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ABSTRACT

This paper concerns the application of techniques from optimal transport (OT) to
mean field control, in which the probability measures of interest in OT correspond
to empirical distributions associated with a large collection of controlled agents.
The control objective of interest motivates a one-sided relaxation of OT, in which
the first marginal is fixed and the second marginal is constrained to a “moment
class”: a set of probability measures defined by generalized moment constraints.
This relaxation is particularly interesting for control problems as it enables the
coordination of agents without the need to know the desired distribution before-
hand. The inclusion of an entropic regularizer is motivated by both computational
considerations, and also to impose hard constraints on agent behavior. A com-
putational approach inspired by the Sinkhorn algorithm is proposed to solve this
problem. This new approach to distributed control is illustrated with an application
of charging a fleet of electric vehicles while satisfying grid constraints. An online
version is proposed and applied in a case study on the ElaadNL dataset containing
10,000 EV charging transactions in the Netherlands. This empirical validation
demonstrates the effectiveness of the proposed approach to optimizing flexibility
while respecting grid constraints.

1 INTRODUCTION

Optimal Transport Optimal Transport (OT) theory first emerged in the 18th century, and more
recently has become a significant tool in the machine learning toolbox (Villani, 2008} [Peyré et al.,
2019). The goal is simply described: given two random variables X and Y, find a joint probability
measure 7 for the pair (X, Y') that preserves the marginals, and minimizes some criterion. When X
and Y belong to a common state X, the Monge-Kantorovich formulation is expressed as follows.

Let U(p1, p2) = {m € B(X x X): m = p1, m2 = ps} where m; denotes the ith marginal, for
example 7y (dz) = [, w(dz,dy), and with B(X x X), the set of Borel probability measures on
X x X. Given a cost function c: X x X — R, the optimal transport problem is formulated as the
minimum

min{/X Xc(:my)w(dx,dy) Lo EZ/I(,ul,,ug)}. (1

™

Several authors have proposed relaxations of the OT problem, such as unbalanced OT where
an entropic penalization of the deviation from the marginals is introduced (Chizat et al., [2017).
Relaxations of marginals have been considered to improve numerical performance or to approximate
the OT problem (Balaji et al., [2020; |[Le et al., 2021} |Alfonsi et al., [2020) but, to the best of our
knowledge, never as a natural representation of a Mean Field control (MFC) problem.

Mean field control Many academic communities are interested in transforming probability measures
efficiently. Examples include the fully probabilistic control design of [Karny| (1996) and the related
linearly-solvable Markov decision framework (Todorov} 2007). The area of mean field games begins
with a multi-objective control problem, but the final solution technique amounts to transporting
a probability measure on a high dimensional space in such a way as to minimize some objective
function. Similar to mean field games is the cooperative setting of mean field control or ensemble
control, with applications (Hochberg et al.,|2006; (Chertkov & Chernyakl, 2018)) ranging from power
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systems to medicine; This technique can also be relaxed (Cammardella et al.||2020; Busi¢ & Meyn,
2018)). More examples may be found in the survey of (Garrabe & Russol (2022).

We are interested in the following control problem. Consider a set of K agents, whose state is denoted
Xy = (Sg, Wg) € X foreach 1 < k < K. It is assumed that Sy, is an exogeneous variable, while
Wy is fully controllable. Given a cost function ¢: X — R and a constraint function f: X — RM,

we seek to minimize:
K K
i X : X)) < } 2
Hvlvlgl{;d k) ;f( k) <0 @)

This general formulation allows for control of dynamical systems, in which case the state space X
is the set of possible sample paths. The optimization problem is designed for distributed control
applications in which the global constraint is interpreted as coordinating the ensemble of agents, and
the cost c represents a penalty for deviation from nominal behavior, as is the case in |Chertkov &
Chernyak| (2018)); (Cammardella et al.| (2020); /Busi¢ & Meyn|(2018).

The mean field limit of this problem corresponds intuitively to K — oo:

ngn{/XUdu /f Jdu(x) <0 and g =) 3

in which g is the distribution of X = (.S, W), and v is the first marginal of ;/—the distribution of the
exogenous variable S.It is important to note that the optimization is only done on the control variable
(e.g. plugging time of an EV) and the distribution v (e.g. distribution of the arriving time and battery
level of an EV) is not modified; this is what we will subsequently call "preserving the distribution of
the exogenous variables”.

Often in the Mean Field litterature, a Kullback-Leibler cost term is introduced as a regularizer
(Chertkov & Chernyak, |2018]; [Todorov, [2007) and similar control objectives, but with the constraints
on the functions f relaxed through a quadratic penalty have been addressed (Cammardella et al.}
2020}, Busi¢ & Meyn| 2018). Inspired by the similarities between the OT problem (1)) and the Mean
Field Control applications such as (3)), we want to build bridges between these fields and investigate
how computational techniques from OT theory might apply to the computation of optimal control
solutions.

Contributions We introduce Moment Constrained Optimal Transport for Control (MCOT-C) which
is a natural representation of a MFC problem designed to achieve three objectives:

e Coordination of an ensemble of agents to achieve a desired goal.
e Enforcement of physical constraints, both spatial and dynamics.

e Enforcement of strict constraints on the distribution of exogenous variables.

Instead of considering the whole state space often very large or even infinite dimensional (e.g.
trajectories of agents), this approach focuses on a finite set of moments, relevant to the control
objective (e.g. signal tracking). This leads to a tractable algorithm: we modify the Sinkhorn algorithm
(Cuturi, 2013) by replacing the update on the second marginal by gradient descent on the dual. An
MEC application on charging a fleet of electric vehicles (EVs) while satisfying grid constraints is
used to illustrate this new approach. This MCOT-C setting is then extended in two ways: (i) by an
online approach which allows to consider real datasets where the algorithm discovers at each step the
state of the agents, as presented in section 4| with the ElaadNL dataset (OpenDataset, 2019) (ii) by
the use of Monte Carlo type methods, which allow tackling MFC problems where the state space is
infinite-dimensional, as in the case study on water heaters presented in appendix [E}

Notations The state space X is assumed to be a closed subset of RY with N > 1. It is always
assumed that ¢(x, 2) = 0 for each . For 7 a bivariate distribution on X', its marginals will be denoted
w1 and my such that Vo € X, m (dz) = [, 7(dz,dy) and Vy € X, mo(dy) = [, 7(dz, dy).

