS

We evaluate our method against other grammar-based and VAE methods, focusing on three main at-
tributes of the generative model: Synthesizability, Specificity and Coverage. We evaluate on three
small monomer datasets used by (Guo et al., 2022b) curated from literature, as well as two real-
world datasets from the photovoltaic and toxicology domains used by (Sun et al., 2024). We use
common unconditional generation metrics adopted by molecular generative models (Polykovskiy
et al., 2020): Valid/Unique/Novelty (percentage of valid/unique/novel molecules) Diversity (aver-
age pairwise Tanimoto distance (Rogers & Hahn, 2010)) Retro* Score (success rate of Retro* model

7
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Table 1: Results on Small Datasets Isocyanates (11), Acrylates (32) and Chain Extenders (11)
Method Unique Div. RS Memb.

Train Data 100% 100% 100% 0.61 0.67 0.80 100% 100% 100% 100% 100% 100%

JT-VAE 5.8% 0.5% 2.3% 0.72 0.29 0.62 5.5% 4.9% 2.2% 66.5% 48.64% 79.6%
Hier-VAE 99.6% 99.7% 99.8% 0.83 0.83 0.83 1.85% 3.04% 2.69% 0.05% 0.82% 43.6%
MHG 75.9% 86.8% 87.4% 0.88 0.89 0.90 2.97% 36.8% 50.6% 12.1% 0.93% 41.2%
STONED 100% 99.8% 99.8% 0.85 0.84 0.93 5.63% 11.2% 6.78% 79.8% 47.9% 61.0%
DEG 100% 100% 100% 0.86 0.86 0.93 27.2% 43.9% 67.5% 96.3% 69.6% 93.5%
FMG 100% 100% 100% 0.73 0.46 0.85 61.7% 93.0% 99.1% 99.6% 100% 99.8%

Table 2: Results on Medium Datasets HOPV (316) and PTC (348)
Method Unique Novelty Div. RS Memb.

Train Data 100% 100% N/A N/A 0.86 0.94 51% 87% 100% 30%

JT-VAE 11% 8% 100% 80% 0.77 0.83 99% 96% 84% 27%
Hier-VAE 43% 20% 96% 85% 0.87 0.91 79% 92% 76% 25%
Hier-VAE (expert) 29% 28% 92% 75% 0.86 0.93 84% 90% 82% 17%

DEG 98% 88% 99% 87% 0.93 0.95 19% 38% 46% 27%
RW (expert) 100% 100% 100% 100% 0.89 0.93 58% 60% 71% 22%
FMG 100% 100% 100% 92% 0.93 0.93 70% 78% 38% 46%

(Chen et al., 2020) Membership (percentage of molecules belonging to the dataset’s monomer
class)1.

We first observe in Tables 1 and that VAE methods struggle to generate unique molecules, suggesting
they collapse in this extreme setting, consistent with findings by (Guo et al., 2022b; Sun et al., 2024).
Hier-VAE fares better, as it incorporates inductive bias of larger substructures, but this comes at the
expense of RS and Memb., suggesting an undesirable shift in distribution. The other two grammar-
based methods do better on 3), but struggle across dimensions 2) and 3). Despite optimizing for RS
and Div., DEG still falls short of FMG. The synthesizability scores are even more impressive know-
ing that we only prompted GPT to “highlight the primary functional groups of the molecule”. FMG
also achieves nearly 100% class membership in 1, suggesting FMG is sufficiently knowledgeable
about these three chemical classes that it implicitly captures the constraint during its selections. This
suggests domain-general FMs are already aligned with chemistry-specific desiderata like synthesiz-
ability and specificity, promoting the intrinsic quality of the DSL. However, FMG still leaves some
to be desired across 3). Our investigation reveals the learning procedure is inclined towards forming
cliques representing more complex substructures which are characteristic of the chemical class or
known to be synthetically accessible. The applicability of a rule decreases as the RHS becomes
more complex, and so the DSL’s coverage decreases. We suspect the low diversity to be due to this
phenomenon occurring in the extreme setting of having ≈ 30 or less samples, as that creates fewer
rules which are less applicable. We see, however, the diversity is far more reasonable for PTC and
HOPV in Table 4, as the size of the dataset becomes larger. There, we still see VAE methods struggle
similarly. The low uniqueness and novelty of the VAE baselines invalidates its seemingly high RS
score, achieved by sampling smaller molecules. By contrast, FMG is one of only two methods who
achieve 100% uniqueness (the other being RW with access to expert annotations) while tying for
first and second on diversity for HOPV and PTC, respectively. Amongst grammar-based methods,
FMG surpasses even RW on RS (by 12% and 18%), suggesting FMG is more amenable to synthesis
considerations even for larger, more hand-engineered molecules. Though membership is not strictly
defined for these two domains, FMG appears to do exceptionally well for PTC (halides) but poor
for HOPV (thiophenes), which is surprising considering. As we see later in 5.2, k imposes a sharp
tradeoff between Memb. and {Div.,RS}, though FMG is capable of achieving exceptional numbers
for either/or.

1We generate 10000 for small datasets and 1000 for HOPV/PTC, use the same Retro parameters and adopt
the same membership motifs as (Guo et al., 2022b; Sun et al., 2024).
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5 ABLATIONS

5.1 HEURISTIC VS MMFM MODULES

Table 3: We ablate each MMFM module separately by replacing with a heuristic.
Method Novelty Div. RS Memb.

