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ABSTRACT

Learning in high-dimensional MDPs with complex state dynamics became possible
with the progress achieved in reinforcement learning research. At the same time,
deep neural policies have been observed to be highly unstable with respect to the
minor variations in their state space, causing volatile and unpredictable behaviour.
To alleviate these volatilities, a line of work suggested techniques to cope with
this problem via explicitly regularizing the temporal difference loss to ensure local
ϵ-invariance in the state space. In this paper, we provide theoretical foundations
on the impact of ϵ-local invariance training on the deep neural policy manifolds.
Our comprehensive theoretical and experimental analysis reveals that standard
reinforcement learning inherently learns counterfactual values while recent training
techniques that focus on explicitly enforcing ϵ-local invariance cause policies to lose
counterfactuality, and further result in learning misaligned and inconsistent values.
In connection to this analysis, we further highlight that this line of training methods
break the core intuition and the true biological inspiration of reinforcement learning,
and introduce an intrinsic gap between how natural intelligence understands and
interacts with an environment in contrast to AI agents trained via ϵ-local invariance
methods. The misalignment, inaccuracy and the loss of counterfactuality revealed
in our paper further demonstrate the need to rethink the approach in establishing
truly reliable and generalizable reinforcement learning policies.

1 INTRODUCTION

Inspired by the learning dynamics and cognitive abilities of natural intelligence (Watkins, 1989;
Schmidhuber, 1999; Kehoe et al., 1987; Romo & Schultz, 1990; Montague et al., 1996; Schultz
et al., 1993; Pan et al., 2005), reinforcement learning research has been the focal point of immense
research progress (Mnih et al., 2015; Hasselt et al., 2016). Deep reinforcement learning has become
an emerging field in the past decade with the introduction of deep neural networks as function
approximators leading to learning policies that can surpass human cognitive abilities in highly
complicated tasks by solely interacting with a given environment through trial and error without any
supervision, consequently resulted in building AI agents that can reason and strategize (Mnih et al.,
2015; Kapturowski et al., 2023; Krishnamurthy et al., 2024). In parallel, advances in neuroscience
revealed the precise structures and neural circuitry dedicated to the computation of counterfactual
state-action values in the human brain, and how these values are later compared to make decisions.
In the specialized neural circuitry that underpins decision-making a compelling functional divide
has been identified: while the prefrontal cortex encodes the expected values of executed actions, the
dorsomedial frontal cortex plays a critical role in the analysis of counterfactual decisions providing
the mechanisms for learning that can reason and generalize (Wunderlich et al., 2009; Lau & Glimcher,
2007; Klein-Flügge et al., 2016).

Beyond the initial inspiration by neuroscience, reinforcement learning further offers strong, mathemat-
ically provable, asymptotic guarantees on its ability to learn policies for solving complex problems via
trial and error (Sutton, 1984; Watkins & Dayan, 1992). Nonetheless, a recent body of work exposed
critical safety concerns of reinforcement learning, and consequently, a new class of algorithms has
emerged that modify standard reinforcement learning algorithms to ensure reliability and safety in
deep reinforcement learning (Madry et al., 2018; Korkmaz, 2024).
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In this paper, we investigate the core intuition of reinforcement learning, and we analyze the theoretical
underpinnings of counterfactuality and alignment in connection to the neuroscientific analysis of
natural intelligence, and the consequential effects of trying to ensure safety in reinforcement learning.
Our analysis discovers that the line of research focused on safety fails to deliver the guarantees implied
by certified safety and robustness, and further risks potentially significant changes to the behavior
and semantics of the trained policies that disrupts the foundations of reinforcement learning and its
inherent capabilities. Essentially in this paper we aim to seek answers for the following questions: (i)
What are the consequences of current efforts to explicitly impose safety on reinforcement learning?
(ii) What are the underlying reasons for preserving the core intuitive principles, neuroscientific
foundations, and inherent capabilities of reinforcement learning? To be able to answer these
questions we focus on the foundations of reinforcement learning and its alignment with natural
intelligence, and make the following contributions:

Contributions. We first provide a theoretically well-founded rigorous analysis of the state-action
value function learnt by methods explicitly enforcing ϵ-local invariance and standard reinforcement
learning in Section 3. Our analysis uncovers fundamental insights into how ϵ-local invariance
imposition alters the very fabric of an agent’s learned value judgments. Our paper is the first one
that demonstrates, both theoretically and empirically, that methods explicitly enforcing robustness
in fact fundamentally disrupt the inherent learning processes of standard reinforcement learning,
consequentially leading to the subversion and loss of essential skills. Our analysis reveals that
reinforcement learning possesses an inherent ability for counterfactual reasoning and is naturally
aligned with human decision-making processes, while a recent line of work focusing on enforcing
standard reinforcement learning to be explicitly robust causes standard RL policies to lose the inherent
counterfactual ability and results in learning policies that are inaccurate, inconsistent and misaligned.
We then conduct experiments in MDPs with high-dimensional state spaces from the Arcade Learning
Environment (ALE) in Section 4, and our comprehensive study verifies the theoretical analysis and
demonstrates a critical trade-off. Our findings reveal that standard deep neural policies naturally retain
core skills that align with the value assignment of natural intelligence which allows them to reason
and generalize. However, subjecting them to explicit ϵ-local invariance training shatters this elegant
relationship and eradicates this intrinsic counterfactual ability and alignment. Our paper establishes
the foundational principle of an intrinsic trade-off between counterfactuality and robustness and
further uncovers the core mechanisms driving this fundamental trade-off as a direct result of certified
training.

2 BACKGROUND AND PRELIMINARIES

Markov Decision Process. An MDP is represented by a tuple M = (S,A, P, r, ρ0, γ) where S is a
set of continuous states, A is a discrete set of actions, P is a transition probability distribution on
S×A×S, r : S×A → R is a reward function, ρ0 is the initial state distribution, and γ is the discount
factor. The objective in reinforcement learning is to learn a policy π : S → P (A) which maps
states to probability distributions on actions in order to maximize the expected cumulative reward
R = E

∑T−1
t=0 γtr(st, at) where at ∼ π(st). In Q-learning (Watkins, 1989) the goal is to learn

the optimal state-action value function Q∗(s, a) = R(s, a) +
∑

s′∈S P (s′|s, a)maxâ∈A Q∗(s′, â).
Thus, the optimal policy is determined by choosing the action a∗(s) = argmaxa Q(s, a) in state s.

Adversarial Crafting and Training. Concerns regarding ϵ-invariance start with the work of Goodfel-
low et al. (2015), who observed that perturbations that are imperceptible to natural intelligence can in
fact change the decision of a deep neural network and further suggested a fast method to produce such
perturbations based on the linearization of the cost function used in training the network. Kurakin
et al. (2016) proposed the iterative version of the fast gradient sign method proposed by Goodfellow
et al. (2015) inside an ϵ-ball

xN+1
adv = clipϵ(x

N
adv + αsign(∇xJ(x

N
adv, y))) (1)

in which J(x, y) represents the cost function used to train the deep neural network, x represents the
input, and y represents the output labels. While several other methods have been proposed Korkmaz
(2024) using a momentum-based extension of the iterative fast gradient sign method,

vt+1 = µ · vt +
∇sadvJ(s

t
adv + µ · vt, a)

∥∇sadvJ(s
t
adv + µ · vt, a)∥1

, st+1
adv = stadv + α · vt+1

∥vt+1∥2
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robust training, i.e. ϵ-invariance training, has mostly been conducted with perturbations computed by
projected gradient descent, i.e. PGD, proposed by Madry et al. (2018) (i.e. Equation 1).

Neuroscientific Results and Alignment with Natural Intelligence Decisions Making. A no-
table aspect of human cognitive decision-making is the assignment of counterfactual values

Figure 1: Human decision
making and value assign-
ment for options (Klein-
Flügge et al., 2016).

to alternative, unchosen decisions (Wunderlich et al., 2009; Lee et al.,
2012; Phillips et al., 2019). This mechanism serves to inform future
decision-making by preserving a clear ordering of both factual and
counterfactual outcomes and is a key attribute of the decision-making
process that enables generalization and reasoning (Hoeck et al., 2015;
Phillips et al., 2019; Grabenhorst & Rolls, 2011). Notably, the results
in Figure 1 report analysis of fMRI scans of human brains during a
decision-making task to identify a neural structure that compares the
values of chosen and unchosen options for a particular decision. The
results demonstrate that the value of each option was encoded in this structure, and that the actual
decisions made were accurately predicted by these values (Klein-Flügge et al., 2016).