Solutions to each problem problem considered will involve a family of probability kernels {7 : \ €
R}, For each A we define 7 by n*(dz, dy) = p1(dz)T*(dz, dy), and let p* = 73 denote the
second marginal:

LM A) = / i (de)T Nz, A), A€ B(X)
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For measurable g: X — R and f: X x X — R, we adopt the operator-theoretic notation,

A XT) .= A‘"E X T = i mwiax
g (2) /T (@, d)gy), Vee X,  (mf) /Mf( y)n(de, dy)

2 MOMENT CONSTRAINED OPTIMAL TRANSPORT FOR CONTROL

2.1 STATEMENT OF THE PROBLEM

The m components { f™ : 1 < m < MY} of the function f: X — RM define the moment class,
Pr={peBX): (un, fM)<0:1<m< M} “4)

The equality constraint (i, f™) = 0 can be expressed as a pair of inequality constraints, so it is
possible to impose equality constraints when needed. Recall that for MFC, any probability measure
mon B(X x X) is subject to the constraint that its first marginal 1, is given, and the distribution v of
the exogenous variable is also fixed. Equivalently, the bivariate distribution 7 belongs to

K(pa,p) = {m € U(p1, 1) : (x5, X)), (Uss Yw)) = pa(das, dz, )T (25, Tw)s dYuw )0z, (dys) }

where § the Kronecker symbol, and 7" ranges over all probability kernels. That is, if 7 € K (u1, u),
then [,,, m2(ys, dyw) = fw m1(ys, dzy) = v(ys), which corresponds to our objective of preserving
v on .SW Lastly, we will use the following Kullback Leibler (KL) regularizer:

_ ") )
Duelin o) = [ tos (TS ) ) ©

The probability measure /15 in[5may be chosen based on intuition regarding the form of 73, chosen
for ease of computation, or designed to encode hard constraints.

This allows us to introduce the Mean Field Control problem:

Problem MCOT-C: Moment Constrained Optimal Transport for Control
min{(r, ¢) + eDo(wllim © po) : 7 € K(pa,p) s p € Py} (©)

2.2 DUAL PROBLEM

This subsection defines the dual and the theoretical properties needed for the algorithm but more
details on duality theory and proofs may be found in the appendices[A]and [B] The theoretical results
of this problem in the Gaussian case are presented in appendix [C} An example that illustrates the
impact of regularization can be found in appendix D]

Assumptions Assumptions are required for the existence of optimizers and desirable properties of
the dual:

(A1) c: X x X — R, and f: X — RM are continuous, and there is an open neighborhood
N C RM containing 0 such that P;_,. is non-empty for all r € N.

(A2) w1 and py have compact support, and the problem is feasible under perturbations: for any
r € N, there is w and p satisfying p € Py, and m € U (1, ).

(A3) X9 :=Cov (Y) is positive definite when Y ~ 5.
Dual The dual of MCOT-C is by definition the function ¢*: R} — R U {—o0},
" (N) = emin{—(r.1) + D (s @ p2) : 7 € K (pur, o)} )

Foreach A € RY, e > 0and z = (x4, z,) € X, we denote

By.o() = elog / e () = (). () () ®)

Proposition 1. Subject to (Al)—(A3),
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(@) The infimum [0 gives p*(\) = —(u1, Bae)-
(ii) The maximizer is 7 (dx, dy) = T*(x, dy) 1 (dz) with
T (x, dy) = pa(dy) exp(LM(w,y)),  LMx,y) = H{ATf(y) = c(z,y) = Bac(@)}, (9a)
and p(y) = m3(y) Vy € X
(iii) There is no duality gap: there is a unique \* € Rf satisfying

©*(\*) = Iﬁ?{(%@ + eDge (7|1 @ po) : m € K(pa, ), pu € Py} (9b)

It is convenient to make the change of variables ¢ = ¢!\, and consider
T(Q) = —e"1p"(eC)

We turn next to the representation of the derivatives of the dual function. The quantity e~ B.¢ o ()
is a log moment generating function for each z; for this reason, it is not difficult to obtain suggestive
expressions for the first and second derivatives with respect to ¢.

Proposition 2. The function [J is convex and continuously differentiable. The first and second
derivatives of J admit the following representations:

VJI(¢) =m*, V27(¢) =%* (10a)

inwhichm? = (u, fi) = EMfi(Y)] for each i, and the Hessian (10a) coincides with the conditional

covariance:

S = BA(V)f(¥)] - E EMNAY) | XIEMA(Y) | X]T] (10b)

It follows that 7 is strictly convex:
Lemma 1. Suppose that (Al)—(A3) hold. Then, the covariance ¥ is full rank for any \ € R]f .

2.3 ALGORITHM: SEMI-SINKHORN WITH GRADIENT DESCENT

For numerical experiments, the state space X will be discretized and we will denote by IV its
cardinality. The cost will be represented by a matrix C' € Rf *N'The solution to MCOT-C obtained
in Proposition|I|may be expressed

7} = uiK; jexp (C*T f5) (1)

where K is the Gibbs kernel defined by K; ; = exp(—Cj j/e)pa j and u; = 1/ Y2 ; Cije¢ /. As
shown in Proposition 2] it is possible to obtain a gradient descent algorithm, which looks similar to
the Sinkhorn Algorithm (Cuturi, |2013)), the difference being the update of k,

It is also possible to perform Newton’s

Algorithm 1 i-Sinkh ith ient D .
gorithm 1 Semi-Sinkhorn with Gradient Descent method rather than gradient descent by

Input: p1, C, f changing the update of (;, by
"+ Om
k0 5P D fifTuf et

while £ < Kmax do

uith e i) 3 Ci e h
kT
ChHL ¢k 4 Z” ijfCi,jec f ChHl kg (Ek)_l ijufciyjeCka
¢ max{0, ¢k 1} ij
k+—k+1
end while

In cases where the starting point ¢° is
close to the optimum (*, we can obtain
quadratic convergence (C.T.Kelleyl|1999).
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3 USE CASE: EV CHARGING

3.1 PRESENTATION OF THE USE CASE

Consider a large fleet of electric vehicles (EVs) arriving to a charging station at random times and
with random state of charge, according to an initial law vq. There is a central planner whose goal is
to maintain constraints for the aggregate power consumption, as well as constraints for each vehicle
owner. The vehicles arrive during the period [9am, 10 : 30am], and must be fully charged by 5pm.

The goal is power tracking: total power consumption should follow a reference signal (r;) over a
time period [t1, t2], with 9am < ¢; < ¢ < 5pm. This can be formulated as an MCOT-C problem
over the space of distributions on X =S x W with S = [0,7] x [0, 1] and W = [0, T]].

The two first coordinates of = € X" are the time and the battery state of charge at the arrival and the
third is the time when the EV will start charging, called the plugging time; so x € X is of the form
x = (tq,b,t.). Ateach iteration, a gradient is calculated on X’ x W, with complexity of Nt3 X Ny,
with N; = 25 and N, = 20, being the number of discretization points in time and battery state of
charge. In this example, this value remains relatively low so that Monte Carlo methods (presented in
the appendix [E) are not required. We use the MCOT-C problem presented in Section 2] with ¢ = 0.03
being a compromise between computational stability and having a low value (as any non-negative
value will enforce the physical constraints). We consider a version of problem MCOT-C with
modeling the naive decision rule in which a vehicle initiates charging on arrival:

— V(tavb) ifta :tc
p(ta, bste) = { 0 otherwise

Initiation of charging must be after the arrival time (physical constraint) and every vehicle must be
fully charged no later than Spm (quality of service constraint). The following distribution meets these
requirements, ps(tq,b,te) = Unif[ta‘T_leb] (t.), with v being the charging speed and Unif|,
being the density of uniform distribution over [a, b]. It is assumed that drivers wish to initiate charging
as soon as possible: this makes it easier for the driver to manage an unforeseen event and may make
it easier for the central planner to respond to a grid contingency. This preference is modeled through
the cost c((., ., t2), (-, -, t¥)) = (12 — t¥)*.

