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Abstract

Recent advances in computer vision have made Vision Transformers (ViTs) strong alterna-
tives to CNNs in medical imaging. We compare top ViT models—including Token-to-Token
ViT, CaiT, LeViT, ATSViT, and XCiT—on the Kaggle skin cancer dataset, focusing on
classification accuracy, real score, and model complexity. While ViTs for small datasets
show high accuracy, they have many parameters; LeViT offers strong performance with
the fewest parameters. This review highlights current trends, deployment challenges, and
future directions for transformers in skin cancer detection.
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1. Introduction

Transformers, first designed for NLP tasks, gained popularity through models like BERT
and RoBERTa (Vaswani et al., 2017; Devlin et al., 2019; Liu et al., 2019). Their success
led to applications in computer vision (CV), where CNNs had traditionally dominated (He
et al., 2016a,b; Tan and Le, 2019). Early ViTs combined attention with convolution (Bello
et al., 2019), but newer versions rely solely on self-attention.

ViTs have since been applied to image classification (Dosovitskiy et al., 2020; Touvron
et al., 2021a), segmentation (Ye et al., 2019a), object detection (Ye et al., 2019b), and
video analysis (Sun et al., 2019). The original Vision Transformer (Dosovitskiy et al., 2020)
showed pure transformer models could excel in CV, inspiring further research. Studies
(Azad et al., 2024; Liu et al., 2023) explored ViTs in medical imaging, and (Khalil et al.,
2023) reviewed their evolution into lighter, efficient models.

While most reviews focus on clinic-acquired images from mid-to-late cancer stages, our
review evaluates recent ViTs for early skin cancer detection using phone-quality lesion
images.
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2. Dataset

We used the ISIC 2024 Kaggle dataset (Kurtansky et al., 2024), which includes 401K 3D
Total Body Photography (TBP) images mimicking non-dermoscopic photos. Captured with
the Vectra WB360, the images cover the full skin surface. Al software detects and crops
individual lesions into 15x15 mm images.

3. Results

Our results in Figure 1 highlight a non-linear relationship between model complexity and
real-world performance. The Vision Transformer for Small Datasets (Lee et al., 2021)
achieved the highest real score of 132, indicating superior performance and generalization
by incorporating Shifted Patch Tokenization (SPT) and Locality Self-Attention (LSA) which
increases the receptive field during tokenization and sharpens attention scores, respectively.
Notably, it did so with a moderate parameter count (~54M) and 50 training epochs, show-
casing that well-designed, domain-adapted ViTs can outperform larger architectures when
carefully tuned for small-scale medical datasets. Despite having the same accuracy (92%)
as several other models, its higher real score suggests better optimization and convergence
behavior over training.

In contrast, CaiT (Touvron et al., 2021b) which utilizes LayerScale, a learnable per-
channel residual scaling mechanism that facilitates the training of deep transformers, the
largest model in our study with over 120 million parameters, underperformed significantly
with a real score of 97, the lowest among all models including the plain ViT model (Beyer
et al., 2022). Although it reached a marginally higher accuracy (93%), its short training
duration (10 epochs) likely hindered its potential. This illustrates the importance of not
only model capacity but also sufficient training time for transformers to fully utilize their
representational power.

LeViT (Graham et al., 2021) which employs a multi-stage transformer design incor-
porating CNN-like components, stands out as the most efficient model in our benchmark,
achieving a real score of 125 and the highest classification accuracy (94%) with a remarkably
small footprint of just 17M parameters. This model is particularly well-suited for real-time
or embedded diagnostic applications, where computational resources are limited. The result
also confirms the efficacy of hybrid convolution-attention designs in achieving competitive
performance with minimal complexity. Token-to-Token ViT (Yuan et al., 2021) which im-
proves the tokenization process by recursively aggregating neighboring tokens, preserving
local structure through a Tokens-to-Token transformation, and ats ViT (Fayyaz et al., 2022)
which introduces a parameter-free Adaptive Token Sampler (ATS) module that dynamically
selects informative tokens per input image. This adaptivity allows for significant reduction
in token count and Giga Floating Point Operations per second (GFLOPs) during inference,
each scoring 113 in real score with comparable accuracies (92%), illustrate the potential of
patch re-encoding and attention-based scaling for performance gains. However, the Token-
to-Token ViT model encountered memory issues during training, emphasizing a practical
limitation despite its otherwise balanced architecture and low parameter count (~20M).

Emerging architectural innovations such as patch merging and cross-covariance attention
also showed strong results. The xcit (El-Nouby et al., 2021) model which proposes a novel
Cross-Covariance Attention (XCA) mechanism that operates across feature channels instead
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of tokens with real score of 122, ~12M parameters and vit_with_patch_merger (Renggli et al.,
2022) (real score: 118, params: ~77M) which incorporates a lightweight module that merges
redundant tokens between transformer layers, both performed well under limited training
epochs (25), indicating strong inductive biases and fast convergence capabilities. Their
performance suggests that such design choices may significantly enhance model efficiency
and should be considered in future ViT developments for medical imaging tasks.

All models, except for Token-to-Token ViT, were successfully trained under the same
computational environment. Most models converged well within 25 to 50 epochs, with
higher epoch budgets yielding more stable learning curves (e.g., LeViT with 100 epochs).
Models trained with fewer epochs (like CaiT and xcit) exhibited more variability in perfor-
mance, reinforcing the need for longer training schedules especially for larger architectures.
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Figure 1: Models performance namely real score were described as partial area under the
ROC curve (pAUC) above 80% true positive rate (TPR) since the TPR below
80% is unacceptable in clinical practice.
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