FMG Avg 99.96+-0.01 99.86 99.94+-0.00 0.79+-0.01 0.83+-0.00 0.81+-0.02 44.3+-3.4 87.4+-1.5 91.9+-3.8 60.14+-13.63 35.48+-4.02 28.30+-13.25
FMG Union 99.96 99.87 99.94 0.81 0.83 0.84 78.7 97.2 98.8 64.42 37.88 22.07
FMG (-merge) Avg 99.95+-0.00 99.88+-0.00 99.94+-0.00 0.74+-0.01 0.83+-0.00 0.85+-0.00 32.6+-5.7 91.0+-2.0 97.4+-0.8 95.75+-4.16 16.61+-0.78 15.48+-1.11
FMG (-merge) Union 99.95 99.88 99.94 0.76 0.83 0.85 39.7 90.3 96.4 93.74 16.40 14.44
FMG (-edge) Avg 99.96 99.87 99.95 0.76 0.82 0.77 57.9 93.5 99.9 45.81 37.44 38.56
FMG (-edge) Union 99.95 99.87 99.95 0.81 0.83 0.84 66.8 92.7 98.4 58.57 33.83 16.23
FMG (-root) Avg 99.96+-0.01 99.88+-0.00 99.94+-0.00 0.79+-0.03 0.85+-0.00 0.83+-0.02 49.1+-7.0 89.5+-2.6 91.9+-10.9 52.17+-12.13 22.90+-2.53 14.23+-6.39
FMG (-root) Union 99.97 99.86 99.94 0.82 0.85 0.86 54.9 87.0 96.2 47.01 22.18 14.84

We ablate each MMFM-assisted module to investigate how crucial each module is for bringing out
the advantages of FMG. We ablate the merge module by directly passing G

(T1)
C to Step 3.3.3. We

ablate the spanning tree module by adopting the common heuristic of the maximal spanning tree,
where edge weights are assigned by cardinality of the intersection. We ablate the root module by
picking a root clique at random. Since ablating an LLM module also breaks the overall design story,
we only use the baseline “1-k” FMG (FMG Union, which combines all rules across K seeds). We
set K = 5 and also report the average performance across 5 different runs. In Table 3, we see that
removing any LLM component has negative implications for the results, albeit in different ways
and differently for different datasets. When removing the merge step, the class-defining motifs for
acrylates and chain extenders can no longer be formed during the decomposition, meaning they are
less likely to be within the same clique and therefore appear in its entirety in the RHS of any rule.
There is an exception for isocyanates, whose defining motif (N=C=O) has only 2 bonds and must be
already part of a clique. For isocyanates, however, RS score drops significantly. It’s known an amine
(R-NH2) has to react with the phosgene (COCl2) to produce the isocyanate, so without the MMFM’s
knowledge, the synthetically accessible intermediate may not be formed, resulting in rules which
are less amenable to synthetic considerations. When ablating the MMFM guided spanning tree
construction, we see milder negative implications. Diversity, RS, and membership are all slightly
worse, but there are no sharp drop offs. The maximal spanning tree heuristic is well-motivated
from a theoretical point of view (Tarjan & Yannakakis, 1984), but its rule-based selection is less
adaptable to domain-specific constraints like chemical reactivity and more rigid in modeling the
interaction strength solely on the basis of neighborhood overlap. Meanwhile, an MMFM operating
within the same framework is more flexible to capture these constraints, selectively breaking the
rules when the context necessitates it.

5.2 ENSEMBLE OVER SEEDS
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Figure 4: We vary k from 1-10 (small dataset) and 1-5 (medium dataset) following the same settings
as the main results.
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We investigate the effect of the FMG learning in a more controlled setting. We set K=10 and host a
Swiss style tournament with 4 rounds. We then study the performance of Top k FMG as k increases.
As a baseline, we compare with the “1-k” FMG, which is the HRG inferred by

⋃k−1
r=0 P (GCr

).

We find there are sharp tradeoffs in the generation metrics as k increases. We make several obser-
vations. First, it is easy to achieve near 100% membership for low values of k. This is because
one of the points of comparison when evaluating two discrepant design stories being, “Which anal-
ysis better highlights the defining motif(s) of the acrylates chemical class?” We can deduce that
1) for each molecule, running for sufficient number of seeds always produces some decomposition
that embeds the chemical class’s defining motif within one of the rules, and 2) FMG is capable
of ranking decompositions containing that property higher than those that do not. As a corollary,
membership drops as k increases, as rules from sub-optimal decompositions are added to the DSL.
Second, domain-specificity has some intrinsic tradeoff with synthesizability. Isocyanates are known
to be tricky to synthesize due to unwanted side reactions. Choosing decompositions with design
stories demonstrating a thorough understanding of the domain is more likely to overcomplicate the
DSL from a synthesizability perspective. We also note some general trends as k increases. Diversity
and RS seem to improve as more rule sets are combined. This is likely because a larger collec-
tion of “simple” rules, formed by alternative decompositions, enables more simple molecules to be
generated, albeit at the cost of membership. Interestingly, there are no major differences between
Top k and 1-k for RS and diversity, suggesting the learning procedure targets mainly class-specific
considerations, remaining neutral to more general considerations.

6 DISCUSSION

We introduce a MMFM guided DSL induction algorithm and show a specific application for molec-
ular discovery. We introduce a general recipe for integrating MMFM’s knowledge and reasoning
capabilities into a sound DSL induction framework, formulating the MMFM’s task as a sequence
of selections. We introduce innovative techniques in prompting, rendering and evaluation to prime
the MMFM to reason like a domain expert over molecular graphs. Our evaluation on molecular
generation benchmarks shows expert-like ability to decompose a molecule while indirectly captur-
ing human preferences for specificity and synthesizability. Most importantly, our entire method is
inviting to the end user, who can control the prompts, edit the selections or ideate off the MMFM’s
reasonings. Our simple learning and inference framework is simple, while laying the foundation
for more sophisticated techniques for closed-loop optimization which can be the avenue for future
research.
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persuasive llms leads to more truthful answers. arXiv preprint arXiv:2402.06782, 2024.
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