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applications to genetic data

Simon Bussy,1,2 Agathe Guilloux,3 Stéphane Gaı̈ffas4,5 and
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Abstract
We introduce a supervised learning mixture model for censored durations (C-mix) to simultaneously detect subgroups
of patients with different prognosis and order them based on their risk. Our method is applicable in a high-dimensional
setting, i.e. with a large number of biomedical covariates. Indeed, we penalize the negative log-likelihood by the Elastic-
Net, which leads to a sparse parameterization of the model and automatically pinpoints the relevant covariates for the
survival prediction. Inference is achieved using an efficient Quasi-Newton Expectation Maximization algorithm, for which
we provide convergence properties. The statistical performance of the method is examined on an extensive Monte Carlo
simulation study and finally illustrated on three publicly available genetic cancer datasets with high-dimensional
covariates. We show that our approach outperforms the state-of-the-art survival models in this context, namely both
the CURE and Cox proportional hazards models penalized by the Elastic-Net, in terms of C-index, AUC(t) and survival
prediction. Thus, we propose a powerful tool for personalized medicine in cancerology.
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1 Introduction

Predicting subgroups of patients with different prognosis is a key challenge for personalized medicine, see for
instance Alizadeh et al.1 and Rosenwald et al.2 where subgroups of patients with different survival rates are
identified based on gene expression data. A substantial number of techniques can be found in the literature to
predict the subgroup of a given patient in a classification setting, namely when subgroups are known in
advance.3,4,5 We consider in the present paper the much more difficult case where subgroups are unknown.

In this situation, a first widespread approach consists in first using unsupervised learning techniques applied on
the covariates – for instance, on the gene expression data6,7,8 – to define subsets of patients and then estimating the
risks in each of them. The problem of such techniques is that there is no guarantee that the identified subgroups
will have different risks. Another approach to subgroups identification is conversely based exclusively on the
survival times: patients are then assigned to a low-risk or a high-risk group based on whether they were still
alive.9,10 The problem here is that the resulting subgroups may not be biologically meaningful since the method do
not use the covariates, and prognosis prediction based on covariates is not possible.
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The method we propose uses both the survival information of the patients and its covariates in a supervised
learning way. Moreover, it relies on the idea that exploiting the subgroups structure of the data, namely the fact
that a portion of the population have a higher risk of early death, could improve the survival prediction of future
patients (unseen during the learning phase).

We propose to consider a mixture of event times distributions in which the probabilities of belonging to each
subgroups are driven by the covariates (e.g. gene expression data, patients characteristics, therapeutic strategy or
omics covariates). Our C-mix model is hence part of the class of model-based clustering algorithms, as introduced
in Banfield and Raftery.11

More precisely, to model the heterogeneity within the patient population, we introduce a latent variable
Z 2 f0, . . . ,K! 1g and our focus is on the conditional distribution of Z given the values of the covariates
X¼x. Now, conditionally on the latent variable Z, the distribution of duration time T is different, leading to a
mixture in the event times distribution.

For a patient with covariates x, the conditional probabilities !kðxÞ ¼ P½Z ¼ kjX ¼ x& of belonging to the k-th risk
group can be seen as scores that can help in decision-making for physicians. As a byproduct, it can also shed light on
the effect of the covariates (which combination of biomedical markers is relevant to a given event of interest).

Our methodology differs from the standard survival analysis approaches in various ways, which we describe in
this paragraph. First, the Cox proportional hazards (PH) model12 (by far the most widely used in such a setting) is
a regression model that describes the relation between intensity of events and covariates x via

"ðtÞ ¼ "0ðtÞexpðx>#coxÞ ð1Þ

where "0 is a baseline intensity, and #cox is a vector quantifying the multiplicative impact on the hazard ratio of
each covariate. As in our model, high-dimensional covariates can be handled, through e.g. penalization, see Simon
et al.13 But it does not permit the stratification of the population in groups of homogeneous risks, hence does no
deliver a simple tool for clinical practice. Moreover, we show in the numerical sections that the C-mix model can
be trained very efficiently in high dimension, and outperforms the standard Cox PH model by far in the analysed
datasets.

Other models consider mixtures of event times distributions. In the CURE model (see Farewell14 and Kuk and
Chen15), one fraction of the population is considered as cured (hence not subject to any risk). This can be very
limitating, as for a large number of applications (e.g. rehospitalization for patients with chronic diseases or relapse
for patients with metastatic cancer), all patients are at risk. We consider, in our model, that there is always an event
risk, no matter how small. Other mixture models have been considered in survival analysis: see Kuo and Peng16 for
a general study about mixture model for survival data or De Angelis et al.17 in a cancer survival analysis setting, to
name but a few. Unlike our algorithm, none of these algorithms considers the high-dimensional setting.

A precise description of the model is given in Section 2. Section 3 focuses on the regularized version of the
model with an Elastic-Net penalization to exploit dimension reduction and prevent overfitting. Inference is
presented under this framework, as well as the convergence properties of the developed algorithm. Section 4
highlights the simulation procedure used to evaluate the performances and compares it with state-of-the-art
models. In Section 5, we apply our method to genetic datasets. Finally, we discuss the obtained results in
Section 6.

2 A censored mixture model

Let us present the survival analysis framework. We assume that the conditional density of the duration T given
X¼x is a mixture

f ðtjX ¼ xÞ ¼
XK!1

k¼0
!kðxÞ fkðt; $kÞ

of K ' 1 densities fk, for t ' 0 and $k 2 Rdk some parameters to estimate. The weights combining these
distributions depend on the patient biomedical covariates x and are such that

XK!1

k¼0
!kðxÞ ¼ 1 ð2Þ
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This is equivalent to saying that conditionally on a latent variable Z ¼ k 2 f0, . . . ,K! 1g, the density of T at
time t ' 0 is fkðt ; $kÞ, and we have

P½Z ¼ kjX ¼ x& ¼ !kðxÞ ¼ !#kðxÞ

where #k ¼ ð#k, 1, . . . ,#k, dÞ 2 Rd denotes a vector of coefficients that quantifies the impact of each biomedical
covariates on the probability that a patient belongs to the k-th group. Consider a logistic link function for these
weights given by

!#k ðxÞ ¼
ex
>#k

PK!1
k¼0 e

x>#k
ð3Þ

The hidden status Z has therefore a multinomial distributionMð!#0 ðxÞ, . . . ,!#K!1 ðxÞÞ. The intercept term is here
omitted without loss of generality.

In practice, information loss occurs of right censoring type. This is taken into account in our model by
introducing the following: a time C ' 0 when the individual ‘leaves’ the target cohort, a right-censored
duration Y and a censoring indicator !, defined by

Y ¼ minðT,C Þ and ! ¼ 11fT(Cg

where min(a, b) denotes the minimum between two numbers a and b, and 11 denotes the indicator function.
In order to write a likelihood and draw inference, we make the two following hypothesis.

Hypothesis 1: T and C are conditionally independent given Z and X.
Hypothesis 2: C is independent of Z.

Hypothesis 1 is classical in survival analysis,18 while Hypothesis 2 is classical in survival mixture models.16,17

Under this hypothesis, denoting g the density of the censoring C, F the cumulative distribution function
corresponding to a given density f, "F ¼ 1! F and Fð y!Þ ¼ limu!y

u(y
FðuÞ, we have

P½Y ( y,! ¼ 1& ¼ P½T ( y,T ( C& ¼
Z y

0
f ðuÞ "GðuÞdu and

P½Y ( y,! ¼ 0& ¼ P½C ( y,C5T& ¼
Z y

0
gðuÞ "FðuÞdu

Then, denoting % ¼ ð$0, . . . ,$K!1,#0, . . . ,#K!1Þ> the parameters to infer and considering an independent and
identically distributed (i.i.d.) cohort of n patients ðx1, y1, &1Þ, . . . , ðxn, yn, &nÞ 2 Rd )Rþ ) f0, 1g, the log-likelihood
of the C-mix model can be written

‘nð%Þ ¼ ‘nð% ; y, dÞ ¼ n!1
Xn

i¼1
&i log "Gð y!i Þ

XK!1

k¼0
!#kðxiÞ fkð yi; $kÞ

" #(

þ ð1! &iÞ log gð yiÞ
XK!1

k¼0
!#kðxiÞ "Fkð y!i ; $kÞ

" #)

where we use the notations y ¼ ð y1, . . . , ynÞ> and d ¼ ð&1, . . . , &nÞ>. Note that from now on, all computations are
done conditionally on the covariates ðxiÞi¼1, ..., n. An important fact is that we do not need to know or parameterize "G
nor g, namely the distribution of the censoring, for inference in this model (since all "G and g terms vanish in
equation (6)).