3.2 NUMERICAL RESULTS

EV charging without unplugging The first results described here impose an additional constraint:
once charging begins, it cannot be interrupted until the vehicle is fully charged. In the following
simulations, a constraint on power consumption is imposed for the time period beginning at¢; = 10am
and ending at {2 = 12pm. As the optimizer * will be mutually absolutely continuous with respect to
2, both physical constraints and constraints on quality of service are imposed through choice of 5.

0.0 2.0e—3 4.0e—3 6.0e—3 8.0e—3
= l \ \
RS
a i K
[}
=
g II
é’b 0.5
<
=
Q
G
o
o]
s 0
wn 10 12 14 16 10 12 14 16 10 12 14 16
Time (h) Time (h) Time (h)
(a) u2 (b) pa without gradient control (c) px with gradient control

Figure 1: For vehicles arriving at 10am : (a) uo designed to encode physical and quality of service
constraints; (b) optimized p without gradient control; (c) optimized p with gradient control.
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Figure 2: (a) optimized consumption compared to the nominal with unplugging disabled; (b) opti-
mized consumption with unplugging enabled; (c) optimal consumption with constraint infeasible
without unplugging.

In Figure[I|(a), the constraints enforced on p can be observed:

* Quality of Service constraint: At 5 pm, all EVs must be fully charged. Thus, if a vehicle
needs At minutes to charge, then the probability of connecting between 5pm—At and 5pm
is zero. This is observed by the completely white lower right triangle.

* Physical constraint: Vehicles cannot load before arriving, so there is no mass probability
before 10am for vehicles arriving at 10am.

These constraints are found in the ;) showed in Figure [[(b) and [I{c), as p» is a reweighting of
2. Aggregated consumption displayed in Fig. 2] (a) shows that the first vehicles to arrive will start
charging, but most of those arriving just before 10:00 am will initiate charging only if they arrive
with a high battery level so that they are fully charged before the start of the constraint window from
10:00 am to 12:00 pm.

EV charging with unplugging The model can be extended by authorizing a vehicle to interrupt
and restart charging. In this case, X is extended with two extra time dimensions corresponding to
an unplugging time and a re-plugging time. A second term is included in c that is quadratic in the
difference of these times, designed to discourage charging interruption.

We find that unplugging does not impact significantly the optimal solution. Fig.[2](a) and (b) provide
a comparison. Only a slight difference is visible before 10 am: A number of vehicles start to
charge before the constraint, stop at 10pm and restart afterwards. However, in some cases, this extra
flexibility in charging is necessary to obtain a feasible solution. Fig.[2](c) shows results obtained
when power consumption is not permitted in the middle of the day. In any feasible solution, a portion
of vehicles stop charging for a period before they are fully charged.

Gradient control to flatten the curve For

real-life applications, controlling overall — Nominal Without Gradient control
consumption over part of the day through —— Constraint With Gradient control
equality of consumption to a predefined sig-
nal can lead to a peak when the constraint 0.7
is released. This phenomenon, due to the 0.61
penalization of distant charging times, is - O. 5
observed in the different plots of Fig. [2] o
Consumption can be smoothed by introduc- % 0.47 \
ing the derivative constraints 5 03]
£ 027 m——

vt € [O,T],|<gt,,u>| < Gmax Lo) 011

where ¢; = fiy1 — fi. In this exam- 0f —

ple, gmax = 0.2, thus the overall consump- Time(h) 9 10 11 12 13 14 15 16 17
tion must not increase by more than 0.2
per hour, which is what we observe in
Fig. B} consumption at 12pm increases
more slowly. We can also see the impact
of the constraint on the gradient by looking at the difference between Figure[T(b) and[I[c). In both

Figure 3: Optimal consumption with and without gradi-
ent control of the overall consumption
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cases, vehicles arriving with a high battery level are put to charge first. This comes from the quadratic
penalty on the start of the charging time: We prefer to charge those which will quickly be completely
charged and which will free up space for those which will take longer.

4 ONLINE MCOT-C FOR EV CHARGING

In this section, we provide an online version of MCOT-C and test it on a real dataset.

4.1 FORMULATION OF ONLINE MCOT-C

First, while some theoretical models assume perfect knowledge of the battery level at each time step
(Séguret, 2023)), this value is hard to obtain in practice even if estimates are available (Rezvanizaniani
et al., 2014) and existing datasets do not take this data into account (Amara-Ouali et al., [2021]).
Our choice on this subject is to focus on the leaving time ¢; and the charging need At,,, which
is the charging time requested by the EV owner. These parameters are easier to access and are
consistent with other articles studying real datasets (He et al.l 2012} |Sadeghianpourhamami et al.,
2018). Arriving EVs are therefore defined on the following state space:

S= [0,24] x [0,24 x [0,24] x{0,N,} (12a)
S~—~— N~—~—
Arriving time  Leaving time  Chargingneed ~ Max power
ta t At,, Pmaz

At each time step ¢ € [0, 24], EVs are controlled through their charging starting time ¢.. The control
space is thus defined as:

w® = [t,24] (12b)
——
Plugging time ¢,

and we define the product space: X = S x W) At each time step ¢ € [0, 24], this sequence of
actions will take place:

1. New EVs arrive at the charging station and are added to the list of vehicles already present
and not charging yet {S\”} = {S; : ti < tand ¢! > t}. The empirical v*) is updated:

1 ®y
() _ N, Zié(s—Si ) ift, <t 1
vi(s) { —]J\\,’: v(s) ift, >t (132)

where N; = [ >, 0(s — Si(t))ds + N [ v(s)14,5¢(s)ds is the number of vehicles already
arrived and not charging plus the number of vehicles that are estimated to arrive.

2. ugt) is defined by the "Plug when Arrive" strategy: Vs = (t,,t;, At,,p) € S,

ugt)(s,tc) = V(t)(s)é(tC —tq) (13b)

3. ugt) is defined as "Plug with a uniform distribution" strategy:
Vs = (ta, t, Atn,p) €S, tc €W,

(t) Unif[ta,tlfAtn](tC)V(t) (S) lf ta >t
py (s te) = (13¢)
Unifyy, ar,)(t)v P (s)  ifta <t

where Unif|a, b] is the density of the uniform distribution on the segment [a, b]. For the
sake of simplicity, we assume that there is no outlier (no vehicle that would require more
charging time than the difference between their arrival time and leaving time in particular).
As in Section[3] p is designed to incorporate the strong constraint of respecting the quality
of service through the absolute continuity of y with ps (due to the KL term).
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4. The central planner will minimize Equation (6) to obtain:

7 = argmin <7r ¢) + e Dy (r]|ul? @ ud)

reK (1 1

MEPf(t)
The function ¢ chosen here is a quadratic penalization: c((s%,t%), (s¥,t¥)) = (t* —t¥)%. In
this case, as we compare it with the "Plug When Arrive" strategy for which t2 = tZ, cis a
penalty for starting charging long after the vehicle arrives.