Concerns on Reliability of Deep Neural Policies. The initial investigation on volatilities of deep
neural policies was conducted based on testing ϵ-invariance via the utilization of the fast gradient
sign method proposed by Goodfellow et al. (2015). Reliability of reinforcement learning policies has
been further analyzed, and some studies argued the existence of shared ϵ-variant directions across
MDPs and algorithms can be due to an underlying linear structure learnt by policies (Korkmaz,
2022; 2024). While several studies focused on improving optimization techniques for computing
optimal perturbations, a line of research focused on making deep neural policies resilient to these
perturbations. In particular, Pinto et al. (2017) proposed to model the dynamics between the adversary
and the deep neural policy as a zero-sum game where the goal of the adversary is to minimize
expected cumulative rewards of the deep neural policy. Gleave et al. (2020) approached this problem
with an adversary model which is restricted to take natural actions in the MDP instead of modifying
the observations with ℓp-norm bounded perturbations. The authors model this dynamic as a zero-
sum Markov game and solve it via self-play. Recently, Huan et al. (2020) proposed to model
this interaction as a state-adversarial MDP, and further claimed that their proposed algorithm SA-
Double Deep Q-Network (SA-DDQN) learns theoretically certified ϵ-invariant policies against both
natural noise and perturbations. Recent studies surprisingly revealed that certified training exhibits
generalization issues with unpredictable behaviour and larger oscillations compared to standard
reinforcement learning (Korkmaz, 2024). Despite these observations on generalization, currently still
a large body of work is produced on explicitly optimizing variants of ϵ-invariance training, without
any foundational analysis and explanation on how precisely this class of algorithms affect the inherent
abilities of standard reinforcement learning and why this line of approach might not be the way of
achieving true reliability.

3 THE CORE INTUITION OF REINFORCEMENT LEARNING: THE INHERENT
COUNTERFACTUALITY

Our extensive analysis and results discover that ϵ-invariance training methods break the core intuitive
principles of reinforcement learning and erode the inherent skills of RL policies up to the level
of learning random values for counterfactual actions. Our analysis reveals that a key and strong
attribute of reinforcement learning that allows generalization and reasoning is lost when subjected to
invariance training. Our study provides evidence that the application of ϵ-invariance training fails to
fully address the critical issues of robustness and safety in modern AI. The observed misalignment
between this training methodology and desirable system behavior reveals a key dichotomy: while
certified training aims for provable guarantees, it appears to diverge from the inherent principles that
underpin the core attributes of natural intelligence with regard to reasoning and generalization.

The theoretically motivated ϵ-locally invariant (ϵ-LI) training techniques achieve certified defense
against perturbations inside the ϵ-ball, Dϵ(s) = {s̄ : ∥s− s̄∥∞ ≤ ϵ}, forming the current foundations
of the robust reinforcement learning. However, we provide foundational evidence that this approach
induces significant changes in the Q-function where the state-action value function no longer accu-
rately represents the MDP. In particular, ϵ-locally invariant (ϵ-LI) training causes deep neural policies
to learn misaligned, inaccurate, overestimated state-action value functions while causing standard
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reinforcement learning to lose it’s inherent counterfactuality. Furthermore, we connect and highlight
the neural processing of decision making of natural intelligence, core intuition of reinforcement
learning and certified training (Wunderlich et al., 2009; Lau & Glimcher, 2007; Grabenhorst & Rolls,
2011). Our results reveal that certified training disrupts the core intuition of reinforcement learning
and leads to learning policies that are disjoint and orthogonal to natural intelligence decision making,
i.e. the true biological inspiration of reinforcement learning (Romo & Schultz, 1990; Montague et al.,
1996). In the remainder of this section we will provide the theoretical foundations on: i. Why we need
to preserve the core intuition of reinforcement learning, and ii. What factors precisely disrupts the
essential core skills learnt by reinforcement learning. The theoretical underpinning of ϵ-invariance
training methods is derived from Danskin’s theorem.
Theorem 3.1 (Danskin (1967)). Let X be a compact topological space f : Rn ×X → R, f(·, x) is
differentiable for every x ∈ X , x∗(θ) = {x ∈ argmaxx∈X f(θ, x)} and ∇θf(θ, x) is continuous on
Rn×X . Then the max function κ(θ) = maxx∈X f(θ, x) is locally Lipschitz continuous, directionally
differentiable, and its directional derivatives satisfy κ′(θ, h) = supx∈x∗(θ) h

⊤∇θf(x, θ). Further-
more, if the set x∗(θ) has size one i.e. there is a unique maximizer x∗

θ then ∇θκ(θ) = ∇θf(θ, x
∗
θ).

Danskin’s theorem provides a method to compute the gradient of a function that is defined in terms
of a maximization over a set. With this theoretically well-motivated start, a line of algorithms have
been proposed to make models reliable. The approach of ϵ-invariance training techniques is based
on editing the standard Q-learning update. This change made to the update is designed to penalize
Q-functions for which a perturbed state s̄ ∈ Dϵ(s) can change the identity of the highest Q-value
action. Formally, the canonical definition used in the literature is
Definition 3.2 (Robust reinforcement learning). Within an ϵ-neighbourhood the reinforcement learn-
ing policy should be invariant to Dϵ(s) := {ŝ ∈ S | ŝ ∈ Dϵ(s), argmaxaQ(s, a) = argmaxaQ(ŝ, a)}
where Dϵ(s) = {ŝ : ∥s− ŝ∥p ≤ ϵ}. Then the policy is ϵ-invariant (robust).