3 Inference of C-mix

In this section, we describe the procedure for estimating the parameters of the C-mix model. We begin by
presenting the Quasi-Newton Expectation Maximization (QNEM) algorithm we use for inference. We then
focus our study on the convergence properties of the algorithm.
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3.1 QNEM algorithm

In order to avoid overfitting and to improve the prediction power of our model, we use Elastic-Net
regularization19 by minimizing the penalized objective

‘penn ð%Þ ¼ !‘nð%Þ þ
XK!1

k¼0
'k ð1! (Þk#kk1 þ

(

2
k#kk22

! "
ð4Þ

where we add a linear combination of the lasso (‘1) and ridge (squared ‘2) penalties for a fixed ( 2 ½0, 1&, tuning
parameter 'k, and where we denote k#kkp ¼ ð

Pd
i¼1 j#k, ijpÞ

1=p the ‘p-norm of #k. One advantage of this
regularization method is its ability to perform model selection (the lasso part) and pinpoint the most important
covariates relatively to the prediction objective. On the other hand, the ridge part allows to handle potential
correlation between covariates.19 Note that in practice, the intercept is not regularized.

In order to derive an algorithm for this objective, we introduce a so-called QNEM, being a combination
between an EM algorithm20 and a L-BFGS-B algorithm.21 For the EM part, we need to compute the negative
completed log-likelihood (here scaled by n!1), namely the negative joint distribution of y, d and z ¼ ðz1, . . . , znÞ>.
It can be written

‘comp
n ð%Þ ¼ ‘comp

n ð%; y, d, zÞ

¼ !n!1
Xn

i¼1
&i
XK!1

k¼0
11fzi¼kgðlog!#k ðxiÞ þ log fkð yi;$kÞÞ þ log "Gð y!i Þ

" #(

þð1! &iÞ
XK!1

k¼0
11fzi¼kgðlog!#kðxiÞ þ log "Fkð y!i ;$kÞÞ þ log gð yiÞ

" #)
ð5Þ

Suppose that we are at step lþ 1 of the algorithm, with current iterate denoted %ðl Þ ¼ ð$ðl Þ0 , . . . ,$ðl ÞK!1,
#ðl Þ0 , . . . ,#ðl ÞK!1Þ

>. For the E-step, we need to compute the expected log-likelihood given by

Qnð%, %ðl ÞÞ ¼ E%ðl Þ ½‘comp
n ð%Þjy, d&

We note that

qðl Þi, k ¼ E%ðl Þ ½1fzi¼kgj yi, &i& ¼ P%ðl Þ ½zi ¼ kj yi, &i& ¼
#ðl Þk, iPK!1
r¼0 #ðl Þr, i

ð6Þ

with

#ðl Þk, i ¼ ½ fkð yi; $
ðl Þ
k Þ "Gð y!i Þ&

&i ½ gð yiÞ "Fkð y!i ; $ðl Þk Þ&
1!&i!#ðl Þ

k
ðxiÞ ð7Þ

so that Qnð%, %ðl ÞÞ is obtained from equation (5) by replacing the two 11fzi¼kg occurrences with qðl Þi, k. Depending on the
chosen distributions fk, the M-step can either be explicit for the updates of $k (see Section 3.3 below for the
geometric distributions case), or obtained using a minimization algorithm otherwise.

Let us focus now on the update of #k in the M-step of the algorithm. By denoting

Rðl Þn, kð#kÞ ¼ !n
!1
Xn

i¼1
qðl Þi, k log!#kðxiÞ

the quantities involved in Qn that depend on #k, the update for #k therefore requires to minimize

Rðl Þn, kð#kÞ þ 'k ð1! (Þjj#kjj1 þ
(

2
jj#kjj22

! "
ð8Þ

The minimization Problem (8) is a convex problem. It looks like the logistic regression objective, where labels
are not fixed but softly encoded by the expectation step (computation of qðl Þi, k above, see equation (6)).

We minimize equation (8) using the well-known L-BFGS-B algorithm.21 This algorithm belongs to the class of
quasi-Newton optimization routines, which solve the given minimization problem by computing approximations
of the inverse Hessian matrix of the objective function. It can deal with differentiable convex objectives with box
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constraints. In order to use it with ‘1 penalization, which is not differentiable, we use the trick borrowed from
Andrew and Gao:22 for a 2 R, write jaj ¼ aþ þ a!, where aþ and a– are respectively the positive and negative part
of a, and add the constraints aþ ' 0 and a! ' 0. Namely, we rewrite the minimization problem (8) as the following
differentiable problem with box constraints

minimize Rðl Þn, kð#
þ
k ! #!k Þ þ 'kð1! (Þ

Pd

j¼1
ð#þk, j þ #!k, jÞ þ 'k

(
2 jj#

þ
k ! #!k jj

2
2

subject to #þk, j ' 0 and #!k, j ' 0 for all j 2 f1, . . . , dg
ð9Þ

where #+k ¼ ð#+k, 1, . . . ,#+k, dÞ
>. The L-BFGS-B solver requires the exact value of the gradient, which is easily

given by

@Rðl Þn, kð#kÞ
@#k

¼ !n!1
Xn

i¼1
qðl Þi, kð1! !#kðxiÞÞxi ð10Þ

In Algorithm 1, we describe the main steps of the QNEM algorithm to minimize the function given in
equation (4).

Algorithm 1: QNEM Algorithm for inference of the C-mix model

Require. Training data ðxi, yi, &iÞi2f1, ..., ng; starting parameters ($ð0Þk ,#ð0Þk Þk2f0, ...,K!1g; tuning parameters 'k ' 0.

1: for l ¼ 0, . . . , until convergence do

2: Compute ðqðl Þi, kÞk2f0, ...,K!1g using equation (6).

3: Compute ð$ðlþ1Þk Þk2f0, ...,K!1g.
4: Compute ð#ðlþ1Þk Þk2f0, ...,K!1g by solving equation (9) with the L-BFGS-B algorithm.

5: end for

6: return Last parameters ð$ðl Þk ,#ðl Þk Þk2f0, ...,K!1g.

The penalization parameters 'k are chosen using cross-validation, see Section 1 of Supplementary Material for
precise statements about this procedure and about other numerical details.

3.2 Convergence to a stationary point

We are addressing here convergence properties of the QNEM algorithm described in Section 3.1 for the
minimization of the objective function defined in equation (4). Let us denote

Qpen
n ð%, %

ðl ÞÞ ¼ Qnð%, %ðl ÞÞ þ
XK!1

k¼0
'k ð1! (Þjj#kjj1 þ

(

2
jj#kjj22

! "

Convergence properties of the EM algorithm in a general setting are well known, see Wu.23 In the QNEM
algorithm, since we only improve Qpen

n ð%, %ðl ÞÞ instead of a minimization of Qnð%, %ðl ÞÞ, we are not in the EM
algorithm setting but in a so called generalized EM (GEM) algorithm setting.20 For such an algorithm, we do have
the descent property, in the sense that the criterion function given in equation (4) is reduced at each iteration, namely

‘penn ð%
ðlþ1ÞÞ ( ‘penn ð%

ðl ÞÞ

Let us make two hypotheses.

Hypothesis 3: The duration densities fk are such that ‘penn is bounded for all %.
Hypothesis 4: Qpen

n ð%, %ðl ÞÞ is continuous in % and %ðl Þ, and for any fixed %ðl Þ, Qpen
n ð%, %ðl ÞÞ is a convex function in %

and is strictly convex in each coordinate of %.
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Under Hypothesis 3, l! ‘penn ð%ðl ÞÞ decreases monotonically to some finite limit. By adding Hypothesis 4,
convergence of the QNEM algorithm to a stationary point can be shown. In particular, the stationary point is
here a local minimum.

Theorem 1: Under Hypotheses 3 and 4, and considering the QNEM algorithm for the criterion function defined in
equation (4), every cluster point "% of the sequence f%ðl Þ; l ¼ 0, 1, 2, . . .g generated by the QNEM algorithm is a
stationary point of the criterion function defined in equation (4).

A proof is given in Section 2 of Supplementary Material.

3.3 Parameterization

Let us discuss here the parameterization choices we made in the experimental part. First, in many applications –
including the one addressed in Section 5 – we are interested in identifying one subgroup of the population with a high
risk of adverse event compared to the others. Then, in the following, we consider Z 2 f0, 1g where Z¼ 1 means high
risk of early death and Z¼ 0 means low risk. Moreover, in such a setting where K¼ 2, one can compare the learned
groups by the C-mix and the ones learned by the CURE model in terms of survival curves (see Figure 5).

To simplify notations and given the constraint formulated in equation (2), we set #0¼ 0 and we denote #¼ #1 and
!#(x) the conditional probability that a patient belongs to the group with high risk of death, given its covariates x.