5. For each vehicle S( , its plugging tlme ti is randomly chosen accordmg to 7T( )(SZ-(t), D). f
is then updated as: f(t“) =fW+4 > F(S). Vehicles S such that ti = ¢ begin

t =
their charging.

4.2 ALGORITHM

In Algorithm[2} Alg(¢(®), 1y, 1) returns ¢+ Algorithm 2 Online MCOT-C

the value of Algorithm [T with the stopping cri-
terion N¢||((f®), pew))*|| < Nk and ()* is
the positive part function: Vo € RM (z)} =
max(0, Z,,). The norm |||| can be chosen as de-
sired but a good candidate is the infinite norm.
In general, « is chosen relatively small, and with
this norm, Nk corresponds to the maximum er-
ror on all the vehicles that we can afford to have,
we can estimate that this error evolves linearly
with N, which explains the multiplication by N
(it is important to remember that N is the order
of magnitude of the vehicles that will arrive dur-
ing the day). We define the convergence error at
time £ as £(C) = Y[/ (£, )| and vy,
the real arrival law of EVs. With_the definitions
of ug) and ugt) in Equations and Propo-
sition [1} we define Fi; as: Vs € S, Fc(s) =

0
fW/’(‘ S, t )f(S?tC)dtC (t)(s) # 0

v (s)
otherwise

Input: v, N, (,fm)lﬁmg]\l, K

Output: V= {} the list of vehicles with their

plugging time

S+ {}

" Om

for ¢ from O to 7" do
Add to S, vehicles that arrived at time ¢
Compute NV,
Update v, p11 and po as in Equations (T3))
Cm — Alg(<7 M1, 2, y)

for S; in S do
t. is  generated according to
MU(C M1, U2, (S (2] ))
if t. = t then
[ = xF(S)
S; is removed from S and (S;,¢.) is
added to V
end if
end for
end for

Proposition 3. (i) &:11((:) is bounded by &, a stochastic term, and a term corresponding to a poor

prediction of the law v:

Fr(S4HY
E1(G) < K+H( %
th =t+1

n n
-E,, [Fglta:tﬂ]) H + H (Eur [Feli,=ir1]—Ey [F¢ 1ta:t+1]) H

(i) The second term could be bounded with Bienaymé-Tchebychev inequality to obtain:

(t+1)

(I = H5

Thus, starting from scratch at each time step is unnecessary, and the optimization made in the previous
step offers a good ( to start with. This starting point is better if (i) the estimation of the arrival law of
the vehicles v is close from the real arrival law of vehicles v, and (ii) if IV, the order of magnitude of
EVs is large.

Vo, [Fele,—t41]

+
—E,, [Fglta:tJrl]) H > Fv'o) < N2

4.3 DATA OVERVIEW

The dataset used in this paper is composed of 10.000 random transactions from public charging
stations operated by EVnetNL in the Netherlands (OpenDataset, 2019), in the year 2019. For each
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Figure 4: (a) Consumptions for the "Plug When Arrive" ul strategy with the arrival of EV predicted
with v and with the real distribution of EV; (b) Optimized Consumption for a constraint of 650kW for
the aggregated consumption; (c¢) Optimized consumption for the same maximum power constraint
and a constraint of 120kW/h for the gradient of the aggregated consumption.

transaction, several pieces of information are provided including the arrival time ¢,, the leaving time
t;, the plugging time At,,, and the max power P. A more detailed description could be found in Refa
& Hubbers|(2019) and this dataset have already been used for clustering algorithm (Straka & Buzna),
2019) but not yet for Mean Field Control Algorithm.

There is a difference between weekdays and weekend days, so in this paper, we will consider the
7253 transactions happening during weekdays and divide them randomly. 90% of these weekdays
will form a training set of 231 days (6540 transactions) and will be considered historical data. A
test day is created with the remaining 10% of weekdays (21 days : 713 transactions) by grouping
the corresponding 713 vehicle arrivals. The predicted distribution v is computed on the training set
considered historical data and N = 9340 ~ 727 is the number of vehicles expected to arrive on this
test day. In (6), we set ¢ = 0.1 because we want a relatively low value to limit the impact of entropic
relaxation (term in Kullback Leibler), but not too low, as this risks posing computational problems
(because of the ¢! in the exponential in Proposition

To compute efficiently the gradient G((;) at each iteration of Algorithm we need to discretize the
state space X': The day is divided into 7"+ 1 = 97 steps (indexed from 0 to T") with a stepsize At
of 15 minutes, which allows rapid grid constraint changes to be taken into account. For the power
discretization, we group each EV between 4kW, 7.5kW, and 12kW. This choice of discretization is
standard (used for example in[Sadeghianpourhamami et al.| (2018))). We assume here that vehicles
connected the day before are not affected by our strategy, because they are already connected, but
their consumption is taken into account in order to come closer to reality, particularly in the case of
controlling the gradient of aggregate consumption. We therefore consider the aggregate consumption
of vehicles arriving throughout the day and that of vehicles arriving the day before (this impact is
mainly present before 8 a.m.).

4.4 CONTROL OF THE AGGREGATED CONSUMPTION

On Fig. [] the nominal consumption in blue corresponds to what is expected by the charging station,
these are the historical data with the plugging strategy 1+ "Plug when Arrive". On (a), we can see the
difference with the consumption for the real arrival of EV during the day with the same plugging
strategy. The first peak in the morning lasts longer, while the second peak seems to be weaker.
On (b), a constraint imposed by the charging station over the power consumed of r; = 650kW is
added through the moment constraints: define for each m the function f,,, via f,,(s,t.) = Pmax if
m € [te,tc+ Aty), fim(s, tc) = 0 otherwise, and impose for each m the constraint (f,,, u) —ry < 0.

This value of 650kW is chosen arbitrarily here, and any other can be chosen as long as it remains
realistic. This optimization makes it possible to exploit flexibility while respecting the imposed
constraint, despite the prediction error on the length of the first peak. Peaks above the maximum
constraint correspond to unforeseen arrivals of a large number of vehicles that must connect directly.
It can also be due to the convergence not completely achieved by the algorithm, which depends on
the value of x here chosen at 10kW.
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4.5 CONTROL OF THE GRADIENT OF THE AGGREGATED CONSUMPTION

Another constraint that we want to respect in order to preserve the grid stability is the speed with
which consumption will increase or decrease. On Fig. ] (a) (b), we see a strong peak at the start
of the day. We will seek to smooth this peak by imposing a constraint on the gradient of the power
consumed. On (c), this constraint imposed by the charging station of r, = 100kW/h is added through
the moment constraints: Vm € [0, T — 1],V(s,t.) € X, g (s,te) = fims1(s,te) — fmn(s,tc) and
we impose: Vm € [0,T — 1], =rg < N{gm,p) < 7.