Now we will prove that there is a fundamental trade-off between accurate estimation of Q-values and
robustness. In particular, the optimal state-action value function Q∗ is not ϵ-invariant, but there is a
ϵ-invariant state-action value function Qθ that overestimates the optimal state-action values.
Theorem 3.3 (Inherent trade-off between estimation and robustness). Let ϵ > 0. In the linear
function approximation setting, there is an MDP such that all linear-state action value functions
matching the optimal state-action values Q∗ are not ϵ-invariant. Furthermore, there is a linear
state-action value function Qθ that is ϵ-invariant, but overestimates the optimal state-action values
while maintaining the correct optimal action.

Proof. Let there be two states s1 and s2 such that ∥s1 − s2∥2 = 1. Further suppose that the
optimal state-action values satisfy Q∗(s1, a1) = ϵ/10, Q∗(s1, a2) = 0, Q∗(s2, a1) = 0.8, and
Q∗(s2, a2) = 1.0. Next let Qθ(s, a) be any linearly parameterized state-action value function that
agrees with Q∗(s, a) on the states s1 and s2. Consider the one-dimensional functions Ψ1(ξ) =
Qθ((1 − ξ) · s1 + ξ · s2, a1) and Ψ2(ξ) = Qθ((1 − ξ) · s1 + ξ · s2, a2) which are the restriction
of Qθ(s, a) to the line segment from s1 to s2. By linearity of Qθ we also have that both Ψ1 and
Ψ2 are linear. Furthermore, since Qθ agrees with Q∗ at s1 and s2, we know the values of both
functions at two points i.e. Ψ1(0) = Q∗(s1, a1), Ψ1(1) = Q∗(s2, a1), Ψ2(0) = Q∗(s1, a2), and
Ψ2(1) = Q∗(s2, a2). As Ψ1 and Ψ2 are linear functions on R, the values at two points are sufficient
to uniquely determine the functions. In particular we have

Ψ1(ξ) = (0.8− ϵ/10)ξ + ϵ/10 and Ψ2(ξ) = ξ

Note that these two lines intersect at the point ξ̂ = ϵ
2+ϵ . Let ŝ = (1−ξ̂)·s1+ξ̂·s2. Since the lines of Ψ1

and Ψ2 intersect at ξ̂, we conclude that Qθ(ŝ, a2) ≥ Qθ(ŝ, a1). However, Qθ(s1, a1) > Qθ(s1, a2).
Furthermore, ∥s1 − ŝ∥ = ϵ

2+ϵ < ϵ. Thus, Qθ is not ϵ-invariant. However, if we instead choose new
parameters θ′ for the state-action value function so that Qθ′(s1, a1) = 0.8 and Qθ′(s1, a2) = 0.7
one can easily check that Qθ′ is ϵ-invariant for all ϵ < 0.1. Furthermore, observe that Qθ′ gives the
correct ranking of actions in state s1, but overestimates the optimal state-action value by a factor of
8/ϵ.

The results reported in Section 4 verify the theoretical analysis on the fundamental trade-off between
estimation and ϵ-invariance in neural-network approximation of the Q-function. Now we will further
theoretically analyze the effects of canonical ϵ-invariance training techniques (Huan et al., 2020).
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Definition 3.4 (Baseline Certified ϵ-invariance Training). The regularizer that achieves certified
ϵ-invariance inside the ϵ-ball Dϵ(s) = {s̄ : ∥s− s̄∥∞ ≤ ϵ} for Qθ(s, a) ∀s̄ ∈ Dϵ(s) is

R(θ) =
∑
s

( max
s̄∈Dϵ(s)

max
a̸=argmaxa Qθ(s,a)

Qθ(s̄, a)−Qθ(s̄, argmax
a

Qθ(s, a))).

The certified training algorithm proceeds by adding R(θ) to the standard temporal difference loss
LH (r(s, a) + γmaxa′ Qtarget(s′, a′)−Qθ(s, a)) +R(θ).