In practice, we deal with discrete times in days. It turns out that the times of the data used for applications in
Section 5 are well fitted by Weibull distributions. This choice of distribution is very popular in survival analysis, see
for instance Klein and Moeschberger.18 We then first derive the QNEM algorithm with

fkðt; $kÞ ¼ ð1! )kÞt
*k ! ð1! )kÞðtþ1Þ

*k

with here $k ¼ ð)k,*kÞ 2 ð0, 1Þ )Rþ, )k being the scale parameter and *k the shape parameter of the distribution.
As explained in the following Section 4, we select the best model using a cross-validation procedure based on the

C-index metric, and the performances are evaluated according to both C-index and AUC(t) metrics (see Sections
4.3 for details). Those two metrics have the following property: if we apply any mapping on the marker vector
(predicted on a test set) such that the order between all vector coefficient values is conserved, then both C-index
and AUC(t) estimates remain unchanged. In other words, by denoting ðMiÞi2f1, ..., ntestg the vector of markers
predicted on a test set of ntest individuals, if  is a function such that for all ði, j Þ 2 f1, . . . , ntestg2, ðMi 5Mj )
 ðMiÞ5 ðMj ÞÞ, then both C-index and AUC(t) estimates induced by ðMiÞi2f1, ..., ntestg or by ð ðMiÞÞi2f1, ..., ntestg are
the same.

The order in the marker coefficients is actually paramount when the performances are evaluated according to
the mentioned metrics. Furthermore, it turns out that empirically, if we add a constraint on the mixture of Weibull
that enforces an order like relation between the two distributions f0 and f1, the performances are improved. To be
more precise, the constraint to impose is that the two density curves do not intersect. We then choose to impose the
following: the two scale parameters are equal, i.e. )0¼)1¼). Indeed under this hypothesis, we do have that for all
) 2 ð0, 1Þ, ð*0 5*1 ) 8t 2 Rþ, f0ðt; $0Þ4 f1ðt;$1ÞÞ.

With this Weibull parameterization, updates for $k are not explicit in the QNEM algorithm, and consequently
require some iterations of a minimization algorithm. Seeking to have explicit updates for $k, we then derive the
algorithm with geometric distributions instead of Weibull (geometric being a particular case of Weibull with
*k¼ 1), namely fkðt;$kÞ ¼ $kð1! $kÞt!1 with $k 2 ð0, 1Þ.

With this parameterization, we obtain from equation (7)

#ðl Þ1, i ¼ ½$
ðl Þ
1 ð1! $

ðl Þ
1 Þ

yi!1&&i ½ð1! $ðl Þ1 Þ
yi &1!&i!#ðl Þ ðxiÞ and

#ðl Þ0, i ¼ ½$
ðl Þ
0 ð1! $

ðl Þ
0 Þ

yi!1&&i ½ð1! $ðl Þ0 Þ
yi &1!&ið1! !#ðl Þ ðxiÞÞ

which leads to the following explicit M-step

$ðlþ1Þ0 ¼
Pn

i¼1 &ið1! qðl Þi ÞPn
i¼1 ð1! qðl Þi Þyi

and $ðlþ1Þ1 ¼
Pn

i¼1 &iq
ðl Þ
iPn

i¼1 q
ðl Þ
i yi

In this setting, implementation is hence straightforward. Note that Hypotheses 3 and 4 are immediately satisfied
with this geometric parameterization.
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In Section 5, we note that performances are similar for the C-mix model with Weibull or geometric distributions
on all considered biomedical datasets. The geometric parameterization leading to more straightforward
computations, it is the one used to parameterize the C-mix model in what follows, if not otherwise stated. Let
us focus now on the performance evaluation of the C-mix model and its comparison with the Cox PH and CURE
models, both regularized with the Elastic-Net.

4 Performance evaluation

In this section, we first briefly introduce the models we consider for performance comparisons. Then, we provide
details regarding the simulation study and data generation. The chosen metrics for evaluating performances are
then presented, followed by the results.

4.1 Competing models

The first model we consider is the Cox PH model penalized by the Elastic-Net, denoted Cox PH in the following.
In this model introduced in Cox,12 the partial log-likelihood is given by

‘coxn ð#Þ ¼ n!1
Xn

i¼1
&i x>i #! log

X

i0:yi0'yi
expðx>i0 #Þ

 !

We use respectively the R packages survival and glmnet13 for the partial log-likelihood and the minimization
of the following quantity

!‘coxn ð#Þ þ ' ð1! (Þjj#jj1 þ
(

2
jj#jj22

! "

where ' is chosen by the same cross-validation procedure than the C-mix model, for a given ( (see Section 1 of
Supplementary Material). Ties are handled through the Breslow approximation of the partial likelihood.24

We remark that the model introduced in this paper cannot be reduced to a Cox model. Indeed, the C-mix model
intensity can be written (in the geometric case)

"ðtÞ ¼ $1ð1! $1Þ
t!1 þ $0ð1! $0Þt!1 expðx>#Þ

ð1! $1Þt þ ð1! $0Þt expðx>#Þ

while it is given by equation (1) in the Cox model.
Finally, we consider the CURE14 model penalized by the Elastic-Net and denoted CURE in the following, with

a logistic function for the incidence part and a parametric survival model for SðtjZ ¼ 1Þ, where Z¼ 0 means that
patient is cured, Z¼ 1 means that patient is not cured, and SðtÞ ¼ expð!

R t
0 "ðsÞdsÞ denotes the survival function. In

this model, we then have SðtjZ ¼ 0Þ constant and equal to 1. We add an Elastic-Net regularization term, and since
we were not able to find any open source package where CURE models were implemented with a regularized
objective, we used the QNEM algorithm in the particular case of CURE model. We just add the constraint that the
geometric distribution Gð$0Þ corresponding to the cured group of patients (Z¼ 0) has a parameter $0¼ 0, which
does not change over the algorithm iterations. The QNEM algorithm can be used in this particular case, were some
terms have disappeared from the completed log-likelihood, since in the CURE model case we have
fi 2 f1, . . . , ng : zi ¼ 0, &i ¼ 1g ¼ ;. Note that in the original introduction of the CURE model in Farewell,14

the density of uncured patients directly depends on individual patient covariates, which is not the case here.
We also give additional simulation settings in Section 3 of Supplementary Material. First, the case where d, n,

including a comparison of the screening strategy we use in Section 5 with the iterative sure independence
screening25 (ISIS) method. We also add simulations where data are generated according to the C-mix model
with gamma distributions instead of geometric ones, and include the accelerated failure time model26 (AFT) in
the performances comparison study.

4.2 Simulation design

In order to assess the proposed method, we perform an extensive Monte Carlo simulation study. Since we want to
compare the performances of the three models mentioned above, we consider three simulation cases for the time

Bussy et al. 7



distribution: one for each competing model. We first choose a coefficient vector # ¼ ð+, . . . , +|fflfflfflffl{zfflfflfflffl}
s

, 0, . . . , 0Þ 2 Rd, with

+ 2 R being the value of the active coefficients and s 2 f1, . . . , dg a sparsity parameter. For a desired low-risk
patients proportion !0 2 ½0, 1&, the high-risk patients index set is given by

H ¼ f ð1! !0Þ ) n
$ %

random sampleswithout replacementg - f1, . . . , ng,

where ab c denotes the largest integer less than or equal to a 2 R. For the generation of the covariates matrix, we
first take ½xij& 2 Rn)d . N ð0,$ð,ÞÞ, with $ð,Þ a ðd) d Þ Toeplitz covariance matrix27 with correlation , 2 ð0, 1Þ.
We then add a gap 2 Rþ value for patients i 2 H and subtract it for patients i =2H, only on active covariates plus a
proportion rcf 2 ½0, 1& of the non-active covariates considered as confusion factors, that is

xij  xij + gap for j 2 f1, . . . , s, . . . , ðd! sÞrcf
$ %

g

Note that this is equivalent to generate the covariates according to a gaussian mixture.
Then we generate Zi . Bð!#ðxiÞÞ in the C-mix or CURE simulation case, where !#ðxiÞ is computed given

equation (3), with geometric distributions for the durations (see Section 3.3). We obtain Ti . Gð$ZiÞ in the
C-mix case, and Ti .111fZi¼0g þ Gð$1Þ11fZi¼1g in the CURE case. For the Cox PH model, we take
Ti . ! logðUiÞ expð!x>i #Þ, with Ui . Uð½0, 1&Þ and where Uð½a, b&Þ stands for the uniform distribution on a
segment [a, b].

The distribution of the censoring variable Ci is geometric Gð$cÞ, with $c 2 ð0, 1Þ. The parameter $c is tuned to
maintain a desired censoring rate rc 2 ½0, 1&, using a formula given in Section 4 of Supplementary Material. The
values of the chosen hyper parameters are summarized in Table 1.