This addition of constraints makes it possible
—— Predicted Without constraint to smooth out the slope which begins around
6am. There are always irregularities due to
deviation from prediction and the slight ex-
1,200 T r 1 I T 71 cess of the constraint on the first peak can be
1,000 |- | explained by the maximum exploitation of the
flexibility of the vehicles to respect the gradi-
ent constraint, which does not leave enough

—— Constraint With constraint

Power Consumption (kW)
(0]
o
o
[
|

600 |- id .- flexibility when vehicles arrive between 9am
400 |- /\/ | and 3pm and have to be connected directly.
200 N ) 4.6 SENSITIVITY
o TO THE DIFFERENCE BETWEEN
Time (h) 0 3 6 9 121518 21 24 ACTUAL EV ARRIVAL AND ITS PREDICTION

Figure 5: When the prediction v differs greatly ~ This model depends on the quality of the pre-
from the reality diction » made for the rest of the day. In this

part, we try to test the robustness against this
quality of prediction, by twisting the previous prediction: the central planner expects 30% less
vehicles before 12am and 30% more vehicles after. The aggregated power consumption associated
to this prediction is shown in blue in Fig. [5] We can thus observe that compliance with the same
maximal power constraint of 650kW is still obtained and the consumption is very close to Fig. ] (b).
We therefore have a certain robustness of the model concerning the prediction v. This robustness is
surely obtained here by the fact that we can change the connection time of a previously arrived vehicle
as long as it is not connected. The algorithm can therefore, in the event of an unexpected arrival of
vehicles to be connected immediately, postpone the connection time of less priority vehicles. But this
poorer prediction comes at a cost: when comparing (7, ¢) between the case where the prediction is
close (shown in figure 4| (a)) and this case, we find that the average time between arrival time ¢, and
connection time ¢, increases from 11 minutes to 12 minutes. Having a less accurate prediction will
therefore make less optimal use of flexibility.

5 CONCLUSIONS

One-sided moment relaxation of OT problem provides a very natural representation setting for
tracking applications in control. In such applications, the OT problem is often infinite-dimensional
(e.g. trajectories of agents). Instead of using approximations techniques for OT, MCOT-C leads to a
tractable algorithm by directly considering only the distribution moments that are relevant for control.
Furthermore, KL-term has a dual role in MCOT-C: a relaxation term as in many other machine
learning algorithms, but it also enables to enforce the constraints on the dynamics via the choice of
12 and absolute continuity imposed by KL. There are many directions for future research:

o The "Semi Sinkhorn" algorithm might be improved through the introduction of advanced optimiza-
tion techniques (e.g., proximal methods or momentum).

e Obtain probabilistic error bounds for the stochastic gradient descent algorithms proposed in
appendix [E| which is useful in cases where the size of the problem makes the use of Monte Carlo
methods attractive such as the water heaters problem presented in appendix [E.2]

e We believe that representing distributions by their moments to perform optimal transport has
broader applications in machine learning and control. We aim to explore its potential in other contexts.

10
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Reproducibility Statement To ensure the reproducibility of scientific results, the code and the data
used to obtain the results presented in this article are provided in the supplementary material. The
theoretical proofs of the article as well as those given in the appendix [A]are presented in the appendix
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In this appendix, dualization and proofs are presented in Section[A]and[B] A theoretical extension is
presented in appendix [C] in the case where the distributions are Gaussian and the moments specified
are the means and variances. In appendix [D] an experiment involving the transport of a uniform
law illustrates the convergence of the regularized problem to the non-regularized problem, when the
regularization parameter ¢ tends to 0. Another example of Mean Field Control using a Monte Carlo
implementation is proposed in appendix [E]to illustrate the approach in the case of a large state space.

A DUALITY

First, we want to introduce 2 preliminary problems to the MCOT-C problem. The first problem is a
variant of the relaxation of |Alfonsi et al.|(2020):

Problem 1S-MCOT: One Sided Moment Constrained Optimal Transport.
d(p1, Py) = min{(m,c) : m € U(p1, p) , po € Py} (14)

Problem 1S-RMCOT is regularized using Kullback Leibler divergence:

Problem 1S-RMCOT: One Sided - Regularized Moment Constrained Optimal Transport (1S-
RMCOT).

de(p1,Py) = 1/5117?{@,@ + Dk (|| ® po) 1 7 € U(pa, 1), 1 € Py} (15)

where ¢ > 0.

A.1 DUAL FOR 1S-MCOT

Characterization of a solution to Problem 1S-MCOT is based on a Lagrangian relaxation. Introduce
two classes of Lagrange multipliers for (I4): ¢ is for the first marginal constraint, a real-valued
measurable function on X, and \ € Rf for the moment constraints. The dual functional is defined
as the infimum,

@7 (Y, A)s=inf (7, ¢) = (m1 — 1, ) — (2, ATh) = (p1, ) + iwr}?f{C(fvv y)—(x) = ATf(y)} (16)

The convex dual of is defined to be the supremum of ¢* (v, \) over all ¢ and A\. The dual
optimization problem admits a familiar representation. Compactness is assumed in Proposition [ (ii),
as in prior work concerning canonical distributions (Kemperman, |1968)).

Proposition 4. If (Al) and (A2) hold, then,

(i) With o* defined in (16), the dual convex program admits the representation

d* = Swug) ©* (P, N\) = i}ug{(mﬂ@ cp(x) + N f(y) < c(x,y) forall z, y} 17
On replacing 1 with () := inf, {c(x,y) — A"f(y)} we obtain the equivalent max-min problem
@ =sup [ infle(e, ) ~ ATF))(do) 18)

(ii) Suppose in addition the set X is compact. Then the supremum in is achieved, and there is
no duality gap: for a vector \* € ]R]f,

A Py) = = [ minfe(w,p) - A7 (o) b (do)

We present here the proof of part (i). The proof of (ii) is based on approximation with solutions to
1S-RMCOT. A summary of the approach is contained in Proposition [6] a

Once we solve (17), we obtain 7* through complementary slackness:

0= 7 (@, y){¢ (@) + N f(y) — c(a,y)}

z,Y

which means that 77* is supported on the set {(z,y) : \*" f(y) + ¢* (z) = c(z,9)}.

13
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A.2 REGULARIZATION

Recall that the functional Dky (7|1 ® pz2) is used to define the Sinkhorn distance (Cuturi, 2013),
and coincides with mutual information when the marginals of 7 agree with the given probability
measures (1 and po. In the present paper, the marginal o is a design parameter.

1S-RMCOT geometry and duality A close cousin to 1S-RMCOT uses the Kullback Leibler
divergence as a constraint rather than penalty (Cuturi,2013). Consider for fixed § > 0,

ds(p1,Py) =min (m,c), st m€U(ur,pu),p€ Py, Dx(rlpn @ p2) <6 (19)

The parameter ¢ > 0 in (T3)) may be regarded as a Lagrange multiplier corresponding to the constraint
Dy (7|11 @ p2) < 6. Under general conditions there is §(¢) such that the optimizers of (I9) and
coincide.

In considering the dual of (I53) we choose a relaxation of the moment constraints only: letting
A€ ]Rf denote the Lagrange multiplier as before,

" (A) = inf{(m, c) + eDxv(r|| i @ pa) — (w2, ATh) : 1 = pun } (20)

The convex dual of 1S-RMCOT is by definition the supremum of the concave function ¢*. The
optimizer, when it exists, is denoted ™.