Now we will show that changing the standard Q-update will cause losing counterfactuality ∀a ∈ A⊥
s

where A⊥
s := {a|a ̸= argmaxâ Q(s, â)}, and overestimation of the state-action values ∀a ∈ A. For

this now let us look at the MDP M where two states parametrized by feature vectors s1, s2 ∈ Rn,
with three possible actions {ai}3i=1 in each state where taking any of the actions in state s1 leading to a
transition to state s2 and vice versa. Let 1 > γ > 0 be the discount factor, and let δ > η > 0 be small
constants with γ > δ. The rewards for each action are as follows: r(s1, a1) = 1−γ, r(s1, a2) = η−γ,
r(s1, a3) = δ − γ, r(s2, a1) = η − γ, r(s2, a2) = 1 − γ, and r(s2, a3) = δ − γ. Clearly, the
optimal policy is to always take action a1 in state s1, and action a2 in state s2 as these are the only
actions giving positive reward. Thus the optimal state-action values are given by: Q∗(s1, a1) =
Q∗(s2, a2) =

∑∞
t=0(1 − γ)γt = 1, Q∗(s1, a2) = Q∗(s2, a1) = η − γ + γ

∑∞
t=0(1 − γ)γt = η

, and Q∗(s1, a3) = Q∗(s2, a3) = δ − γ + γ
∑∞

t=0(1 − γ)γt = δ. Let the Q-function be linearly
parametrized by θ = (θ1, θ2, θ3) so that Qθ(s, ai) = ⟨θi, s⟩. Finally, let Φi for i ∈ {1, 2, 3} be three
orthonormal vectors, and let the state feature vectors satisfy:

1. s1 = Φ1 + δΦ3 + ηΦ2 and 2. s2 = Φ2 + δΦ3 + ηΦ1

Then it follows that the optimal Q-function is parametrized by θ∗ = (θ∗1 , θ
∗
2 , θ

∗
3) where θ∗i = Φi

i.e. Qθ∗(s, a) = Q∗(s, a) for all s and a. Thus, according to the function Qθ∗(s, a), for s1 the best
action is a1, for s2 the best action is a2, and in all states the second-best action is a3. Next we identify
the optimal perturbations used in the computation of the regularizer R(θ∗) for this setting.
Proposition 3.5. In the MDP M for any ϵ > 0.

1. For s = s1 : s+
ϵ√
2
(θ∗3 − θ∗1) = argmax

s̄∈Dϵ(s)

max
a̸=a∗(s)

Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s))

2. For s = s2 : s+
ϵ√
2
(θ∗3 − θ∗2) = argmax

s̄∈Dϵ(s)

max
a̸=a∗(s)

Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s))

Proof. We will prove item 1, and item 2 will follow from an identical argument with roles of θ∗1 and
θ∗2 swapped. Let s = s1. Since a∗(s) = 1, there are two case to consider for the maximum over
a ̸= a∗(s), either a = 2 or a = 3. In the case that a = 2 we have

max
s̄∈Dϵ(s)

Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s)) = max
s̄∈Dϵ(s)

⟨θ∗2 , s̄⟩ − ⟨θ∗1 , s̄⟩. (2)

This is the maximum in a ball of radius ϵ around s of the linear function ⟨θ∗2 − θ∗1 , s̄⟩. Therefore the
maximum is achieved by s̄ = s+ ϵ√

2
(θ∗2 − θ∗1). The corresponding maximum value is

max
s̄∈Dϵ(s)

⟨θ∗2 , s̄⟩ − ⟨θ∗1 , s̄⟩ = ⟨θ∗2 − θ∗1 , s⟩+ ϵ∥θ∗2 − θ∗1∥2 = η − 1 + ϵ
√
2. (3)

In the case that a = 3 an identical argument implies that the maximum is achieved by s̄ = s +
ϵ√
2
(θ∗3 − θ∗1), with corresponding maximum value

max
s̄∈Dϵ(s)

⟨θ∗3 , s̄⟩ − ⟨θ∗1 , s̄⟩ = ⟨θ∗3 − θ∗1 , s⟩+ ϵ∥θ∗3 − θ∗1∥2 = δ − 1 + ϵ
√
2. (4)

Because δ > η we conclude that the value achieved in 4 is larger than that in 3. Thus the maximizer
is s̄ = s+ ϵ√

2
(θ∗3 − θ∗1) as desired.

In words, the optimal direction to perturb the state s1 in order to have a∗(s) ̸= a∗(s̄) is toward
θ∗3 − θ∗1 . Similarly for the state s2, the optimal perturbation is toward θ∗3 − θ∗2 . Next we use this fact
to show that in order to decrease the regularizer it is sufficient to simply increase the magnitude of θ1
and θ2, and decrease the magnitude of θ3.

5
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Figure 2: Up: Performance drop P2(Ω) with respect to action modification a2 for the state-of-the-art
ϵ-invariance and vanilla trained deep neural policies. Down: Performance drop Pw(Ω) with respect
to action modification aw. Left: BankHeist. Center: RoadRunner. Right: Freeway.