Note that when simulating under the CURE model, the proportion of censored time events is at least equal to
!0: we then choose !0¼ 0.2 for the CURE simulations only.

Finally, we want to assess the stability of the C-mix model in terms of variable selection and compare it to the
CURE and Cox PH models. To this end, we follow the same simulation procedure explained in the previous lines.
For each simulation case, we make vary the two hyper-parameters that impact the most the stability of the variable
selection, that is the gap varying in [0, 2] and the confusion rate rcf varying in [0, 1]. All other hyper-parameters are
the same than in Table 1, except s¼ 150 and with the choice (n, d)¼ (200, 300). For a given hyper-parameters
configuration (gap, rcf), we use the following approach to evaluate the variable selection power of the models.
Denoting ~#i ¼ j#̂ij=maxfj#̂ij, i 2 f1, . . . , dgg, if we consider that ~#i is the predicted probability that the true #i equals
+, then we are in a binary prediction setting and we use the resulting AUC of this problem. Explicit examples of
such AUC computations are given in Section 5 of Supplementary Material.

4.3 Metrics

We detail in this section the metrics considered to evaluate risk prediction performances. Let us denote by M the
marker under study. Note that M ¼ !#̂ðXÞ in the C-mix and the CURE model cases, and M ¼ expðX>#̂coxÞ in the
Cox PH model case. We denote by h the probability density function of marker M, and assume that the marker is
measured once at t¼ 0.

For any threshold -, cumulative true positive rates and dynamic false positive rates are two functions of time
respectively defined as TPRCð-, tÞ ¼ P½M4 -jT ( t& and FPRDð-, tÞ ¼ P½M4 -jT4 t&. Then, as introduced in
Heagerty et al.,28 the cumulative dynamic time-dependent AUC is defined as follows

AUCC,DðtÞ ¼
Z 1

!1
TPRCð-, tÞ @FPR

Dð-, tÞ
@-

&&&&

&&&&d-

Table 1. Hyper-parameters choice for simulation.

( n d s rcf + , !0 gap rc $0 $1

0.1 100, 200, 500 30, 100 10 0.3 1 0.5 0.75 0.1, 0.3, 1 0.2, 0.5 0.01 0.5
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that we simply denote AUC(t) in the following. We use the Inverse Probability of Censoring Weighting (IPCW)
estimate of this quantity with a Kaplan–Meier estimator of the conditional survival function P½T4 tjM ¼ m&, as
proposed in Blanche et al.29 and already implemented in the R package timeROC.

A common concordance measure that does not depend on time is the C-index30 defined by

C ¼ P½Mi 4Mj jTi 5Tj &

with i 6¼ j two independent patients (which does not depend on i, j under the i.i.d. sample hypothesis). In our case,
T is subject to right censoring, so one would typically consider the modified C. defined by

C. ¼ P½Mi 4Mj jYi 5Yj,Yi 5 .&

with . corresponding to the fixed and prespecified follow-up period duration.31 A Kaplan–Meier estimator for the
censoring distribution leads to a nonparametric and consistent estimator of C.,32 already implemented in the R
package survival.

Hence in the following, we consider both AUC(t) and C-index metrics to assess performances.

4.4 Results of simulation

We present now the simulation results concerning the C-index metric in the case (d, rc)¼ (30, 0.5) in Table 2.
See Section 6 of Supplementary Material for results on other configurations for (d, rc). Each value is obtained
by computing the C-index average and standard deviation (in parenthesis) over 100 simulations. The
AUC(t) average (bold line) and standard deviation (bands) over the same 100 simulations are then given in
Figure 1, where n¼ 100. Note that the value of the gap can be viewed as a difficulty level of the problem,
since the higher the value of the gap, the clearer the separation between the two populations (low-risk and
high-risk patients).

The results measured both by AUC(t) and C-index lead to the same conclusion: the C-mix model almost always
leads to the best results, even under model misspecification, i.e. when data are generated according to the CURE
or Cox PH model. Namely, under CURE simulations, C-mix and CURE give very close results, with a strong
improvement over Cox PH. Under Cox PH and C-mix simulations, C-mix outperforms both Cox PH and CURE.
Surprisingly enough, this exhibits a strong generalization property of the C-mix model, over both Cox PH and
CURE. Note that this phenomenon is particularly strong for small gap values, while with an increasing gap (or an
increasing sample size n), all procedures barely exhibit the same performance. It can be first explained by the
nonparametric baseline function in the Cox PH model, and second by the fact that unlike the Cox PH model, the
C-mix and CURE models exploit directly the mixture aspect.

Finally, Figure 2 gives the results concerning the stability of the variable selection aspect of the competing
models. The C-mix model appears to be the best method as well considering the variable selection aspect, even
under model misspecification. We notice a general behaviour of our method that we describe in the following,
which is also shared by the CURE model only when the data are simulated according to itself, and which justifies
the log scale for the gap to clearly distinguish the three following phases. For very small gap values (less than 0.2),
the confusion rate rcf does not impact the variable selection performances, since adding very small gap values to
the covariates is almost imperceptible. This means that the resulting AUC is the same when there is no confusion
factors and when rcf¼ 1 (that is when there are half active covariates and half confusion ones). For medium gap
values (saying between 0.2 and 1), the confusion factors are more difficult to identify by the model as there number
goes up (that is when rcf increases), which is precisely the confusion factors effect we expect to observe. Then, for
large gap values (more than 1), the model succeeds in vanishing properly all confusion factors since the two
subpopulations are more clearly separated regarding the covariates, and the problem becomes naturally easier as
the gap increases.

5 Application to genetic data

In this section, we apply our method on three genetic datasets and compare its performance to the Cox PH and
CURE models. We extracted normalized expression data and survival times Y in days from breast invasive
carcinoma (BRCA, n¼ 1211), glioblastoma multiforme (GBM, n¼ 168) and kidney renal clear cell carcinoma
(KIRC, n¼ 605).

Bussy et al. 9
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These datasets are available on The Cancer Genome Atlas (TCGA) platform, which aims at accelerating the
understanding of the molecular basis of cancer through the application of genomic technologies, including large-
scale genome sequencing. For each patient, 20,531 covariates corresponding to the normalized gene expressions
are available. We randomly split all datasets into a training set and a test set (30% for testing, cross-validation is
done on the training).

We compare the three models both in terms of C-index and AUC(t) on the test sets. Inference of the Cox PH
model fails in very high dimension on the considered data with the glmnet package. We therefore make a first
variable selection (screening) among the 20,531 covariates. To do so, we compute the C-index obtained by
univariate Cox PH models (not to confer advantage to our method), namely Cox PH models fitted on each
covariate separately. We then ordered the obtained 20,531 C-indexes by decreasing order and extracted the top
d¼ 100, d¼ 300 and d¼ 1000 covariates. We then apply the three methods on the obtained covariates.

The results in terms of AUC(t) curves are given in Figure 3 for d¼ 300, where we distinguish the C-mix model
with geometric or Weibull distributions.

Then it appears that the performances are very close in terms of AUC(t) between the C-mix model with
geometric or Weibull distributions, which is also validated if we compare the corresponding C-index for these
two parameterizations in Table 3.

Similar conclusions in terms of C-index, AUC(t) and computing time can be made on all considered datasets
and for any choice of d. Hence, as already mentioned in Section 3.3, we only concentrate on the geometric
parameterization for the C-mix model. The results in terms of C-index are then given in Table 4.

Figure 1. Average (bold lines) and standard deviation (bands) for AUC(t) on 100 simulated data with n¼ 100, d¼ 30 and rc¼ 0.5.
Rows correspond to the model simulated (cf. Section 4.2) while columns correspond to different gap values (the problem becomes
more difficult as the gap value decreases). Surprisingly, our method gives almost always the best results, even under model
misspecification (see Cox PH and CURE simulation cases on the second and third rows).

Bussy et al. 11



A more direct approach to compare performances between models, rather than only focus on the marker order
aspect, is to predict the survival of patients in the test set within a specified short time. For the Cox PH model, the
survival P½Ti 4 tjXi ¼ xi& for patient i in the test set is estimated by

ŜiðtjXi ¼ xiÞ ¼ ½Ŝcox
0 ðtÞ&

expðx>i #̂
coxÞ

where Ŝcox
0 is the estimated survival function of baseline population (x¼ 0) obtained using the Breslow estimate of

"0.
24 For the CURE or the C-mix models, it is naturally estimated by

ŜiðtjXi ¼ xiÞ ¼ !#̂ðxiÞŜ1ðtÞ þ ð1! !#̂ðxiÞÞŜ0ðtÞ

where Ŝ0 and Ŝ1 are the Kaplan–Meier estimators33 of the low- and high-risk subgroups respectively, learned by
the C-mix or CURE models (patients with !#̂ðxiÞ4 0:5 are clustered in the high-risk subgroup, others in the low-

Figure 2. Average AUC calculated according to Section 4.2 and obtained after 100 simulated data for each (gap, rcf) configuration
(a grid of 20x20 different configurations is considered). A gaussian interpolation is then performed to obtain smooth figures. Note that
the gap values are log-scaled. Rows correspond to the model simulated while columns correspond to the model under consideration
for the variable selection evaluation procedure. Our method gives the best results in terms of variable selection, even under model
misspecification.
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risk one). The corresponding estimated survival curves are given in Figure 4. We observe that the subgroups
obtained by the C-mix are more clearly separated in terms of survival than those obtained by the CURE model.