Introducing the notation

Ox,y) =N fly) —clz,y), zyeX (21

the dual function may be expressed

©*(\) = —m3X{<7T’éé>—5DKL(7T||M1 Qpg) T = p1}

The dual of (T9) with d = d(e) yields better geometric
insight. If the maximum above exists, then the maximizer
7 solves

7 € argmax{(m, ) : Dxo(7|p1®p2) < 6, m = 1}

Figure 6: Dual geometry for OT-FPR
The convex region containing 1 ® o shown in Fig.[]is

the set of all 7 for which 71 = ;1 and Dy (7]|1 @ p2) <

§. The optimizer 7 lies on the intersection of this region and the hyperplane shown in the figure,
indicated with a dashed line: {7 : (m, £}) = (m*,£})}. This value of A does not optimize ¢* because
the hyperplane is not the boundary of the half-space shown in the figure.

For computation, it is convenient to make a change of variables: since m; = p; is constrained, the
infimum is over all probability kernels: for A € R,

©*(\) = if%f{—WlT, 03) + eDe (11 T||pa ® o)} (22)

Foreach A € R}, e > 0 and z € X', denote

By (z) = Elog/ exp(sflﬁs‘(x, y)),ug(dy) (23)
yeX

Proposition 5. Subject to (Al)—(A3),

() The infimum @22)) gives p*(\) = —(u1, B c)-
(ii) The probability kernel maximizing 22) is

Tz, dy) = pa(dy) exp(LM(z,y)) , with L (z,y) = e {€3(z,y) — Br(z)} (24a)

14
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(iii) unique \* € R{tf exists, satisfying
@*(A*) = de(pa, Py) (24b)
That is, there is no duality gap.

The similarity between Proposition [5|and Proposition d]is found through examination of (I8), and
the recognition that —B) . () is a (ua-weighted) soft minimum of —£ (z,y) = c(z,y) — ATf(y)
over y € X. Subject to this interpretation, the convex dual of 1S-RMCOT can be expressed in a form
entirely analogous to (T8):

max P (N = m}z\lx/soft;nin{c(x,y) — A f(y) }p1 (d)

1S-MCOT approximation

Consider the following procedure to obtain a solution to 1S-MCOT (without regularization), but
with X compact, and the supports of 111 and po each equal to all of X. Let {#n°, A® : ¢ > 0} denote
primal-dual solutions to 1S-RMCOT, where £ > 0 is the scaling in (I5). Hence for each ¢ > 0,

de(p1,Py) = (7%, ¢) + €Dy (7|1 @ p2) = —(p1, Bae )

Proposition 6. Suppose that the assumptions of Proposition[d|(ii) hold, so in particular X is compact.
Then, any weak subsequential limit of {7, \° : ¢ > 0} as € | 0 defines a pair (7°, \°) for which 7°
solves 1S-MCOT and \° achieves the supremum in (I8).

Furthermore, it is possible to bound the rate of convergence:

|d2 (p1, Py) — d* (1, Py)| < eDge(n°|| 1 ® pia)

A.3 LINK WITH THE MCOT-C PROBLEM

Writing the dual of MCOT-C, we get:
@"(\) = emin{—(r, 1) + Dy (xllun  pa) : 7 € K, )}

Since m € K (u1, 1) is constrained, the infimum is over all probability kernels 7" from X to W:

P (A) = - / pu (de) ;1(1%{@(% )yl (@, ))w — eDx(T(x, ) llna(s”, ) }

where (., .)yy is the inner product on V. We obtain Proposition |1} which gives similar results as
Prop. 5| with a probability kernel going from X" to .

B PROOFS

Much of the analysis that follows is based on convex duality between relative entropy and log moment
generating functions. For any probability measure p on X" and function g: X — R, the log moment
generating function is denoted,

A, (g) = log(u, e?)

With p fixed, this is viewed as an extended-valued, convex functional on the space of Borel measurable
functions. Lemma@]is a standard tool in information theory (Dembo & Zeitouni, |1998), and a reason
that relative entropy is popular for use as a regularizer in optimization.

Lemma 2. Relative entropy and the log moment generating function are related via convex duality:

For any probability measure p we have

Dir(pllp) = St;p{<p, 9) —Au(9)} (25a)

If D (p|l) < oo then the supremum is achieved, with optimizer equal fo the log likelihood ratio,
g* = log(dp/dp).
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For Borel measurable g: X — R,
A,(g) = sup{(p,9) — Dxr(pll)} (25b)
p

If A(g9) < oo then the supremum is achieved, where the optimizer p* has log likelihood ratio
log(dp*/dp) = g — Au(g). 0

Proof of Proposition For each A we have by definition,

c = min [ {pa @ ) - |

A
i o T(x, dy)t) (=, y)} (26)

= —empe [ @) [ 1@ty - Do )} @)

For each = we have an optimization problem of the form (25b). Applying Lemma 2] (ii) gives the
representation (9a) and by substitution (or applying (25b)) we obtain

{1 Peaiiey - Dar e Y} == Bl (8)
yeX

Integrating with respect to 11 and applying completes the proof. a

Proof of Proposition[I] The proof is the same as the previous one using this expression of the dual:
P (N = - / p (d) ;I(lgx){@(% )6 (@, ))w — eDxu (T (x, )|l p2(s", ) }

Proof of Proposition|6] Let (7, A) denote the solution to 1s-RMCOT, with € > 0 regarded as a
variable. We let (7%, A7) denote any weak sub-sequential limit: for a sequence {¢; | 0},

7€ — 70, Ao — AV 1 — 0.
Optimality of 70 is established in the following steps:
- Subject to (A1) and (A2) we know that 7° € U (u1, p) with o € Py.
- Forany m € U(puq, p) with p € Py and Dgy (|[1 @ p2) < oo and any £ > 0 we have

(%, ¢) = lim (7%, ¢) < lim {7, ¢)+&; Dgp (7"
71— 00 71— 00

p®pz)t < lim {7, ¢)+ei Dy (7l @p2)} = (m,¢)
- Under the support assumption we can approximate in the weak topology any 7 € U (1, 1) with
w € Py by ° satisfying Dxp(7°||pu1 ® pa) < oo and
(7%, ¢) < (x°,¢) < (m,e) =4
Since § > 0 is arbitrary this establishes optimality.

We next show A" provides an optimal solution. Proposition 3.2 gives for any A,
(.6) 2 = Jim 1, Bac) = [ € fyletany) = N 1@ (do)
The lower bound is achieved using \° by allowing ) to depend on 1

(70,¢) < Jim (7, )+ D (n° i)} = = Jim {pn, Bovec) = [ int{efo,)=2" £(9) b ()

71— 00
To prove the rate of convergence, we adapt results from Luise et al.|(2018)) in our context. First,

we denote 7. = argmin[{r,c) + eDxp(7||u1 ® p2)] and by optimality of 7., we obtain: (., c) +
eDkL(mel| 1 @ p2) < (mo, €) + eDkr(mol| 1 @ p2)
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By optimality of m and positivity of the Kullback Leibler divergence, we obtain: (mg, c) < (m¢,c) <
(me, ) + eDku(me|lpn @ pra)

Combining these inequalities, we get:

0 < (7, ¢) + eDxr(me|| 1 @ p2) — (mo, ¢) < eDgp(mol|p1 ® p2)

0 < dZ(u1,Py)—d (p1,Py) < eDxr(mollpr ® pa)

which proves our result.