Proposition 3.6. In the MDP M let λ > 0 and suppose that (1 − λ)δ < (1 + λ)η < δ. Let
θ = (θ1, θ2, θ3) be given by θ1 = (1 + λ)θ∗1 , θ2 = (1 + λ)θ∗2 and θ3 = (1 − λ)θ∗3 . Then
R(θ) < R(θ∗).
The proof of Proposition 3.6 is provided in the supplementary material. Combining Proposition 3.6
and Proposition 3.5 we can prove the main result of this section on the effects ϵ-invariance training.
Theorem 3.7 (Existence of Overestimation and Misalignment of Counterfactual Decisions). There is
an MDP with linearly parameterized state-action values, optimal state-action value parameters θ∗,
and a parameter vector θ such that: L(θ) < L(θ∗), and the parameter vector θ overestimates the
optimal state-action value and re-orders the sub-optimal ones.

The proof of Theorem 3.7 is provided in the supplementary material. The results reported in Section
4 verify the fundamental trade-off and the theoretical predictions of Section 3. In particular, across
a diverse portfolio of state-of-the-art ϵ-invariance training techniques that aim to obtain safe and
reliable reinforcement learning, our results demonstrate that certified ϵ-invariance trained policies
learn misaligned, inacccurate and inconsistent values while further losing counterfactuality compared
to standard reinforcement learning.

4 EMPRICAL ANALYSIS IN HIGH-DIMENSIONAL MDPS

The empirical analysis is conducted in high dimensional state representation MDPs of the Arcade
Learning Environment (ALE). The standard reinforcement learning policy is trained via DDQN (Wang
et al., 2016) initially proposed in (van Hasselt, 2010) with prioritized experience replay proposed by
(Schaul et al., 2016), and the ϵ-invariance reinforcement learning policies are trained via SA-MDP RL
(State Adversarial MDP, see Section 2), RADIAL (Robust Adversarial Loss-RL), and Optimal Robust
Policy (ORP) (Li et al., 2024) where all of these influential studies were attributed as oral and spotlight
presentations at NeurIPS and ICML respectively. The standard error of the mean is included for all of
the figures and tables. See supplementary material for the hyperparameters and the implementation
details. Performance drop P is given by P = (Scorebase − Scoreactmod)/(Scorebase − Scoremin),
where Scorebase represent the baseline run of the game without modification, Scoremin represents the
minimum score available for a given game, and Scoreactmod represents the run of the game where the
actions of the agent are modified for a fraction of the state observations. To measure the accuracy for
the state-action value estimates formally, let ai be the ith best action decided by the deep neural policy
in a given state s (i.e. Q(s, a) is sorted in decreasing order, and ai is the action corresponding to ith

largest Q-value). For a trained agent, the value of Q(s, ai) should represent the expected cumulative
rewards obtained by taking action ai in state s, and then taking the highest Q-value action (i.e. a1)
in every subsequent state. Thus, a natural test to perform would be: for a random state s the policy
should take action ai in state s, and the highest Q-value action for the rest of the states. By comparing
the relative performance drop P in this test to a clean run where the agent always takes the highest
Q-value action, one can measure the decline in rewards caused by taking action ai. Further, we can
provide a measure of accuracy for the state-action value function by comparing the results of the test
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Figure 3: Loss of counterfactuality: P2(Ω) and Pw(Ω) results with respect to a2 and aw for ORP
(Optimal Robust Policy) ϵ-invariance reinforcement learning and vanilla reinforcement learning.

for each i ∈ {1, 2 . . . |A|}, and checking that the relative performance drops Pi are in the correct
order i.e. 0 = P1 ≤ P2 · · · ≤ P|A|. We take this one step further and analyze the performance drop
with Ω-fraction of the states in the episode uniformly at random, and making the policy execute
action ai in each of the sampled states. We then record the relative performance drop as a function of
Ω, yielding a performance drop curve Pi(Ω). More formally, the performance curve is

Definition 4.1 (Performance Drop Curve). Let M be an MDP and Q(s, a) be a state-action value
function for M. In each state label the actions a1, . . . a|A| in order so that Q(s, a1) ≥ Q(s, a2) · · · ≥
Q(s, a|A|). The performance drop curve Pi(Ω) is the expected performance drop of an agent in M
which takes action ai in a randomly sampled Ω-fraction of states, and executes a1 in all other states.

Using these performance drop curves one can confirm whether Pi(Ω) lies above Pj(Ω) whenever
i > j. Yet to be precise we will quantify the relative ordering of the performance drop curves.

Definition 4.2 (τ -domination). Let F : [0, 1] → [0, 1] and G : [0, 1] → [0, 1]. For any τ > 0, we say
that the F τ -dominates G if

∫ 1

0
(F(Ω)− G(Ω)) dΩ > τ .