For a given time e, one can now use Ŝið/jXi ¼ xiÞ for each model to predict whether or not Ti> e on the test set,
resulting on a binary classification problem that we assess using the classical AUC score. By moving e within the
first years of follow-up, since it is the more interesting for physicians in practice, one obtains the curves given in
Figure 5.

Let us now focus on the runtime comparison between the models in Table 5. We choose the BRCA dataset to
illustrate this point, since it is the larger one (n¼ 1211) and consequently provides more clearer time-consuming
differences.

We also notice that despite using the same QNEM algorithm steps, our CURE model implementation is slower
since convergence takes more time to be reached, as shows Figure 6.

In Section 7 of Supplementary Material, the top 20 selected genes for each cancer type and for all models are
presented (for d¼ 300). Literature on those genes is mined to estimate two simple scores that provide information
about how related they are to cancer in general first, and second to cancer plus the survival aspect, according to
scientific publications. It turns out that some genes have been widely studied in the literature (e.g. FLT3 for the
GBM cancer), while for others, very few publications were retrieved (e.g. TRMT2B still for the GBM cancer).

Figure 3. AUC(t) comparison on the three TCGA datasets considered, for d¼ 300. We observe that C-mix model leads to the best
results (higher is better) and outperforms both Cox PH and CURE in all cases. Results are similar in terms of performances for the
C-mix model with geometric or Weibull distributions. (a) BRCA; (b) GBM; (c) KIRC.

Table 4. C-index comparison on the three TCGA datasets considered.

Cancer
BRCA GBM KIRC

Model C-mix CURE Cox PH C-mix CURE Cox PH C-mix CURE Cox PH

d 100 0.792 0.764 0.705 0.826 0.695 0.571 0.768 0.732 0.716
300 0.782 0.753 0.723 0.849 0.697 0.571 0.755 0.691 0.698
1000 0.817 0.613 0.577 0.775 0.699 0.592 0.743 0.690 0.685

In all cases, C-mix gives the best results (in bold).

Table 3. C-index comparison between geometric or Weibull parameterizations for the C-mix
model on the three TCGA datasets considered (with d¼ 300).

Parameterization Geometric Weibull

Cancer BRCA 0.782 0.780
GBM 0.755 0.754
KIRC 0.849 0.835

In all cases, results are very similar for the two distribution choices.

Bussy et al. 13



(a)

(b)

(c)

Figure 4. Estimated survival curves per subgroups (blue for low risk and red for high risk) with the corresponding 95% confidence
bands for the C-mix and CURE models: BRCA in column (a), GBM in column (b) and KIRC in column (c).

(a) (b) (c)

Figure 5. Comparison of the survival prediction performances between models on the three TCGA datasets considered
(still with d¼ 300). Performances are, once again, much better for the C-mix over the two other standard methods. (a) BRCA;
(b) GBM; (c) KIRC.
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6 Concluding remarks

In this paper, a mixture model for censored durations (C-mix) has been introduced, and a new efficient estimation
algorithm (QNEM) has been derived, that considers a penalization of the likelihood in order to perform covariate
selection and to prevent overfitting. A strong improvement is provided over the CURE and Cox PH approaches
(both penalized by the Elastic-Net), which are, by far, the most widely used for biomedical data analysis. But more
importantly, our method detects relevant subgroups of patients regarding their risk in a supervised learning
procedure, and takes advantage of this identification to improve survival prediction over more standard
methods. An extensive Monte Carlo simulation study has been carried out to evaluate the performance of the
developed estimation procedure. It showed that our approach is robust to model misspecification. The proposed
methodology has then been applied on three high-dimensional datasets. On these datasets, C-mix outperforms
both Cox PH and CURE, in terms of AUC(t), C-index or survival prediction. Moreover, many gene expressions
pinpointed by the feature selection aspect of our regularized method are relevant for medical interpretations (e.g.
NFKBIA, LEF1, SUSD3 or FAIM3 for the BRCA cancer, see Zhou et al.34 or Oskarsson et al.35), whilst others
must involve further investigations in the genetic research community. Finally, our analysis provides, as a by-
product, a new robust implementation of CURE models in high dimension.

Software

All the methodology discussed in this paper is implemented in Python. The code is available from https://github.com/

SimonBussy/C-mix in the form of annotated programs, together with a notebook tutorial.

Figure 6. Convergence comparison between C-mix and CURE models through the QNEM algorithm. The relative objective is here
defined at iteration l as ð‘pen

n ð%ðl ÞÞ ! ‘pen
n ð%̂ÞÞ=‘pen

n ð%̂Þ, where %̂ is naturally the parameter vector returned at the end of the QNEM
algorithm, that is once convergence is reached. Note that both iteration and relative objective axis are log-scaled for clarity. We
observe that convergence for the C-mix model is dramatically faster than the CURE one.

Table 5. Computing time comparison in second on the BRCA dataset (n¼ 1211), with corresponding
C-index in parenthesis and best result in bold in each case.

Model C-mix CURE Cox PH

d 100 0.025 (0.792) 1.992 (0.764) 0.446 (0.705)
300 0.027 (0.782) 2.343 (0.753) 0.810 (0.723)
1000 0.139 (0.817) 12.067 (0.613) 2.145 (0.577)

This times concern the learning task for each model with the best hyper parameter selected after the cross validation
procedure. It turns out that our method is by far the fastest in addition to providing the best performances. In particular,
the QNEM algorithm is faster than the R implementation glmnet.
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1 Numerical details

Let us first give some details about the starting point of Algorithm 1. For all k 2 {0, . . . ,K � 1}, we
simply use �(0)

k

as the zero vector, and for ↵(0)
k

we fit a censored parametric mixture model on (y
i

)

i=1,...,n

with an EM algorithm.
Concerning the V-fold cross validation procedure for tuning �

k

, we use V = 5 and the cross-validation
metric is the C-index. Let us precise that we choose �

k

as the largest value such that error is within one
standard error of the minimum, and that a grid-search is made during the cross-validation on an interval
[�max

k

⇥ 10

�4, �max
k

], with �max
k

the interval upper bound computed in the following.
Let us consider the following convex minimization problem resulting from Equation (8), at a given

step l:
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2 argmin
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(l)
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Regarding the grid of candidate values for �
k

, we consider �1
k

 �2
k

 · · ·  �max
k

. At �max
k

, all
coefficients ˆ�

k,j

for j 2 {1, . . . , d} are exactly zero. The KKT conditions2 claim that
8
>>>><

>>>>:

@R
(l)
n,k

(

ˆ�
k

)

@�
j

= �
k

(1� ⌘) sgn( ˆ�
k,j

) + ⌘ ˆ�
k,j

8j 2 ˆA
k

�����
@R

(l)
n,k

(

ˆ�
k

)

@�
j

����� < �
k

(1� ⌘) 8j /2 ˆA
k

,

where ˆA
k

=

�
j 2 {1, . . . , d} :

ˆ�
k,j

6= 0

 
is the active set of the ˆ�

k

estimator, and for all
x 2 R \ {0}, sgn(x) = 1{x>0} � 1{x<0}. Then, using (10), one obtains

8j 2 {1, . . . , d}, ˆ�
k,j

= 0 ) 8j 2 {1, . . . , d},

�����n
�1

nX

i=1

q
(l)
i,k

1

2

x
ij

����� < �
k

(1� ⌘)

Hence, we choose the following upper bound for the grid search interval during the cross-validation
procedure

�max
k

=

1

2n(1� ⌘)
max

j2{1,...,d}

nX

i=1

|x
ij

|.

2 Proof of Theorem 1

Let us denote D =

P
K�1
k=0 d

k

+Kd the number of coordinates of ✓ so that one can write

✓ = (✓1, . . . , ✓D) = (↵0, . . . ,↵K�1,�0, . . . ,�K�1)
> 2 ⇥ ⇢ RD.