Proof of Lemmall] Suppose that v € RM is in the null space: $*v = 0. From the definition (TOB)

it follows that )
0=0"S% =EMN{oT(F(Y) - EMNf(Y) | X])}7]
Equivalently, there is a function g: X — R such that
THY) = g(X) a7

The probability measures 7* and 70 := p1; ® po are mutually absolutely continuous, so the same
equation holds under a.s. [7°]. Independence gives

VYY) = ETA(Y) [ Y] =Eg(X) | Y] = (u1,9) s [n7]

That is, the variance of v" f(Y) is equal to zero. Under (A3) this is possible only if v = 0. a

Proof of Proposition [2| Recall the notation p* = ;;7?, which is the second marginal of 7,
and the probabilistic notation defined in the Introduction. Also, by definition we have J({) =

5_1<,U1a BEC,E>'

‘We have for each 1,

Jyex n2(y) exp({CTf(y) — e ez, 9)}) ™ (y)
Jyex t2(y) exp({CTf(y) — e~ te(2,9)})

Integrating each side over u; gives (T0a) (recall that p* = p;T?).

4 0
3 1874'1-36(75(1‘):

=T*f" (z)

To obtain the second derivative of 7 (¢) requires the first derivative of the log-likelihood:

L) = o L () = o [Cf(y) — e Buc.o(a)] = hy(y) — Thy (a)

a¢; ¢

From this we obtain,

02 0 ¢ pm
mBsc,e(I) = @T (@)

= [ T () £ )
= [Ty ) ) - Ty (a) [T dhs )
= EMNh() (YY) | X = 2] —BMS™(Y) | X = 2]EMhy (Y) | X = 4]

Integrating each side over u; gives (TOb). O

Proposition 7. The conditional distribution defined in (9d) is Markovian: for a collection of proba-
bility kernels { P}\} parameterized by ,

M
T (x, dy) = vo(dyo) H (yi-1, dyi; @) (29)
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Proof of Proposition[7] The proof reduces to justifying (29), which is one component of Proposition
[l that follows.

Write L) (z,y;) = e {\;(U(y;) — ri) — 3|lzi — ys]|*}, and for each i consider the positive kernel,

P (Yi—1,dys) = Pi(yi—1,dy;) eXp(L (xiayl))
Proposition 8. The conditional distribution defined in can be expressed

M
Tz, dy) = vo(dyo) exp(—e ' By (7)) Hﬁi)\(yi—ladyi) (30)

i=1

Consequently, conditioned on X = x, the process Y is of the form (29), in which each kernel in the
product takes the form,

PMyi—1, dy;;x) = PMyi-1,dyi)gi(yi; )

gi—1(yi—1;7)
The functions {g; : 0 < i < M} are defined inductively: gyr(yar;x) =1, and for 1 <i < M,

gi-1(y; ) ::/133(3/, dyi)gi(yi;x), y€X
This results in go(yo, x) = exp(s_lBA}E(at)).

Proof The representation (30) follows from the definition (9a) and the structure imposed on / and
1. It is then immediate that (30) can be transformed to (29): by construction,

M M

PMyi_v, dyix) = —— | [ P yiz1, dys
1'1;[1 ( ! ) go(yo; }_[1 ! )

Since yo = z¢ by construction, it also follows that

exp(a_lBA,E(x)) = go(zo; x)

C EXAMPLE: QUADRATIC CONSTRAINTS & GAUSSIAN REGULARIZER

Consider the special case in which the function f is designed to specify all first and second moments
for Y. To solve Problem 2 we adopt the followmg notational conventions for the Lagrange multiplier:
E[Yi] = m} «— A} and E[Y;Y}] = mZ; +— A7 ;. Of course we have m?; 2. for each i, j. The

total number of constraints is thus M = n + n(n + 1)/2. For purposes of calculatlon it is useful
to introduce the symmetric matrices M2 and A? with respective entries {m -} and {)\ :}; similar

notation is used for my and \!, the n-dimensional vectors with entries {m}} and {\H
Eq. @) gives &) (z,y) = AT f(y) — c(x,y) with

Nf(y) =y A%y — (A%, MP) + "2 —mp AT (31)
An explicit solution to problem 1S-RMCOT is obtained when c is quadratic and po is Gaussian:

PrOpOSItlon 9. Conszder the 1S-RMCOT optimization problem (13)) in the following special case:
c(z,y) = 1|z — y||% and po = N(0,1) in the regularizer (B). Assume that the target covariance

Yy = M% mym{/ is positive definite.

Then, for each \ with A2 < %(1 + )1, the probability kernel T is Gaussian: conditioned on X = =,
the distribution of Y is Gaussian N (m%.,, Xpx) with

mis = ' Emfe+ A, Bpa= [T+ I - 2A2]]_1 (32)
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Proof of Proposition[9) From (3T) and using c(,y) = ||z — y||* we obtain an expression for the
likelihood L* appearing in (Dal):

LMa,y) = e H{y Ay +y"A =k = Bae(2)} — 51z — 22Ty + [lyll*) } (33)

with k* = (A2, MZ) + mJ, AL, The expression for 77 in (Qa) using us = N(0, I) then implies that
for any z, T (z, dy) admits the Gaussian density

2y | 2) = s exp(=4y) exp(e (40T - 2%+ 4Tl + A

where n*(z) = (2m)"?exp(e " {x* + By .(z) + 3|z[?}) may be regarded as a normalizing
constant. O

Computation for non-Gaussian 7 In this case it is necessary to compute the normalizing constant
in the definition of 7:

Ma) = i) / Py | 2)dy = / exp(— Ly ly eyl A ) dy  G9)

= /(2m)?det(Sya) exp(3e %[z + A Sz + A1) (36)

Monte-Carlo methods can be used to estimate A\*. Denote for each z,
A _ A A _ A T
P@ = [Padre), m@ = [T d) w0

Each have polynomial entries: ¢ is a quadratic function of = and m? ;(x) is a fourth order polynomial
in z for each ¢, j. In applying any of the algorithms described in Section[E]one might take

,F';Ln+1 _ q)\n, (Xn+1) 7 in—i—l _ m)\n (XnJrl) _ mn-‘,—l[mn-&-lr

These functions will have finite means provided E[|| X ||*] is finite under ;.

D CONVERGENCE RATE WHEN TRANSPORTING FROM A UNIFORM

DISTRIBUTION
We want to illustrate the convergence rate 12 1 _—
in Proposition [6] T,
With the same notations as in problems 1S- ]| |

MCOT and 1S-RMCOT, we define X =
[0,1]. Distributions p; and ps are the
uniform distribution on X. We define 4+ 1
f(x) = z —m with m € X the im-
posed mean, and impose a unique con-
straint: (f, u) = 0. The cost ¢ is chosen as | | | | | ‘
:Va,y € X, c(x,y) = (v —y)2 0 02 04 06 0.8 1

For these values, it is possible to obtain an
explicit solution to 1S-MCOT, using Propo-
sition 3.1:

Figure 7: For ¢ = 0.01, y; is transported to 7o
with mean 0.25

@ =sup [ intle(w.5) = M)l (do) =sup [ inf{(e )* = My - m)lda

)\2
:sup/———i—)\(m—x)dm
\ 4

= (m —0.5)?
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A A AR LN W AR AR The solution 7} may be obtained through
F gradient descent as explained in section 3]
For m = 0.25 and a discretization of X" to
100 points (to compute the gradient), the
resulting marginal 75 is shown in Fig. [7]
achieving the constraint on the mean.