To compare the accuracy of state-action values for vanilla versus ϵ-invariance trained agents, we can
thus perform the above test, and check the relative ordering of the curves Pi(Ω) using Definition
4.2 for each agent type. In addition, we can also directly compare for each i the curve Padv

i (Ω) for
the ϵ-invariance trained agent with the curve Pvanilla

i (Ω) of the vanilla trained agent. This is possible
because Pi(Ω) measures the performance drop of the agent relative to a clean run, and thus always
takes values on a normalized scale from 0 to 1. Hence, an observation of Padv

2 (Ω) τ -dominating
Pvanilla
2 (Ω) for some τ > 0, this would conclude that the state-action value function of the vanilla

trained agent can accurately represent the counterfactual actions than the ϵ-invariance trained agents.

4.1 LOSING INHERENT COUNTERFACTUALITY

In Section 3 we provided theoretical analysis on how ϵ-invariance training effects the core principles
of reinforcement learning. In this section, we demonstrate that standard reinforcement learning is
inherently counterfactual and certified ϵ-invariance training causes the policy to lose counterfactuality.
Figure 2 and Figure 3 report the performance drop P2(Ω) and Pw(Ω) as a function of the fraction of
states Ω in which the action modification is applied for ϵ-invariance and vanilla trained deep neural
policies. In particular, the action modification is set for the second best action a2 decided by the state-
action value function Q(s, a). As the fraction of states for P2(Ω) increases, vanilla trained deep neural
policies experience lower performance drops compared to ϵ-invariance. Especially in BankHeist we
observe that the performance drop does not exceed 0.55 even when the action modification is applied
for a large fraction of the visited states for the standard reinforcement learning policies. This gap in
the performance drop between the ϵ-invariance and vanilla trained deep neural policies indicates that
the state-action value function learnt by standard reinforcement learning has a better estimate for the
state-action values. We further investigate the effects of aw = argmina Q(s, a), i.e. worst possible
action in a given state, modification on the deep neural policy. Intriguingly, Figure 2 and 3 report
that the performance drop Pw(Ω) is higher in the vanilla trained deep neural policies compared to
ϵ-invariance trained ones when the action modification is set to aw. This again further verifies the
theoretical predictions in Section 3 and demonstrates that standard reinforcement learning learns a
counterfactual and accurate state-action value function while ϵ-invariance policies lose core inherent
skills of reinforcement learning.
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Figure 4: Q values of argmaxa∈A Q(s, a) for ϵ-invariance and vanilla trained deep neural policies.

MDPs BankHeist RoadRunner Freeway

Method ϵ-Invariance Vanilla ϵ-Invariance Vanilla ϵ-Invariance Vanilla

AM a2 0.449±0.007 0.191±0.04 0.414±0.015 0.247±0.009 0.351±0.009 0.302±0.007
AM aw 0.311± 0.011 0.398±0.011 0.345±0.011 0.393±0.002 0.241±0.007 0.311±0.010

Table 1: Area under the curve of performance drop under action modifi-
cation (AM) a2 and aw for the state-of-the-art ϵ-invariance trained deep
neural policies and vanilla trained deep neural policies.

Figure 5: P2 and Pw of
certified ϵ-invariance train-
ing.

Reinforcement learning has inherent counterfactual ability and intrinsically learns aligned values.

The progression of AI, from foundational work in perception to advanced decision-making, has
been marked by key milestones driven by concepts drawn from biological inspiration (Treisman &
Gelade, 1980; Snowden et al., 1991; Rao & Ballard, 1999; Parthasarathy et al., 2024; Newell,
1992; Imaizumi et al., 2022; Hassabis et al., 2017) Reinforcement learning is founded on the
inspiration drawn from natural intelligence (ichi Amari & Arbib, 1982; Kehoe et al., 1987; Romo
& Schultz, 1990; Montague et al., 1996) providing further theoretical guarantees on its limitations
and capabilities (Watkins & Dayan, 1992; Barto et al., 1995). Our results show that ϵ-invariance
training compromises the foundational intuition of reinforcement learning, leading to a loss of the
inherent counterfactuality and creating significant value misalignment. Our analysis and results
demonstrate that an extensive recent line of work myopically focusing on safety in fact diverts the
main contributions and the tight core connection of reinforcement learning with neuroscience while
producing policies that are both in fact unsafe and misaligned. In particular, Figure 5 demonstrates
that choosing the worst action leads to a smaller performance drop than choosing the second best
action i.e. Pw(Ω) < P2(Ω) for all Ω. Notably, these results reveal that ϵ-invariance training methods
assign random values to the counterfactual actions which is a direct misalignment with natural
intelligence decision making. The results reported in Figure 2 demonstrate the clear juxtaposition
between standard reinforcement learning and reliability-concerned reinforcement learning, i.e. ϵ-
invariance. Intriguingly, these findings reveal that standard reinforcement learning successfully
learns aligned values and possesses an inherent capacity for counterfactual reasoning. Imposing
reinforcement learning to be ϵ-invariant strips out these intrinsic skills. While learning inconsistent
and misaligned values can cause vulnerability problems from a security point of view, our analysis
further highlights the foundational loss of information in the state-action value function as a novel
fundamental trade-off intrinsic to ϵ-invariance training.