We denote ¯✓ a cluster point of the sequence S = {✓(l); l = 0, 1, 2, . . . } generated by the QNEM
algorithm, i.e. 8" > 0, V

"

(

¯✓) \ S \ {¯✓} 6= ?, with V
"

(

¯✓) the epsilon-neighbourhood of ¯✓. We want to
prove that ¯✓ is a stationary point of the non-differentiable function ✓ 7! `pen

n

(✓), which means6:

8r 2 RD, ⌫pen
0

n

(

¯✓; r) = lim
⇣!0

`pen
n

(

¯✓ + r⇣)� `pen
n

(

¯✓)

⇣
� 0. (1)

The proof is inspired by Bertsekas 1 . The conditional density of the complete data given the observed
data can be written

k(✓) =
exp

�
`comp
n

(✓)
�

exp

�
`
n

(✓)
� .

Then, one has
`pen
n

(✓) = Qpen
n

(✓, ✓(l))�H(✓, ✓(l)), (2)

where we introduced H(✓, ✓(l)) = E
✓

(l) [log

�
k(✓)

�
]. The key argument relies on the following facts that

hold under Hypothesis (3) and (4):

• Qpen
n

(✓, ✓(l)) is continuous in ✓ and ✓(l),
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• for any fixed ✓(l) (at the (l + 1)-th M step of the algorithm), Qpen
n,✓

(l)(✓) is convex in ✓ and strictly
convex in each coordinate of ✓.

Let r 2 RD be an arbitrary direction, then Equations (1) and (2) yield

`pen 0

n

(

¯✓; r) = Qpen 0

n,✓̄

(

¯✓; r)� h5H
✓̄

(

¯✓), ri.

Hence, by Jensen’s inequality we get

8✓ 2 ⇥, H(✓(l), ✓(l))  H(✓, ✓(l)), (3)

and so ✓ 7! H
✓̄

(✓) is minimized for ✓ = ✓(l), then we have 5H
✓̄

(

¯✓) = 0. It remains to prove that
Qpen 0

n,✓̄

(

¯✓; r) � 0. Let us focus on the proof of the following expression

8x1, Q
pen
n,✓̄

(

¯✓)  Qpen
n,✓̄

(x1, ¯✓2, . . . , ¯✓D). (4)

Denoting w
(l)
i

= (✓
(l+1)
1 , . . . , ✓

(l+1)
i

, ✓
(l)
i+1, . . . , ✓

(l)
D

) and from the definition of the QNEM algorithm, we
first have

Qpen
n,✓

(l)(✓
(l)
) � Qpen

n,✓

(l)(w
(l)
1 ) � · · · � Qpen

n,✓

(l)(w
(l)
D�1) � Qpen

n,✓

(l)(✓
(l+1)

), (5)

and second for all x1, Q
pen
n,✓

(l)(w
(l)
1 )  Qpen

n,✓

(l)(x1, ✓
(l)
2 , . . . , ✓

(l)
D

). Consequently, if (w(l)
1 )

l2N converges

to ¯✓, one obtains (4) by continuity taking the limit l ! 1. Let us now suppose that (w(l)
1 )

l2N does not
converge to ¯✓, so that (w(l)

1 � ✓(l))
l2N does not converge to 0. Or equivalently: there exists a subsequence

(w
(lj)
1 � ✓(lj))

j2N not converging to 0.

Then, denoting  (lj)
= kw(lj)

1 � ✓(lj)k2, we may assume that there exists ¯ > 0 such that
8j 2 N, (lj) > ¯ by removing from the subsequence (w(lj)

1 � ✓(lj))
j2N any terms for which  (lj)

= 0.

Let s(lj)1 =

w

(lj)

1 �✓(lj)

 

(lj)
, so that (s(lj)1 )

j2N belongs to a compact set (ks(lj)1 k = 1) and then converges to

s̄1 6= 0. Let us fix some ✏ 2 [0, 1], then 0  ✏ ¯   (lj). Moreover, ✓(lj) + ✏ ¯ s
(lj)
1 lies on the segment

joining ✓(lj) and w
(lj)
1 , and consequently belongs to ⇥ since ⇥ is convex. As Qpen

n,✓

(lj)
(.) is convex and

w
(lj)
1 minimizes this function over all values that differ from ✓(lj) along the first coordinate, one has

Qpen
n,✓

(lj)
(w

(lj)
1 ) = Qpen

n,✓

(lj)
(✓(lj) +  (lj)s

(lj)
1 )

 Qpen
n,✓

(lj)
(✓(lj) + ✏ ¯ s

(lj)
1 )

 Qpen
n,✓

(lj)
(✓(lj)). (6)
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We finally obtain

0  Qpen
n,✓

(lj)
(✓(lj))�Qpen

n,✓

(lj)
(✓(lj) + ✏ ¯ s

(lj)
1 )


(6)

Qpen
n,✓

(lj)
(✓(lj))�Qpen

n,✓

(lj)
(w

(lj)
1 )


(5)

Qpen
n,✓

(lj)
(✓(lj))�Qpen

n,✓

(lj)
(✓(lj+1)

)


(2)
`pen
n

(✓(lj))� `pen
n

(✓(lj+1)
) +H

✓

(lj)(✓
(lj)

)�H
✓

(lj)(✓
(lj+1)

)

| {z }

(3)
0

 `pen
n

(✓(lj))� `pen
n

(✓(lj+1)
) �!
j!1

`pen
n

(

¯✓)� `pen
n

(

¯✓) = 0

By continuity of the function Qpen
n

(x, y) in both x and y and taking the limit j ! 1, we conclude
that 8✏ 2 [0, 1], Qpen

n,✓̄

(

¯✓ + ✏ ¯ s̄1) = Qpen
n,✓̄

(

¯✓). Since ¯ s̄1 6= 0, this contradicts the strict convexity of

x1 7! Qpen
n,✓

(l)(x1, ✓
(l)
2 , . . . , ✓

(l)
D

) and establishes that (w(l)
1 )

l2N converges to ¯✓.
Hence (4) is proved. Repeating the argument to each coordinate, we deduce that ¯✓ is a coordinate-

wise minimum, and finally conclude that `pen 0

n

(

¯✓; r) � 0

6. Thus, ¯✓ is a stationary point of the criterion
function defined in Equation (4).

⇤

3 Additional comparisons

In this section, we consider two extra simulation settings. First, we consider the case d � n, which is
the setting of our application on TCGA datasets. Then, we add another simulation case under the C-mix
model using gamma distributions instead of geometric ones. The shared parameters in the two cases are
given in Table 1.

Table 1. Hyper-parameters choice for simulation.

⌘ n s r
cf

⌫ ⇢ ⇡0 gap r
c

0.1 250 50 0.5 1 0.5 0.75 0.1 0.5

3.1 Case d � n

Data is here generated under the C-mix model with (↵0,↵1) = (0.1, 0.5) and d 2 {200, 500, 1000}.
The 3 models are trained on a training set and risk prediction is made on a test set. We also compare the
3 models when a dimension reduction step is performed at first, using two different screening methods.
The first is based on univariate Cox PH models, namely the one we used in Section 5 of the paper (in our
application to genetic data), where we select here the top 100 variables. This screening method is hence
referred as “top 100” in the following. The second is the iterative sure independence screening (ISIS)
method introduced in Fan et al. 3 , using the R package SIS5. Prediction performances are compared in
terms of C-index, while variable selection performances are compared in terms of AUC using the method
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detailed in Section 5, and we also add two more classical scores3 for comparison: the median `1 and
squared `2 estimation errors, given by k� � ˆ�k1 and k� � ˆ�k2 respectively. Results are given in Table 2.

Table 2. Average performances and standard deviation (in parenthesis) on 100 simulated data for different
dimension d and different screening method (including no screening). For each configuration, the best result
appears in bold.

d screening model C-index AUC k� � ˆ�k1 k� � ˆ�k2
C-mix 0.716 (0.062) 0.653 (0.053) 51.540 (0.976) 7.254 (0.129)

none CURE 0.701 (0.067) 0.625 (0.052) 51.615 (1.275) 7.274 (0.122)
Cox PH 0.672 (0.089) 0.608 (0.063) 199.321 (0.490) 99.679 (0.229)

C-mix 0.737 (0.057) 0.682 (0.060) 52.297 (1.351) 7.381 (0.161)
200 top 100 CURE 0.714 (0.060) 0.651 (0.050) 52.366 (1.382) 7.386 (0.134)

Cox PH 0.692 (0.089) 0.630 (0.070) 52.747 (0.530) 7.946 (0.093)

C-mix 0.691 (0.049) 0.570 (0.011) 55.493 (1.624) 8.083 (0.394)
ISIS CURE 0.685 (0.050) 0.571 (0.009) 54.461 (1.112) 7.848 (0.211)

Cox PH 0.690 (0.049) 0.573 (0.011) 48.186 (0.366) 6.840 (0.037)
C-mix 0.710 (0.058) 0.642 (0.057) 51.627 (0.994) 7.277 (0.106)

none CURE 0.675 (0.057) 0.610 (0.052) 51.920 (2.411) 7.252 (0.138)
Cox PH 0.624 (0.097) 0.567 (0.057) 499.610 (0.396) 157.997 (0.117)