The values of d* and (c, ), were obtained
for a range of € (from 103 to 10%). We can
observe in Fig. [§] that the convergence to

105 102 10 10° 10-! 10-2 10-3 Fhe minimum of t.he unregularizeq problgm
is fast and that it respects the inequality
proved in Proposition [6}

Figure 8: Comparison of the costs d* and (c, 7¥)
for different values of ¢

|dz (1, Py) — d* (1, Py)| < eDxi(mol|pn @ p2)

E MONTE CARLO METHODS TO ACCELERATE THE CONVERGENCE OF A
WATER HEATER CONTROL PROBLEM

E.1 STOCHASTIC GRADIENT DESCENT

The gradient computation at each iteration of Algorithmis of complexity Ns x N3, where N and
Nyy are respectively the number of discretization points for S and WW. Thus, when these numbers
are large, it could be useful to use a stochastic gradient descent to approximate ¢*. Suppose that
{X,} is ii.d. [;11], and given an estimate ¢* € RY and the observation z = X}, we draw
Yip1 ~ T¢ Sk (z, -) independently of {(X;,Y;) : | < k}. Given an initial condition ¢° € RY, a
non-negative step-size sequence {p,, }, and positive definite matrices { G"}, the projected stochastic
gradient descent algorithm is defined by the recursion

<k+1 — (Ck _ pk+1Gk+1ﬁlk+1)+ (37)

in which E[m* | )] = <7r§‘k,fm> for each i and (.); is defined by: Vo € RM (z), =
{max (x;,0) }ic[1,a1)-
If M is not large we might opt for Zap stochastic approximation (Devraj et al., 2021}, in which G™

approximates the inverse of V2.7 (\"). This can be achieved using G™ = [Z' |~ for each n, where

the estimates evolve as
k

=k+1 =k fod =n
ST =% 4 o {EFT -5} (38)
initialized with io > 0 (positive definite), and where Y*+1 ig random with conditional mean

E[ZF1 | A\g] = ©** (see (TOB)). The stepsize sequence is chosen with s, > py, for large k
(Devraj et al., 2021).

Two choices for the construction of {ik“} are summarized in the following:

1. Conditional computation plus sampling: In each of the general examples described in Section [3]
it is not computationally expensive to compute the conditional means m :=T"* f and second moments
m? := T f7 f]. In this case we draw {X}.} i.i.d., and take for each k,
mk+1 — m(Xk+1) , §k+1 — m2(X;c+1) _ ﬁlk+1[ﬁlk+1]T

2. Split Sampling: This approach requires that we obtain { X} } i.i.d., and also be able to draw a
sample from the probability kernel. With Z > 2 an integer: draw z = X}, from p;, and then draw
Z independent samples {Y;?,, : 1 < z < Z} from T*(z, - ), independently of {(X.,Y.) : 2 < k}.
We then have for z # 7,

EMNEMS(YVIXIENF(W)IXTT] = ELf (V) F (V)] = ELF (VL) F (V)]
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A
T =~ Z Vi) f (Vi) = ZZZfYkH Yl

z=1 j#=z

E.2 APPLICATION

We consider a signal tracking problem such as /Cammardella et al.| (2020). A large population of
water heaters is considered during a day, with a time discretization of 15 minutes and thus 7" = 96
points of time discretization. Each water heater i is represented at each time step by X} := (6%, m?})
with 6; € R modelizing the average temperature and m; € {0, 1} modelizing the mode (on/off)
of the heater. This is conveniently formulated as an optimal transport problem over the space of
distributions on
X = [eminv 9max]T X [07 1]T .
N————

——
S w

If we want to use Algorithm|I] we need at each iteration to compute the gradient on X' x W, with

complexity of Ny x 22T with Ny, being the number of discretization points for the temperature. In
this example, this value is thus really high even if Ny is low (for example, if Ny = 10, the complexity
is of order 10'53). Therefore Monte Carlo methods are very useful.

T 1T T 7 T T T T T T T 7
65 |- - 65 |-
9 A A ¢ \ A
[ ] ° [ ]
€ 60| . A I e
= g ° e L] °
2 o ° 2 ° °
E 4 [ ] E [
0] [ ) | 0]
= 55 . S S 55 :
& : ; & .
SO ] 50 b
246 1012141618202224 1012141618202224
Time (h) Time (h)
Figure 9: Trajectory of temperature obtained Figure 10: Trajectory of temperature obtained
with p;: switch when max or min temperatures with po: switch at 4am and 7pm and when max
are reached or min temperatures are reached

The temperature 6; is influenced by a loss effect due to the difference of temperature between the
inside and the outside of the tank, which depends on the mean temperatures of the tank and the
outside, the heating effect of the water heater and a drain effect which models the draining of hot
water by users (showers, dishes etc.). Thus, the ODE driving the evolution of temperature is :

do
E = —p(9 — eamb) + Uumax - T(e - el’ﬂ)d(t) (39)
loss effect heating effect drain effect

As this ODE is deterministic, differences between each distribution of trajectories p will be on the
mode switch. Most water heaters start to heat when they reach a certain temperature 6,;, and stop
heating when they reach a temperature 6,,,,.. This behavior, ensures that the temperature stays in the
interval [0, Omax ] and will be our p; distribution with one example of trajectory shown in Fig. @ Our
1o distribution considers allowing at most 2 changes of mode compared to the nominal behaviour.
This s behavior also automatically switch modes when arriving to 6,,;, or 6,,.,.. One example is
shown in Fig.[T0] Limiting the number of mode changes has the double advantage of limiting the
calculation time and avoiding unrealistic solutions with a high number of mode changes which would
not be desirable in practice.
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Consumption

—— Nominal Optimized —— Constraint
[ [ [ [ [ [ [
0.5 - a
0.4 a
0.3 |- a
0.2 |- -
| | | | | | |
0 4 8 12 16 20 24

Time (h)

Figure 11: Control of 3000 Water Heaters

The constraint functions f correspond to
the aggregated consumption of all water
heaters being equal to the reference sig-
nal shown in orange in Fig.[T1] This sig-
nal is a small deformation of the nomi-
nal consumption shown in blue when wa-
ter heater follows the p; distribution. To
solve this problem without computing the
whole gradient, we use the Split Sampling
method proposed in subsection [E] With
e = 0.01, K = 3000 Water Heaters and
Z = 100, we obtain the aggregated con-
sumption shown in Fig. [TT] We observe
that the aggregate consumption tracks well
the reference signal, even if there is a slight
noise due to the fact that the consumption

is only approximated by Monte Carlo methods and not calculated perfectly.
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