Imposing ϵ-invariance causes misalignment and the loss of the inherent counterfactuality of RL.

Biased Q-values in ϵ-invariance Trained Deep Neural Policies. In this section we investigate
state-action value estimates of ϵ-invariance trained and vanilla trained deep neural policy. The
results demonstrate that ϵ-invariance training leads to overestimation in Q-values which verifies
the theoretical analysis provided in Section 3. In particular, Figure 4 reports the overestimation
bias on the state-action values learned by the ϵ-invariance trained deep neural policies. Note that
the fact that ϵ-invariance trained policies assign higher state-action values than the vanilla trained
deep reinforcement learning policies while performing similarly, i.e. obtaining similar expected
cumulative rewards, reveals that the ϵ-invariance training techniques, on top of the misalignment,
counterfactuality and the inaccuracy issues, learn explicitly biased state-action values.

Action Gap Phenomenon. The action gap is defined as the difference Q-values, i.e. G(Q, s) =
maxâ∈A Q(s, â)−maxa∈A⊥

s
Q(s, a). A connection between the action gap and the approximation

errors has been discussed in prior studies and it has been hypothesized that increasing the action gap
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Figure 6: Normalized state-action values for the best action a∗, second best action a2 and worst
action aw over states. Up: Vanilla trained. Down: State-of-the-art Lipshitz trained2.

of the learned value function causes a decrease in overestimation of Q-values. Following this study,
several papers built on the hypothesis that increasing the action gap causes reduction in bias. However,
our results reveal that targeting to increase the action gap must be upper-bounded by preserving the
order of the counterfactual actions to obtain truly reliable and safe policies. Once this upperbound is
passed the policy forms values that are misaligned and without the ability to think counterfactual.
To preserve the core principles of reinforcement learning and its neuroscientific foundations that
allow them to reason and generalize, we must preserve the approaches that targeted learning methods
that align and match the foundational inspiration of reinforcement learning (Baird & Moore, 1993;
Watkins & Dayan, 1992; Averbeck & Costa, 2017).

A Transparent Discussion and Call for Reconsideration. While these certified training algorithms
have attracted a significant level of attention from the research community, including several spotlight
and oral presentations at NeurIPS and ICML, to encourage more efforts on this line of research
commiting to development of responsible policies, it is more significant than ever to discuss principled
investigation of these approaches. If these issues are not openly and transparently discussed, it will
harm the progress towards achieving true reliability and safety while influencing future research
directions and significantly pivoting research efforts (Ren et al., 2024). Without the principled
knowledge of the actual costs and drawbacks of these algorithms a significant level of research effort
might be misdirected. The results reported in Section 4.1 and Figure 5, reveal concrete problems of
the ϵ-invariance training techniques and how they erode reinforcement learning core skills including
inherent counterfactuality and generalization. Our results call for an urgent reconsideration ϵ-
invariance training of reinforcement learning and what constitutes true robustness.

5 CONCLUSION

In this paper, we focus on the core principles of reinforcement learning and how the inherent
capabilities of RL policies are impacted by the efforts on explicit imposition of robustness. We
provide an extensive theoretical analysis on the fundamental effects of ϵ-invariance training of
reinforcement learning. Both our theoretical analysis and empirical analysis conducted in high-
dimensional state representation MDPs reveal that standard reinforcement learning is inherently
counterfactual and aligned with the human decision making process, while techniques focused on
imposing ϵ-invariance erodes core skills of reinforcement learning. Moreover, our theoretical analysis
reveals that there is a fundamental trade-off in ϵ-invariance training methods, and our empirical results
demonstrate ϵ-invariance training breaks the core principles of reinforcement learning and causes
policies to lose counterfactuality and learn misaligned and inaccurate state-action value functions.
Our paper highlights transparent progress and calls for reconsideration of robustness, and our analysis
is critical in understanding the true capabilities of standard reinforcement learning, and opens an
avenue for more principled approach for designing algorithms to improve reliability.

2Figure 6 reports that ϵ-invariance training increases the action gap, yet still learns biased values. Due to the
fact that the ϵ-invariance trained policy has biased Q-values, the results are reported in the normalized form in
order to compare the action gaps of ϵ-invariance and vanilla trained policies in the same graph.
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