C-mix 0.735 (0.050) 0.694 (0.057) 53.161 (1.708) 7.433 (0.152)
500 top 100 CURE 0.703 (0.054) 0.649 (0.042) 53.419 (1.818) 7.387 (0.133)

Cox PH 0.682 (0.087) 0.633 (0.074) 49.465 (0.428) 6.937 (0.094)
C-mix 0.677 (0.051) 0.559 (0.013) 55.229 (1.831) 7.974 (0.375)

ISIS CURE 0.671 (0.051) 0.559 (0.015) 54.187 (1.244) 7.754 (0.227)
Cox PH 0.675 (0.051) 0.560 (0.016) 48.574 (0.614) 6.870 (0.054)
C-mix 0.694 (0.063) 0.633 (0.066) 51.976 (1.921) 7.272 (0.141)

none CURE 0.657 (0.067) 0.598 (0.057) 52.078 (2.414) 7.236 (0.138)
Cox PH 0.579 (0.092) 0.541 (0.050) 999.768 (0.316) 223.558 (0.067)

C-mix 0.726 (0.050) 0.693 (0.040) 53.813 (1.592) 7.149 (0.115)
1000 top 100 CURE 0.685 (0.061) 0.653 (0.037) 54.146 (1.596) 7.383 (0.090)

Cox PH 0.688 (0.076) 0.668 (0.064) 52.838 (0.558) 6.909 (0.077)
C-mix 0.653 (0.062) 0.553 (0.017) 53.760 (1.949) 7.269 (0.395)

ISIS CURE 0.652 (0.061) 0.554 (0.015) 53.928 (1.288) 7.687 (0.236)
Cox PH 0.652 (0.063) 0.553 (0.015) 51.826 (0.606) 6.895 (0.054)

The C-mix model obtains constantly the best C-index performances in prediction, for all settings.
Moreover, the “top 100” screening method improve the 3 models prediction power, while ISIS method
only improve the Cox PH model prediction power. As expected, ISIS method significantly improve
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the Cox PH model in terms of variable selection and obtains the best results for d = 500 and 1000.
Conclusions in terms of variable selection are the same relatively to the AUC, `1 and squared `2
estimation errors. Then, in the paper, we only focus on the AUC method detailed in Section 5. Note
that the Cox PH model obtains the best results in terms of variable selection with the two screening
method, since both screening methods are based on the Cox PH model. Thus, one could improve the
C-mix variable selection performances by simply use the “top 100” screening method with univariate C-
mix, which was not the purpose of the section. Finally, the results obtained justify the screening strategy
we use in Section 5 of the paper.

3.2 Case of times simulated with a mixture of gammas

We consider here the case where data is simulated under the C-mix model with gamma distributions
instead of geometric ones, not to confer to the C-mix prior information on the underlying survival
distributions. Hence, one has

f
k

(t; ◆
k

, ⇣
k

) =

t◆k�1e
� t

⇣k

⇣◆k
k

�(◆
k

)

,

with ◆
k

the shape parameter, ⇣
k

the scale parameter and � the gamma function. For the simulations, we
choose (◆0, ⇣0) = (5, 3) and (◆1, ⇣1) = (1.5, 1), so that density and survival curves are comparable with
those in Section 3.1, as illustrates Figure 1 below.
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Figure 1. Comparison of the density and survival curves of geometrics laws used in Section 3.1 and those
used in this section. The supports are then relatively close.

We also add another class of model for comparison in this context: the accelerated failure time
model7 (AFT); which can be viewed as a parametric Cox model. Indeed, the semi-parametric property
of the Cox PH model could lower its performances compared to completely parametric models such
as C-mix and CURE ones, especially in simulations where n is relatively small. We use the R
package AdapEnetClass that implements AFT in a high dimensional setting using two Elastic-Net
regularization approaches4: the adaptive Elastic-Net (denoted AEnet in the following) and the weighted
Elastic-Net (denoted WEnet in the following). Results are given in Table 3 using the same metrics that in
Section 3.1.
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Table 3. Average performances and standard deviation (in parenthesis) on 100 simulated data for different
dimension d with the times simuted with a mixture of gammas. For each configuration, the best result appears
in bold.

d model C-index AUC k� � ˆ�k1 k� � ˆ�k2
C-mix 0.701 (0.090) 0.659 (0.083) 51.339 (2.497) 7.186 (0.281)
CURE 0.682 (0.058) 0.609 (0.037) 51.563 (1.071) 7.263 (0.097)

200 Cox PH 0.664 (0.085) 0.605 (0.065) 199.337 (0.493) 99.686 (0.231)
AEnet 0.631 (0.062) 0.577 (0.046) 54.651 (2.328) 7.713 (0.426)
WEnet 0.620 (0.061) 0.544 (0.030) 58.861 (4.298) 8.568 (0.851)

C-mix 0.704 (0.100) 0.651 (0.084) 52.416 (2.311) 7.357 (0.231)
CURE 0.687 (0.057) 0.609 (0.038) 52.041 (1.667) 7.262 (0.096)

500 Cox PH 0.621 (0.101) 0.559 (0.057) 499.677 (0.381) 158.017 (0.113)
AEnet 0.604 (0.061) 0.557 (0.030) 55.126 (1.693) 7.616 (0.316)
WEnet 0.594 (0.065) 0.535 (0.021) 59.736 (2.777) 8.438 (0.626)

C-mix 0.684 (0.097) 0.638 (0.088) 52.557 (3.746) 7.331 (0.277)
CURE 0.658 (0.057) 0.603 (0.044) 53.120 (3.853) 7.273 (0.165)

1000 Cox PH 0.580 (0.092) 0.538 (0.053) 999.785 (0.334) 223.561 (0.071)
AEnet 0.586 (0.058) 0.541 (0.024) 54.597 (1.312) 7.495 (0.299)
WEnet 0.583 (0.054) 0.525 (0.017) 58.746 (2.260) 8.150 (0.551)

Hence, the C-mix model still gets the best results, both in terms of risk prediction and variable
selection. Note that AFT with AEnet and WEnet outperforms the Cox model regularized by the Elastic-
Net when d = 1000, but is still far behind the C-mix performances.

4 Tuning of the censoring level

Suppose that we want to generate data following the procedure detailed in Section 4.2, in the C-mix
with geometric distributions or CURE case. The question here is to choose ↵

c

for a desired censoring
rate r

c

, and for some fixed parameters ↵0, ↵1 and ⇡0. We write

1� r
c

= E[�] =
+1X

k=0

+1X

j=1

⇥
↵0(1� ↵0)

j�1⇡0 + ↵1(1� ↵1)
j�1

(1� ⇡0)
⇤
↵
c

(1� ↵
c

)

j+k�1

=

↵0⇡0
⇥
1� (1� ↵1)(1� ↵

c

)

⇤
+ ↵1(1� ⇡0)

⇥
1� (1� ↵0)(1� ↵

c

)

⇤
⇥
1� (1� ↵0)(1� ↵

c

)

⇤⇥
1� (1� ↵1)(1� ↵

c

)

⇤ .

Then, if we denote r̄
c

= 1� r
c

, ↵̄
c

= 1� ↵
c

, ↵̄0 = 1� ↵0, ↵̄1 = 1� ↵1 and ⇡̄0 = 1� ⇡0, we can
choose ↵

c

for a fixed r
c

by solving the following quadratic equation

(r̄
c

↵̄0 ↵̄1)↵̄
2
c

+

�
↵0⇡0↵̄1 + ↵1⇡̄0 ↵̄0 � r̄

c

(↵̄1 + ↵̄0)
�
↵̄
c

+ (r
c

� ↵0⇡0 � ↵1⇡̄0) = 0,

for which one can prove that there is always a unique root in (0, 1).
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5 Details on variable selection evaluation

Let us recall that the true underlying � used in the simulations is given by

� = (⌫, . . . , ⌫| {z }
s

, 0, . . . , 0) 2 Rd,

with s the sparsity parameter, being the number of “active” variables. To illustrate how we assess the
variable selection ability of the considered models, we give in Figure 2 an example of � with d = 100,
⌫ = 1 and s = 30. We simulate data according to this vector (and to the C-mix model) with two different
(gap, r

cf

) values: (0.2, 0.7) and (1, 0.3). Then, we give the two corresponding estimated vectors ˆ�
learned by the C-mix on this data.

Denoting ˜�
i

= |ˆ�
i

|/max
�
|ˆ�

i

|, i 2 {1, . . . , d}
 

, we consider that ˜�
i

is the predicted probability that the
true coefficient �

i

corresponding to i-th covariate equals ⌫. Then, we are in a binary prediction setting
where each ˜�

i

predicts �
i

= ⌫ for all i 2 {1, . . . , d}. We use the resulting AUC to assess the variable
selection obtained through ˆ�.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

�

0 20 40 60 80 100
0.0

0.1

0.2

0.3

�̂1 AUC = 0.73

confusion factors

0 20 40 60 80 100
0.0

0.1

0.2

0.3

�̂2 AUC = 0.98

confusion factors

Figure 2. Illustration of the variable selection evaluation procedure. �̂1 is learned by the C-mix according to
data generated with � and (gap, rcf ) = (0.2, 0.7). We observe that using this gap value to generate data,
the model does not succeed to completely vanish the confusion variables (being 70% of the non-active
variables, represented in green color), while all other non-active variables are vanished. The corresponding
AUC scrore of feature selection is 0.73. �̂2 is learned by the C-mix according to data generated with � and
(gap, rcf ) = (1, 0.3). The confusion variables are here almost all detected and the corresponding AUC scrore
of feature selection is 0.98.
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6 Extended simulation results

Table 4 bellow presents the results of simulation for the configurations (d, r
c

) = (30, 0.2), (100,0.2)
and (100,0.5).

7 Selected genes per model on the TCGA datasets

In Tables 5, 6 and 7 hereafter, we detail the 20 most significant covariates for each model and
for the three considered datasets. For each selected gene, we precise the corresponding effect in
percentage, where we define the effect of covariate j as 100⇥ |�

j

| / k�k1 %. Then, to explore
physiopathological and epidemiological background that could explain the role of the selected genes
in cancer prognosis, we search in MEDLINE (search performed on the 15th september 2016 at
http://www.nlm.nih.gov/bsd/pmresources.html) the number of publications for different requests: (1)

selected gene name (e.g. UBTF), (2) selected gene name and cancer (e.g. UBTF AND cancer[MesH]),
(3) selected gene name and cancer survival (e.g. UBTF AND cancer[MesH] AND survival). We then
estimate f1 defined here as the frequency of publication dealing with cancer among all publications
for this gene, i.e. (2)/(1), and f2 defined as the frequency of publication dealing with survival among
publications dealing with cancer, i.e. (3)/(2). A f1 (respectively f2) close to 1 just informs that the
corresponding gene is well known to be highly related to cancer (respectively to cancer survival) by the
genetic research community. Note that the CURE and Cox PH models tend to have a smaller support
than the C-mix one, since they tend to select less than 20 genes.
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Table 5. Top 20 selected genes per model for the BRCA cancer, with the corresponding effects. Dots (·) mean
zeros.

Genes Model effects (%) MEDLINE data

C-mix CURE Cox PH (1) f1 f2
PHKB|5257 9.8 7.2 4.3 1079 0.20 0.37
UBTF|7343 7.8 5.8 21.7 14 0,21 ·

LOC100132707 5.7 3.9 18.8 · · ·
CHTF8|54921 4.4 · 7.2 1 1 ·
NFKBIA|4792 4.3 1.9 3.4 247 0.27 0.22

EPB41L4B|54566 3.6 2.6 · 19 0.47 0.22
UGP2|7360 3.6 2.2 · 19 0.15 1

DPY19L2P1|554236 3.3 · 3.3 1 · ·
TRMT2B|79979 3.3 2.2 · · · ·
HSD3B7|80270 3.2 1.9 7.6 19 0.05 ·

DLAT|1737 3.2 2.9 · 75 0.16 0.16
NIPAL2|79815 2.8 1.9 · · · ·
FGD3|89846 2.7 · 5.9 10 0.2 0.5
JRKL|8690 2.7 2.6 · 2 · ·

ZBED1|9189 2.5 2.4 · 6 · ·
KCNJ11|3767 2.3 · · 647 0.02 ·
WAC|51322 2.0 3.2 · 260 0.05 0.25
FLT3|2322 2.0 · · 4435 0.55 0.42
STK3|6788 1.9 2.3 · 107 0.32 0.15

PAOX|196743 1.9 1.9 · 18 0.11 ·
C14orf68|283600 · 3.3 · · · ·

LIN7C|55327 · 3.1 · 36 0.06 ·
PNRC2|55629 · 2.1 · 15 · ·
SLC39A7|7922 · 1.8 · 22 0.18 ·
MAGT1|84061 · 1.7 · 50 0.12 0.17

IRF2|3660 · · 10.9 310 0.21 0.14
PELO|53918 · · 7.0 265 0.08 0.04

SUSD3|203328 · · 5.3 5 0.6 0.67
LEF1|51176 · · 3.2 940 0.29 0.23
CPA4|51200 · · 1.4 18 0.22 ·
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Table 6. Top 20 selected genes per model for the GBM cancer, with the corresponding effects. Dots (·) mean
zeros.

Genes Model effects (%) MEDLINE data

C-mix CURE Cox PH (1) f1 f2
ARMCX6|54470 4.9 · 23.6 1 · ·
FAM35A|54537 4.4 · 21.8 · · ·

CLEC4GP1|440508 3.9 5.1 2.8 · · ·
INSL3|3640 3.6 2.7 1.7 404 0.06 0.12
REM1|28954 3.2 · · 54 0.05 0.66

FAM35B2|439965 3.0 · · · · ·
TSPAN4|7106 2.7 · · 16 0.31 0.4
AP3M1|26985 2.7 · · 2 0.5 ·

PXN|5829 2.6 · 15.4 891 0.25 0.18
PDE4C|5143 2.5 · · 67 0.06 0.25

PGBD5|79605 2.5 · · 5 0.25 ·
NRG1|3084 2.4 · 18.5 1207 0.12 0.29
LOC653786 2.2 · · · · ·

FERMT1|55612 2.1 · · 115 0.19 0.18
PLD3|23646 2.0 · · 38 0.10 0.25

MIER1|57708 1.9 · 2.1 16 0.31 ·
UTP14C|9724 1.8 · · 5 0.4 ·

AZU1|566 1.8 · · 15 0.2 0.33
KCNC4|3749 1.7 · · 30 0.1 0.33

FAM35B|414241 1.6 · · · · ·
CRELD1|78987 · 32.2 · 32 0.03 ·
HMGN5|79366 · 21.2 · 41 0.54 0.32

PNLDC1|154197 · 12.2 · 3 · ·
LOC493754 · 9.8 · · · ·

KIAA0146|23514 · 8.7 · 3 0.67 ·
TMCO655374 · 3.6 · 4 0.25 ·
ABLIM1|3983 · 2.1 · 20 0.2 ·

OSBPL11|114885 · 1.0 · · · ·
TRAPPC1|58485 · 0.9 · 4 0.75 ·
TBCEL|219899 · 0.5 · 7 0.28 ·
RPL39L|116832 · · 8.8 10 0.7 0.14

GALE|2582 · · 3.5 540 0.02 ·
BBC3|27113 · · 0.7 561 0.54 0.38
DUSP6|1848 · · 0.6 307 0.30 0.22
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Table 7. Top 20 selected genes per model for the KIRC cancer, with the corresponding effects. Dots (·) mean
zeros.

Genes Model effects (%) MEDLINE data

C-mix CURE Cox PH (1) f1 f2
BCL2L12|83596 8.6 2.7 · 64 0.72 0.39

MARS|4141 7.5 6.9 7.2 577 0.02 0.1
NUMBL|9253 7.2 28.6 3.3 56 0.14 0.25
CKAP4|10970 6.1 10.6 22.3 825 0.63 0.11

HN1|51155 5.8 3.8 · 13 0.38 0.2
GIPC2|54810 5.7 · · 15 0.6 0.11
NPR3|4883 5.2 · · 105 0.05 0.6

GBA3|57733 5.0 · · 19 0.10 ·
SLC47A1|55244 5.0 · · 70 0.06 ·
ALDH3A2|224 4.7 · 2.6 52 0.06 0.33

CCNF|899 4.2 2.8 · 50 0.24 0.08
EHHADH|1962 3.9 · · 90 0.1 ·

SGCB|6443 3.3 · · 30 · ·
GFPT2|9945 2.7 1.3 · 18 0.22 0.25

PPAP2B|8613 2.3 · · 29 0.17 0.2
MBOAT7|79143 1.9 13.8 11.1 15 · ·

OSBPL1A|114876 1.5 · · 7 · ·
C16orf57|79650 1.2 · · 26 · ·
ATXN7L3|56970 0.9 2.5 · 9 · ·
C16orf59|80178 0.8 · · 3 0.66 ·
STRADA92335 · 20.7 53.5 9 · ·
ABCC10|89845 · 3.9 · 80 0.32 0.23

MDK|4192 · 1.2 · 789 0.38 0.23
C16orf59|80178 · 1.1 · 3 0.6 ·
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